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Abstract. The article proposes a (phase-marginalized)
frame-start detector resilient to frequency offset between the
transmitter and the receiver. The detector is a slight modi-
fication of the standard detector that looks for a known se-
quence/preamble using the matched filter, respectively cor-
relation of the received signal with the known sequence. The
modification is that the original long sequence is divided
into shorter ones; the magnitude or magnitude-squared of
the output of matched-filters is taken and then appropriately
added to get the final detector metric. The proposed detector
is a low-cost alternative to the standard approach (joint esti-
mation of frame timing and frequency offset), where we need
as many matched-filters as the number of testing frequency
offsets. We derive probability characteristics of the proposed
detector that reflect its resilience to the frequency offset. The
frequency resilience of the detector is proportional to the
number of segments into which the preamble is divided.

Keywords

Frame synchronization, matched filtering, crosscorrela-
tion, frequency offset

1. Introduction

Estimation of the beginning of a frame is one of the
initial procedures the receiver needs to do. Even the most
simplified channel models of a real over-the-air channel in-
clude the frequency offset between the transmitter and the
receiver. Maximum likelihood (ML) joint-estimation of the
frame-timing and the carrier-frequency-offset in the ordinary
channel — with just additive white Gaussian noise, and carrier-
frequency and carrier-phase offset — requires as many corre-
lators as is the number of testing frequency-offsets. Hence,
some suboptimal simplified algorithms emerged that do not
require such extensive computational power, but instead de-
couple the timing and carrier-frequency-offset estimation.
The article focuses on the frame-start detector that searches
for a known pilot-signal/preamble without first, or simulta-
neous, estimation of the frequency offset. The pilot signal is
often followed by a payload signal that carries data, but we
will assume no data here.

DOI: 10.13164/re.2025.0698

The detector algorithms for estimation of frame-start
— that are resilient to frequency offset — are often designed
for a specific pilot signal or modulation; e.g., [1] for M-ary
Phase Shift Keying (M-PSK) alphabet, and [2] for Gaus-
sian Minimum-Shift Keying (GMSK) modulated data. The
famous Schmidl-Cox algorithm [3] assumes periodicity of
the pilot signal, and uses the autocorrelation (AC) of the re-
ceived signal with its shifted replica. Many modifications
of the algorithm have been published [4],[5] (cyclic prefix
as the periodic pilot-signal), [6]. The algorithms based on
the Schmidl-Cox algorithm are referred to as autocorrela-
tion algorithms. On the other hand, there are algorithms
based on crosscorrelation (XC) of the received signal with
the known shifted pilot signal. These are effectively real-
ized using matched filter, e.g. [1, 7, 8]. The [9] compares
AC and XC detection algorithms. We will follow a similar
approach here.

There are also frame-start detectors based on the in-
crease of power on antenna(s) [10] — that enable very cost-
effective hardware (HW) implementation for the price of
lower detector’s performance.

Our detector is built on the idea that the optimal carrier-
phase-marginalized ML frame-start detector for zero fre-
quency offset is the simple XC-detector. The detector’s met-
ric is the absolute or absolute-squared value of the crosscor-
relation of the received signal with the known pilot signal.
The key observation is that using the XC-detector (optimal for
zero freq. offset) with short pilot-signals, even in cases with
non-zero frequency offset, does not degrade the detector’s
performance much. Our proposed detector leverages the ob-
servation, divides the preamble signal into short sequences,
and computes the XC-metric “per partes” — that makes it re-
silient to frequency offset. The main idea originated in the
master thesis [11] (pg. 32). Our simulation scripts and re-
sults in .mat files have been published on GitHub and archived
using Zenodo [12].

During the review process, we have found an article [13]
that proposes the same method: dividing the preamble into
M parts. In our article, we analyze both variants of the detec-
tor’s metric — the sum of squared absolute values of partial
metrics and the sum of absolute values (without squaring)
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of partial metrics. Additionally, we derive very accurate an-
alytical expressions for probability of misdetection of both
detectors’ variants.

The outline of the article is as follows. Section 2 states
the system model, Section 3 shows the derivation of probabil-
ity characteristics, Section 4 presents numerical results, and
documents two practical over-the-air examples; and Section 5
concludes the paper.

2. System Model

The section introduces a system model that the detector
assumes. The detector chooses between the two hypotheses,
Hy and H;. The model is given in discrete time and also
in continuous time. The discrete model is derived from the
continuous by sampling using the sampling rate f;,, respec-
tively the sampling period Ty, = 1/ f,. Further, we proceed
with just the discrete time model. The obtained results are
then interpreted also for the continuous time case.

The two detector hypotheses are

=wln], 9]
= nel?e27Fe h[n] + wln]. 2)

Hy: x[n]
Hi: x[n]
Their continuous-time equivalent hypotheses are as follows.
Ho: x(t) =w(r), 3)
Hi:  x(t) = ne?e?™ e n(1) + w(r). 4)

w[n] and w(¢) are complex-valued white Gaussian noise vec-
tors, respectively, samples of noise vectors. w[n]’s variance
is 02, and w(t)’s noise density is No. 7 > O is the chan-
nel attenuation, ¢ € (0, 27) is a random carrier-phase, f is
the carrier-frequency offset in Hz. Fg = fo-Tsa = fe/fsa 1S
the normalized carrier-frequency offset. x[n] and x(¢) are
the vectors of the received signal. n € Z is a discrete-time
instant, an index of a sample; t € R is a continuous-time
instant. A(t) is the known preamble, and h[n] = h(nTy,) are
samples of the preamble.

The preamble 4 [n] is divided into Ngeq € N parts, each
part is of Lgq samples long. If necessary, a few zero samples
are added to the last part to have the length of Lgq sam-
ples. The preamble can be expressed as a sum of its delayed
segments, as follows.

Nieq—1
hln] = Z heln — 5Lseq]’ )
£=0
_Jh[n], ne{0,....N, -1} ©)
- 0, otherwise.
holn] = heln], ne{0,...,Leq—1}
¢ 0, otherw1se,
¢ € {0, Ngeq — 1} 7

h[n]

o1t 1111, ‘.'r Tt
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Fig. 1. An example of the partitioning of a preamble sequence
h[n] to Nseq = 3 subsequences.

Nyp, is the length of the /#[n] sequence. An example of the
partitioning of the sequence h[n] to Nyq = 3 subsequences
is shown in Fig. 1 (Np = 32, Ngeq = 3, Lgeq = 11). For illus-
trative purposes, we show an example of a real-valued h[n].

Further, we define auxiliary sequences — matched-
filter’s (mf) impulse responses.

hwe[n] = h*[-n], ®)
heme[n] = h; [-n], ¢€{0,. Nseq -1} )

Upper index * is the complex conjugation.

Optimal metric — the sufficient statistics — for the carrier-
phase (¢) marginalized frame-start detector with zero fre-
quency offset (f, = 0) is

(R lnl| = [ (x[k +n], AIKY | = | > x[k +nlh” [K]|,

keZ

= |2 xln + Kl [ k]

kezZ

=|(x * hme) [n]|. (10)

Rx.n[n] is the crosscorrelation function/sequence of the se-
quences x[n], h[n]. | . | represents the absolute value (abs) of
a complex number. (., .) is the inner product of sequences,
and * stands for the convolution operation. Using (5) in the
metric (10), we get

|Rxn[nl] = | (x[k +n], h[k]) |,
Neeq—1

=| 31 (xlk +nl helk - (L))

= Ry he [+ CLgeq]| - an
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If necessary, the equation (11) can be squared. We propose
to approximate the absolute, resp. absolute-squared sum by
the sum of absolute/absolute-squared values as follows (|.]
and |.|*> moves on summands).

Nseq_l
Z |Roc.ne [+ CLeeq] | (12)
£=0

NSEq_l

Z |ﬂxJ’l[ [n+ gLseq”Q . 13)
=0

—_
N

|Rx,h [n]|

Q

2

e

in,h [I’l]l

We will refer to (12) as approximation 1), and to (13) as
approximation 2). The approximations 1) and 2) are the
detectors’ metric of our proposed detector(s).

If the preamble h[n] is periodic with period Lgeq, the
equations (12), and (13) became

Nyeq—1
|Rx,h [n]| 2 Z |Rx,h0 [n+ fLseqH
=0
= |Ru,no [1]] * Aln], (14)
2) Nieq—1
|Rx,h [n]|2 ~ Z |Rx,h0 [n+ fLseq] i2
=0
= [Re o [n1[* * Alnl, (15)
Nieq—1
Aln] = D7 6[n+ CLeg),
=0
1€ {=(Nseq = 1) Lseqs - - - » —Lseqs 0}

la
= 16
’ o
(f = g)[n] denotes convolution of sequences f[n] and g[n].
Sometimes the convolution is also denoted as f[n] * g[n].
d[n] is Kronecker delta, and A[n] is an auxiliary sequence
— a part of Kronecker comb Ar [n]. Kronecker comb,

Apn[n], is a periodic sequence of Kronecker-delta pulses.
The period is N.

otherwise

An[n] =Z(5[n—kN]. (17)

keZ

Next, we will name the metric in approximation 1) as
yi[n], and the metric in approximaton 2) as y;[n]. Addi-
tionally, we will name also intermediate signals.

£€{0,...,Ngeq— 1}, (18)

xe[n] = (cx he o) 1], (19)

yealn] == |xe[n]l, (20

yealn] = |xe[n]|%, (1)
Nyeq—1

Vilnli= D yealn+ L, (22)

Vil = D7 yealn+CLgl. (23)

=0

The detector’s metric y|[n], and y/ [n] are then compared to
their corresponding threshold values r iy, 72,thr. The exceed-
ing of the threshold indicates the presence of the preamble in
the near vicinity of the time index. The search for arg-max
in the vicinity of the given time-index then determines the
exact position of the frame-start. Block schemes of the two
detectors are in Fig. 2. The auxiliary/intermediate signals are
shown there.

We note that to make a filter physically realizable, it
needs to be causal. Causality is achieved by delaying the
filter’s impulse response so that it is zero in negative time
instants. Matlab implementation of the detectors’ metrics is
in the function MF_correlate, see [12]. During the review
process, authors realized that the finer tuning of the detector
can be achieved not by setting Nyeq, but by setting Lgeq. The
last sequence should be filled with zeros to be Lgq long.

In the Sec. 3, we will show that optimal threshold val-
ues ri mr and o gy depend on the noise variance, o-fv. The
dependence is expressed in the form

e = Ow f1(Pfa), (24)
o = O fo(Pra).- (25)

/1 and f, are functions of the false-alarm probability. Rela-
tions (24) and (25) are derived in the Sec. 3.1, see (56), and
(87). The noise variance is usually not known, so it needs
to be estimated. The detector’s implementation then looks
as in Fig. 3. There are two equivalent schemes; the upper
is suitable for statistical derivations, and the lower for HW
implementation.

It might be challenging to estimate the noise variance,
as we are unsure if there is no transmission at that time.
Looking at the scheme in Fig. 3, we propose to use another
reference level — a plateau-level of the detector’s own met-
ric. We illustrate the plateau-level and the peak of the metric
yi[n] in Fig. 4. As the plateau-level estimators, we suggest
moving average (mAv) or moving median (mMed).

Detectors for a general preamble

@ — delay by Lgq samples

j> — @ — comparator

Detectors for a periodic preamble

m Yo,1 [Tl} y'1 [n]

*ho mt[n]

Fig. 2. The scheme of the proposed frame-start detectors.
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Fig. 3. Two equivalent schemes of the detector with a reference
level and a noise-independent threshold.

T T
1 4

X— R
the peak of the detector’s metric ¥/ [n]

0.5
a _“p_lat_ea_u” level H'l J h "
0"mmnqmnmvyﬂhﬁ"ﬁ] l il LI"Tﬂhqﬂhnnqmvnm‘mmmqmmmpm—'

0 10 20 30 40 50 60 70 80 90 100
n — time index

Fig. 4. An example of the y{[n] detector metric with the peak
and a plateau-level shown.

yiln] — delay by one sample

noise-indep. threshold
L delays

mAv or mMed ]

Ui ,mAv ["’}

Fig. 5. A block diagram of the detector with a mAv reference-
level estimator, for input metric y{[n].

The mAv and mMed plateau-level estimators are de-
fined as follows.

1

Vimalnl = 7 > yiln =k, (26)
k=1

y’l,mMed [l’l] = med ({y’l [n - k]}i:l) ’ 27
1 L

Yomarlnl = 7 ) viln =k, (28)
k=1

V) mtea 1] = med ({y; [n— k] }le) . (29)

L is the averaging length.

Figure 5 shows the moving-average plateau-level esti-
mator y’l’m av 1] applied in the detector’s block diagram. We
get a detector with the constant false-alarm rate (CFAR) —
independent of noise variance — similar to [2].

3. Probability Characteristics

The section shows derivations of the probabilistic char-
acteristics of the detector — the probability of mis-detection
Pmd (probability of not detecting a frame when it is present)
given a fixed false-alarm probability pg,. First, we derive

Pfa, then ppmg. In both cases, we proceed step-by-step by
deriving probability distributions of all the intermediate aux-
iliary signals (19)—(23). In the derivation of pg,, we assume
the hypothesis Hy. H; is assumed for the derivation of ppq.
We approximate all the random variables (RVs) to be inde-
pendent, even though they are not exactly. The assumption
significantly simplifies derivations. The accuracy of the de-
rived formulas is compared to the numerical simulation in
Sec. 4. The numerical results match the derived formulas
well, supporting our assumptions and approximations.

In derivations that aim for py,, the following probability
distributions occur: Complex Normal, Rayleigh, Exponen-
tial, and Erlang. Further, the approximation of the sum of
Rayleigh RVs is taken from [14], and we propose a param-
eter adjustment in it. The distribution is denoted as RaylS
in our paper. In derivations aiming for ppq, the following
probability distributions are used: Complex Normal, Rice,
Non-central y-squared, and (Real) Normal. The Normal dis-
tribution approximates the sum of Rice RVs by matching
the mean and variance. Formulas for the mean and vari-
ance of the mentioned probability distributions are applied
in some partial steps; some formulas are derived using Wol-
fram Mathematica.

3.1 Probability of False Alarm

The probability that the detector’s metric is greater than
a threshold given hypothesis Hy, i.e., no frame present, is
called the probability of false alarm, pg,. The distributions
of intermediate signals follow.

x[n] =w[n] ~CN(0,02), (30)
xeln) = (e hemp)[n] = ) xln = Klhe K], (31)
keZ
xe[n] ~ CN(O, llhel*oy), (32)
Ene = llhel® = Y he[KIP = ) Theme[KP, - (33)
keZ keZ
N2 2
el = bl ~ Rayi | oy = A28 ) g
1
yealnl = |xe[n]* ~ Exp (/lf = m) . (35)

CN(u,0?) stands for complex-normal distribution with
mean y, and variance o2; Ej, is the signal-energy of the
sequence he[n]; Rayl(o) denotes Rayleigh-distributed RV
with parameter o, and Exp(1) indicates exponentially dis-
tributed RV with parameter A.

In order to proceed, we need to assume {Ej,}, to
be equal or at least approximately equal to each other:
Ep, = Ep,. The equivalent assumptions are A¢ = Ao, and
g¢ = 0).

Nyeq—1

Vilnl = > yealn+ CLegl, (36)
=0
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yi[n] ~ RaylS(Ngeq, 00), (37)
Neeg—1
Vilnl = > yealn+ CLegl, (38)
=0
y/2 [l’l] ~ Eﬂ(Nseq’ /1())~ (39)

Erl(k, 1) marks Erlang distribution with k degrees of free-
dom and parameter A. Erl(k, ) represents the distribution
of the sum of k independent RVs, each distributed according
to Exp(4). RaylS(k, o) denotes distribution of the sum of k
independent RVs, each distributed according to Rayl(o).

The RaylS(k, o) distribution has no simple closed form.
We take the approximation from [14]. Authors approximate
RaylS(k, o) by the square root of Erl(k, 15x) and define
an auxiliary variable b as b = 1/(24,,x). b/2 approximates
the variance of RaylS(k, o). We propose to set b differently,
namely, we set b to match the mean:

A ~ RaylS(k, o), (40)
2% exp (;_22)
pdfo(0) = mﬂ(f), (4D
2
edfa() = 1 - Or (k, g—b) “2)
~ _ T(k+1)
HA = E[A] = @m, (43)
fa = k gg, (44)
2
'k+1)}\ n~ , T,
b=\———F) zo"rk-0". 45
(F(k+%)) il id (45)

pdf 4 is the probability density function of the RV A; cdf
is the cumulative distribution function of the RV A; 1(¢) is
the unit-step function; p4 is the mean value of the RV A;
E[.] is the mean-value operator; I'(x) is the gamma function;
QOr(s,x) is the upper regularized incomplete gamma func-
tion. pdf 4 in (41), cdf 4 in equation (42), and p4 in (43) are
valid for any b > 0. We propose to match the mean of RV
A, equation (44) — left side is valid for all b > 0, right side is
the mean of the sum of k independent identically distributed
Rayleigh RVs, each with parameter o~. The resulting b is
given in (45). In notation, we will use the parameter o or
b interchangeably, RaylS(k, o) = RaylS(k, b), but take into
consideration that b depends on k.

Now, we recall the Erlang distribution.

A ~ Exl(k, 1), (46)
Akgk—l Az

pdf4({) = = “1(), 47)

cdfa(2) =1-Q0r(k,AZ) (48)

k-1
= [1 —e % ; E(/lé“){] 1({), (49)

[(s,x) = / $~le  ds, (50)

I'(s,x)

,X) = . 51
Or(s,x) T(s) (51

Finally, the probability of a false alarm is

P = Pr{y|[n] > rime} =1 =Pr{y|[n] < rim}
r%,thr

=1- Cdfy{[n] (rl,thr) =0r Nseq, 7 s (52)

(Vg + 1)\ 1 1hol202
b:= ] < >, (53)

F(Nseq + §) 4 2

P2 = Pr{y5[n] > rome} = 1 = Pr{y5[n] < rome}
=1 —cdfyn) (r2,mr) = Or(Nseg: dor2,me), (54

1
/l()‘

= — (55
lholl2od,

From (52) and (54), threshold values given py, are derived.

r1,thr = \/ZbQEI(Nseq, Pfa,l), (56)
r2,thr = “hO”ZO—&;F_l (Nseq» pfa,2)a (57)
Or'(s,)=x & Or(s,0)=y. (58)

For Nyeq = 1, relations (56), and (57) reduce to

Flthr = \/Eho—vzv(_l) In(pa,1), (59)
raie = Enod (=1) In(ppa). (60)

Ej, =Y, |h[n]|? is the energy of the sequence & [n].

Both, QOr(s,x) and QEl(s,x), are implemented in
computational software languages; Qr(s,x) is imple-
mented as gammainc(x,s,’upper’) in Matlab, and as
GammaRegularized[s,x] in Mathematica; Qp'(s,x) is
implemented as gammaincinv(x,s, 'upper’) in Matlab,
and as InverseGammaRegularized[s,x] in Mathematica.
Note the order of x and s.

3.2 Probability of Misdetection

The probability that the frame is not detected, given
hypothesis Hj, i.e., frame is present, is called the probability
of misdetection, pyg. Probability of detection pq is comple-
mentary to it: pg = 1 — ppg. For the event of detection, we
should correctly assume the following events,

E :=dne{-Np+1,...,N,—1}: y'l[n] > I th, (61)
E =3ne{-Np+1,....Ny—1} 1 yj[n] > rome. (62)

However, for simplicity of derivation, we evaluate the prob-
ability of the approximate events,

Sl,approx = y,l (0] > r'1,thr> (63)
62,appr0x = yé [0] > I thr- (64)
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So, we derive an analytical expression for these probabilities,
Pd,1 = Pr{al,approx}’ and Pd2 = Pr{82,approx}-

Again, we derive the probability distribution of auxil-
iary signals. First, we assign a shortcut to the frequency-
modulated preamble and its parts,

h®[n] = hln] &7 F", (65)
he[n] := he[n] &27F", (66)

x[n] = ne’¥h®[n] +wln] ~CN@e?h®[n],02), (67)
xeln] = (s hemr)[n] = ) x[n = klhemel K]

k

—ne]‘than— klhy[- +Z [n— klheme[K]

= ne¥Rpe o [n] + " win = Klhem[Kl, (68
k
xe[n] ~ CN (ne Ry p, [n], 1 hel*a2), (69)
Rh-” h[ Zhg n+m]h*[ ]

Z h[n+m] elan@("er)h}[m]

Nseq_l
_ Z ol 27F ek Licq Z [hk [n+m —k L] (70)
k=0 m
. ejZan(er—kLseq) h; [m]]
Nseq7]
- Z ejangLsequh;::’hf [}’l—kLseq]. (71)
k=0
y[’l — |x[ [n]|’ (72)
. hel|?o2
yel ~ Rlce(v[n] = n|Rne p [0, o = I f||2 w), (73)
2
y(;’z — |.X[ [n]| , (74)
veo = Xéz(vz[n] = 1 [Ru e ] e = 12 2 ) 7
llhell>oms

Rice(v, o) is the Rice distribution with parameters v and o .
X2(v*, A9) is the non-central chi-squared distribution with k
degrees of freedom and parameters v> and 1y. Traditional
notation uses just one additional parameter A: x; 2(1). The
relation between them is explained next.

~x2 (1), o?*=const > 0, (76)

B:=c?-A (V o) = Xy 2(v2, o), (77
1

Ay = s V2= A0, (78)

The notation 2(v?, Ao) better reflects the process of gener-
ation of the RV For more details, see Appendix 1.

Again, we assume identical energy in each subsequence
h[l Eh{, = Eho-
Nyeq—1
yiln] = Z veiln+-€Leql  ~ Normal approx. (79)
£=0
Nyeq—1

y'z[n]z Z y{’,Z[n+€Lseq]s
=0

). (80)

o 2 (2
I T

Nyeg—1

V2 [}'l] = 772 Z |Rh8,hp [}'l + gLseq]|2,
=0

for yj[n]. (81)

1 [n] will be approximated by a (real-valued) normal distri-
bution (with matched mean and variance).

~ N(pyr, 0’3,). The probability of de-
1
tection and misdetection is as follows.

Assume y/ [0]

Pd1 = PI‘{S] approx} =1- Pr{y,l [O] < rl,thr}

=1 - cdfyro1(r1,mr), (82)
pmd,1 = 1= pa,1 = cdfyo1(ri,mr)
F'l,thr — My’
Y L (83)
oy

®@(x) = [1+erf(x/V2)]/2 is the cdf of the Standard Normal
distribution (0, 1), and erf(x) = 2/ [, exp(—1?) dt is
the error function.
Pd2 = Pr{82,appr0x} =1- Pr{y/z [O] < r2,thr}
=1 — cdfy101(r2,mr), (34)

pmd2 = 1= paa = cdfy o) (r2,mr)

= 1= Owi, Ny (V2202 V22072, 1t ), (85)

1
Q= ——n0, (86)
ol Pors
Nseq_l
2
v =0 = 1 ) [Ruen [l Lol (87)
=0

Owu k(a, b) is the Marcum Q-function of order k.

Now, we evaluate some auxiliary expressions involved
in (83) and (85); namely Hy)s Ty, v2[0], and others that are
involved in formulas for them.

Recall the range of non-zero values of Rhf,hp [n].

R , €{—Lgq+1,...,Leeq—1

0, otherwise.
(83)

Define an auxiliary function 7, (F,), a frequency-dependent
energy of he[n].

Fhe (Fe) = Rz [0 = D e[k 977* by [k]
k
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= 3" |l 27 = DT | [K1 | (=27 Fo).
k

(89)

DtFT [ f [k]] () denotes Discrete-time Fourier transform of
the sequence/signal f[k]:
DFT[f[k]](Q) = Z flk] e i9k, (90)

kezZ

For continuous-time case, 7, (F.) becomes
Thefe) = Rz O) = [ ety 2110 o
= / e 627 ar = FT{[ne (0 | (-2n£o). - O1)
R

FT [ f (t)] (w) denotes Fourier transform of the function f(z):

Frlolw= [ soera o
Now, we evaluate ’Rhs _he [1n] in some multiples of Lgeq.
Assume € € {0, ..., Ngeq — 1}.
( ) Nseq_l
71 .
Rie g [(Lseql ‘= Y 27 FeloskRye y [(€— k) Lycg)
k=0
= |6 = k| = &2 bl Ry, [0] = 27 Fe bl F, (F).
93)

Using formulas for the mean of a Rice RV y; [£Lgq], we get

V[€Lseql = n|Ru= n, [Lseq)| = 0| T, (Fe)|, (94

2
/7r =V [€Lgeq]
/'lyg,l [fLseq] =0 §L1/2 (T;eq) 5 (95)

Now, the variance is derived. First, the variance of the
Rice RV y;[fLseq], then the variance of y/[0] is expressed
as the sum of individual variances of y1[{Lgeq].

Var[yl’,l [fLseq]] =207 +v? [fLseq] - #i’f,l [gLseq], (98)

Nyeq—1
o3 = Var[y[0]] = 7 Var[ye,1[0+Le]]
=0
Nyeq—1
=20 Neeg +1* . [T (Fo)|’
=0
_n2
~’ 5L (2Z2|f%<Fs>|2)- (99)

The transmitted signal is normalized to unit energy, so
Epy = 1/Ngeq. Using 0% = o2 ||hol|*/2, and 1 u in (56),
with parameter b in (53), we adjust pmg,1 in (83). The final
expression for ppg,1 is then (105)[bottom of this page].

Next, we look at pmg.2; specifically at partial expres-
sions involved in (85).

Nyeq—1
2
V0= > 0’[Rnen [CLucql|
=0
Nyeq—1
2
= ) |7 O (100)
=0
- (101)
o llhol?’

We adjust the first and the second argument of the Marcum
Q-function in (85).

v 2/1() V2 [0

seq 2 0]

W

(102)

”hO”20—v2vQ1_“1 (Nseq’ pfa,Z),

V29 1o i = \/

awllholl?
L/2(x) is the Laguerre polynomial of order 1/2. - \/2 QEI (Nsegs Pta2)- (103)
Lija(x) = exp ( ) [(1 -1 ( ) —xI (%x)] . (96)  The probability of misdetection is then
And. th £/ 701 i nste Nieq—1 s
nd, the mean o yl[ ] is pmd,Zzl_QM,Nseq 2 2~q Z |7:h,(Fs)| i
9w =0
Nyeq—1
Ky, = pyr [0] = ; My, i [€Lseq] ,2Q1:1(Nseqapfa,2))~ (104)
Nieq -1 2 2
g —n°|Fn, (F
= 0'\/; Z Ly (%) . 97)  Qw.x(a,b) is Marcum Q-function of oder k. The formulas
=0 for evaluation of probability of misdetection pmg,i: (105),
T(NeegtD) \? - Nyeg=1 ~Ne 2
\/(F(Nse:+;)) er(Nseq7pfa,l)_Z{;:0q L1/2 (7‘1|7—-he(FF)| )
Pmd,1 =@ (105)

4N§C NSC 1 be ] NSE
\/ Nseq + q Z q |ﬁl(’(F8)| q L%/Z ( .

T (Fo)l’)

O'



RADIOENGINEERING, VOL. 34, NO. 4, DECEMBER 2025

705

and pmqg2: (104), are implemented in the function get_p_md
in [12].

For Ngeq = 1, and F = 0 both ppq,1, and pmq,> reduce
to the same expression,

2F
Prdaet = 1= Qw1 n\/g—;’,vz(—l)ln(pfa) . (106)
w

We refer to the case (for Ngeq = 1, and F¢ = 0) as the refer-
ence case. It corresponds to the standard approach with one
matched filter and perfectly known F.

3.3 Probabilities for the Detector that also Es-
timates a Reference Level

In the subsection, we shortly inspect the detector with
reference-level estimators. First one estimates noise-variance
from the received noise, the other two (mAv, mMed) are men-
tioned at the end of Sec. 2. Namely, we consider the three
reference-level estimators:

1. Noise-variance estimator. The estimator should take
samples of the received signal x[n] well before a frame
arrives.

L
var,, [n] := Z Ix[n - k])?. (107)
k=1

The estimator outputs a sequence var,, [r] that estimates

current noise variance Var[w [n]] = 0}%.

2. Plateau-level estimators using moving average
y’l,mAv[n], y’z’mAV [7]. See (26), and (28).

3. Plateau-level estimators using moving median
y’l’mMed[n], y’z’mMed[n]. See (27), and (29).

The probability of misdetection is evaluated just numer-
ically; we could not get an analytical formula. The
noise-independent threshold for the required false-alarm
probability is set numerically; for details, see function
set_thr_forGiven_pFain [12].

4. Numerical Results

The section presents simulation results. The trans-
mitted signal/preamble i[n] is normalized to unit energy
1 =Y, |h[n]>. We set channel parameters n = 1,¢ = 0,
and SNR:= 1/ o-vzv. In simulation, we have tested 10 different
preambles summarized in Tab. 1.

Njeq Was chosen from the set Ngeq € {1,2,3, 10}, F €
{0,11072,21073,...,101073}; and ps, € {1073, 1074}. We
have generated 120 000 test-frames and evaluated the prob-
ability of detection with the threshold set according to (56),
(57), assuming the noise variance a"i is known. For all the
simulated cases, analytical formulae (105), (104) agree with
the simulation very well. We plot just 6 cases given by the
tuple [preamble ID, Nyeq, Fs € {0.002,0.009}].

id:01 wifi (IEEE 802.11) Short Training Field (STF)
preamble, Ny, = 160 samples,

id:02 | Zadoff-Chu (ZC) sequence, ZC(Np, = 100, u = 1)
(with parameter u),

id:03 | ZC(Np =100, u = 2),

id:04 | complex-valued white Gaussian noise sequence
PN(Ny, = 100),

id:05 | ZC(Np =200, u =1),

id:06 | ZC(Nj =200,u =2),

id:07 | PN(Np =200),

id:08 | ZC(Np =400, u =1),

id:09 | ZC(Nj =400,u =2),

id:10 | PN(Nj =400),

Tab. 1. Preamble types used in the simulation.

10°

pra = 1074, pa1 — analytical formula vs. simulation

=

_ 1072
L

& id:01, Nueq = 10, F. = 0.002
—pe— id:01 =10, F. = 0.009
id:07, Neoq = 03, F. = 0.002
Lot ——id:07, Negq = 03, F. = 0.009
3 id:08, Naoq = 02, F. = 0.002| 3
——1d:08, Nieq = 02, F. = 0.009
=—— reference

10 15 20 25 30
SNR [dB]
(a) Pmd, 1, analytical formula (dotted) vs. simulation (full-line with markers)

Pia = 107, pra2 — analytical formula vs. simulation

—

10°

1072

Pmaz2 ]

id:01, Neq = 10, F. = 0.002
—#—id:01, Niey = 10, F. = 0.009

id:07, Nieq = 03, F. = 0.002
——id:07, Neoq = 03, F. = 0.009
1d:08, Neq = 02, F. = 0.002| 3

——id:08, =02, F. =0.009
= reference
10 15 20 25 30
SNR [dB]

(b) pmd,2, analytical formula (dotted) vs. simulation (full-line with markers)

Pra = 10747 Pmd,1 (analytical) VS Pmd,2 (analytical)

Ty

10°

Sl LN
: R

ﬁl()zf

Pmd [

1074

0= = -idi08, Ny = 02, 10

= reference

10 15 20 25 30
SNR [dB]

(¢) Pmd,1 analytical formula (dotted) vs. ppgq > analytical formula (dashed)

Fig. 6. Probability of misdetection. Comparison of analytical
expression (no markers) and simulation results (with *x’
markers).
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P = 1071 pa1 =1 — Pr{&iapprox} (an.) vs. 1 —Pr{&} (sim.)

=

1072 1 E
< id:01, Neeq = 10, F. = 0.002
0.009
0.002
104 —4—id:07, Nyeq = 03, F. = 0.009
E id:08, Neq = 02, F. = 0.002| 3
—w—id:08, Nieq = 02, F. = 0.009
— reference

20 25 30
SNR [dB]

(a) pmd, 1, analytical formula (dotted) vs. 1 — Pr{&; } sim. (full-line with markers)

(sim.)

— —4
i

>

1072

Pud [-

10744
—s—id:08, Nyeq = 02, F. = 0.009

= reference

20 25 30
SNR [dB]

(b) Pmd,2. analytical formula (dotted) vs. 1 — Pr{&,} sim. (full-line with markers)
Fig. 7. Probability of misdetection for the detection event Eypprox

vs. true & Comparison of analytical expression (no
markers) and simulation results (with *x’ markers).

In all figures, lines for analytical expression don’t use
markers, whereas lines for simulated results use *x’ marker.
The black full-line denotes the reference case — the standard
approach that uses one matched filter, and the F is perfectly
known. The pnqg of the reference case is given by 106.

* Figure 6(a) shows pmq,1, analytical vs. simulation re-
sults.

* Figure 6(b) shows pmg 2, analytical vs. simulation re-
sults.

* Figure 6(c) compares analytical results for pyq,; (dot-
ted) vs pmd.2 (dashed).

» Figure 7(a) compares analytical results for pyg1 =
1 = Pr{&1 approx} Vs simulation result for 1 — Pr{&;}.
See (63) vs (61).

 Figure 7(b) compares analytical results for ppgo =
1 = Pr{& approx} Vs simulation result for 1 — Pr{&,}.
See (64) vs (62).

Figures 6(a) and 6(b) show the good match between the
analytical expression and the simulation of pygy. From
the Fig. 6(c) we see that pyq performs better by about
0.25dB with respect to pmg2 in all simulated cases (dot-
ted lines are left from the corresponding dashed ones).

pr = 107%, SNR = 15 dB, id:07, pq1

0
10 T T I
v E Neeg =1
\ - =Nyq =2
1 P
1000 Neq=3 |
\ =% =N =10
10724
£
10-3
1074

0 0.01 0.02 0.03 0.04 0.05 0.06
Fe []

(a) pq,1, analytical formula (dotted) vs. simulation (dashed with *X” marker)

10[!

Nog =1
=# =N =2
10! Neeq =3 | ]
=% =N =10
1072 E
i~
1073
1074

0 0.01 0.02 0.03 0.04 0.05 0.06
P[]
(b) py,2, analytical formula (dotted) vs. simulation (dashed with *x’ marker)
Fig. 8. Probability of detection for the preamble id:07. Com-
parison of ideal-case when noise variance is known (an-
alytical expression, no markers) and simulation (dashed

with ’x” marker). pq as a function of F. Vertical lines
indicate Fg = Nseq/Np = 1/ Lgeq.

Figures 7(a), and 7(b) show that the true detector perfor-
mance (detection events &1, & instead of E1 approx» E2,approx)
is often significantly better than the one of detectors assum-
ing the approximate detection events (for which we have the
analytical expression). The difference between ppg for event
&, and ppg for event Eypprox is highlighted by arrow. We
point out that the detector just triggers the search of arg-max
of the detector’s metric in the near vicinity of the detection
event. So, the good performance of the detector for events
&1, and &; does not guarantee it will correctly estimate the
sample where the frame has started.

Figure 8 shows pg (analytical vs. simulation) for the
preamble id:07 as a function of F, for SNR = 15dB, and
changing Ngeq. The simulation used 12 000 test frames. Ver-
tical lines indicate Fy = Ngeq/Np = 1/Lgeq — the approximate
width of the main lobe (for constant-amplitude signals, the
main lobe width is exact). For F. greater than the main
lobe width, the analytical expression does not approximate
the simulation results closely. Further, we notice that the
analytical expression for pq, in Fig. 8(b) does not decrease
below the pg,, whereas the analytical expression for pg 1 in
Fig. 8(a) does decrease below py, (worse approximation than
for pg,2). We see that the width of the main lobe of py widens
as the Nyq increases.
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Here, we emphasize the obtained result and interpret it
for the continuous-time equivalent model. Denote the width
of the main lobe as Fg max. For constant-amplitude &[n],
|Fho(Fe)| = |sin(mLgeqF¢)/(Ngeq sin(nFyg)|. The formula
has the first zero at Fig max = 1/Lseq = Nyeq/Np, — that corre-
sponds with our observation. Mark the length of continous-
time h(t) as T, = Nj,-Ts,. Then, continous-time equivalent
of Fz max 1 given as

Nseq _ Nseq
NpTe Ty~

fa,max = Fg,max'fsa = (108)
In practical systems designs, we can define an “allowable”
width of the main lobe as a fraction of fg max. System spec-
ifications can require the maximal offset frequency that the
detector should tolerate. The designer selects sufficiently
high Ngeq to ensure the required maximal offset frequency is
within the “allowable” range.

4.1 Detectors with a Reference-level Estimator

The subsection presents pyg of detectors that also esti-
mate a reference level. The threshold of these detectors does
depend just on pg,, the explicit dependence on the current
noise variance is removed.

The detectors are mentioned in the Sec. 3.3. pmg
of the detectors is shown in Fig. 9. Again, we show
just a few cases specified by a tuple [preamble ID, Nieq,
F. € {0.002,0.009}]. A different color differentiates the
cases. For each case, there are four lines,

1. Dotted line (with no marker) — for the analytical result
(noise variance is known).

2. Full line (with X’ marker) — for the detector that esti-
mates noise variance (nEst). Threshold is set using (56),
and (57) using the current estimation of a'vzv.

3. Dashed line (with ’x’ marker) — for the detector
that uses moving average (mAv) to estimate a refer-
ence level. The threshold is set using the function
set_thr_forGiven_pFa [12].

4. Dot-dashed line (with ’x’ marker) — for the detector
that uses moving median (mMed) to estimate a ref-
erence level. The threshold is set using the function
set_thr_forGiven_pFain [12].

The averaging length is set to L = 30 samples for all cases.
12000 test frames have been used. We observe that the order
of lines (in each case) is the same. Specifically, the order
of lines from left (best) to right (worse) is: analytical, nEst,
mAv, mMed. Another observation is that L = 30 is quite
enough for nEst-detector to match with the ideal/analytical
one — the full line is very close to the corresponding dotted
one (analytical expression). In simulations, we have also
tested L = 10, 20,40. For L = 30 the "nEst’-lines are within
~ 0.5 dB (for the selected F) from the analytical expression
(with exactly known noise variance).

pflao[): 1074, ppa;1 (an.) vs. nEst vs. mAv vs. mMed with L = 30

%,
. K
X\

1071

-]

10721 \
\
X
N
id:07, Nyeq = 03, F. = 0.002
—#—1d:07, Nyeq = 03, F. = 0.009] 7
id:08, Nyeq = 02, F; = 0.002
—#—1d:08, Nyq = 02, F. = 0.009
reference
T % L =
20 25 30
SNR [dB]

Pmd

1073 b

1071

(a) Pmd, 1, analytical formula (dotted) vs. simulation nEst (full), mAv (dashed), mMed
(dot-dashed)

Pra = 1074, ppaso (an.) vs. nEst vs. mAv vs. mMed with L = 30

107 Tkt 1
Sx. N‘*\
- K
s,
10 10 S,
\
— Y
L B \
~ 10 2L \\‘x‘
£ Al
\
L
, id:07, Neg = 03, Ft = 0.002
107 ¢ —#—1d:07, Neeq = 03, F. = 0.009
id:08, Neeq = 02, FL = 0.002
—w—id:08, Neoq = 02, F. = 0.009
reference
1074 L | " e
10 15 20 25 30
SNR [dB]

(b) pmd,2, analytical formula (dotted) vs. simulation. nEst (full), mAv (dashed), mMed
(dot-dashed)

Fig. 9. Probability of misdetection. Comparison of ideal case —
when noise variance is known (analytical expression, no
markers) — and detectors with a reference-level estima-
tor (simulation results, X’ marker). Averaging length
L =30.

4.2 Practical Over-the-air Tests

We have evaluated the detector metric y/[n] on two
over-the-air examples. One is the reception of the Global
Positioning System (GPS), the other is the reception of a non-
orthogonal superposition of 3 modified-wifi signals.

The GPS signal was received on AdalM Pluto
SDR [15] from Analog Devices. Sample rate was set to
10 megasamples per second (MSaps). The signal was then
resampled to 10-times chip-rate (fehip = 1.023 MHz). The
Pseudo Random Noise (PRN) preambles were 10-times up-
sampled to match the rate with the resampled received signal.
We have analyzed the signal using classical correlation meth-
ods with trial frequency offsets to find the present satellites.

In Fig. 10, the classical metric with estimated F is
shown as the black (first) line (the metric values are scaled).
The metric y’2 [n] was evaluated for Ngeq = 10, and Ngeq = 1
and plotted as the red (second), and blue (third) line. The
red line (y)[n], with Nyq = 10) is maximal at the same
time-index as the classical metric with previously estimated
offset frequency.
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Fig. 10. Metric y; [n] for areal over-the-air received GPS signal.
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Fig. 11. Autocorrelation of the wifi preamble, and the metric
5 [n] for the three simultaneously transmitting sources.

In the second example, we transmitted a wifi signal
(pregenerated in Matlab) using three Ettus N210 [16] with
daughter board SBX-40. The three sources were not (ex-
ternally) frequency-synchronized, the sample rate was set to
1MHz (not 5, 10, or 20 MHz as in the wifi standard), and
transmitted at the frequency 1.5 GHz. The signal was re-
ceived using RTL SDR [17] (RTL2838UHIDIR, with tuner
R820T from Realtek).

Figure 11 shows the squared magnitude of preamble
autocorrelation |Ry,[n]|? in the upper subfigure. The fol-
lowing (middle and lower) figures show the metric y}[n]
for Ngeq = 1, and Ngeq = 10 evaluated on the received sig-
nal. The metric is used to estimate the relative delays of
the three sources. The indices of the peaks corresponding
to the three sources are shown in the subfigure’s title. The
metric for Ngeq = 10 should be more reliable. The exam-
ple should demonstrate that the detector is also suitable for
non-orthogonal multiple access scenarios.

5. Conclusion

We have proposed a frame-start detector resilient to fre-
quency offset between the transmitter and the receiver. Al-
though the idea is elementary — approximate absolute value
of a sum by the sum of absolute values — the implications

are enormous. We can estimate frame-start alone, i.e., with-
out jointly estimating it with the frequency offset. We have
also derived a precise analytical expression for misdetection
probability of the detector and compared it with simulation
results. Further, we have given a simple design criterion for
the selection of the necessary Ngeq based on the maximal fre-
quency offset that the system needs to manage. The detector
has been tested in two over-the-air scenarios and has been
shown to be useful. As a minor contribution, we have ad-
justed the formula for the sum of Rayleigh random variables
(RVs) from [14].
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Appendix A: Scaled Noncentral y-
squared Distribution

Here we define a scaled version of the non-central
X-squared distribution. Assume RVs Xi, X»,..., X} are
independent and distributed according to the normal dis-
tribution with possibly different means and unit variance,
X; ~ N(ux;,1). Define RV A and a parameter A as

A= zk:Xlz, A= zk:ugq.
i=1 i=1

(AD)

Then A ~ )(,’{2 (1) — A is distributed according to the non-
central y-squared distribution with k degrees of freedom
and the noncentrality parameter A.

Assume a constant o> > 0, define B := 0> A; and assign two
auxiliary constants, Ao, and v?.

1
Ay = 5o V2= A0?, (A2)
1
pda(¢) = —pdf, (%) ,
z/loe_/lo(ng) (%) 1%_1(2/101/\/2)]1(5),
(A3)
cdfp({) =1-0u s (1, g) . (A4)

We refer to the distribution of B as B ~ X,’f(vz,/lo) or
B ~ x}?(v*,0%). The RV B can be seen as a sum of k
squared normal RVs with variance o>

Yi = O'Xi, (AS)
py, = o-ux;, Var[¥;] = o*-Var[X;],  (A6)
Yi ~ N(py,, o), (A7)
k k
B= Z Y2 = Z(axi)2 = 024, (A8)
i=1 i=1
k
V=) u} =o (A9)
i=1

For k = 2¢, € € N, B can be seen as a sum of ¢ abs-squared
circularly symmetric complex-normal RVs:

Z; ~CN(uz,, 20%), (A10)
S——
1/

Re{Z:} ~ N(Re{uz}, o?), (A1)
Im{Z;} ~ N(Im{pz,}, %), (A12)

l l
1Zi? = Y Re{Zi + )" Im{Z;Y, (A13)

i=1 i=1

¢
)

l;] =
2=y

i=1

14 4
Re{uz}? + ) Im{uz}* = > luz,l’,  (Al4)
i=1 i=1

pde(é») :A()CAO(‘[-H,Z) (%) ’ Ig_1(2/101/\/2)]1(§)

(A15)



