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Abstract. To address the challenges of noise interference
and low signal-to-noise ratio (SNR) in measured one-
dimensional ship range profile data, which significantly
affect target recognition, a new method is proposed.
Animproved adaptive threshold wavelet denoising
(IATWD) method is introduced. Initially, the two critical
parameters of wavelet denoising (WD)—namely, the
threshold and threshold functions (TFs)—are optimized.
For threshold optimization, a formula related to the num-
ber of decomposition levels, the noise standard deviations
per level, and the signal length is developed. As decompo-
sition levels change, an optimal threshold can be adaptive-
ly determined for each level. Regarding threshold function
(TF) improvement, an enhanced TF is designed that flexi-
bly adjusts based on the benefits of both soft and hard TFs.
Subsequently, by analyzing the interactions between the
variable factors, wavelet base functions, and decomposi-
tion levels, optimal parameters for this denoising method
are selected. Finally, the efficacy of the denoising and its
impact on recognition were validated using denoising
evaluation metrics and a Support Vector Machine (SVM)
for both simulated and empirical data. Experimental re-
sults with both data types demonstrate that the IATWD
method significantly outperforms both traditional WD and
comparative improved methods in terms of denoising effec-
tiveness and recognition rates.
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1. Introduction

High Resolution Range Profiles (HRRP) represent the
superposition of sub-echoes from target scattering points
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along the radar line of sight. These profiles encapsulate the
rich structural features of the targets and hold considerable
potential for applications in the field of ship recognition.
However, when employing high-resolution unidimensional
range profiles for empirical studies of ship target recogni-
tion [1-3], the experimental data inevitably includes dis-
turbances such as sea clutter, rain and snow clutter, co-
frequency interference, and internal noise [4], [5]. These
disturbances reduce the SNR, blur the target information
extracted from the range profiles, and severely impact the
effectiveness of target recognition. Therefore, prior to
conducting research on the classification and recognition of
actual ship signals, it is essential to perform noise reduction
on the unidimensional range profile data to enhance the
recognition accuracy.

Among the various denoising methods available,
wavelet transform (WT) is widely utilized due to its excel-
lent multi-resolution characteristics. It retains the ad-
vantages of Fourier methods while providing the beneficial
localization properties of the short-time Fourier transform,
making it suitable for non-stationary signals. The ability of
the WT to effectively handle transient changes in signals
has led to its broad application in signal denoising and
other areas [6], [7]. Although extensive research has been
conducted on wavelet denoising (WD) in various fields
such as biomedical imaging [8], microscopy [9], bearing
fault diagnosis [10-12], and precision agriculture [13],
literature on WD in the field of ship recognition is relative-
ly scarce. In fact, the effective information in HRRP ship
signals typically concentrates in a few scattering centers,
characterized by their non-stationarity and sparsity, making
them particularly suitable for wavelet-based denoising.

The parameters involved in WD include the wavelet
base, decomposition levels, thresholds, and TFs, where the
selection and design of thresholds and TFs are critical
factors influencing the denoising outcome. EXxisting re-
search predominantly focuses on these key parameters.
Zheng et al. [14] proposed a denoising algorithm based on
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an adaptive threshold recursive cyclic rotation using the
Shearlet transform. Liu et al. [15] introduced a method for
attenuating seismic stochastic noise, leveraging the scale
and directional characteristics of the Shear wave transform
through an adaptive threshold. Li et al. [16] modified the
thresholding approach based on the VisuShrink fixed
threshold method and introduced improved TFs. Lu et al.
[17] developed an improved TFs associated with decompo-
sition levels for denoising vibration signals in ore supply
pipeline systems. Wu et al. [18] constructed a TF that is
continuous and differentiable at the threshold point to ad-
dress the reconstruction bias and excessive denoising flaws
inherent in traditional TFs. However, these methods, while
straightforward and easy to implement, do not account for
the statistical properties of the signal components post-
decomposition, and their improved TFs lack flexibility,
leading to poor adaptivity and significant bias, thus render-
ing the denoising effect suboptimal.

To achieve better denoising outcomes and accurately
identify naval ships, this study builds upon the aforemen-
tioned studies by utilizing wavelet coefficients from each
level of WT as parameters for threshold calculation. It
proposes a novel method for adaptive threshold computa-
tion and designs an improved TF with a variable factor for
flexible adjustment. Both simulation and real data validate
the better denoising performance and higher recognition
rates of the proposed improved adaptive threshold wavelet
denoising (IATWD) method. This study is organized as
follows: Section 2 introduces the fundamental principles of
WD, including WT, decomposition, and reconstruction.
Section 3 improves upon the VisuShrink threshold and
designs an adaptive threshold formula. Based on the merits
and demerits of soft and hard TFs, it proposes an improved
wavelet threshold denoising function. Section 4 validates
the IATWD using simulation data, comparing variable
factors, wavelet bases, and decomposition levels to deter-
mine optimal parameters. The denoising effect of the
method is validated through comparisons involving various
thresholds and TFs, and by classifying ship targets using
a Support Vector Machine (SVM) to assess the method's
recognition capabilities. Section 5 discusses the limitations
of using the SNR and root mean square error (RMSE) as
evaluation metrics, due to the absence of original, pure
signals in actual data. Instead, it employs energy ratio and
Local Peak Signal-to-Noise Ratio (LPSNR) to validate the
denoising efficacy of the IATWD method and to perform
recognition verification. Section 6 provides a summary.

2. Fundamental Principles of WD

The process of WD involves the following steps: Ini-
tially, an appropriate wavelet base and decomposition lev-
els are selected to decompose the signal into a collection of
wavelet coefficients. Subsequently, suitable thresholds and
TFs are chosen to denoise the decomposed wavelet coeffi-
cients, resulting in new wavelet coefficients. Finally, these
new wavelet coefficients are reconstructed to obtain the
desired signal.

2.1 Wavelet Transform (WT)
1. Continuous Wavelet Transform (CWT)

The function space for the WT is generally L%(R),
which represents the collection of functions that are
square-integrable on the real number domain R. This is
mathematically represented as:

y(®)=L(R). €]

A function w(t) € L%(R) is termed an energy-limited
signal. If w(t) also satisfies the admissibility condition
following its Fourier transform w(w),

[ b () dt < +o0 @)
lol

it is defined as a mother wavelet [19]. By scaling and trans-
lating the mother wavelet, a family of wavelets,

1 ox—b
Ve =l 7y (=)

a serves as the scaling factor where a € R*, while b e R
functions as the translation factor.

The formula for the CWT [20] of a function f(t) using
the base wavelet i/ is given by [21]:

is generated. In this context,

(W, £)(ab)=(f.w)=lal > [ f(t)w(t Ll

where (7) denotes the complex conjugate of

(7) The WT converts a one-dimensional signal into

a two dimensional function, enabling a more thorough
examination of the signal's time-frequency properties. The
inverse transformation:

f(t)——j”j“[ W, 1) (@,b)Jy (0 5

(4)

is the wavelet inverse transform for the function f(t) with
respect to the base wavelet w, which reconstructs the
original signal from the wavelet-transformed data.

2. Discrete Wavelet Transform (DWT)

The CWT involves continuous scaling and translation
factors, necessitating the computation of continuous inte-
grals, which can be inconvenient for practical applications.
In practice, the DWT [22] is often employed. The DWT
discretizes the scaling factor a and the translation factor b
of the CWT. Common selections for these parameters are
a=ag", b=nbyay™ where m,n € Z, resulting in a discrete
set of wavelet functions:

v =l 2@ t-nb)mnez.  ©)

In this scenario, the wavelet functions are discrete,
and the corresponding DWT is described as:
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Specifically, setting ap=2, bo= lyields the dyadic
wavelet:

Yoo () = 27%1/1(2‘”% —-n),mneZ. @)

2.2 Wavelet Decomposition and
Reconstruction

In the context of DWT, grounded in the theory of
orthogonal multiresolution analysis, the linear function
spaces {Vj: j € Z} can be decomposed into a direct sum of
Vj_1 and its orthogonal projection within Vj, denoted as
Wj_1. This is formally represented as Vj=Vj_1® W;_1,
where j indexes the resolution level. Additionally, it holds
that Vj_1 L Wj_1, j € Z. Consequently, any signal x(t)
represented on V; can be expressed using the basis
functions ¢ _ix(t) for Vj_1 and w;_ix(t) for Wj_1, as shown
in [23]:

X(t) = ch,k¢j,k (t)

)
= z Cj—l,k¢j—1,k (t) + z d j-1,k'//j-1,k (t)
k k

Here, k € Z, where ¢ _1k(t) represents the scaling function,
and w;_1x(t) denotes the wavelet function; cj_ix are the
scaling coefficients, and d;_ 1 are the wavelet coefficients.

This decomposition can be implemented via a specific
set of filters. When the wavelet and scaling functions are
orthogonal in space, the scaling coefficients ¢j_1x and
wavelet coefficients dj_1x can be calculated using the inner
product formula:

Ciak = <X(t)v¢j_1,k(t)>
- <ch,n¢j,n ('[), ¢j-1,k (t)>

©
:zcj,n<¢j,n(t)i¢j-1,k(t)>
=Y h(n-2k)c;,
djgy = <X(t)vl//,>1,k(t)>
- inPia (), -1k t
<;c,,n¢,,n() Vi ()>. "

= ZCLH <¢j,n (t)’l//j—l,k (t)>
=Y g(n-2k)c,,

Here, n € Z. The functions h(n — 2k) and g(n — 2k) [24] can
be considered as low-pass and high-pass filters, respective-
ly. The principle of wavelet decomposition and reconstruc-
tion [25] involves passing the signal through a pair of high-

Signal -low-pass fliter> ¢ -low-pass fliter-» 2 -low-pass fliter= g -low-pass fliter»

high-pass fliter high-pass fliter high-pass fliter high-pass fliter

“a

do dy dy

Fig. 1. Wavelet decomposition flowchart.
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Fig. 2. Wavelet decomposition flowchart.

pass and low-pass filters to obtain a set of wavelet and
scaling coefficients. This process is continued using further
pairs of filters to achieve subsequent sets of coefficients
until the desired number of decomposition levels is reached,
effectively accomplishing the wavelet decomposition of the
signal. Similarly, the wavelet reconstruction algorithm can
be viewed as the inverse process of the decomposition
algorithm. The process flowcharts for wavelet decomposi-
tion and reconstruction are illustrated in Figs. 1 and 2.

3. Determination of Adaptive
Threshold and Improved TF

3.1 Determination of Adaptive Threshold

The selection of thresholds is a critical component in
the wavelet threshold denoising process. A key criterion
for this selection is minimizing the discrepancy between
the coefficients djx (the wavelet coefficient of original
signal) and djx (the wavelet coefficient after noise reduc-
tion) and the original signal to avoid significant deviations
from the original. Common threshold selection methods
include the VisuShrink threshold, the Minimax criterion
threshold, and Rigrsure threshold [26-28]. However, the
noise coefficients in wavelet decomposition decrease with
increasing levels of decomposition, limiting the effective-
ness of a fixed threshold. Consequently, numerous scholars
have built upon the VisuShrink threshold method to pro-
pose various formulas for adaptive thresholds, as illustrated
below:

(1) VisuShrink threshold

T =0+2Inn (11)
(2) Adaptive threshold [17]
~_ov2Inn (12)
"In(j+D)

(3) Adaptive threshold [16]

J2log, n,
T 2 oVe0% N (13)

T In(j+))
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These formulas incorporate parameters such as the
signal length n, j denotes the decomposition levels, n; indi-
cates the length of the detail coefficients at the j-th level,
and o represents the standard deviation (std) of the noise
signal. The standard deviation (std) of the noise is estimat-
ed using the median absolute deviation (MAD) [29], de-
fined as ¢ = MAD/0.6745. Here, MAD = median(| dy).

The aforementioned improved TFs primarily consider
the effects of decomposition scale and signal length on the
threshold values. Building on this foundation, this study
further refines the approach by not only considering the
influence of decomposition scale but also the std of the
noise at each level and the signal length. As the number of
decomposition levels changes, each level adaptively de-
rives the optimal threshold, demonstrated in the following

equation (14):
T =7jaj,/2|nnj :

Here, n; indicates the length of the detail coefficients at the
j-th level, j denotes the decomposition levels, o represents
the std at the j-th level, where o; = median(| d;|)/0.6745, »
represents the scale attenuation factor, which controls the
attenuation degree of thresholds among different wavelet
scales.

(14)

3.2 Improved Wavelet TF

In the domain of wavelet threshold denoising, the se-
lection of appropriate TF is a crucial factor determining the
ultimate effectiveness of noise reduction. Commonly em-
ployed wavelet threshold selection functions include hard
thresholding, soft thresholding, and garrote thresholding.
Although these three methodologies ensure a certain level
of noise suppression, their inherent limitations suggest
significant room for improvement in denoising perfor-
mance.

Lietal. [16] and Lu et al. [17] have enhanced the TFs
by embedding an exponential function into the threshold-
ing process. This modification aims to accelerate computa-
tional efficiency. However, challenges persist due to signal

[T

aj,k = Sgn(djvk)a|djvk|(1_e( o

0,

In this improved TF, k is the threshold adjustment
factor, the value range is k > 1, and the wavelet coefficients
larger than the threshold are segmented to determine the
shrinkage degree of the coefficients in different intervals; a
is a variable factor, and its value range is [0, 1). The flexi-
bility of these functions can be adjusted by modifying the

sgn(d; ) (] - (L-a-e kT e

compression and bias introduced by soft thresholding,
resulting in the direct discarding of wavelet coefficients
beneath the threshold, thereby constraining the preserva-
tion of low-frequency components. The expressions for the
TFs presented by Li et al. [16] and Lu et al. [17] are illus-
trated below:

sgn(d; )
g, =% 2T g
0, ld;|<T
sgn(d., )(d; —;) dj, =T
dy=¢ T Ty ae)
0, ‘dj'k‘<T

Furthermore, Wu et al. [18], utilizing an unbiased
likelihood estimation (Rigrsure threshold), proposed
a moderately smooth TFs intended to combine the charac-
teristics of both soft and hard thresholding. Although this
method benefits from the merits of both functions, it exhib-
its certain limitations in terms of flexibility during signal
adjustment. The expression for their TFs is presented be-
low:

d-k— T? _Sgn(dj,k) |d‘k|>T

I di |- ik =

=1 i 3 (17)
= e, d;|<T

Given these considerations, an ideal TF should
maintain  continuity, avoiding discontinuities at the
threshold; it should approximate the original wavelet
coefficients as closely as possible to minimize constant
bias; and it should preserve and enhance the advantages of
traditional TFs while offering flexibility. Therefore, this
study integrates the advantages of both soft and hard TFs
by incorporating an exponential function into the TF.
An improved TF that is continuous at the threshold points
T and KT and has an adjustable factor is constructed, as
shown in (18):

-1 [‘dj‘k‘—kT

kT j N|dj |2 kT

, T <|d;,|<kT (18)

|djyk|<T

value of a, thereby tailoring the outcome to specific appli-
cations. It can be seen that the variable factors a € [0, 1),
d;x are between the coefficients calculated by the soft and
hard TFs.

Initially, the parity of the improved TF is examined:
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For 0 < a <1, djx(~djx) = —djx (d;x), indicating that the
TFs are odd functions.

Next, the continuity of the improved TF is assessed:
When dj,k - kT+,

lim
djyk—>kT*

-1 [‘d,‘k‘ ij
i T @)«
lim d,, = d;|-kTe

-1 [\dm\ kT]
+a(l-e kT e® @ W

= Im:T |d;|-kTe +al-e)kTe™ (19)
=d|II’T: k—KT +a(l—e ™ )KkT
=akT (1—-e™).

When dj'k — kT,

)
lim ald;,|@-e" " T/)

lim d =
djy KT~ djy KT~
= lim ald;,|@-e™) (20)
dj kT~
—akT(1-e™).
When djx — T,
(o]
lim d,, = lim ald;,|@-e )
djk—>T+ k d;, (OTF
= lim ald;,|@-¢%) (21)
djx—okT* '
=0.
When djx — T,
lim d;, =0. (22)
dj—>T ’
From the above, it is evident that
lim d,, = lim d, =akT(-¢*). lmd;, = lim d,, =0,
4okt K djﬁkr dyott Mg o

confirming that the improved TF are continuous at
threshold T and kT, and similarly at threshold —T and —KT.
Therefore, the improved TF is continuous at both £T and
kT, which mitigates the signal oscillations inherent in
hard TF.

The asymptotic behavior of the improved TF is then
verified:

When |dj,k| —> 00,
dji: lim Sgn(dj,k)|dj,k|

‘djvk“’wdj‘k ‘dj‘k‘*ﬂﬁ dj,k
i[‘dJ‘k"kTJz
_(1-a@-e)kTe®P W U (93
d,,
_ lim 1_(1—a(1—e’1))kT><0
‘dj‘k‘—»oo dj,k
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Fig. 3. Comparison of improved TF with soft, hard, and
garrote TFs.
lim d;, —d; = lim sgn(d,

4yl

k)|djyk|_djk

i[‘dlk‘ kT]
—sgn(d;, )A-a@l—-e™)KT e\«
= lim -sgn(d,, )A—-a(l—e™))KT x0

4
=0.
(24)

It can be determined that the asymptote of djx is djx
and as | djx| — oo, the transformed wavelet coefficients djx
gradually converge to the original coefficients, eliminating
the constant bias between them. Thus, the reconstructed
signal does not suffer from degradation, and the denoising
effect is further enhanced. Setting k=1.24, T =10, the
comparison of the improved TF with traditional soft, hard,
and garrote TFs is illustrated in Fig. 3.

The graph demonstrates continuity at thresholds T and
kT, and shows that as |dj,k| — oo, djx gradually converges
to djk, without any constant bias.

4. Simulation Data Verification for
IATWD Method Denoising

4.1 Threshold Introduction to Simulation
Data

The simulation data employed in this study includes
models of four types of naval ships, constructed using
3dsMAX software. The models include a Cruise Ship
(CST), a Tugboat (TUQ), the "Burke-class destroyer USS
Murphy" DDG112, and the "Enterprise-class aircraft carri-
er" CVN-65. HRRP data was generated using electromag-
netic computation software FEKO [30], with the following
parameters: radar central frequency of 12 GHz, bandwidth
of 150 MHz. Data was generated for a full azimuthal range
of 0-360 degrees at 1-degree intervals, with 400 range
cells and a resolution of 1 meter. The parameters of the
simulated naval ships are shown in Tab. 1.
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Target Length Width Height
CST 131 m 20m 22m
TUO 102.8 m 174 m 385m

DDG112 153.6 m 19.2m 52.6 m
CVN-65 342.3m 73.9m 64.5m

Tab. 1. Target dimension parameters.

/

CST ship TUO ship
o '
DDG112 ship CVN-65 ship

Fig. 4. Schematic of naval ship models for simulation.
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Fig. 5. Full azimuthal domain HRRP of ship targets.

A schematic of the simulation models for the four
classes of ships is shown in Fig. 4. The full azimuthal
domain HRRP display of the ship targets is presented in
Fig. 5.

4.2 Validation of IATWD Method Denoising
Effectiveness

HRRP is the amplitude value of the radar target scat-
tering echo, and the amplitude is non-negative in the phys-
ical sense. By adding Gaussian complex noise with com-
plex domain plus noise and an independent Gaussian
distribution of real and imaginary parts [31], the physical
process and statistical characteristics of HRRP noise can be

restored, which is a reasonable choice for simulating
HRRP noise. However, the added Gaussian complex noise
generates an ‘asymmetric distribution offset' (Direct Cur-
rent (DC) Bias Characteristic) due to the physical ampli-
tude constraint, which makes the statistical mean of the
overall noise deviate from 0 and greater than 0. The core
logic of wavelet denoising is to separate the signal and
noise through 'high frequency threshold filtering', which
cannot effectively solve the problem of DC bias character-
istics caused by adding complex noise, and reduces the
denoising quality of the data. The DC bias characteristics
of the denoised data are corrected. The baseline of the DC
bias of the complex Gaussian noise is estimated by one-
dimensional minimum filtering. The threshold is used to
distinguish the peak and non-peak regions of the target.
The non-peak region is subtracted from the baseline opti-
mized by linear interpolation, and the peak region is re-
tained to eliminate the DC bias and retain the effective
signal of the target.

§(n) = y(n), y(n)zu+ioc
max{y(n)—b(n),0}, y(n) < u+ Ao

In the formula, y(n) represents the denoised signal, §(n)
denotes the corrected signal after denoising treatment, u is
the mean value of the denoised signal, ¢ is the std of the
denoised signal, o = MAD/0.6745, 1 is the threshold factor,
distinguishing the target peak and non-peak regions,
b(n) = min{y(n —1t),..., y(n + t)} is the baseline estimate of
the DC bias of the complex Gaussian noise, which is pre-
liminarily estimated by the one-dimensional minimum
filter with a window size of 2t + 1, and max{ ,0} represents
the non-negative truncation of the non-peak region correct-
ed result.

(25)

In this study, simulation data from four types of naval
ships were used as original signals. To each, add a 5 dB of
complex Gaussian white noise, and the corrected data after
noise reduction were used for comparative experiments.
The objective was to identify the optimal denoising scheme
by experimenting with various wavelet bases, levels of
wavelet decomposition, TFs, and threshold types. By com-
paring the waveform distortion under various conditions,
as well as the SNR and RMSE of the noise reduction cor-
rected signal, it was found that the noise reduction effect of
IATWD was relatively good when parameters k = 1.24,
y=0.95,t=0.7, and 2 = 0.5 were used. Whether for simu-
lation data or measured data, these parameters were select-
ed to verify the noise reduction.

The performance of the denoising algorithm was
quantitatively assessed using the SNR and the RMSE as
metrics [16]. Higher SNR and lower RMSE indicate a
smaller discrepancy between the denoised and original
signals, thus signifying better denoising effectiveness.

The formula for SNR is:
sz(n) 2}_. (26)
D [x(n)-5(n)]

SNR :10Iogm£
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The formula for RMSE is:
n)—$§(n)P
RMSE:\/Z[X( :\l (] . (27)

In (26) and (27), x(n) represents the original signal, and
s(n) denotes the corrected signal after denoising treatment.

Taking the signal from the naval ship DDG112 as an
example, denoising was conducted using different TFs and
optimized thresholds. The variable factor a was first de-
termined; then, keeping other parameters constant, the
IATWD method was applied to all sample signals of
DDG112 using various values of a, with the results dis-
played in Tab. 2. The results indicated that an a value of
0.8 yielded the highest average SNR and the lowest aver-
age RMSE for the denoised signals. Therefore, the adjust-
ment factor a in the IATWD was set to 0.8.

To avoid distortion at the edges of signals and abrupt
changes during multi-scale decomposition and reconstruc-
tion, the wavelet base should be chosen for its good regu-
larity and symmetrical or nearly symmetrical biorthogonal
properties. Accordingly, five wavelet bases of coif4, db2,
db7, sym4 and sym8 in the three categories wavelet ba-
ses—sym, db, and coif [32], characterized by near-
symmetry, minimal vanishing moments, and regularity—
were selected. Table 3 illustrates the denoising effects of
different wavelet bases on noisy signals, revealing that the
db2 wavelet base achieved the highest average SNR and
the smallest average RMSE post-denoising. Table 4 shows
that when the decomposition levels were set to 5, the best
denoising performance was obtained. Therefore, the db2
wavelet base and 5 decomposition levels were selected as
parameters for subsequent signal processing tasks.

To ascertain the effectiveness of the proposed
IATWD denoising method, this study compares the
improved TFs developed herein with conventional soft,
hard, and garrote thresholding techniques, as well as the
denoising approaches detailed in the references [16-18].
The evaluations employed a db2 wavelet base, with a
decomposition level of 5 and a variable factor of 0.8. The
outcomes of these assessments are depicted in Tab. 5.

Table 5 presents the average SNR and average RMSE
of all samples of the naval ship DDG112 processed by
different denoising methods, while Figure 6 shows a com-
parison of amplitude values of a specific sample of the
naval ship DDG112 obtained via different denoising meth-
ods. It can be seen from Tab. 5 that, compared with other
denoising methods, the IATWD method proposed in this
paper achieves the highest SNR values and the lowest
RMSE values. As observed from Fig.6, the hard
(visushrink) method exhibits the pseudo-Gibbs phenome-
non and has residual noise in the peak region. The soft
(visushrink) method demonstrates better smoothness but
causes excessive smoothing, leading to more loss of effec-

tive information in the denoised signal. The garrote
(visushrink) applies a larger shrinkage ratio to weak scat-
tering points, resulting in over-smoothing of these points.
The denoising method of the reference [16] leaves a large
amount of residual noise. The method of the reference [17]
damages the detailed features of the signal. The method of
the reference [18] causes severe damage to signal details
and also retains a significant amount of residual noise. In
contrast, the IATWD method not only reduces noise more
effectively but also better preserves the signal's detailed
characteristics. The results indicate that for the naval ship
DDG112, the IATWD method offers the best noise reduc-
tion performance.

To conduct a comprehensive analysis of the denoising
efficacy of the IATWD method, identical parameters were
applied to naval ships CST, TUO, and CVN-65: a db2
wavelet base, five decomposition levels, and a variable
factor of a = 0.8. The resulting SNR and RMSE from these
evaluations are illustrated in Tab. 6. Table 6 demonstrates
that, similar to the DDG112, the IATWD method achieves
the highest SNR values and the lowest RMSE values
across the different ships, indicating its broad adaptability
as a denoising method.

In the study presented here, denoising experiments
were conducted on simulated signals from four types of
naval ships. The IATWD method designed in this study,
employing identical parameters, was compared with con-
ventional soft, hard and garrote TFs, as well as denoising
methods outlined in the references [16-18]. The IATWD
method demonstrated the highest SNR and the lowest
RMSE, indicating its better denoising performance. In
subsequent experiments involving both simulation and
actual data for ship recognition, denoising was performed
using the db2 wavelet base at a decomposition level of
five, with a variable factor a set at 0.8.

a 0.1 0.5 0.7 0.8 0.9 0.95
SNR 13.84 14.50 14.84 15.13 14.87 14.70
RMSE 0.196 0.186 0.183 0.180 0.183 0.185
Tab. 2. Impact of different variable factor on the denoising of
ship DDG112.

Wavelet base Coif4 db2 db7 sym4 sym8
SNR 14.39 15.13 14.18 14.71 1451

RMSE 0.195 0.180 0.189 0.185 0.192
Tab.3. SNR and RMSE under different wavelet base
treatments for DDG112.

Decomposition | Two- Three- Four- Five- Six-
level level level level level level
SNR 13.03 14.31 14.67 15.13 14.82

RMSE 0.228 0.194 0.185 0.180 0.183

Tab. 4. SNR and RMSE at different decomposition levels of
db2 for DDG112.
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Fig. 6. Comparison of different denoising methods for a sample from naval ship DDG112.

Denoisin Soft Hard Garrote
g . . . ; ) - IATWD Reference [16] Reference [17] Reference [18]
methods (visushrink) (visushrink) (visushrink)
SNR 11.28 14.43 13.54 15.13 12.82 13.854 10.71
RMSE 0.279 0.191 0.206 0.180 0.261 0.237 0.392
Tab. 5. SNR and RMSE for various denoising methods applied to ship DDG112.
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Denoising methods
SNR RMSE SNR RMSE SNR RMSE
Soft (visushrink) 14.18 0.227 10.24 0.213 7.73 0.200
Hard (visushrink) 19.84 0.118 13.15 0.145 10.77 0.136
Garrote (visushrink) 18.51 0.137 12.34 0.158 9.543 0.158
IATWD 20.79 0.106 14.62 0.126 11.72 0.124
Reference [16] 14.19 0.236 12.31 0.159 11.28 0.129
Reference [17] 18.71 0.132 11.92 0.177 10.20 0.142
Reference [18] 12.81 0.277 8.225 0.264 7.43 0.205

Tab. 6. SNR and RMSE for various denoising methods applied to three ships.
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4.3 Validation of the IATWD Method for
Recognition Performance

To validate the recognition performance of the
IATWD denoising method, denoised data were subjected
to ship recognition analysis using the SVM. The kernel
function for the SVM was the Radial Basis Function
(RBF), and the parameters for the RBF and penalty factor
were selected through cross-validation.

The dataset consisted of 1,440 multi-angle, HRRP ob-
servations from four different classes of ships, with 360
observations per class. For testing recognition, a random
set of 72 observations from each class was selected, leav-
ing the remainder for training. The evaluation metrics used
were Accuracy, Precision, and Recall. The experiment was
repeated ten times, with the average recognition rates de-
picted in Tab. 7, and a confusion matrix from one of the
experiments shown in Fig. 7.

Signal with 5dB SNR noise Soft (visushrink)
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Fig. 7. Confusion matrix from one experiment for the
recognition of four classes of simulated ships.

Differentsignal | ccicary | procision | Recalt
Noisy signal 85.68% 72.63% 71.35%
Soft (visushrink) 94.41% 89.79% 88.82%
Hard (visushrink) 94.17% 89.46% 88.33%
Garrote (visushrink) 94.51% 90.05% 89.03%
IATWD 95.19% 92.38% 90.38%
Reference [16] 91.72% 84.26% 83.44%
Reference [17] 92.97% 86.58% 85.94%
Reference [18] 88.19% 76.55% 76.39%

Tab. 7. Average recognition rates (%) for different signals.

As indicated in Tab.7, compared with other
denoising methods, the IATWD method proposed in this
paper achieves the highest values in terms of Average
Accuracy, Average Precision, and Average Recall for
recognition. Specifically, the IATWD method attained an
Average Accuracy of 95.19%, an Average Precision of
92.38%, and an Average Recall of 90.38%. Furthermore,
as shown in Fig. 7, in a specific experiment, the recogni-
tion rates for the four classes of ships using the IATWD
method were also the highest. Therefore, the IATWD
method exhibits the most effective denoising and recogni-
tion performance for simulated ship signals.

5. Validation of IATWD Method
Denoising through Experimental
Data

5.1 Introduction to Experimental Data

Using a guidance head target detection platform,
measurements were conducted on ships located on the
surface of the Bohai Sea. This involved the collection of
HRRPs from multiple angles for four different ships: the
Weigiao Jiada No. 16 (W-16, Fig. 8), Zhehai No. 169 (Z-
169, Fig. 9), Yongxing Island (YXD, Fig. 10), and Bohai-
cuizhu (BHCZ, Fig. 11).

The study used experimental data comprising fifty
sets per ship type, resulting in a total of two hundred sets of
multi-angle high-resolution range profiles (HRRPSs). These
data sets were employed to validate the denoising method
proposed in this study, which utilizes an improved wavelet
threshold technique. Parameters of measured ships are
shown in Tab. 8.

Target Length Width Detection Distance
W-16 110 m 25m 4900 m
Z-169 189.99 m 32.26 m 5300 m
YXD 167.25m 25.2m 5300 m
BHCZ 178.8 m 28m 5100 m

Tab. 8. Target dimension parameters.
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Fig. 8. HRRP and photograph of W-16 at an attitude angle of
64°.

—— HRRP of Z-169 ship
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Fig. 9. HRRP and photograph of Z-169 at an attitude angle of 36°.
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Fig. 10. HRRP and photograph of YXD at an attitude angle of
117°.
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Fig. 11. HRRP and photograph of BHCZ at an attitude angle of
116°.

5.2 Analysis of Recognition Performance
Using Empirical Data

The method employed for processing empirical data
uses the same noise reduction parameters as those for
simulated data, employing an SVM as the classifier. This
involves using identical recognition parameters for target
classification, and the effectiveness of various noise reduc-
tion techniques is evaluated by calculating their recognition
rates. The test set for recognition consists of randomly
selected 10 datasets from 50 datasets of four types of naval
ships, with the remaining 40 datasets serving as the train-
ing set for recognition. This experiment was conducted ten
times.

Due to the absence of original pure signals in the em-
pirical data, it is not feasible to use indicators such as the
SNR to determine the outcomes of noise reduction. Conse-
quently, alternative methods must be employed to assess
the effectiveness of the denoising algorithms. HRRP data
has distinct peak characteristics that represent the real tar-
get signatures. The local peak signal-to-noise ratio
(LPSNR) can effectively evaluate the performance of de-
noising algorithms in removing noise while preserving
signal features. Additionally, the noise suppression effect
can be assessed quantitatively by the energy ratio of the
denoised and noisy signals. In this study, the total energy
ratio and LPSNR metrics are employed to evaluate the
denoising performance of different methods. The specific
assessment metrics are as follows:

(1) Energy Ratio

E denoised Z

A 2
Energy Ratio=—2 - s(n)|2. (28)
Etotal Z|s(n)|

Here, s(n) is the noisy signal, and s(n) is the corrected
signal after denoising treatment.
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(2) LPSNR
The formula for PSNR is as follows [33], [34]:
PSNR = 20l0g,, (— ™). (29)

RMSE (s(n),8(n))

Here, Lmax iS the peak amplitude of the signals, and
RMSE(s(n), $(n)) is the mean squared error between the
corrected denoised signal and the noisy signal.

Analogous to the PSNR formula, the LPSNR for each
local peak i in the noisy signal and the corrected denoised
signal is:

S
LPSNR; = 20log,,(—) —20log,,(
O -

ﬂ). (30)
$; Gsl

The average value of the LPSNR; for all extracted
local peaks, denoted as LPSNR, is as follows:

M
LPSNR =ﬁZLPSNRi. (31)
i=1

Here, || is the amplitude of the the i-th local peak point
of corrected denoised signal, |si| is the amplitude of the i-
th local peak point of noisy signal, o5, and o5, are the stand-
ard deviations of the background noise in the neighborhood
around the peak point for the corrected denoised signal and
noisy signal, o5, = MAD;/0.6745, o5, = MAD;,/0.6745; M
is the number of extracted local peaks.

The local peaks are extracted using the sliding win-
dow method, and a threshold is set to filter out small ampli-
tude peaks. Suppose there is a signal y = {ya, Y2,..., yn}, the
set of local peaks P of this signal can be expressed as:

P={y; | Y; >max(y,_ /20 Yisrs2): ¥i > T} (32)

N
T :O.GZSX%Z Y, - (33)

i=1

Here, y; is the i-th point in the signal; k is the size of the sliding
window, and the range of the window is [i—k//2,i+k//2],
where k is an odd number; P is the set of local peaks,
including all peak points that meet the above conditions; T
is the threshold for the minimum amplitude, and only when
yi is greater than this threshold is it considered an effective
local peak; N denotes the signal's length.

The total energy ratios and average LPSNR between
noisy and corrected denoised data for all samples of empir-
ical data are calculated. The results were presented in
Tab. 9.

Figure 12 shows a comparative analysis of different
denoising methods applied to a specific sample from the
measured ship BHCZ. From Tab.9 and Fig. 12, it is
evident that the IATWD performs best. The Energy Ratio
of this method is 0.8573, and the LPSNR is the highest at

Denoising Methods Energy Ratio Average LPSNR
Soft (visushrink) 0.6905 35
Hard (visushrink) 0.8742 3.53
Garrote (visushrink) 0.8139 3.55
IATWD 0.8573 3.64
Reference [16] 0.8926 0.45
Reference [17] 0.7746 2.33
Reference [18] 0.5951 -0.25

Tab.9. Energy Ratio and Average LPSNR comparison of
different signals.

3.64 dB. This indicates that the IATWD effectively re-
moves noise and retains useful detail features.

In contrast, reference [18] performs the worst: its En-
ergy Ratio is 0.5951, a large number of useful detailed
features of the signal are lost, and less noise is removed,
resulting in an extremely low LPSNR (only —0.25 dB).

Although the soft (visushrink) method has a relatively
high LPSNR (3.5 dB), its Energy Ratio is very low, only
0.6905. This indicates that although this method removes
the most noise, it over-smooths the signal, leading to ex-
cessive loss of the signal's detailed features. The Energy
Ratios of garrote (visushrink) and reference [17] are
0.8139 and 0.7746, and the LPSNRs are 3.55dB and
2.33dB. Although these two methods remove a large
amount of noise, the signals are still over-smooth, and the
peak detail features are lost.

The Energy Ratio of the hard (visushrink) method is
0.8742, and the corresponding LPSNR is 3.53 dB. With
this method, the peak features are effectively preserved, but
there is residual noise, and the signal also has distortion
and discontinuity problems. The Energy Ratio of reference
[16] is 0.8926, and the LPSNR is 0.45 dB. Although the
peak features are effectively preserved, there is more resid-
ual noise.

Consequently, the IATWD method designed in this
study proves to be highly effective for empirical data,
achieving the best denoising results.

Oifferent Signal | oy | recision | Recalr
Empirical data 86.88% 77.96% 73.75%
Soft (visushrink) 91.12% 83.49% 82.25%
Hard (visushrink) 90.25% 81.32% 80.5%
Garrote (visushrink) 91.75% 84.74% 83.5%
IATWD 92.5% 87.03% 85%
Reference [16] 89.89% 80.53% 79.75%
Reference [17] 90.87% 82.93% 81.75%
Reference [18] 88.75% 79.37% 77.5%

Tab. 10.Average recognition rates (%) for different measured
signals.
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Fig. 12. Comparison of denoising methods for a sample from the measured ship BHCZ.

From Tab. 10 and Fig. 13, it can be inferred that the
IATWD method, proposed in this study, achieves an aver-
age accuracy of 92.5%, an average precision of 87.03%,
and an average recall of 85% for the measured naval ships.
These metrics are the highest among the tested methods,
indicating that the IATWD method effectively reduces
noise interference in empirical data while preserving useful
information, thereby enhancing target recognition perfor-
mance.

6. Conclusion

To address the noise interference issues in actual one-
dimensional range profile data from ships, this study uti-
lized WD methods to preprocess the data. It proposed
an improved TF based on an adaptive threshold with
a variable factor, achieving better denoising results and
enhancing target recognition performance. The key find-
ings and contributions of this study are summarized as
follows:

1. Considering the effects of decomposition scales,
noise standard deviation per level, and signal length on
threshold determination, an adaptive threshold formula was
constructed. This was based on the conventional
VisuShrink threshold but improved by combining the ad-
vantages of soft and hard TFs. The resulting function is
continuous at thresholds T and kT, ensuring the smoothness
of the denoised signal and reducing oscillations caused by
denoising. It exhibits asymptotic behavior, which elimi-
nates constant bias between the two approaches, thereby
reducing signal loss after reconstruction. The introduction
of a variable factor enhances the flexibility of using the
TFs.

2. The noise of the HRRP signal exhibits DC bias
characteristics. A one-dimensional minimum filtering esti-
mation is used to correct the DC bias characteristics of the
denoised signal, and the denoising effect analysis is per-
formed on the corrected simulated data after denoising.
Through the analysis of the interactions among wavelet
base functions, decomposition levels, and the variable factor,
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Fig. 13. Confusion matrix for the recognition of four types of
measured ships.

optimal denoising parameters for the IATWD method were
identified. Compared to other denoising methods, the
IATWD method minimizes signal distortion and effec-
tively preserves useful signal features. It achieves the high-
est average SNR and the lowest RMSE, indicating better
denoising effectiveness. During recognition validation, it
exhibited the highest average recognition rate among all
denoising methods, with an average accuracy of 95.19%,
an average precision of 92.38%, and an average recall of
90.38%, rendering it the most effective method in terms of
recognition performance.

3. Given the absence of original pure signals in em-
pirical data, traditional metrics such as SNR and RMSE
have limited applicability. Therefore, Energy Ratio and
LPSNR were proposed as alternative quantitative assess-
ments. The results show that in the empirical data, the
IATWD method achieves optimal performance in terms of
Energy Ratio (0.8573) and LPSNR (3.64 dB), thereby
balancing noise removal and the preservation of useful
information; it also achieved the highest average recogni-
tion rate, with an average accuracy of 92.5%, an average
precision of 87.03%, and an average recall of 85%. Thus,

the IATWD method effectively mitigates noise interference
and preserves useful information, thereby enhancing the
recognition of empirical targets.

Future studies will focus on analyzing the HRRP data
characteristics of measured naval ships. By integrating data
characteristics with noise models, and combining WT with
deep learning, this research aims to further improve both
denoising effectiveness and recognition accuracy.
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