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Abstract. To address the challenges of noise interference 

and low signal-to-noise ratio (SNR) in measured one-

dimensional ship range profile data, which significantly 

affect target recognition, a new method is proposed. 

An improved adaptive threshold wavelet denoising 

(IATWD) method is introduced. Initially, the two critical 

parameters of wavelet denoising (WD)—namely, the 

threshold and threshold functions (TFs)—are optimized. 

For threshold optimization, a formula related to the num-

ber of decomposition levels, the noise standard deviations 

per level, and the signal length is developed. As decompo-

sition levels change, an optimal threshold can be adaptive-

ly determined for each level. Regarding threshold function 

(TF) improvement, an enhanced TF is designed that flexi-

bly adjusts based on the benefits of both soft and hard TFs. 

Subsequently, by analyzing the interactions between the 

variable factors, wavelet base functions, and decomposi-

tion levels, optimal parameters for this denoising method 

are selected. Finally, the efficacy of the denoising and its 

impact on recognition were validated using denoising 

evaluation metrics and a Support Vector Machine (SVM) 

for both simulated and empirical data. Experimental re-

sults with both data types demonstrate that the IATWD 

method significantly outperforms both traditional WD and 

comparative improved methods in terms of denoising effec-

tiveness and recognition rates. 
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1. Introduction 

High Resolution Range Profiles (HRRP) represent the 

superposition of sub-echoes from target scattering points 

along the radar line of sight. These profiles encapsulate the 

rich structural features of the targets and hold considerable 

potential for applications in the field of ship recognition. 

However, when employing high-resolution unidimensional 

range profiles for empirical studies of ship target recogni-

tion [1–3], the experimental data inevitably includes dis-

turbances such as sea clutter, rain and snow clutter, co-

frequency interference, and internal noise [4], [5]. These 

disturbances reduce the SNR, blur the target information 

extracted from the range profiles, and severely impact the 

effectiveness of target recognition. Therefore, prior to 

conducting research on the classification and recognition of 

actual ship signals, it is essential to perform noise reduction 

on the unidimensional range profile data to enhance the 

recognition accuracy. 

Among the various denoising methods available, 

wavelet transform (WT) is widely utilized due to its excel-

lent multi-resolution characteristics. It retains the ad-

vantages of Fourier methods while providing the beneficial 

localization properties of the short-time Fourier transform, 

making it suitable for non-stationary signals. The ability of 

the WT to effectively handle transient changes in signals 

has led to its broad application in signal denoising and 

other areas [6], [7]. Although extensive research has been 

conducted on wavelet denoising (WD) in various fields 

such as biomedical imaging [8], microscopy [9], bearing 

fault diagnosis [10–12], and precision agriculture [13], 

literature on WD in the field of ship recognition is relative-

ly scarce. In fact, the effective information in HRRP ship 

signals typically concentrates in a few scattering centers, 

characterized by their non-stationarity and sparsity, making 

them particularly suitable for wavelet-based denoising. 

The parameters involved in WD include the wavelet 

base, decomposition levels, thresholds, and TFs, where the 

selection and design of thresholds and TFs are critical 

factors influencing the denoising outcome. Existing re-

search predominantly focuses on these key parameters. 

Zheng et al. [14] proposed a denoising algorithm based on 
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an adaptive threshold recursive cyclic rotation using the 

Shearlet transform. Liu et al. [15] introduced a method for 

attenuating seismic stochastic noise, leveraging the scale 

and directional characteristics of the Shear wave transform 

through an adaptive threshold. Li et al. [16] modified the 

thresholding approach based on the VisuShrink fixed 

threshold method and introduced improved TFs. Lu et al. 

[17] developed an improved TFs associated with decompo-

sition levels for denoising vibration signals in ore supply 

pipeline systems. Wu et al. [18] constructed a TF that is 

continuous and differentiable at the threshold point to ad-

dress the reconstruction bias and excessive denoising flaws 

inherent in traditional TFs. However, these methods, while 

straightforward and easy to implement, do not account for 

the statistical properties of the signal components post-

decomposition, and their improved TFs lack flexibility, 

leading to poor adaptivity and significant bias, thus render-

ing the denoising effect suboptimal. 

To achieve better denoising outcomes and accurately 

identify naval ships, this study builds upon the aforemen-

tioned studies by utilizing wavelet coefficients from each 

level of WT as parameters for threshold calculation. It 

proposes a novel method for adaptive threshold computa-

tion and designs an improved TF with a variable factor for 

flexible adjustment. Both simulation and real data validate 

the better denoising performance and higher recognition 

rates of the proposed improved adaptive threshold wavelet 

denoising (IATWD) method. This study is organized as 

follows: Section 2 introduces the fundamental principles of 

WD, including WT, decomposition, and reconstruction. 

Section 3 improves upon the VisuShrink threshold and 

designs an adaptive threshold formula. Based on the merits 

and demerits of soft and hard TFs, it proposes an improved 

wavelet threshold denoising function. Section 4 validates 

the IATWD using simulation data, comparing variable 

factors, wavelet bases, and decomposition levels to deter-

mine optimal parameters. The denoising effect of the 

method is validated through comparisons involving various 

thresholds and TFs, and by classifying ship targets using 

a Support Vector Machine (SVM) to assess the method's 

recognition capabilities. Section 5 discusses the limitations 

of using the SNR and root mean square error (RMSE) as 

evaluation metrics, due to the absence of original, pure 

signals in actual data. Instead, it employs energy ratio and 

Local Peak Signal-to-Noise Ratio (LPSNR) to validate the 

denoising efficacy of the IATWD method and to perform 

recognition verification. Section 6 provides a summary. 

2. Fundamental Principles of WD 

The process of WD involves the following steps: Ini-

tially, an appropriate wavelet base and decomposition lev-

els are selected to decompose the signal into a collection of 

wavelet coefficients. Subsequently, suitable thresholds and 

TFs are chosen to denoise the decomposed wavelet coeffi-

cients, resulting in new wavelet coefficients. Finally, these 

new wavelet coefficients are reconstructed to obtain the 

desired signal. 

2.1 Wavelet Transform (WT) 

1. Continuous Wavelet Transform (CWT) 

The function space for the WT is generally L2(R), 

which represents the collection of functions that are 

square-integrable on the real number domain R. This is 

mathematically represented as: 

 )()( 2 RLt  .  (1) 

A function ψ(t)  L2(R) is termed an energy-limited 

signal. If ψ(t) also satisfies the admissibility condition 

following its Fourier transform ψ(), 
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it is defined as a mother wavelet [19]. By scaling and trans-

lating the mother wavelet, a family of wavelets, 
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The formula for the CWT [20] of a function f(t) using 

the base wavelet   is given by [21]: 
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 . The WT converts a one-dimensional signal into 

a two-dimensional function, enabling a more thorough 

examination of the signal's time-frequency properties. The 

inverse transformation: 
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is the wavelet inverse transform for the function f(t) with 

respect to the base wavelet ψ, which reconstructs the 

original signal from the wavelet-transformed data. 

2. Discrete Wavelet Transform (DWT) 

The CWT involves continuous scaling and translation 

factors, necessitating the computation of continuous inte-

grals, which can be inconvenient for practical applications. 

In practice, the DWT [22] is often employed. The DWT 

discretizes the scaling factor a and the translation factor b 

of the CWT. Common selections for these parameters are 

a = a0
m, b = nb0 a0

m where m,n  Z, resulting in a discrete 

set of wavelet functions: 

 Znmnbtaat m
m

nm  
,),()( 00

2
0,  .  (5) 

In this scenario, the wavelet functions are discrete, 

and the corresponding DWT is described as: 
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Specifically, setting a0 = 2, b0 = 1yields the dyadic 

wavelet: 
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2.2 Wavelet Decomposition and 

Reconstruction 

In the context of DWT, grounded in the theory of 

orthogonal multiresolution analysis, the linear function 

spaces {Vj : j  Z} can be decomposed into a direct sum of 

Vj – 1 and its orthogonal projection within Vj, denoted as 

Wj – 1. This is formally represented as Vj = Vj – 1  Wj – 1, 

where j indexes the resolution level. Additionally, it holds 

that Vj – 1  Wj – 1, j  Z. Consequently, any signal x(t) 

represented on Vj can be expressed using the basis 

functions j – i,k(t) for Vj – 1 and ψj – i,k(t) for Wj – 1, as shown 

in [23]: 
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Here, k  Z, where j – 1,k(t) represents the scaling function, 

and ψj – 1,k(t) denotes the wavelet function; cj – 1,k are the 

scaling coefficients, and dj – 1,k are the wavelet coefficients. 

This decomposition can be implemented via a specific 

set of filters. When the wavelet and scaling functions are 

orthogonal in space, the scaling coefficients cj – 1,k and 

wavelet coefficients dj – 1,k can be calculated using the inner 

product formula: 
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Here, n  Z. The functions h(n – 2k) and g(n – 2k) [24] can 

be considered as low-pass and high-pass filters, respective-

ly. The principle of wavelet decomposition and reconstruc-

tion [25] involves passing the signal through a pair of high- 

 

Fig. 1. Wavelet decomposition flowchart. 

 

Fig. 2. Wavelet decomposition flowchart. 

pass and low-pass filters to obtain a set of wavelet and 

scaling coefficients. This process is continued using further 

pairs of filters to achieve subsequent sets of coefficients 

until the desired number of decomposition levels is reached, 

effectively accomplishing the wavelet decomposition of the 

signal. Similarly, the wavelet reconstruction algorithm can 

be viewed as the inverse process of the decomposition 

algorithm. The process flowcharts for wavelet decomposi-

tion and reconstruction are illustrated in Figs. 1 and 2. 

3. Determination of Adaptive 

Threshold and Improved TF 

3.1 Determination of Adaptive Threshold 

The selection of thresholds is a critical component in 

the wavelet threshold denoising process. A key criterion 

for this selection is minimizing the discrepancy between 

the coefficients dj,k (the wavelet coefficient of original 

signal) and d̂j,k (the wavelet coefficient after noise reduc-

tion) and the original signal to avoid significant deviations 

from the original. Common threshold selection methods 

include the VisuShrink threshold, the Minimax criterion 

threshold, and Rigrsure threshold [26–28]. However, the 

noise coefficients in wavelet decomposition decrease with 

increasing levels of decomposition, limiting the effective-

ness of a fixed threshold. Consequently, numerous scholars 

have built upon the VisuShrink threshold method to pro-

pose various formulas for adaptive thresholds, as illustrated 

below: 

(1) VisuShrink threshold  

 nT ln2    (11) 

(2) Adaptive threshold [17]  
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These formulas incorporate parameters such as the 

signal length n, j denotes the decomposition levels, nj indi-

cates the length of the detail coefficients at the j-th level, 

and σ represents the standard deviation (std) of the noise 

signal. The standard deviation (std) of the noise is estimat-

ed using the median absolute deviation (MAD) [29], de-

fined as σ = MAD/0.6745. Here, MAD = median(d1,k). 

The aforementioned improved TFs primarily consider 

the effects of decomposition scale and signal length on the 

threshold values. Building on this foundation, this study 

further refines the approach by not only considering the 

influence of decomposition scale but also the std of the 

noise at each level and the signal length. As the number of 

decomposition levels changes, each level adaptively de-

rives the optimal threshold, demonstrated in the following 

equation (14): 

 
jj

j

j nT ln2 .  (14) 

Here, nj indicates the length of the detail coefficients at the 

j-th level, j denotes the decomposition levels, σj represents 

the std at the j-th level, where σj = median(dj,k)/0.6745,  
represents the scale attenuation factor, which controls the 

attenuation degree of thresholds among different wavelet 

scales. 

3.2 Improved Wavelet TF 

In the domain of wavelet threshold denoising, the se-

lection of appropriate TF is a crucial factor determining the 

ultimate effectiveness of noise reduction. Commonly em-

ployed wavelet threshold selection functions include hard 

thresholding, soft thresholding, and garrote thresholding. 

Although these three methodologies ensure a certain level 

of noise suppression, their inherent limitations suggest 

significant room for improvement in denoising perfor-

mance. 

Li et al. [16] and Lu et al. [17] have enhanced the TFs 

by embedding an exponential function into the threshold-

ing process. This modification aims to accelerate computa-

tional efficiency. However, challenges persist due to signal 

compression and bias introduced by soft thresholding, 

resulting in the direct discarding of wavelet coefficients 

beneath the threshold, thereby constraining the preserva-

tion of low-frequency components. The expressions for the 

TFs presented by Li et al. [16] and Lu et al. [17] are illus-

trated below: 
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Furthermore, Wu et al. [18], utilizing an unbiased 

likelihood estimation (Rigrsure threshold), proposed 

a moderately smooth TFs intended to combine the charac-

teristics of both soft and hard thresholding. Although this 

method benefits from the merits of both functions, it exhib-

its certain limitations in terms of flexibility during signal 

adjustment. The expression for their TFs is presented be-

low: 

 

 
,

,

2
,

,,

,
,

,

,

sgn
,

3 3eˆ .

e ,
3

j k

j k

j k

j kj k d T
j k

j k

d Tj k

j k

dT
dd T

d
d

d
d T






  


 





  (17) 

Given these considerations, an ideal TF should 

maintain continuity, avoiding discontinuities at the 

threshold; it should approximate the original wavelet 

coefficients as closely as possible to minimize constant 

bias; and it should preserve and enhance the advantages of 

traditional TFs while offering flexibility. Therefore, this 

study integrates the advantages of both soft and hard TFs 

by incorporating an exponential function into the TF. 

An improved TF that is continuous at the threshold points 

T and kT and has an adjustable factor is constructed, as 

shown in (18):  
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In this improved TF, k is the threshold adjustment 

factor, the value range is k > 1, and the wavelet coefficients 

larger than the threshold are segmented to determine the 

shrinkage degree of the coefficients in different intervals; a 

is a variable factor, and its value range is [0, 1). The flexi-

bility of these functions can be adjusted by modifying the 

value of a, thereby tailoring the outcome to specific appli-

cations. It can be seen that the variable factors a  [0, 1), 

d̂j,k are between the coefficients calculated by the soft and 

hard TFs. 

Initially, the parity of the improved TF is examined: 
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For 0 ≤ a <1, d̂j,k (–dj,k) = –d̂j,k (dj,k), indicating that the 

TFs are odd functions. 

Next, the continuity of the improved TF is assessed: 
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When dj,k  kT−, 
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When dj,k  T−, 
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From the above, it is evident that 
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confirming that the improved TF are continuous at 

threshold T and kT, and similarly at threshold –T and –kT. 

Therefore, the improved TF is continuous at both ±T and 

±kT, which mitigates the signal oscillations inherent in 

hard TF. 

The asymptotic behavior of the improved TF is then 

verified: 
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Fig. 3. Comparison of improved TF with soft, hard, and 

garrote TFs. 
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(24) 

It can be determined that the asymptote of d̂j,k is dj,k 

and as dj,k  ∞, the transformed wavelet coefficients 

 

d̂j,k

 

gradually converge to the original coefficients, eliminating 

the constant bias between them. Thus, the reconstructed 

signal does not suffer from degradation, and the denoising 

effect is further enhanced. Setting k = 1.24, T = 10, the 

comparison of the improved TF with traditional soft, hard, 

and  garrote TFs is illustrated in Fig. 3. 

The graph demonstrates continuity at thresholds T and 

kT, and shows that as dj,k  ∞, d̂j,k gradually converges 

to dj,k, without any constant bias. 

4. Simulation Data Verification for 

IATWD Method Denoising 

4.1 Threshold Introduction to Simulation 

Data 

The simulation data employed in this study includes 

models of four types of naval ships, constructed using 

3dsMAX software. The models include a Cruise Ship 

(CST), a Tugboat (TUO), the "Burke-class destroyer USS 

Murphy" DDG112, and the "Enterprise-class aircraft carri-

er" CVN-65. HRRP data was generated using electromag-

netic computation software FEKO [30], with the following 

parameters: radar central frequency of 12 GHz, bandwidth 

of 150 MHz. Data was generated for a full azimuthal range 

of 0–360 degrees at 1-degree intervals, with 400 range 

cells and a resolution of 1 meter. The parameters of the 

simulated naval ships are shown in Tab. 1. 
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Target Length Width Height 

CST 131 m 20 m 22 m 

TUO 102.8 m 17.4 m 38.5 m 

DDG112 153.6 m 19.2 m 52.6 m 

CVN-65 342.3 m 73.9 m 64.5 m 

Tab. 1. Target dimension parameters. 

 

Fig. 4. Schematic of naval ship models for simulation. 

 

Fig. 5. Full azimuthal domain HRRP of ship targets. 

A schematic of the simulation models for the four 

classes of ships is shown in Fig. 4. The full azimuthal 

domain HRRP display of the ship targets is presented in 

Fig. 5. 

4.2 Validation of IATWD Method Denoising 

Effectiveness 

HRRP is the amplitude value of the radar target scat-

tering echo, and the amplitude is non-negative in the phys-

ical sense. By adding Gaussian complex noise with com-

plex domain plus noise and an independent Gaussian 

distribution of real and imaginary parts [31], the physical 

process and statistical characteristics of HRRP noise can be 

restored, which is a reasonable choice for simulating 

HRRP noise. However, the added Gaussian complex noise 

generates an 'asymmetric distribution offset' (Direct Cur-

rent (DC) Bias Characteristic) due to the physical ampli-

tude constraint, which makes the statistical mean of the 

overall noise deviate from 0 and greater than 0. The core 

logic of wavelet denoising is to separate the signal and 

noise through 'high frequency threshold filtering', which 

cannot effectively solve the problem of DC bias character-

istics caused by adding complex noise, and reduces the 

denoising quality of the data. The DC bias characteristics 

of the denoised data are corrected. The baseline of the DC 

bias of the complex Gaussian noise is estimated by one-

dimensional minimum filtering. The threshold is used to 

distinguish the peak and non-peak regions of the target. 

The non-peak region is subtracted from the baseline opti-

mized by linear interpolation, and the peak region is re-

tained to eliminate the DC bias and retain the effective 

signal of the target. 
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In the formula, y(n) represents the denoised signal, ŝ(n) 

denotes the corrected signal after denoising treatment, μ is 

the mean value of the denoised signal, σ is the std of the 

denoised signal, σ = MAD/0.6745, λ is the threshold factor, 

distinguishing the target peak and non-peak regions, 

b(n) = min{y(n – t),…, y(n + t)} is the baseline estimate of 

the DC bias of the complex Gaussian noise, which is pre-

liminarily estimated by the one-dimensional minimum 

filter with a window size of 2t + 1, and max{ ,0} represents 

the non-negative truncation of the non-peak region correct-

ed result. 

In this study, simulation data from four types of naval 

ships were used as original signals. To each, add a 5 dB of 

complex Gaussian white noise, and the corrected data after 

noise reduction were used for comparative experiments. 

The objective was to identify the optimal denoising scheme 

by experimenting with various wavelet bases, levels of 

wavelet decomposition, TFs, and threshold types. By com-

paring the waveform distortion under various conditions, 

as well as the SNR and RMSE of the noise reduction cor-

rected signal, it was found that the noise reduction effect of 

IATWD was relatively good when parameters k = 1.24, 

 = 0.95, t = 0.7, and λ = 0.5 were used. Whether for simu-

lation data or measured data, these parameters were select-

ed to verify the noise reduction. 

The performance of the denoising algorithm was 

quantitatively assessed using the SNR and the RMSE as 

metrics [16]. Higher SNR and lower RMSE indicate a 

smaller discrepancy between the denoised and original 

signals, thus signifying better denoising effectiveness. 

The formula for SNR is: 
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The formula for RMSE is: 
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In (26) and (27), x(n) represents the original signal, and 

ŝ(n) denotes the corrected signal after denoising treatment. 

Taking the signal from the naval ship DDG112 as an 

example, denoising was conducted using different TFs and 

optimized thresholds. The variable factor a was first de-

termined; then, keeping other parameters constant, the 

IATWD method was applied to all sample signals of 

DDG112 using various values of a, with the results dis-

played in Tab. 2. The results indicated that an a value of 

0.8 yielded the highest average SNR and the lowest aver-

age RMSE for the denoised signals. Therefore, the adjust-

ment factor a in the IATWD was set to 0.8. 

To avoid distortion at the edges of signals and abrupt 

changes during multi-scale decomposition and reconstruc-

tion, the wavelet base should be chosen for its good regu-

larity and symmetrical or nearly symmetrical biorthogonal 

properties. Accordingly, five wavelet bases of coif4, db2, 

db7, sym4 and sym8 in the three categories wavelet ba-

ses—sym, db, and coif [32], characterized by near-

symmetry, minimal vanishing moments, and regularity—

were selected. Table 3 illustrates the denoising effects of 

different wavelet bases on noisy signals, revealing that the 

db2 wavelet base achieved the highest average SNR and 

the smallest average RMSE post-denoising. Table 4 shows 

that when the decomposition levels were set to 5, the best 

denoising performance was obtained. Therefore, the db2 

wavelet base and 5 decomposition levels were selected as 

parameters for subsequent signal processing tasks. 

To ascertain the effectiveness of the proposed 

IATWD denoising method, this study compares the 

improved TFs developed herein with conventional soft, 

hard, and garrote thresholding techniques, as well as the 

denoising approaches detailed in the references [16–18]. 

The evaluations employed a db2 wavelet base, with a 

decomposition level of 5 and a variable factor of 0.8. The 

outcomes of these assessments are depicted in Tab. 5. 

Table 5 presents the average SNR and average RMSE 

of all samples of the naval ship DDG112 processed by 

different denoising methods, while Figure 6 shows a com-

parison of amplitude values of a specific sample of the 

naval ship DDG112 obtained via different denoising meth-

ods. It can be seen from Tab. 5 that, compared with other 

denoising methods, the IATWD method proposed in this 

paper achieves the highest SNR values and the lowest 

RMSE values. As observed from Fig. 6, the hard 

(visushrink) method exhibits the pseudo-Gibbs phenome-

non and has residual noise in the peak region. The soft 

(visushrink) method demonstrates better smoothness but 

causes excessive smoothing, leading to more loss of effec-

tive information in the denoised signal. The garrote 

(visushrink) applies a larger shrinkage ratio to weak scat-

tering points, resulting in over-smoothing of these points. 

The denoising method of the reference [16] leaves a large 

amount of residual noise. The method of the reference [17] 

damages the detailed features of the signal. The method of 

the reference [18] causes severe damage to signal details 

and also retains a significant amount of residual noise. In 

contrast, the IATWD method not only reduces noise more 

effectively but also better preserves the signal's detailed 

characteristics. The results indicate that for the naval ship 

DDG112, the IATWD method offers the best noise reduc-

tion performance. 

To conduct a comprehensive analysis of the denoising 

efficacy of the IATWD method, identical parameters were 

applied to naval ships CST, TUO, and CVN-65: a db2 

wavelet base, five decomposition levels, and a variable 

factor of a = 0.8. The resulting SNR and RMSE from these 

evaluations are illustrated in Tab. 6. Table 6 demonstrates 

that, similar to the DDG112, the IATWD method achieves 

the highest SNR values and the lowest RMSE values 

across the different ships, indicating its broad adaptability 

as a denoising method. 

In the study presented here, denoising experiments 

were conducted on simulated signals from four types of 

naval ships. The IATWD method designed in this study, 

employing identical parameters, was compared with con-

ventional soft, hard and garrote TFs, as well as denoising 

methods outlined in the references [16–18]. The IATWD 

method demonstrated the highest SNR and the lowest 

RMSE, indicating its better denoising performance. In 

subsequent experiments involving both simulation and 

actual data for ship recognition, denoising was performed 

using the db2 wavelet base at a decomposition level of 

five, with a variable factor a set at 0.8. 
 

a 0.1 0.5 0.7 0.8 0.9 0.95 

SNR 13.84 14.50 14.84 15.13 14.87 14.70 

RMSE 0.196 0.186 0.183 0.180 0.183 0.185 

Tab. 2. Impact of different variable factor on the denoising of 

ship DDG112. 
 

Wavelet base Coif4 db2 db7 sym4 sym8 

SNR 14.39 15.13 14.18 14.71 14.51 

RMSE 0.195 0.180 0.189 0.185 0.192 

Tab. 3. SNR and RMSE under different wavelet base 

treatments for DDG112. 
 

Decomposition 

level 

Two-

level 

Three-

level 

Four-

level 

Five-

level 

Six-

level 

SNR 13.03 14.31 14.67 15.13 14.82 

RMSE 0.228 0.194 0.185 0.180 0.183 

Tab. 4. SNR and RMSE at different decomposition levels of 

db2 for DDG112. 
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Denoising 

methods 

Soft 

(visushrink) 

Hard 

(visushrink) 

Garrote 

(visushrink) 
IATWD Reference [16] Reference [17] Reference [18] 

SNR 11.28 14.43 13.54 15.13 12.82 13.854 10.71 

RMSE 0.279 0.191 0.206 0.180 0.261 0.237 0.392 

Tab. 5. SNR and RMSE for various denoising methods applied to ship DDG112. 

 

Fig. 6. Comparison of different denoising methods for a sample from naval ship DDG112. 
 

Denoising methods 
CST TUO CVN-65 

SNR RMSE SNR RMSE SNR RMSE 

Soft (visushrink) 14.18 0.227 10.24 0.213 7.73 0.200 

Hard (visushrink) 19.84 0.118 13.15 0.145 10.77 0.136 

Garrote (visushrink) 18.51 0.137 12.34 0.158 9.543 0.158 

IATWD 20.79 0.106 14.62 0.126 11.72 0.124 

Reference [16] 14.19 0.236 12.31 0.159 11.28 0.129 

Reference [17] 18.71 0.132 11.92 0.177 10.20 0.142 

Reference [18] 12.81 0.277 8.225 0.264 7.43 0.205 

Tab. 6. SNR and RMSE for various denoising methods applied to three ships. 
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4.3 Validation of the IATWD Method for 

Recognition Performance 

To validate the recognition performance of the 

IATWD denoising method, denoised data were subjected 

to ship recognition analysis using the SVM. The kernel 

function for the SVM was the Radial Basis Function 

(RBF), and the parameters for the RBF and penalty factor 

were selected through cross-validation. 

The dataset consisted of 1,440 multi-angle, HRRP ob-

servations from four different classes of ships, with 360 

observations per class. For testing recognition, a random 

set of 72 observations from each class was selected, leav-

ing the remainder for training. The evaluation metrics used 

were Accuracy, Precision, and Recall. The experiment was 

repeated ten times, with the average recognition rates de-

picted in Tab. 7, and a confusion matrix from one of the 

experiments shown in Fig. 7. 

 

Fig. 7. Confusion matrix from one experiment for the 

recognition of four classes of simulated ships. 
 
 

Different signal 
Average 

Accuracy 

Average 

Precision 

Average 

Recall 

Noisy signal 85.68% 72.63% 71.35% 

Soft (visushrink) 94.41% 89.79% 88.82% 

Hard (visushrink) 94.17% 89.46% 88.33% 

Garrote (visushrink) 94.51% 90.05% 89.03% 

IATWD 95.19% 92.38% 90.38% 

Reference [16] 91.72% 84.26% 83.44% 

Reference [17] 92.97% 86.58% 85.94% 

Reference [18] 88.19% 76.55% 76.39% 

Tab. 7. Average recognition rates (%) for different signals. 

As indicated in Tab. 7, compared with other 

denoising methods, the IATWD method proposed in this 

paper achieves the highest values in terms of Average 

Accuracy, Average Precision, and Average Recall for 

recognition. Specifically, the IATWD method attained an 

Average Accuracy of 95.19%, an Average Precision of 

92.38%, and an Average Recall of 90.38%. Furthermore, 

as shown in Fig. 7, in a specific experiment, the recogni-

tion rates for the four classes of ships using the IATWD 

method were also the highest. Therefore, the IATWD 

method exhibits the most effective denoising and recogni-

tion performance for simulated ship signals. 

5. Validation of IATWD Method 

Denoising through Experimental 

Data 

5.1 Introduction to Experimental Data 

Using a guidance head target detection platform, 

measurements were conducted on ships located on the 

surface of the Bohai Sea. This involved the collection of 

HRRPs from multiple angles for four different ships: the 

Weiqiao Jiada No. 16 (W-16, Fig. 8), Zhehai No. 169 (Z-

169, Fig. 9), Yongxing Island (YXD, Fig. 10), and Bohai-

cuizhu (BHCZ, Fig. 11).  

The study used experimental data comprising fifty 

sets per ship type, resulting in a total of two hundred sets of 

multi-angle high-resolution range profiles (HRRPs). These 

data sets were employed to validate the denoising method 

proposed in this study, which utilizes an improved wavelet 

threshold technique. Parameters of measured ships are 

shown in Tab. 8. 
 

Target Length Width Detection Distance 

W-16 110 m 25 m 4900 m 

Z-169 189.99 m 32.26 m 5300 m 

YXD 167.25 m 25.2 m 5300 m 

BHCZ 178.8 m 28 m 5100 m 

Tab. 8. Target dimension parameters. 
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Fig. 8. HRRP and photograph of W-16 at an attitude angle of 

64°. 

 

Fig. 9. HRRP and photograph of Z-169 at an attitude angle of 36°. 

 

Fig. 10. HRRP and photograph of YXD at an attitude angle of 

117°. 

 

Fig. 11. HRRP and photograph of BHCZ at an attitude angle of 

116°. 

5.2 Analysis of Recognition Performance 

Using Empirical Data 

The method employed for processing empirical data 

uses the same noise reduction parameters as those for 

simulated data, employing an SVM as the classifier. This 

involves using identical recognition parameters for target 

classification, and the effectiveness of various noise reduc-

tion techniques is evaluated by calculating their recognition 

rates. The test set for recognition consists of randomly 

selected 10 datasets from 50 datasets of four types of naval 

ships, with the remaining 40 datasets serving as the train-

ing set for recognition. This experiment was conducted ten 

times. 

Due to the absence of original pure signals in the em-

pirical data, it is not feasible to use indicators such as the 

SNR to determine the outcomes of noise reduction. Conse-

quently, alternative methods must be employed to assess 

the effectiveness of the denoising algorithms. HRRP data 

has distinct peak characteristics that represent the real tar-

get signatures. The local peak signal-to-noise ratio 

(LPSNR) can effectively evaluate the performance of de-

noising algorithms in removing noise while preserving 

signal features. Additionally, the noise suppression effect 

can be assessed quantitatively by the energy ratio of the 

denoised and noisy signals. In this study, the total energy 

ratio and LPSNR metrics are employed to evaluate the 

denoising performance of different methods. The specific 

assessment metrics are as follows: 

(1) Energy Ratio 
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Here, s(n) is the noisy signal, and ŝ(n) is the corrected 

signal after denoising treatment. 
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(2) LPSNR 

The formula for PSNR is as follows [33], [34]: 
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Here, Lmax is the peak amplitude of the signals, and 

RMSE(s(n), ŝ(n)) is the mean squared error between the 

corrected denoised signal and the noisy signal. 

Analogous to the PSNR formula, the LPSNR for each 

local peak i  in the noisy signal and the corrected denoised 

signal is: 

 )(log20)
ˆ

(log20LPSNR 10

ˆ

10

ii s

i

s

i

i

ss


 . (30) 

The average value of the LPSNRi for all extracted 

local peaks, denoted as LPSNR, is as follows: 
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Here, ŝi is the amplitude of the the i-th local peak point 

of corrected denoised signal, si is the amplitude of the i-

th local peak point of noisy signal, σŝi and σsi
 are the stand-

ard deviations of the background noise in the neighborhood 

around the peak point for the corrected denoised signal and 

noisy signal, σŝi = MADŝi 
/0.6745, σssi

 = MADsi 
/0.6745; M 

is the number of extracted local peaks. 

The local peaks are extracted using the sliding win-

dow method, and a threshold is set to filter out small ampli-

tude peaks. Suppose there is a signal y = {y1, y2,…, yn}, the 

set of local peaks P of this signal can be expressed as: 

 }),,...,max(|{ 2/2/ TyyyyyP ikikiii  
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Here, yi is the i-th point in the signal; k is the size of the sliding 

window, and the range of the window is [i – k//2, i + k//2], 

where k is an odd number; P is the set of local peaks, 

including all peak points that meet the above conditions; T 

is the threshold for the minimum amplitude, and only when 

yi is greater than this threshold is it considered an effective 

local peak; N denotes the signal's length. 

The total energy ratios and average LPSNR between 

noisy and corrected denoised data for all samples of empir-

ical data are calculated. The results were presented in 

Tab. 9.  

Figure 12 shows a comparative analysis of different 

denoising methods applied to a specific sample from the 

measured ship BHCZ. From Tab. 9 and Fig. 12, it is 

evident that the IATWD performs best. The Energy Ratio 

of this method is 0.8573, and the LPSNR is the highest at 
 

Denoising Methods Energy Ratio Average LPSNR 

Soft (visushrink) 0.6905 3.5 

Hard (visushrink) 0.8742 3.53 

Garrote (visushrink) 0.8139 3.55 

IATWD 0.8573 3.64 

Reference [16] 0.8926 0.45 

Reference [17] 0.7746 2.33 

Reference [18] 0.5951 –0.25 

Tab. 9. Energy Ratio and Average LPSNR comparison of 

different signals. 

3.64 dB. This indicates that the IATWD effectively re-

moves noise and retains useful detail features. 

In contrast, reference [18] performs the worst: its En-

ergy Ratio is 0.5951, a large number of useful detailed 

features of the signal are lost, and less noise is removed, 

resulting in an extremely low LPSNR (only –0.25 dB). 

Although the soft (visushrink) method has a relatively 

high LPSNR (3.5 dB), its Energy Ratio is very low, only 

0.6905. This indicates that although this method removes 

the most noise, it over-smooths the signal, leading to ex-

cessive loss of the signal's detailed features. The Energy 

Ratios of garrote (visushrink) and reference [17] are 

0.8139 and 0.7746, and the LPSNRs are 3.55 dB and 

2.33 dB. Although these two methods remove a large 

amount of noise, the signals are still over-smooth, and the 

peak detail features are lost. 

The Energy Ratio of the hard (visushrink) method is 

0.8742, and the corresponding LPSNR is 3.53 dB. With 

this method, the peak features are effectively preserved, but 

there is residual noise, and the signal also has distortion 

and discontinuity problems. The Energy Ratio of reference 

[16] is 0.8926, and the LPSNR is 0.45 dB. Although the 

peak features are effectively preserved, there is more resid-

ual noise.  

Consequently, the IATWD method designed in this 

study proves to be highly effective for empirical data, 

achieving the best denoising results. 
 

Different Signal 
Average 

Accuracy 

Average 

Precision 

Average 

Recall 

Empirical data 86.88% 77.96% 73.75% 

Soft (visushrink) 91.12% 83.49% 82.25% 

Hard (visushrink) 90.25% 81.32% 80.5% 

Garrote (visushrink) 91.75% 84.74% 83.5% 

IATWD 92.5% 87.03% 85% 

Reference [16] 89.89% 80.53% 79.75% 

Reference [17] 90.87% 82.93% 81.75% 

Reference [18] 88.75% 79.37% 77.5% 

Tab. 10. Average recognition rates (%) for different measured 

signals. 
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Fig. 12. Comparison of denoising methods for a sample from the measured ship BHCZ. 

From Tab. 10 and Fig. 13, it can be inferred that the 

IATWD method, proposed in this study, achieves an aver-

age accuracy of 92.5%, an average precision of 87.03%, 

and an average recall of 85% for the measured naval ships. 

These metrics are the highest among the tested methods, 

indicating that the IATWD method effectively reduces 

noise interference in empirical data while preserving useful 

information, thereby enhancing target recognition perfor-

mance. 

6. Conclusion 

To address the noise interference issues in actual one-

dimensional range profile data from ships, this study uti-

lized WD methods to preprocess the data. It proposed 

an improved TF based on an adaptive threshold with 

a variable factor, achieving better denoising results and 

enhancing target recognition performance. The key find-

ings and contributions of this study are summarized as 

follows: 

1. Considering the effects of decomposition scales, 

noise standard deviation per level, and signal length on 

threshold determination, an adaptive threshold formula was 

constructed. This was based on the conventional 

VisuShrink threshold but improved by combining the ad-

vantages of soft and hard TFs. The resulting function is 

continuous at thresholds T and kT, ensuring the smoothness 

of the denoised signal and reducing oscillations caused by 

denoising. It exhibits asymptotic behavior, which elimi-

nates constant bias between the two approaches, thereby 

reducing signal loss after reconstruction. The introduction 

of a variable factor enhances the flexibility of using the 

TFs. 

2. The noise of the HRRP signal exhibits DC bias 

characteristics. A one-dimensional minimum filtering esti-

mation is used to correct the DC bias characteristics of the 

denoised signal, and the denoising effect analysis is per-

formed on the corrected simulated data after denoising. 

Through the analysis of the interactions among wavelet 

base functions, decomposition levels, and the variable factor, 
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Fig. 13. Confusion matrix for the recognition of four types of 

measured ships. 

optimal denoising parameters for the IATWD method were 

identified. Compared to other denoising methods, the 

IATWD method minimizes signal distortion and effec-

tively preserves useful signal features. It achieves the high-

est average SNR and the lowest RMSE, indicating better 

denoising effectiveness. During recognition validation, it 

exhibited the highest average recognition rate among all 

denoising methods, with an average accuracy of 95.19%, 

an average precision of 92.38%, and an average recall of 

90.38%, rendering it the most effective method in terms of 

recognition performance. 

3. Given the absence of original pure signals in em-

pirical data, traditional metrics such as SNR and RMSE 

have limited applicability. Therefore, Energy Ratio and 

LPSNR were proposed as alternative quantitative assess-

ments. The results show that in the empirical data, the 

IATWD method achieves optimal performance in terms of 

Energy Ratio (0.8573) and LPSNR (3.64 dB), thereby 

balancing noise removal and the preservation of useful 

information; it also achieved the highest average recogni-

tion rate, with an average accuracy of 92.5%, an average 

precision of 87.03%, and an average recall of 85%. Thus, 

the IATWD method effectively mitigates noise interference 

and preserves useful information, thereby enhancing the 

recognition of empirical targets. 

Future studies will focus on analyzing the HRRP data 

characteristics of measured naval ships. By integrating data 

characteristics with noise models, and combining WT with 

deep learning, this research aims to further improve both 

denoising effectiveness and recognition accuracy. 
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