
698 J. LUKAC, M. KIMMER, J. SYKORA, MATCHED-FILTER BASED FRAME-START DETECTOR . . .

Matched-Filter Based Frame-Start Detector Resilient to
Frequency Offset

Jozef LUKAC, Michael KIMMER, Jan SYKORA

Dept. of Radioelectronics, Faculty of Electrical Engineering, Czech Technical University, Technicka 2, 166 27 Prague 6

lukacjo1@fel.cvut.cz, michaelkimmer11@gmail.com, jan.sykora@fel.cvut.cz

Submitted July 7, 2025 / Accepted November 4, 2025 / Online first November 14, 2025

Abstract. The article proposes a (phase-marginalized)
frame-start detector resilient to frequency offset between the
transmitter and the receiver. The detector is a slight modi-
fication of the standard detector that looks for a known se-
quence/preamble using the matched filter, respectively cor-
relation of the received signal with the known sequence. The
modification is that the original long sequence is divided
into shorter ones; the magnitude or magnitude-squared of
the output of matched-filters is taken and then appropriately
added to get the final detector metric. The proposed detector
is a low-cost alternative to the standard approach (joint esti-
mation of frame timing and frequency offset), where we need
as many matched-filters as the number of testing frequency
offsets. We derive probability characteristics of the proposed
detector that reflect its resilience to the frequency offset. The
frequency resilience of the detector is proportional to the
number of segments into which the preamble is divided.

Keywords
Frame synchronization, matched filtering, crosscorrela-
tion, frequency offset

1. Introduction
Estimation of the beginning of a frame is one of the

initial procedures the receiver needs to do. Even the most
simplified channel models of a real over-the-air channel in-
clude the frequency offset between the transmitter and the
receiver. Maximum likelihood (ML) joint-estimation of the
frame-timing and the carrier-frequency-offset in the ordinary
channel – with just additive white Gaussian noise, and carrier-
frequency and carrier-phase offset – requires as many corre-
lators as is the number of testing frequency-offsets. Hence,
some suboptimal simplified algorithms emerged that do not
require such extensive computational power, but instead de-
couple the timing and carrier-frequency-offset estimation.
The article focuses on the frame-start detector that searches
for a known pilot-signal/preamble without first, or simulta-
neous, estimation of the frequency offset. The pilot signal is
often followed by a payload signal that carries data, but we
will assume no data here.

The detector algorithms for estimation of frame-start
– that are resilient to frequency offset – are often designed
for a specific pilot signal or modulation; e.g., [1] for M-ary
Phase Shift Keying (M-PSK) alphabet, and [2] for Gaus-
sian Minimum-Shift Keying (GMSK) modulated data. The
famous Schmidl-Cox algorithm [3] assumes periodicity of
the pilot signal, and uses the autocorrelation (AC) of the re-
ceived signal with its shifted replica. Many modifications
of the algorithm have been published [4],[5] (cyclic prefix
as the periodic pilot-signal), [6]. The algorithms based on
the Schmidl-Cox algorithm are referred to as autocorrela-
tion algorithms. On the other hand, there are algorithms
based on crosscorrelation (XC) of the received signal with
the known shifted pilot signal. These are effectively real-
ized using matched filter, e.g. [1, 7, 8]. The [9] compares
AC and XC detection algorithms. We will follow a similar
approach here.

There are also frame-start detectors based on the in-
crease of power on antenna(s) [10] – that enable very cost-
effective hardware (HW) implementation for the price of
lower detector’s performance.

Our detector is built on the idea that the optimal carrier-
phase-marginalized ML frame-start detector for zero fre-
quency offset is the simple XC-detector. The detector’s met-
ric is the absolute or absolute-squared value of the crosscor-
relation of the received signal with the known pilot signal.
The key observation is that using the XC-detector (optimal for
zero freq. offset) with short pilot-signals, even in cases with
non-zero frequency offset, does not degrade the detector’s
performance much. Our proposed detector leverages the ob-
servation, divides the preamble signal into short sequences,
and computes the XC-metric “per partes” – that makes it re-
silient to frequency offset. The main idea originated in the
master thesis [11] (pg. 32). Our simulation scripts and re-
sults in .mat files have been published on GitHub and archived
using Zenodo [12].

During the review process, we have found an article [13]
that proposes the same method: dividing the preamble into
𝑀 parts. In our article, we analyze both variants of the detec-
tor’s metric – the sum of squared absolute values of partial
metrics and the sum of absolute values (without squaring)
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of partial metrics. Additionally, we derive very accurate an-
alytical expressions for probability of misdetection of both
detectors’ variants.

The outline of the article is as follows. Section 2 states
the system model, Section 3 shows the derivation of probabil-
ity characteristics, Section 4 presents numerical results, and
documents two practical over-the-air examples; and Section 5
concludes the paper.

2. System Model
The section introduces a system model that the detector

assumes. The detector chooses between the two hypotheses,
𝐻0 and 𝐻1. The model is given in discrete time and also
in continuous time. The discrete model is derived from the
continuous by sampling using the sampling rate 𝑓sa, respec-
tively the sampling period 𝑇sa = 1/ 𝑓sa. Further, we proceed
with just the discrete time model. The obtained results are
then interpreted also for the continuous time case.

The two detector hypotheses are

𝐻0 : 𝑥 [𝑛] = 𝑤 [𝑛], (1)

𝐻1 : 𝑥 [𝑛] = 𝜂ej𝜑ej2𝜋𝐹𝜀𝑛ℎ[𝑛] + 𝑤 [𝑛] . (2)

Their continuous-time equivalent hypotheses are as follows.

𝐻0 : 𝑥(𝑡) = 𝑤(𝑡), (3)

𝐻1 : 𝑥(𝑡) = 𝜂ej𝜑ej2𝜋 𝑓𝜀 𝑡ℎ(𝑡) + 𝑤(𝑡). (4)

𝑤 [𝑛] and𝑤(𝑡) are complex-valued white Gaussian noise vec-
tors, respectively, samples of noise vectors. 𝑤 [𝑛]’s variance
is 𝜎2

𝑤 , and 𝑤(𝑡)’s noise density is 𝑁0. 𝜂 > 0 is the chan-
nel attenuation, 𝜑 ∈ (0, 2𝜋) is a random carrier-phase, 𝑓𝜀 is
the carrier-frequency offset in Hz. 𝐹𝜀 = 𝑓𝜀 ·𝑇sa = 𝑓𝜀/ 𝑓sa is
the normalized carrier-frequency offset. 𝑥 [𝑛] and 𝑥(𝑡) are
the vectors of the received signal. 𝑛 ∈ Z is a discrete-time
instant, an index of a sample; 𝑡 ∈ R is a continuous-time
instant. ℎ(𝑡) is the known preamble, and ℎ[𝑛] = ℎ(𝑛𝑇sa) are
samples of the preamble.

The preamble ℎ[𝑛] is divided into 𝑁seq ∈ N parts, each
part is of 𝐿seq samples long. If necessary, a few zero samples
are added to the last part to have the length of 𝐿seq sam-
ples. The preamble can be expressed as a sum of its delayed
segments, as follows.

ℎ[𝑛] =
𝑁seq−1∑︁
ℓ=0

ℎℓ [𝑛 − ℓ𝐿seq], (5)

=

{
ℎ[𝑛], 𝑛 ∈ {0, . . . , 𝑁ℎ − 1}
0, otherwise.

(6)

ℎℓ [𝑛] =
{
ℎℓ [𝑛], 𝑛 ∈ {0, . . . , 𝐿seq − 1}
0, otherwise,

ℓ ∈ {0, . . . , 𝑁seq − 1}. (7)

Fig. 1. An example of the partitioning of a preamble sequence
ℎ[𝑛] to 𝑁seq = 3 subsequences.

𝑁ℎ is the length of the ℎ[𝑛] sequence. An example of the
partitioning of the sequence ℎ[𝑛] to 𝑁seq = 3 subsequences
is shown in Fig. 1 (𝑁ℎ = 32, 𝑁seq = 3, 𝐿seq = 11). For illus-
trative purposes, we show an example of a real-valued ℎ[𝑛].

Further, we define auxiliary sequences – matched-
filter’s (mf) impulse responses.

ℎmf [𝑛] = ℎ∗ [−𝑛], (8)
ℎℓ,mf [𝑛] = ℎ∗ℓ [−𝑛], ℓ ∈ {0, . . . , 𝑁seq − 1}. (9)

Upper index ∗ is the complex conjugation.

Optimal metric – the sufficient statistics – for the carrier-
phase (𝜑) marginalized frame-start detector with zero fre-
quency offset ( 𝑓𝜀 = 0) is

��R𝑥,ℎ [𝑛]
�� = �� ⟨𝑥 [𝑘 + 𝑛], ℎ[𝑘]⟩

�� = �����∑︁
𝑘∈Z

𝑥 [𝑘 + 𝑛]ℎ∗ [𝑘]
����� ,

=

�����∑︁
𝑘∈Z

𝑥 [𝑛 + 𝑘]ℎmf [−𝑘]
����� = ��(𝑥 ∗ ℎmf) [𝑛]

��. (10)

R𝑥,ℎ [𝑛] is the crosscorrelation function/sequence of the se-
quences 𝑥 [𝑛], ℎ[𝑛]. | . | represents the absolute value (abs) of
a complex number. ⟨ . , . ⟩ is the inner product of sequences,
and ∗ stands for the convolution operation. Using (5) in the
metric (10), we get��R𝑥,ℎ [𝑛]

�� = �� ⟨𝑥 [𝑘 + 𝑛], ℎ[𝑘]⟩
��,

=

������
𝑁seq−1∑︁
ℓ=0

〈
𝑥 [𝑘 + 𝑛], ℎℓ [𝑘 − ℓ𝐿seq]

〉������ ,
=

������
𝑁seq−1∑︁
ℓ=0

R𝑥,ℎℓ [𝑛 + ℓ𝐿seq]

������ . (11)
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If necessary, the equation (11) can be squared. We propose
to approximate the absolute, resp. absolute-squared sum by
the sum of absolute/absolute-squared values as follows (|.|
and |.|2 moves on summands).��R𝑥,ℎ [𝑛]

�� 1)
≈

𝑁seq−1∑︁
ℓ=0

��R𝑥,ℎℓ [𝑛 + ℓ𝐿seq]
�� , (12)

��R𝑥,ℎ [𝑛]
��2 2)

≈
𝑁seq−1∑︁
ℓ=0

��R𝑥,ℎℓ [𝑛 + ℓ𝐿seq]
��2 . (13)

We will refer to (12) as approximation 1), and to (13) as
approximation 2). The approximations 1) and 2) are the
detectors’ metric of our proposed detector(s).

If the preamble ℎ[𝑛] is periodic with period 𝐿seq, the
equations (12), and (13) became

��R𝑥,ℎ [𝑛]
�� 1)
≈

𝑁seq−1∑︁
ℓ=0

��R𝑥,ℎ0 [𝑛 + ℓ𝐿seq]
��

=
��R𝑥,ℎ0 [𝑛]

�� ∗ Δ[𝑛], (14)��R𝑥,ℎ [𝑛]
��2 2)

≈
𝑁seq−1∑︁
ℓ=0

��R𝑥,ℎ0 [𝑛 + ℓ𝐿seq]
��2

=
��R𝑥,ℎ0 [𝑛]

��2 ∗ Δ[𝑛], (15)

Δ[𝑛] :=
𝑁seq−1∑︁
ℓ=0

𝛿[𝑛 + ℓ𝐿seq],

=

{
1, 𝑛 ∈ {−(𝑁seq − 1)𝐿seq, . . . ,−𝐿seq, 0}
0, otherwise

(16)

( 𝑓 ∗ 𝑔) [𝑛] denotes convolution of sequences 𝑓 [𝑛] and 𝑔[𝑛].
Sometimes the convolution is also denoted as 𝑓 [𝑛] ∗ 𝑔[𝑛].
𝛿[𝑛] is Kronecker delta, and Δ[𝑛] is an auxiliary sequence
– a part of Kronecker comb Δ𝐿seq [𝑛]. Kronecker comb,
Δ𝑁 [𝑛], is a periodic sequence of Kronecker-delta pulses.
The period is 𝑁 .

Δ𝑁 [𝑛] =
∑︁
𝑘∈Z

𝛿[𝑛 − 𝑘 𝑁] . (17)

Next, we will name the metric in approximation 1) as
𝑦′1 [𝑛], and the metric in approximaton 2) as 𝑦′2 [𝑛]. Addi-
tionally, we will name also intermediate signals.

ℓ ∈ {0, . . . , 𝑁seq − 1}, (18)
𝑥ℓ [𝑛] := (𝑥 ∗ ℎℓ,mf) [𝑛], (19)

𝑦ℓ,1 [𝑛] := |𝑥ℓ [𝑛] |, (20)

𝑦ℓ,2 [𝑛] := |𝑥ℓ [𝑛] |2, (21)

𝑦′1 [𝑛] :=
𝑁seq−1∑︁
ℓ=0

𝑦ℓ,1 [𝑛 + ℓ𝐿seq], (22)

𝑦′2 [𝑛] :=
𝑁seq−1∑︁
ℓ=0

𝑦ℓ,2 [𝑛 + ℓ𝐿seq] . (23)

The detector’s metric 𝑦′1 [𝑛], and 𝑦′2 [𝑛] are then compared to
their corresponding threshold values 𝑟1,thr, 𝑟2,thr. The exceed-
ing of the threshold indicates the presence of the preamble in
the near vicinity of the time index. The search for arg-max
in the vicinity of the given time-index then determines the
exact position of the frame-start. Block schemes of the two
detectors are in Fig. 2. The auxiliary/intermediate signals are
shown there.

We note that to make a filter physically realizable, it
needs to be causal. Causality is achieved by delaying the
filter’s impulse response so that it is zero in negative time
instants. Matlab implementation of the detectors’ metrics is
in the function MF_correlate, see [12]. During the review
process, authors realized that the finer tuning of the detector
can be achieved not by setting 𝑁seq, but by setting 𝐿seq. The
last sequence should be filled with zeros to be 𝐿seq long.

In the Sec. 3, we will show that optimal threshold val-
ues 𝑟1,thr and 𝑟2,thr depend on the noise variance, 𝜎2

𝑤 . The
dependence is expressed in the form

𝑟1,thr = 𝜎𝑤 𝑓1 (𝑝fa), (24)

𝑟2,thr = 𝜎2
𝑤 𝑓2 (𝑝fa). (25)

𝑓1 and 𝑓2 are functions of the false-alarm probability. Rela-
tions (24) and (25) are derived in the Sec. 3.1, see (56), and
(57). The noise variance is usually not known, so it needs
to be estimated. The detector’s implementation then looks
as in Fig. 3. There are two equivalent schemes; the upper
is suitable for statistical derivations, and the lower for HW
implementation.

It might be challenging to estimate the noise variance,
as we are unsure if there is no transmission at that time.
Looking at the scheme in Fig. 3, we propose to use another
reference level – a plateau-level of the detector’s own met-
ric. We illustrate the plateau-level and the peak of the metric
𝑦′1 [𝑛] in Fig. 4. As the plateau-level estimators, we suggest
moving average (mAv) or moving median (mMed).

∗hNseq−1,mf [n]

x[n]

x1[n]

x0[n]

| · |2

| · |

| · |2

| · |

| · |2

| · |

y′2[n]

r2,thr

y′1[n]

r1,thr
y0,1[n]

y0,2[n]

y1,1[n]

y1,2[n]

yNseq−1,1[n]

yNseq−1,2[n]

∗∆[n]

| · |2

| · |
∗h0,mf [n]

x[n] x0[n]

y0,1[n]

y0,2[n] ∗∆[n]

D D

DD

∗h1,mf [n]

∗h0,mf [n]

D – delay by Lseq samples

Detectors for a general preamble

Detectors for a periodic preamble

– comparator= >

y′2[n]

r2,thr

y′1[n]

r1,thr

Fig. 2. The scheme of the proposed frame-start detectors.
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reference level noise-indep.
threshold

division︷︸︸︷

reference level

y′1[n] y′2[n]

y′1[n] y′2[n]
≡

noise-indep. threshold

Fig. 3. Two equivalent schemes of the detector with a reference
level and a noise-independent threshold.

Fig. 4. An example of the 𝑦′1 [𝑛] detector metric with the peak
and a plateau-level shown.

noise-indep. threshold

D1

D1 – delay by one sample

D1 D1

y′1[n]

y′1,mAv[n]
mAv or mMed

︷ ︸︸ ︷L delays

Fig. 5. A block diagram of the detector with a mAv reference-
level estimator, for input metric 𝑦′1 [𝑛].

The mAv and mMed plateau-level estimators are de-
fined as follows.

𝑦′1,mAv [𝑛] :=
1
𝐿

𝐿∑︁
𝑘=1

𝑦′1 [𝑛 − 𝑘], (26)

𝑦′1,mMed [𝑛] := med
({
𝑦′1 [𝑛 − 𝑘]

}𝐿
𝑘=1

)
, (27)

𝑦′2,mAv [𝑛] :=
1
𝐿

𝐿∑︁
𝑘=1

𝑦′2 [𝑛 − 𝑘], (28)

𝑦′2,mMed [𝑛] := med
({
𝑦′2 [𝑛 − 𝑘]

}𝐿
𝑘=1

)
. (29)

𝐿 is the averaging length.

Figure 5 shows the moving-average plateau-level esti-
mator 𝑦′1,mAv [𝑛] applied in the detector’s block diagram. We
get a detector with the constant false-alarm rate (CFAR) –
independent of noise variance – similar to [2].

3. Probability Characteristics
The section shows derivations of the probabilistic char-

acteristics of the detector – the probability of mis-detection
𝑝md (probability of not detecting a frame when it is present)
given a fixed false-alarm probability 𝑝fa. First, we derive

𝑝fa, then 𝑝md. In both cases, we proceed step-by-step by
deriving probability distributions of all the intermediate aux-
iliary signals (19)–(23). In the derivation of 𝑝fa, we assume
the hypothesis 𝐻0. 𝐻1 is assumed for the derivation of 𝑝md.
We approximate all the random variables (RVs) to be inde-
pendent, even though they are not exactly. The assumption
significantly simplifies derivations. The accuracy of the de-
rived formulas is compared to the numerical simulation in
Sec. 4. The numerical results match the derived formulas
well, supporting our assumptions and approximations.

In derivations that aim for 𝑝fa, the following probability
distributions occur: Complex Normal, Rayleigh, Exponen-
tial, and Erlang. Further, the approximation of the sum of
Rayleigh RVs is taken from [14], and we propose a param-
eter adjustment in it. The distribution is denoted as RaylS
in our paper. In derivations aiming for 𝑝md, the following
probability distributions are used: Complex Normal, Rice,
Non-central 𝜒-squared, and (Real) Normal. The Normal dis-
tribution approximates the sum of Rice RVs by matching
the mean and variance. Formulas for the mean and vari-
ance of the mentioned probability distributions are applied
in some partial steps; some formulas are derived using Wol-
fram Mathematica.

3.1 Probability of False Alarm
The probability that the detector’s metric is greater than

a threshold given hypothesis 𝐻0, i.e., no frame present, is
called the probability of false alarm, 𝑝fa. The distributions
of intermediate signals follow.

𝑥 [𝑛] = 𝑤 [𝑛] ∼ CN(0, 𝜎2
𝑤), (30)

𝑥ℓ [𝑛] = (𝑥 ∗ ℎℓ,mf) [𝑛] =
∑︁
𝑘∈Z

𝑥 [𝑛 − 𝑘]ℎℓ,mf [𝑘], (31)

𝑥ℓ [𝑛] ∼ CN(0, ∥ℎℓ ∥2𝜎2
𝑤), (32)

𝐸ℎℓ := ∥ℎℓ ∥2 =
∑︁
𝑘∈Z

|ℎℓ [𝑘] |2 =
∑︁
𝑘∈Z

|ℎℓ,mf [𝑘] |2, (33)

𝑦ℓ,1 [𝑛] = |𝑥ℓ [𝑛] | ∼ Rayl ©­«𝜎ℓ =

√︄
∥ℎℓ ∥2𝜎2

𝑤

2
ª®¬ , (34)

𝑦ℓ,2 [𝑛] = |𝑥ℓ [𝑛] |2 ∼ Exp
(
𝜆ℓ =

1
∥ℎℓ ∥2𝜎2

𝑤

)
. (35)

CN(𝜇, 𝜎2) stands for complex-normal distribution with
mean 𝜇, and variance 𝜎2; 𝐸ℎℓ is the signal-energy of the
sequence ℎℓ [𝑛]; Rayl(𝜎) denotes Rayleigh-distributed RV
with parameter 𝜎, and Exp(𝜆) indicates exponentially dis-
tributed RV with parameter 𝜆.

In order to proceed, we need to assume {𝐸ℎℓ }ℓ to
be equal or at least approximately equal to each other:
𝐸ℎℓ = 𝐸ℎ0 . The equivalent assumptions are 𝜆ℓ = 𝜆0, and
𝜎ℓ = 𝜎0.

𝑦′1 [𝑛] =
𝑁seq−1∑︁
ℓ=0

𝑦ℓ,1 [𝑛 + ℓ𝐿seq], (36)
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𝑦′1 [𝑛] ∼ RaylS(𝑁seq, 𝜎0), (37)

𝑦′2 [𝑛] =
𝑁seq−1∑︁
ℓ=0

𝑦ℓ,2 [𝑛 + ℓ𝐿seq], (38)

𝑦′2 [𝑛] ∼ Erl(𝑁seq, 𝜆0). (39)

Erl(𝑘, 𝜆) marks Erlang distribution with 𝑘 degrees of free-
dom and parameter 𝜆. Erl(𝑘, 𝜆) represents the distribution
of the sum of 𝑘 independent RVs, each distributed according
to Exp(𝜆). RaylS(𝑘, 𝜎) denotes distribution of the sum of 𝑘
independent RVs, each distributed according to Rayl(𝜎).

The RaylS(𝑘, 𝜎) distribution has no simple closed form.
We take the approximation from [14]. Authors approximate
RaylS(𝑘, 𝜎) by the square root of Erl(𝑘, 𝜆aux) and define
an auxiliary variable 𝑏 as 𝑏 = 1/(2𝜆aux). 𝑏/2 approximates
the variance of RaylS(𝑘, 𝜎). We propose to set 𝑏 differently,
namely, we set 𝑏 to match the mean:

𝐴 ∼ RaylS(𝑘, 𝜎), (40)

pdf𝐴(𝜁) =
𝜁2𝑘−1 exp

(
−𝜁 2

2𝑏

)
2𝑘−1𝑏𝑘 (𝑘 − 1)!

1(𝜁), (41)

cdf𝐴(𝜁) = 1 −𝑄Γ

(
𝑘,

𝜁2

2𝑏

)
, (42)

𝜇𝐴 = E[𝐴] =
√

2𝑏
Γ(𝑘 + 1

2 )
(𝑘 − 1)! , (43)

𝜇𝐴
!
= 𝑘

√︂
𝜋

2
𝜎, (44)

𝑏 :=

(
Γ(𝑘 + 1)
Γ(𝑘 + 1

2 )

)2
𝜋

4
𝜎2 ≈ 𝑘

𝜋

4
𝜎2. (45)

pdf𝐴 is the probability density function of the RV 𝐴; cdf𝐴
is the cumulative distribution function of the RV 𝐴; 1(𝜁) is
the unit-step function; 𝜇𝐴 is the mean value of the RV 𝐴;
E[.] is the mean-value operator; Γ(𝑥) is the gamma function;
𝑄Γ (𝑠, 𝑥) is the upper regularized incomplete gamma func-
tion. pdf𝐴 in (41), cdf𝐴 in equation (42), and 𝜇𝐴 in (43) are
valid for any 𝑏 > 0. We propose to match the mean of RV
A, equation (44) – left side is valid for all 𝑏 > 0, right side is
the mean of the sum of 𝑘 independent identically distributed
Rayleigh RVs, each with parameter 𝜎. The resulting 𝑏 is
given in (45). In notation, we will use the parameter 𝜎 or
𝑏 interchangeably, RaylS(𝑘, 𝜎) ≡ RaylS(𝑘, 𝑏), but take into
consideration that 𝑏 depends on 𝑘 .

Now, we recall the Erlang distribution.

𝐴 ∼ Erl(𝑘, 𝜆), (46)

pdf𝐴(𝜁) =
𝜆𝑘𝜁 𝑘−1

(𝑘 − 1)! e−𝜆𝜁1(𝜁), (47)

cdf𝐴(𝜁) = 1 −𝑄Γ (𝑘, 𝜆𝜁) (48)

=

[
1 − e−𝜆𝜁

𝑘−1∑︁
ℓ=0

1
ℓ!
(𝜆𝜁)ℓ

]
1(𝜁), (49)

Γ(𝑠, 𝑥) =
∫ ∞

𝑥

𝑡𝑠−1e−𝑡 d𝑡, (50)

𝑄Γ (𝑠, 𝑥) =
Γ(𝑠, 𝑥)
Γ(𝑠) . (51)

Finally, the probability of a false alarm is

𝑝fa,1 := Pr{𝑦′1 [𝑛] > 𝑟1,thr} = 1 − Pr{𝑦′1 [𝑛] ≤ 𝑟1,thr}

= 1 − cdf𝑦′1 [𝑛] (𝑟1,thr) = 𝑄Γ

(
𝑁seq,

𝑟2
1,thr

2𝑏

)
, (52)

𝑏 :=

(
Γ(𝑁seq + 1)
Γ(𝑁seq + 1

2 )

)2
𝜋

4
∥ℎ0∥2𝜎2

𝑤

2
. (53)

𝑝fa,2 := Pr{𝑦′2 [𝑛] > 𝑟2,thr} = 1 − Pr{𝑦′2 [𝑛] ≤ 𝑟2,thr}
= 1 − cdf𝑦′2 [𝑛] (𝑟2,thr) = 𝑄Γ (𝑁seq, 𝜆0 𝑟2,thr), (54)

𝜆0 :=
1

∥ℎ0∥2𝜎2
𝑤

. (55)

From (52) and (54), threshold values given 𝑝fa are derived.

𝑟1,thr =
√︃

2𝑏𝑄−1
Γ
(𝑁seq, 𝑝fa,1), (56)

𝑟2,thr = ∥ℎ0∥2𝜎2
𝑤Γ

−1 (𝑁seq, 𝑝fa,2), (57)

𝑄−1
Γ (𝑠, 𝑦) = 𝑥 ⇔ 𝑄Γ (𝑠, 𝑥) = 𝑦. (58)

For 𝑁seq = 1, relations (56), and (57) reduce to

𝑟1,thr =

√︃
𝐸ℎ𝜎

2
𝑤 (−1) ln(𝑝fa,1), (59)

𝑟2,thr = 𝐸ℎ𝜎
2
𝑤 (−1) ln(𝑝fa,2). (60)

𝐸ℎ =
∑

𝑛 |ℎ[𝑛] |2 is the energy of the sequence ℎ[𝑛].

Both, 𝑄Γ (𝑠, 𝑥) and 𝑄−1
Γ
(𝑠, 𝑥), are implemented in

computational software languages; 𝑄Γ (𝑠, 𝑥) is imple-
mented as gammainc(x,s,’upper’) in Matlab, and as
GammaRegularized[s,x] in Mathematica; 𝑄−1

Γ
(𝑠, 𝑥) is

implemented as gammaincinv(x,s,’upper’) in Matlab,
and as InverseGammaRegularized[s,x] in Mathematica.
Note the order of x and s.

3.2 Probability of Misdetection
The probability that the frame is not detected, given

hypothesis 𝐻1, i.e., frame is present, is called the probability
of misdetection, 𝑝md. Probability of detection 𝑝d is comple-
mentary to it: 𝑝d = 1 − 𝑝md. For the event of detection, we
should correctly assume the following events,

E1 := ∃ 𝑛 ∈ {−𝑁ℎ + 1, . . . , 𝑁ℎ − 1} : 𝑦′1 [𝑛] > 𝑟1,thr, (61)
E2 := ∃ 𝑛 ∈ {−𝑁ℎ + 1, . . . , 𝑁ℎ − 1} : 𝑦′2 [𝑛] > 𝑟2,thr. (62)

However, for simplicity of derivation, we evaluate the prob-
ability of the approximate events,

E1,approx := 𝑦′1 [0] > 𝑟1,thr, (63)
E2,approx := 𝑦′2 [0] > 𝑟2,thr. (64)
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So, we derive an analytical expression for these probabilities,
𝑝d,1 := Pr{E1,approx}, and 𝑝d,2 := Pr{E2,approx}.

Again, we derive the probability distribution of auxil-
iary signals. First, we assign a shortcut to the frequency-
modulated preamble and its parts,

ℎ𝜀 [𝑛] := ℎ[𝑛] ej2𝜋𝐹𝜀𝑛, (65)

ℎ𝜀
ℓ [𝑛] := ℎℓ [𝑛] ej2𝜋𝐹𝜀𝑛. (66)

𝑥 [𝑛] = 𝜂ej𝜑ℎ𝜀 [𝑛] + 𝑤 [𝑛] ∼ CN(𝜂ej𝜑ℎ𝜀 [𝑛], 𝜎2
𝑤), (67)

𝑥ℓ [𝑛] = (𝑥 ∗ ℎℓ,mf) [𝑛] =
∑︁
𝑘

𝑥 [𝑛 − 𝑘]ℎℓ,mf [𝑘]

= 𝜂ej𝜑
∑︁
𝑘

ℎ𝜀 [𝑛 − 𝑘]ℎ∗ℓ [−𝑘] +
∑︁
𝑘

𝑤 [𝑛 − 𝑘]ℎℓ,mf [𝑘]

= 𝜂ej𝜑Rℎ𝜀 ,ℎℓ [𝑛] +
∑︁
𝑘

𝑤 [𝑛 − 𝑘]ℎℓ,mf [𝑘], (68)

𝑥ℓ [𝑛] ∼ CN
(
𝜂ej𝜑Rℎ𝜀 ,ℎℓ [𝑛], ∥ℎℓ ∥2𝜎2

𝑤

)
, (69)

Rℎ𝜀 ,ℎℓ [𝑛] =
∑︁
𝑚

ℎ𝜀 [𝑛 + 𝑚]ℎ∗ℓ [𝑚]

=
∑︁
𝑚

ℎ[𝑛 + 𝑚] ej 2𝜋𝐹𝜀 (𝑛+𝑚)ℎ∗ℓ [𝑚]

=

𝑁seq−1∑︁
𝑘=0

ej 2𝜋𝐹𝜀𝑘 𝐿seq
∑︁
𝑚

[
ℎ𝑘 [𝑛 + 𝑚 − 𝑘 𝐿seq] (70)

· ej 2𝜋𝐹𝜀 (𝑛+𝑚−𝑘𝐿seq ) ℎ∗ℓ [𝑚]
]

=

𝑁seq−1∑︁
𝑘=0

ej 2𝜋𝐹𝜀𝐿seq 𝑘 Rℎ𝜀
𝑘
,ℎℓ [𝑛 − 𝑘 𝐿seq] . (71)

𝑦ℓ,1 =
��𝑥ℓ [𝑛]��, (72)

𝑦ℓ,1 ∼ Rice
(
𝜈[𝑛] = 𝜂

��Rℎ𝜀 ,ℎℓ [𝑛]
��, 𝜎 =

√︄
∥ℎℓ ∥2𝜎2

𝑤

2

)
, (73)

𝑦ℓ,2 =
��𝑥ℓ [𝑛]��2, (74)

𝑦ℓ,2 = 𝜒′2
2

(
𝜈2 [𝑛] = 𝜂2��Rℎ𝜀 ,ℎℓ [𝑛]

��2, 𝜆ℓ = 1
∥ℎℓ ∥2𝜎2

𝑤

)
. (75)

Rice(𝜈, 𝜎) is the Rice distribution with parameters 𝜈 and 𝜎.
𝜒′2
𝑘
(𝜈2, 𝜆0) is the non-central chi-squared distribution with 𝑘

degrees of freedom and parameters 𝜈2 and 𝜆0. Traditional
notation uses just one additional parameter 𝜆: 𝜒′2

𝑘
(𝜆). The

relation between them is explained next.

𝐴 ∼ 𝜒′2
𝑘 (𝜆), 𝜎2 = const > 0, (76)

𝐵 := 𝜎2 · 𝐴 ∼ 𝜒′2
𝑘 (𝜈2, 𝜆0) ≡ 𝜒′2

𝑘 (𝜈2, 𝜎2), (77)

𝜆0 :=
1

2𝜎2 , 𝜈2 := 𝜆𝜎2. (78)

The notation 𝜒′2
𝑘
(𝜈2, 𝜆0) better reflects the process of gener-

ation of the RV. For more details, see Appendix 1.

Again, we assume identical energy in each subsequence
ℎℓ : 𝐸ℎℓ = 𝐸ℎ0 .

𝑦′1 [𝑛] =
𝑁seq−1∑︁
ℓ=0

𝑦ℓ,1 [𝑛 + ℓ𝐿seq] ∼ Normal approx. (79)

𝑦′2 [𝑛] =
𝑁seq−1∑︁
ℓ=0

𝑦ℓ,2 [𝑛 + ℓ𝐿seq],

∼ 𝜒′2
2 𝑁seq

(
𝜈2 [𝑛], 𝜆0 =

1
∥ℎ0∥2𝜎2

𝑤

)
, (80)

𝜈2 [𝑛] = 𝜂2
𝑁seq−1∑︁
ℓ=0

��Rℎ𝜀 ,ℎℓ [𝑛 + ℓ𝐿seq]
��2, for 𝑦′2 [𝑛] . (81)

𝑦′1 [𝑛] will be approximated by a (real-valued) normal distri-
bution (with matched mean and variance).

Assume 𝑦′1 [0] ∼ N (𝜇𝑦′1
, 𝜎2

𝑦′1
). The probability of de-

tection and misdetection is as follows.

𝑝d,1 = Pr{E1,approx} = 1 − Pr{𝑦′1 [0] ≤ 𝑟1,thr}
= 1 − cdf𝑦′1 [0] (𝑟1,thr), (82)

𝑝md,1 = 1 − 𝑝d,1 = cdf𝑦′1 [0] (𝑟1,thr)

= Φ

(
𝑟1,thr − 𝜇𝑦′1

𝜎𝑦′1

)
. (83)

Φ(𝑥) = [1 + erf (𝑥/
√

2)]/2 is the cdf of the Standard Normal
distribution N(0, 1), and erf (𝑥) = 2/

√
𝜋
∫ 𝑥

0 exp(−𝑡2) d𝑡 is
the error function.

𝑝d,2 = Pr{E2,approx} = 1 − Pr{𝑦′2 [0] ≤ 𝑟2,thr}
= 1 − cdf𝑦′2 [0] (𝑟2,thr), (84)

𝑝md,2 = 1 − 𝑝d,2 = cdf𝑦′2 [0] (𝑟2,thr)

= 1 −𝑄M ,𝑁seq

(√︁
2𝜆0𝜈2,

√︁
2𝜆0𝑟2,thr

)
, (85)

𝜆0 =
1

∥ℎ0∥2𝜎2
𝑤

, (86)

𝜈2 := 𝜈2 [0] = 𝜂2
𝑁seq−1∑︁
ℓ=0

��Rℎ𝜀 ,ℎℓ [ℓ 𝐿seq]
��2. (87)

𝑄M ,𝑘 (𝑎, 𝑏) is the Marcum Q-function of order 𝑘 .

Now, we evaluate some auxiliary expressions involved
in (83) and (85); namely 𝜇𝑦′1

, 𝜎𝑦′1
, 𝜈2 [0], and others that are

involved in formulas for them.

Recall the range of non-zero values of Rℎ𝜀
𝑘
,ℎℓ [𝑛].

Rℎ𝜀
𝑘
,ℎℓ [𝑛] =

{
Rℎ𝜀

𝑘
,ℎℓ [𝑛], 𝑛 ∈ {−𝐿seq + 1, . . . , 𝐿seq − 1}

0, otherwise.
,

(88)

Define an auxiliary functionFℎℓ (𝐹𝜀), a frequency-dependent
energy of ℎℓ [𝑛].

F ℎℓ (𝐹𝜀) := Rℎ𝜀
ℓ
,ℎℓ [0] =

∑︁
𝑘

ℎℓ [𝑘] ej 2𝜋𝐹𝜀𝑘 ℎ∗ℓ [𝑘]
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=
∑︁
𝑘

��ℎℓ [𝑘]��2 ej 2𝜋𝐹𝜀𝑘 = DtFT
[��ℎℓ [𝑘]��2] (−2𝜋 𝐹𝜀).

(89)

DtFT
[
𝑓 [𝑘]

]
(Ω) denotes Discrete-time Fourier transform of

the sequence/signal 𝑓 [𝑘]:

DtFT
[
𝑓 [𝑘]

]
(Ω) =

∑︁
𝑘∈Z

𝑓 [𝑘] e−jΩ𝑘 . (90)

For continuous-time case, Fℎℓ (𝐹𝜀) becomes

F ℎℓ ( 𝑓𝜀) := Rℎ𝜀
ℓ
,ℎℓ (0) =

∫
R
ℎℓ (𝑡) ej 2𝜋 𝑓𝜀 𝑡ℎ∗ℓ (𝑡) d𝑡

=

∫
R

��ℎℓ (𝑡)��2 ej 2𝜋 𝑓𝜀 𝑡 d𝑡 = FT
[��ℎℓ (𝑡)��2] (−2𝜋 𝑓𝜀). (91)

FT
[
𝑓 (𝑡)

]
(𝜔) denotes Fourier transform of the function 𝑓 (𝑡):

FT
[
𝑓 (𝑡)

]
(𝜔) =

∫ ∞

−∞
𝑓 (𝑡) e−j𝜔𝑡 d𝑡. (92)

Now, we evaluate Rℎ𝜀
𝑘
,ℎℓ [𝑛] in some multiples of 𝐿seq.

Assume ℓ ∈ {0, . . . , 𝑁seq − 1}.

Rℎ𝜀 ,ℎℓ [ℓ𝐿seq]
(71)
=

𝑁seq−1∑︁
𝑘=0

ej 2𝜋𝐹𝜀𝐿seq𝑘Rℎ𝜀
𝑘
,ℎℓ [(ℓ − 𝑘)𝐿seq]

=
��ℓ !
= 𝑘

�� = ej 2𝜋𝐹𝜀𝐿seqℓ Rℎ𝜀
ℓ
,ℎℓ [0] = ej 2𝜋𝐹𝜀𝐿seqℓ Fℎℓ (𝐹𝜀).

(93)

Using formulas for the mean of a Rice RV 𝑦1 [ℓ𝐿seq], we get

𝜈[ℓ𝐿seq] = 𝜂
��Rℎ𝜀 ,ℎℓ [ℓ𝐿seq]

�� = 𝜂
��Fℎℓ (𝐹𝜀)

��, (94)

𝜇𝑦ℓ,1 [ℓ𝐿seq] = 𝜎

√︂
𝜋

2
𝐿1/2

(
−𝜈2 [ℓ𝐿seq]

2𝜎2

)
, (95)

𝐿1/2 (𝑥) is the Laguerre polynomial of order 1/2.

𝐿1/2 (𝑥) = exp
( 𝑥
2

) [
(1 − 𝑥)𝐼0

(−𝑥
2

)
− 𝑥𝐼1

(−𝑥
2

)]
. (96)

And, the mean of 𝑦′1 [0] is

𝜇𝑦′1
≡ 𝜇𝑦′1

[0] =
𝑁seq−1∑︁
ℓ=0

𝜇𝑦ℓ,1 [ℓ𝐿seq]

= 𝜎

√︂
𝜋

2

𝑁seq−1∑︁
ℓ=0

𝐿1/2

(−𝜂2 |Fℎℓ (𝐹𝜀) |2

2𝜎2

)
. (97)

Now, the variance is derived. First, the variance of the
Rice RV 𝑦1 [ℓ𝐿seq], then the variance of 𝑦′1 [0] is expressed
as the sum of individual variances of 𝑦1 [ℓ𝐿seq].

Var
[
𝑦ℓ,1 [ℓ𝐿seq]

]
= 2𝜎2 + 𝜈2 [ℓ𝐿seq] − 𝜇2

𝑦ℓ,1 [ℓ𝐿seq], (98)

𝜎2
𝑦′1

≡ Var
[
𝑦′1 [0]

]
=

𝑁seq−1∑︁
ℓ=0

Var
[
𝑦ℓ,1 [0 + ℓ𝐿seq]

]
= 2𝜎2𝑁seq + 𝜂2

𝑁seq−1∑︁
ℓ=0

��Fℎℓ (𝐹𝜀)
��2

− 𝜎2 𝜋

2
𝐿2

1/2

(
−𝜂2

2𝜎2

��Fℎℓ (𝐹𝜀)
��2) . (99)

The transmitted signal is normalized to unit energy, so
𝐸ℎ0 = 1/𝑁seq. Using 𝜎2 = 𝜎2

𝑤 ∥ℎ0∥2/2, and 𝑟1,thr in (56),
with parameter 𝑏 in (53), we adjust 𝑝md,1 in (83). The final
expression for 𝑝md,1 is then (105)[bottom of this page].

Next, we look at 𝑝md,2; specifically at partial expres-
sions involved in (85).

𝜈2 [0] =
𝑁seq−1∑︁
ℓ=0

𝜂2��Rℎ𝜀 ,ℎℓ [ℓ𝐿seq]
��2

= 𝜂2
𝑁seq−1∑︁
ℓ=0

��Fℎℓ (0)
��2, (100)

𝜆0 =
1

𝜎2
𝑤 ∥ℎ0∥2

. (101)

We adjust the first and the second argument of the Marcum
Q-function in (85).√︁

2𝜆0 𝜈2 [0] =

√︄
2
𝑁seq

𝜎2
𝑤

𝜈2 [0], (102)

√︁
2𝜆0 𝑟2,thr =

√︄
2

1
𝜎2
𝑤 ∥ℎ0∥2

∥ℎ0∥2𝜎2
𝑤𝑄

−1
Γ
(𝑁seq, 𝑝fa,2),

=

√︃
2𝑄−1

Γ
(𝑁seq, 𝑝fa,2). (103)

The probability of misdetection is then

𝑝md,2 = 1 −𝑄M ,𝑁seq

(√√√
2
𝜂2𝑁seq

𝜎2
𝑤

𝑁seq−1∑︁
ℓ=0

��Fℎℓ (𝐹𝜀)
��2,

√︃
2𝑄−1

Γ
(𝑁seq, 𝑝fa,2)

)
. (104)

𝑄M ,𝑘 (𝑎, 𝑏) is Marcum Q-function of oder 𝑘 . The formulas
for evaluation of probability of misdetection 𝑝md,1: (105),

𝑝md,1 = Φ

©­­­­«
√︂(

Γ (𝑁seq+1)
Γ (𝑁seq+ 1

2 )

)2
𝑄−1

Γ
(𝑁seq, 𝑝fa,1) −

∑𝑁seq−1
ℓ=0 𝐿1/2

(
−𝑁seq

𝜎2
𝑤

��Fℎℓ (𝐹𝜀)
��2)√︂

4
𝜋
𝑁seq +

4𝑁seq

𝜋𝜎2
𝑤

∑𝑁seq−1
ℓ=0

��Fℎℓ (𝐹𝜀)
��2 − ∑𝑁seq−1

ℓ=0 𝐿2
1/2

(
−𝑁seq

𝜎2
𝑤

��Fℎℓ (𝐹𝜀)
��2)

ª®®®®¬
. (105)
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and 𝑝md,2: (104), are implemented in the function get_p_md
in [12].

For 𝑁seq = 1, and 𝐹𝜀 = 0 both 𝑝md,1, and 𝑝md,2 reduce
to the same expression,

𝑝md,ref = 1 −𝑄M ,1

(
𝜂

√︄
2𝐸ℎ

𝜎2
𝑤

,
√︁

2(−1) ln(𝑝fa)
)
. (106)

We refer to the case (for 𝑁seq = 1, and 𝐹𝜀 = 0) as the refer-
ence case. It corresponds to the standard approach with one
matched filter and perfectly known 𝐹𝜀 .

3.3 Probabilities for the Detector that also Es-
timates a Reference Level

In the subsection, we shortly inspect the detector with
reference-level estimators. First one estimates noise-variance
from the received noise, the other two (mAv, mMed) are men-
tioned at the end of Sec. 2. Namely, we consider the three
reference-level estimators:

1. Noise-variance estimator. The estimator should take
samples of the received signal 𝑥 [𝑛] well before a frame
arrives.

var𝑤 [𝑛] :=
𝐿∑︁
𝑘=1

|𝑥 [𝑛 − 𝑘] |2. (107)

The estimator outputs a sequence var𝑤 [𝑛] that estimates
current noise variance Var

[
𝑤 [𝑛]

]
= 𝜎2

𝑤 .

2. Plateau-level estimators using moving average
𝑦′1,mAv [𝑛], 𝑦

′
2,mAv [𝑛]. See (26), and (28).

3. Plateau-level estimators using moving median
𝑦′1,mMed [𝑛], 𝑦

′
2,mMed [𝑛]. See (27), and (29).

The probability of misdetection is evaluated just numer-
ically; we could not get an analytical formula. The
noise-independent threshold for the required false-alarm
probability is set numerically; for details, see function
set_thr_forGiven_pFa in [12].

4. Numerical Results
The section presents simulation results. The trans-

mitted signal/preamble ℎ[𝑛] is normalized to unit energy
1 =

∑
𝑛 |ℎ[𝑛] |2. We set channel parameters 𝜂 = 1, 𝜑 = 0,

and SNR:= 1/𝜎2
𝑤 . In simulation, we have tested 10 different

preambles summarized in Tab. 1.

𝑁seq was chosen from the set 𝑁seq ∈ {1, 2, 3, 10}, 𝐹𝜀 ∈
{0, 1·10−3, 2·10−3, . . . , 10·10−3}; and 𝑝fa ∈ {10−3, 10−4}. We
have generated 120 000 test-frames and evaluated the prob-
ability of detection with the threshold set according to (56),
(57), assuming the noise variance 𝜎2

𝑤 is known. For all the
simulated cases, analytical formulae (105), (104) agree with
the simulation very well. We plot just 6 cases given by the
tuple [preamble ID, 𝑁seq, 𝐹𝜀 ∈ {0.002, 0.009}].

id:01 wifi (IEEE 802.11) Short Training Field (STF)
preamble, 𝑁ℎ = 160 samples,

id:02 Zadoff-Chu (ZC) sequence, ZC(𝑁ℎ = 100, 𝑢 = 1)
(with parameter 𝑢),

id:03 ZC(𝑁ℎ = 100, 𝑢 = 2) ,
id:04 complex-valued white Gaussian noise sequence

PN(𝑁ℎ = 100) ,
id:05 ZC(𝑁ℎ = 200, 𝑢 = 1) ,
id:06 ZC(𝑁ℎ = 200, 𝑢 = 2) ,
id:07 PN(𝑁ℎ = 200) ,
id:08 ZC(𝑁ℎ = 400, 𝑢 = 1) ,
id:09 ZC(𝑁ℎ = 400, 𝑢 = 2) ,
id:10 PN(𝑁ℎ = 400) ,

Tab. 1. Preamble types used in the simulation.

(a) 𝑝md,1, analytical formula (dotted) vs. simulation (full-line with markers)

(b) 𝑝md,2, analytical formula (dotted) vs. simulation (full-line with markers)

(c) 𝑝md,1 analytical formula (dotted) vs. 𝑝md,2 analytical formula (dashed)

Fig. 6. Probability of misdetection. Comparison of analytical
expression (no markers) and simulation results (with ’×’
markers).
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(a) 𝑝md,1, analytical formula (dotted) vs. 1 − Pr{E1 } sim. (full-line with markers)

(b) 𝑝md,2, analytical formula (dotted) vs. 1 − Pr{E2 } sim. (full-line with markers)

Fig. 7. Probability of misdetection for the detection event Eapprox
vs. true E. Comparison of analytical expression (no
markers) and simulation results (with ’×’ markers).

In all figures, lines for analytical expression don’t use
markers, whereas lines for simulated results use ’×’ marker.
The black full-line denotes the reference case – the standard
approach that uses one matched filter, and the 𝐹𝜀 is perfectly
known. The 𝑝md of the reference case is given by 106.

• Figure 6(a) shows 𝑝md,1, analytical vs. simulation re-
sults.

• Figure 6(b) shows 𝑝md,2, analytical vs. simulation re-
sults.

• Figure 6(c) compares analytical results for 𝑝md,1 (dot-
ted) vs 𝑝md,2 (dashed).

• Figure 7(a) compares analytical results for 𝑝md,1 =

1 − Pr{E1,approx} vs simulation result for 1 − Pr{E1}.
See (63) vs (61).

• Figure 7(b) compares analytical results for 𝑝md,2 =

1 − Pr{E2,approx} vs simulation result for 1 − Pr{E2}.
See (64) vs (62).

Figures 6(a) and 6(b) show the good match between the
analytical expression and the simulation of 𝑝md. From
the Fig. 6(c) we see that 𝑝md,1 performs better by about
0.25 dB with respect to 𝑝md,2 in all simulated cases (dot-
ted lines are left from the corresponding dashed ones).

(a) 𝑝d,1, analytical formula (dotted) vs. simulation (dashed with ’×’ marker)

(b) 𝑝d,2, analytical formula (dotted) vs. simulation (dashed with ’×’ marker)

Fig. 8. Probability of detection for the preamble id:07. Com-
parison of ideal-case when noise variance is known (an-
alytical expression, no markers) and simulation (dashed
with ’×’ marker). 𝑝d as a function of 𝐹𝜀 . Vertical lines
indicate 𝐹𝜀 = 𝑁seq/𝑁ℎ = 1/𝐿seq.

Figures 7(a), and 7(b) show that the true detector perfor-
mance (detection events E1, E2 instead of E1,approx, E2,approx)
is often significantly better than the one of detectors assum-
ing the approximate detection events (for which we have the
analytical expression). The difference between 𝑝md for event
E, and 𝑝md for event Eapprox is highlighted by arrow. We
point out that the detector just triggers the search of arg-max
of the detector’s metric in the near vicinity of the detection
event. So, the good performance of the detector for events
E1, and E2 does not guarantee it will correctly estimate the
sample where the frame has started.

Figure 8 shows 𝑝d (analytical vs. simulation) for the
preamble id:07 as a function of 𝐹𝜀 , for SNR = 15 dB, and
changing 𝑁seq. The simulation used 12 000 test frames. Ver-
tical lines indicate 𝐹𝜀 = 𝑁seq/𝑁ℎ = 1/𝐿seq – the approximate
width of the main lobe (for constant-amplitude signals, the
main lobe width is exact). For 𝐹𝜀 greater than the main
lobe width, the analytical expression does not approximate
the simulation results closely. Further, we notice that the
analytical expression for 𝑝d,2 in Fig. 8(b) does not decrease
below the 𝑝fa, whereas the analytical expression for 𝑝d,1 in
Fig. 8(a) does decrease below 𝑝fa (worse approximation than
for 𝑝d,2). We see that the width of the main lobe of 𝑝d widens
as the 𝑁seq increases.
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Here, we emphasize the obtained result and interpret it
for the continuous-time equivalent model. Denote the width
of the main lobe as 𝐹𝜀,max. For constant-amplitude ℎ[𝑛],
|Fℎ0 (𝐹𝜀) | = | sin(𝜋𝐿seq𝐹𝜀)/(𝑁seq sin(𝜋𝐹𝜀) |. The formula
has the first zero at 𝐹𝜀,max = 1/𝐿seq = 𝑁seq/𝑁ℎ – that corre-
sponds with our observation. Mark the length of continous-
time ℎ(𝑡) as 𝑇ℎ = 𝑁ℎ ·𝑇sa. Then, continous-time equivalent
of 𝐹𝜀,max is given as

𝑓𝜀,max = 𝐹𝜀,max · 𝑓sa =
𝑁seq

𝑁ℎ𝑇sa
=

𝑁seq

𝑇ℎ
. (108)

In practical systems designs, we can define an “allowable”
width of the main lobe as a fraction of 𝑓𝜀,max. System spec-
ifications can require the maximal offset frequency that the
detector should tolerate. The designer selects sufficiently
high 𝑁seq to ensure the required maximal offset frequency is
within the “allowable” range.

4.1 Detectors with a Reference-level Estimator
The subsection presents 𝑝md of detectors that also esti-

mate a reference level. The threshold of these detectors does
depend just on 𝑝fa, the explicit dependence on the current
noise variance is removed.

The detectors are mentioned in the Sec. 3.3. 𝑝md
of the detectors is shown in Fig. 9. Again, we show
just a few cases specified by a tuple [preamble ID, 𝑁seq,
𝐹𝜀 ∈ {0.002, 0.009}]. A different color differentiates the
cases. For each case, there are four lines,

1. Dotted line (with no marker) – for the analytical result
(noise variance is known).

2. Full line (with ’×’ marker) – for the detector that esti-
mates noise variance (nEst). Threshold is set using (56),
and (57) using the current estimation of 𝜎2

𝑤 .

3. Dashed line (with ’×’ marker) – for the detector
that uses moving average (mAv) to estimate a refer-
ence level. The threshold is set using the function
set_thr_forGiven_pFa [12].

4. Dot-dashed line (with ’×’ marker) – for the detector
that uses moving median (mMed) to estimate a ref-
erence level. The threshold is set using the function
set_thr_forGiven_pFa in [12].

The averaging length is set to 𝐿 = 30 samples for all cases.
12 000 test frames have been used. We observe that the order
of lines (in each case) is the same. Specifically, the order
of lines from left (best) to right (worse) is: analytical, nEst,
mAv, mMed. Another observation is that 𝐿 = 30 is quite
enough for nEst-detector to match with the ideal/analytical
one – the full line is very close to the corresponding dotted
one (analytical expression). In simulations, we have also
tested 𝐿 = 10, 20, 40. For 𝐿 = 30 the ’nEst’-lines are within
∼ 0.5 dB (for the selected 𝐹𝜀) from the analytical expression
(with exactly known noise variance).

(a) 𝑝md,1, analytical formula (dotted) vs. simulation nEst (full), mAv (dashed), mMed
(dot-dashed)

(b) 𝑝md,2, analytical formula (dotted) vs. simulation. nEst (full), mAv (dashed), mMed
(dot-dashed)

Fig. 9. Probability of misdetection. Comparison of ideal case –
when noise variance is known (analytical expression, no
markers) – and detectors with a reference-level estima-
tor (simulation results, ’×’ marker). Averaging length
𝐿 = 30.

4.2 Practical Over-the-air Tests
We have evaluated the detector metric 𝑦′2 [𝑛] on two

over-the-air examples. One is the reception of the Global
Positioning System (GPS), the other is the reception of a non-
orthogonal superposition of 3 modified-wifi signals.

The GPS signal was received on AdalM Pluto
SDR [15] from Analog Devices. Sample rate was set to
10 megasamples per second (MSaps). The signal was then
resampled to 10-times chip-rate ( 𝑓chip = 1.023 MHz). The
Pseudo Random Noise (PRN) preambles were 10-times up-
sampled to match the rate with the resampled received signal.
We have analyzed the signal using classical correlation meth-
ods with trial frequency offsets to find the present satellites.

In Fig. 10, the classical metric with estimated 𝐹𝜀 is
shown as the black (first) line (the metric values are scaled).
The metric 𝑦′2 [𝑛] was evaluated for 𝑁seq = 10, and 𝑁seq = 1
and plotted as the red (second), and blue (third) line. The
red line (𝑦′2 [𝑛], with 𝑁seq = 10) is maximal at the same
time-index as the classical metric with previously estimated
offset frequency.



708 J. LUKAC, M. KIMMER, J. SYKORA, MATCHED-FILTER BASED FRAME-START DETECTOR . . .

Fig. 10. Metric 𝑦′2 [𝑛] for a real over-the-air received GPS signal.

Fig. 11. Autocorrelation of the wifi preamble, and the metric
𝑦′2 [𝑛] for the three simultaneously transmitting sources.

In the second example, we transmitted a wifi signal
(pregenerated in Matlab) using three Ettus N210 [16] with
daughter board SBX-40. The three sources were not (ex-
ternally) frequency-synchronized, the sample rate was set to
1 MHz (not 5, 10, or 20 MHz as in the wifi standard), and
transmitted at the frequency 1.5 GHz. The signal was re-
ceived using RTL SDR [17] (RTL2838UHIDIR, with tuner
R820T from Realtek).

Figure 11 shows the squared magnitude of preamble
autocorrelation |Rℎ [𝑛] |2 in the upper subfigure. The fol-
lowing (middle and lower) figures show the metric 𝑦′2 [𝑛]
for 𝑁seq = 1, and 𝑁seq = 10 evaluated on the received sig-
nal. The metric is used to estimate the relative delays of
the three sources. The indices of the peaks corresponding
to the three sources are shown in the subfigure’s title. The
metric for 𝑁seq = 10 should be more reliable. The exam-
ple should demonstrate that the detector is also suitable for
non-orthogonal multiple access scenarios.

5. Conclusion
We have proposed a frame-start detector resilient to fre-

quency offset between the transmitter and the receiver. Al-
though the idea is elementary – approximate absolute value
of a sum by the sum of absolute values – the implications

are enormous. We can estimate frame-start alone, i.e., with-
out jointly estimating it with the frequency offset. We have
also derived a precise analytical expression for misdetection
probability of the detector and compared it with simulation
results. Further, we have given a simple design criterion for
the selection of the necessary 𝑁seq based on the maximal fre-
quency offset that the system needs to manage. The detector
has been tested in two over-the-air scenarios and has been
shown to be useful. As a minor contribution, we have ad-
justed the formula for the sum of Rayleigh random variables
(RVs) from [14].
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Appendix A: Scaled Noncentral 𝝌-
squared Distribution

Here we define a scaled version of the non-central
𝜒-squared distribution. Assume RVs 𝑋1, 𝑋2, . . . , 𝑋𝑘 are
independent and distributed according to the normal dis-
tribution with possibly different means and unit variance,
𝑋𝑖 ∼ N(𝜇𝑋𝑖

, 1). Define RV 𝐴 and a parameter 𝜆 as

𝐴 :=
𝑘∑︁
𝑖=1

𝑋2
𝑖 , 𝜆 :=

𝑘∑︁
𝑖=1

𝜇2
𝑋𝑖
. (A1)

Then 𝐴 ∼ 𝜒′2
𝑘
(𝜆) – 𝐴 is distributed according to the non-

central 𝜒-squared distribution with 𝑘 degrees of freedom
and the noncentrality parameter 𝜆.

Assume a constant 𝜎2 > 0, define 𝐵 := 𝜎2𝐴; and assign two
auxiliary constants, 𝜆0, and 𝜈2.

𝜆0 :=
1

2𝜎2 , 𝜈
2 := 𝜆𝜎2, (A2)

pdf𝐵 (𝜁) =
1
𝜎2 pdf𝐴

(
𝜁

𝜎2

)
,

= 𝜆0e−𝜆0 (𝜁+𝜈2 )
(
𝜁

𝜈2

) 𝑘−2
4

𝐼 𝑘
2 −1 (2𝜆0𝜈

√︁
𝜁)1(𝜁),

(A3)

cdf𝐵 (𝜁) = 1 −𝑄M , 𝑘2

(
𝜈

𝜎
,

√
𝜁

𝜎

)
. (A4)

We refer to the distribution of 𝐵 as 𝐵 ∼ 𝜒′2
𝑘
(𝜈2, 𝜆0) or

𝐵 ∼ 𝜒′2
𝑘
(𝜈2, 𝜎2). The RV 𝐵 can be seen as a sum of 𝑘

squared normal RVs with variance 𝜎2:

𝑌𝑖 := 𝜎𝑋𝑖 , (A5)

𝜇𝑌𝑖 := 𝜎 ·𝜇𝑋𝑖
, Var[𝑌𝑖] = 𝜎2 ·Var[𝑋𝑖], (A6)

𝑌𝑖 ∼ N(𝜇𝑌𝑖 , 𝜎2), (A7)

𝐵 =

𝑘∑︁
𝑖=1

𝑌2
𝑖 =

𝑘∑︁
𝑖=1

(𝜎𝑋𝑖)2 = 𝜎2𝐴, (A8)

𝜈2 =

𝑘∑︁
𝑖=1

𝜇2
𝑌𝑖

= 𝜎2𝜆. (A9)

For 𝑘 = 2ℓ, ℓ ∈ N, 𝐵 can be seen as a sum of ℓ abs-squared
circularly symmetric complex-normal RVs:

𝑍𝑖 ∼ CN(𝜇𝑍𝑖
, 2𝜎2︸︷︷︸

1/𝜆0

), (A10)

Re{𝑍𝑖} ∼ N (Re{𝜇𝑍𝑖
}, 𝜎2), (A11)

Im{𝑍𝑖} ∼ N (Im{𝜇𝑍𝑖
}, 𝜎2), (A12)

𝐵 =

ℓ∑︁
𝑖=1

|𝑍𝑖 |2 =

ℓ∑︁
𝑖=1

Re{𝑍𝑖}2 +
ℓ∑︁
𝑖=1

Im{𝑍𝑖}2, (A13)

𝜈2 =

ℓ∑︁
𝑖=1

Re{𝜇𝑍𝑖
}2 +

ℓ∑︁
𝑖=1

Im{𝜇𝑍𝑖
}2 =

ℓ∑︁
𝑖=1

|𝜇𝑍𝑖
|2, (A14)

pdf𝐵 (𝜁) = 𝜆0e𝜆0 (𝜁+𝜈2 )
(
𝜁

𝜈2

) ℓ−1
2

𝐼ℓ−1 (2𝜆0𝜈
√︁
𝜁)1(𝜁).

(A15)


