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Abstract. With the aging society intensifying, the problem
of elderly falls has become a key issue of social concern.
Research on fall prediction based on Internet of Things
(1oT) technology has received widespread attention. To
effectively predict fall events, a lightweight loT-based fall
prediction model called IWRPPC-TCN (lightweight Re-
Parameters-Parallel-Convolutional Temporal Convolu-
tional Network) is proposed. The model utilizes the tem-
poral data collected by 10T sensors in the input stage and
achieves efficient decoupled extraction of temporal and
spatial features through IwWRPPC blocks. The subsequent
Temporal Convolutional Networks (TCNs) further
strengthens the ability of modeling the global temporal
dependency, thus optimizing the processing capability of
sensor time-series data. To validate the generalization
ability of the model and mitigate fall data scarcity, two
public datasets, SisFall and KFall, are fused, and the per-
formance of the model is evaluated by five-fold cross-
validation. In addition, a homogeneous (models belong to
the same model family) knowledge distillation technique is
introduced to improve the performance of the model. Ex-
perimental results demonstrate that the proposed IWRPPC-
TCN achieves an accuracy of 98.88% on the fused dataset,
outperforming existing fall prediction models, with a fall
prediction lead time (interval between the fall prediction
time and the collision time) of 250 ms, and a compact
model size of 60 KB, which makes it suitable and possible
to deploy in a resource-constrained wearable device.
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1. Introduction

With the global aging population intensifying, fall
events have emerged as a predominant cause of accidental
injuries and mortality in older adults. According to the
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World Health Organization, vulnerable fractures are mostly
triggered by minor external forces (falling from a standing
height). This phenomenon is more likely to occur in older
adults. By 2019, data reveal 178 million incident fractures
worldwide, a 33.4% increase in the absolute number of
new fractures compared to 1990 [1]. This phenomenon not
only inflicts severe physical and psychological conse-
quences on the elderly but also imposes substantial socio-
economic and caregiving burdens on families and
healthcare systems. Therefore, developing smart healthcare
systems that can predict fall alarms will become critical to
mitigating risks and enhancing safety for aging popula-
tions.

Conventional fall protection systems predominantly
depend on video surveillance, ground-based sensors, or
pressure-sensitive mats [2]. However, these approaches are
limited by reliance on fixed-location infrastructure, high
implementation costs, and cumbersome deployment. In
recent years, with the development of wearable technology
and Internet of Things (loT) devices, fall protection sys-
tems based on wearable devices have become a promising
alternative. 10T’s inertial sensors, such as accelerometers
and gyroscopes, are used widely to capture kinematic pa-
rameters, facilitate real-time monitoring of postural transi-
tions, and gait dynamics. This multimodal sensor data
enables robust fall risk assessment through quantitative
analysis of movement patterns preceding instability events.

Nevertheless, deploying efficient and accurate fall
prediction models on resource-constrained wearable devic-
es remains challenging. While deep learning, particularly
Convolutional Neural Networks (CNNSs), has advanced
temporal analysis and anomaly detection, conventional
CNNs are often computationally intensive and parameter-
heavy, rendering them impractical for edge devices with
restricted processing capabilities and power budgets. To
bridge this gap, lightweight CNN variants (e.g., MobileNet
[3], ConvNeXt [4]) had emerged as a critical research
focus. These architectures reduce some level of computa-
tional, and memory demands through techniques such as
Depthwise Separable convolutions and parameter pruning,
while preserving almost the same performance, thereby
aligning with the constraints of wearable platforms. Build-



RADIOENGINEERING, VOL. 35, NO. 1, APRIL 2026

85

ing on these advancements, a novel lightweight fall predic-
tion framework is proposed that it synergizes the hierar-
chical design of ConvNeXt [4], ModernTCN [5], with the
grouping design of GroupNet [6] and combines TCNs [7].
The main contributions are summarized as follows:

(1) A lightweight Re-Parameters-Parallel Convolu-
tional-Temporal Convolutional Network (called IwRPPC-
TCN) for fall prediction is proposed, which delivers better
performance by decoupling the extraction of temporal and
spatial features and modeling global temporal dependency
while meeting the deployment requirements of resource-
constrained wearable devices and 10T environments.

(2) The IWRPPC-TCN demonstrates scalable perfor-
mance through modular hyperparameter adjustments.
Based on this, the large model IWRPPC-TCN-L and the
small model IwWRPPC-TCN-S, suitable for deployment, are
designed, and the knowledge distillation [8] technique is
adopted to effectively improve the performance of the
IWRPPC-TCN-S without increasing its parameters.

(3) Evaluations on two public datasets, SisFall [9] and
KFall [10], demonstrate that the proposed model exhibits
good performance. To enhance its generalization and ro-
bustness across diverse real-world scenarios and to address
the limitations posed by the scarcity of fall samples in
a single dataset, an innovative approach by fusing SisFall
and KFall through advanced data preprocessing techniques
is proposed.

2. Related Work

2.1 Fall Prediction Methods

The rapid advancement of deep learning has led to
numerous fall prediction algorithms, primarily utilizing
CNNs and Recurrent Neural Networks (RNNS),
particularly Long Short-Term Memory (LSTM) [11].
However, standalone CNNs or RNNs often struggle to
comprehensively capture spatio-temporal relationships in
motion sensor data. To address this limitation, Koo et al.
[12] and Yu et al. [13] proposed a network called Conv-
LSTM to combine CNNs and LSTMs, effectively
extracting long-term and short-term temporal dependencies
in the time-series data. Their approach not only improved
temporal efficiency by using CNNs to preprocess input
data for LSTMs but also achieved great performance on the
two public datasets of SisFall and KFall.

Recent research have explored more sophisticated
architectures, including Transformer [14] and Graph
Neural Networks (GNNs) [15], to enhance the model’s
performance. Al-ganess et al. [16] proposed a multi-branch
PCNN-Transformer Network that leverages both parallel
convolutional pathways and Transformer mechanisms,
achieving superior results on the SisFall, UniMib-SHAR,
and MobiAct datasets. Wang et al. [17] designed a spatio-
temporal graph neural network (SPGN) that reformulates

inertial measurement unit (IMU) time-series data as
topological graphs to capture spatial features. While
demonstrating high specificity on SisFall, DOFDA, and
ConFall12 datasets, their approach exhibited some
limitations in the sensitivity of fall events.

Although existing methods perform well on bench-
mark datasets, their high computational complexity and
substantial number of parameters constrain their deploy-
ment on resource-constrained wearable devices. In con-
trast, the proposed IwWRPPC-TCN model introduces a novel
approach by decoupling temporal and spatial feature ex-
traction, enhancing fall prediction accuracy while main-
taining model scalability and compactness suitable for
wearable devices. Compared to the existing CNN-based
models, our approach integrates TCNs to model global
temporal dependencies, addressing the challenge of tem-
poral and spatial feature fusion in fall prediction.

2.2 Lightweight Fall Prediction Models

To employ deep learning technology on wearable de-
vices and mobile terminals, the lightweight model design
should become a critical research focus, current approaches
fall into two categories: one is lightweight network design,
Yu et al. [18] proposed a network called TinyCNN, a two-
stage quantized network with 546 parameters, achieving an
inference time of 0.037 s on an Arduino Nano BLE 33
sense microcontroller; another one is post-hoc compression
of existing models, employing techniques like model prun-
ing [19], knowledge distillation [8], [20], and quantization
[21]. For instance, Chi et al. [22] implemented a Vision
Transformer (ViT)-to-CNN distillation framework. Chi’s
method improved several performance metrics on the KFall
dataset, but the sensitivity was only 94.79%, revealing
fundamental limitations in the capacity of the student mod-
el to learn discriminative spatio-temporal patterns from
limited sensor data. Although the aforementioned models
satisfy the requirements for embedded deployment in terms
of model size, their predictive performance is suboptimal.

The IWRPPC-TCN exhibits good architectural scala-
bility, where parametric scaling proportionally enhances
performance. To optimize the performance, homogeneous
knowledge distillation is implemented by training two
structurally homogeneous variants: a high-capacity teacher
model and a deployable student model. As theorized by
Hao et al. [23], homogeneous models share similar induc-
tive biases, enabling more consistent feature space align-
ment and efficient knowledge transfer. Experiments
demonstrate that using knowledge distillation, the
IWRPPC-TCN-S model outperforms the lightweight model
trained separately in terms of performance while maintain-
ing the model size.

2.3 Data Enhancement and Data Fusion

Beyond architectural challenges, the inherent rarity of
fall events in the real world poses significant data acquisi-
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tion hurdles. Data augmentation methods such as flipping,
rotating, cropping, scaling, etc., commonly used in the
computer vision field, do not apply to multivariate time-
series data due to their disruption of temporal causality.
While generative adversarial networks (GANSs) [24] have
been explored for data generation, it is not possible to
prove whether the data generated by GANSs is fall or Activ-
ity of Daily Living (ADL).

While most prior research focuses on individual da-
tasets, a novel approach for constructing a comprehensive
training dataset by fusing two publicly available datasets,
SisFall and KFall, is proposed to overcome challenges
related to sensor heterogeneity, temporal misalignment,
and data imbalance through advanced data preprocessing
techniques. This dataset fusion enhances the representa-
tiveness of the training data, enabling more robust and
generalized fall prediction across diverse environments and
populations. Experimental results demonstrate that the
proposed IWRPPC-TCN model exhibits good prediction
performance on the fused dataset.

3. Methods

This section details the datasets, preprocessing pro-
cess, and architecture of the proposed IWRPPC-TCN, fol-
lowed by the knowledge distillation methodology.

3.1 Datasets

Two public fall datasets are used to validate the per-
formance of the fall prediction model. They are SisFall [9]
and KFall [10], as described in the following.

The SisFall [9] dataset comprises Inertial Measure-
ment Unit (IMU) data collected from a waist-mounted
sensor device containing two 3-axis accelerometers and
a 3-axis gyroscope. The dataset includes 4505 samples:
2,707 samples of 19 distinct ADL types (such as walking
slowly or quickly, jogging slowly or quickly, and sitting in
half or low height chair, etc.) and 1,798 samples of 15
distinct fall types (such as forward falls, backward falls,
and lateral falls, etc.). The sampling frequency is 200 Hz.
Utilizing the data from one of the acceleration sensors
(x16G) and the gyroscope(2,000°/s).

The KFall dataset [10] collects data via a wearable
waist-mounted inertial sensor device, which consists of
a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis
magnetometer. The dataset comprises 5,075 samples, 2,729
samples of 21 distinct ADL types (most types of the ADLs
are same as SisFall, but there exist minor differences, such
as standing for 30 s, picking up an object from the floor,
and lying on the bed for 30 s, etc.), and 2,346 samples of
15 distinct fall types (the fall types are the same as the
SisFall). The sampling frequency is 100 Hz.

3.2 Data Preprocessing

The inherent scarcity of fall samples within individual

datasets will lead to insufficient training instances and
limited scenario diversity. To address this limitation, a new
dataset has been adopted that fuses KFall and SisFall. Dur-
ing data fusion, the sampling frequencies, sensor specifica-
tions, and data formats of the two datasets are first aligned
to ensure that the data from different sources are compara-
ble in terms of time domain and magnitude. Although
SisFall and KFall employ sensors with differing sampling
frequencies, their sensor measurement ranges, three-
dimensional orientations, and the wearing positions of the
acquisition devices are entirely identical. To reconcile this
discrepancy, the SisFall dataset is downsampled using
a quadratic linear interpolation method, followed by range
normalization to align the datasets, where all data points
are divided by the maximum value within the operational
range of the sensor. The normalization equation is as fol-
lows:

X oo = X e | RANGE, @)

norm

In (1), Xwaw represents the raw data extracted from the
above two datasets, Xnom is the data obtained after normal-
ization, and the maximum measurement range of the sen-
sors is represented by Rangemax. After normalization, Xnorm
will be converted into a format suitable for input to the
IWRPPC-TCN.

Considering the computational limitations of weara-
ble devices, a sliding data window is employed as the input
of the model. The fall impact labels of the fall samples, the
lead time for intercepting the fall data, and the length of the
window size are three key factors that will influence the
performance of the model. Given that a safe airbag needs
about 200 ms to operate [25], and model inference time,
selecting 250 ms for our model’s fall prediction lead time.
Since the SisFall dataset lacks explicit fall impact labels,
analyzing the KFall dataset first and find that the fall im-
pact moment of most fall events coincides with the peak of
the sum magnitude vector (SMV) of the acceleration data,
and the impact moment of a few fall events occurs after
this peak. Therefore, the same peak-based criterion is used
to label fall impact time in SisFall. Considering the re-
source limitations of wearable devices and the performance
of the model, the experimental results indicate that a win-
dow size of 750 ms is optimal. Figure 1 shows an intercep-
tion of a fall window.

3.3 Model Architecture

The inverted bottleneck block in MobileNet V2 [3]
consists of two Pointwise (PW) convolutions and one
Depthwise (DW) convolution. Through efficient channel
expansion and contraction design, along with the applica-
tion of Depthwise Separable convolution, the block signifi-
cantly enhances computational efficiency without sacrific-
ing performance, making the model fit for lightweight
neural network design. However, for wearable devices
with extremely limited memory, the large-channel DW
convolution in the middle layer of the inverted bottleneck
block still exceeds the memory capacity. In order to address



RADIOENGINEERING, VOL. 35, NO. 1, APRIL 2026

87

Acceleration(g)

[}
1
1
1 }
1 |
1 I
1
) T
1 I
1 I
1 |
i ] I
nterc 10, Indo
- I . |
}
1 I
1 1
1 1
1 1

Lead Time
1 1
. — X _ACC
i — Y_ACC
! — 7 ACC
1
1

BeforeFall
AfterFall

200 300 400

500 600 700

Timestep(frame)

Fig. 1. Example of Interception Window (KFall). The blue area represents the ADL data before the fall, the gray area represents the data after
the fall, the data during the fall is represented between the black dashed lines, and the data in the intercepted window is represented

between the red dashed lines.
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Fig. 2. ConvNeXt block, DW Conv and PW Conv represent
Depthwise Convolution and Pointwise Convolution,
M, C, N, and R denote the number of variables, the
number of channels after embedding, the length of the
timeseries data after embedding, and the expansion
ratio of the PW Conv.

this problem, ConvNeXt V1 [4] proposes the ConvNeXt
block (Fig. 2), which reduces the number of parameters
and inference latency by forwarding the DW convolution,
making it more suitable for resource-constrained mobile
devices.

Learned from ConvNeXt, an IwRPPC block is pro-
posed (Fig. 3), which extends the ConvNeXt block by
incorporating structural reparameterization [26] techniques.
A combined structure of large and small kernel convolu-
tions at the DW convolutional layer is introduced to cap-
ture the long-term and short-term feature dependencies in
the time-series data better. Additionally, two parallel
Group PW convolutional branches [27] replace the serial
PW convolutional layer in the ConvNeXt block. Ultimate-
ly, the outputs of the two parallel convolutional branches
are summed and added to the input features via a residual
connection to generate the output at last stage. The specific
design details of this block will be elaborated in the follow-
ing sections.

The overall fall prediction model architecture (Fig. 4)
consists of an embedding layer, two IWRPPC block layers,

a downsampling layer, a de-embedding layer, 4 TCN block
layers, and a classification layer.

Embedding Layer: The extraction of spatial features
from time-series data is crucial for improving the perfor-
mance of the model. However, due to discrepancies in
multi-source sensor data, such as accelerometers and gyro-
scopes, mixing multivariate variables directly will lead to
confusion with irrelevant information, resulting in the loss
of univariate independence. Each variable is embedded
separately to enhance univariate independence and expres-
siveness while also capturing cross-variable dependencies.
Specifically, the input time-series data Xi,€ RM*%, first
undergoes an unsqueeze operation to produce
Xunsqueeze € RM ¥ L1t then passes through the embedding
layer to generate Xem, € RM*C >N where C is the embedded
dimensions, and N is the embedded sequence length. This
embedding process preserves the variable dimensions
while enhancing the representation of univariate variables,
which facilitates the subsequent extraction of cross-
variable feature dependencies and learning of univariate
expressions.

Lightweight Re-parameters-Parallel Convolution-
al Block: Following the lightweight design principle of the
ConvNeXt block (Fig. 2), which moves the DW convolu-
tion in the inverted bottleneck block forward before the
first PW convolution, an IwRPPC block is proposed. This
block is more suitable for feature extraction and processing
of time-series data. First, the 1D convolution is used in-
stead of the 2D convolution, since time-series data is inher-
ently one-dimensional. 1D convolution slides the filter only
along the time axis, directly capturing local dependencies
between neighboring time steps in the sequence without
introducing spatial dimensions unrelated to the temporal
information. Furthermore, the filter size in 1D convolution
is typically smaller, resulting in fewer parameters and lower
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Fig. 4. IwRPPC-TCN Architecture diagram.

computational effort. This enhances computational effi-
ciency and reduces the risk of model overfitting.

Considering the long sequence length of the temporal
data, it will be challenging to capture the long-term de-
pendency when extracting features by simply using a small
convolution kernel. Such a problem will be effectively
addressed through structural reparameterization techniques
[26] (which combine large convolution kernels [28] and
small convolution kernels). The large kernel convolution is
adept at capturing long-term feature dependencies in the
temporal data, while the small kernel convolution excels at
extracting local feature dependencies. The structural repa-
rameterization technique leverages the advantages of both
large and small kernel convolutions, enabling the model to
capture both long-term and short-term dependencies in the
temporal data.

In the ConvNeXt block, after the first DW convolu-
tion layer completes feature fusion, the result was directly
fed into the single-branch serial PW convolution to learn
univariate expressions and multivariate dependencies joint-
ly. That approach was prone to poor performance. In con-
trast, the IWRPPC block (Fig. 3) uses a multi-branch struc-
ture while replacing the PW convolution with Group PW
convolution. These two Group PW convolutions with dy-
namic tensor reshaping are used to learn univariate expres-
sion forms and multivariate dependencies, respectively, by
varying the input shape and the number of groups. Specifi-
cally, the serial Group PW convolution on the top side of
Fig. 3 changes the input shape to (M x C) x N and utilizes
the Group PW convolution with Group as M to learn the

IWRPPC Downsample IWRPPC . Last Step .
l Embedding [[[‘[[I Block Block “’ Block De-embedding I’ 4xTCN Flatten I Linear

6 x4 x 38 6 x 38 6 x 38 6x1
2x1
(output)

univariate expression form. In contrast, the serial Group
PW convolution on the bottle side changes the input shape
to (C x M) x N, using the Group PW convolution with the
number of groups set to C to learn the multivariate interde-
pendencies. Learning spatial features through this multi-
branch Group PW convolution complements the learning of
temporal features by Reparameter-DW. Both Reparameter-
DW and the branching serial Group PW convolution only
extract features in one dimension of temporal, univariate,
and multivariate, decoupling the extraction of temporal and
spatial features from the time-series data. Eventually,
a residual connection is introduced to enhance the stability
and overall performance of model training.

Downsample Block: The Downsample block is
astandard 1D convolutional layer, which is designed to
reduce the time-series length and the number of channels,
effectively decreasing the model size and inference latency.

De-embedding Layer: The de-embedding layer
serves as the inverse of the channel expansion performed
by the embedding layer. Using a learned weight matrix, it
projects the multichannel representations of univariate
inputs back to a space that corresponds one-to-one with the
original sensor axes. This transformation preserves the
feature information extracted in the previous layers while
enabling the subsequent TCNs to perform convolution and
causal modeling more directly on the original time-series
frames.

TCNs: Although structural reparameterization ex-
pands the receptive field (RF) of DW convolution, enabling
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the extraction of both long-term and short-term temporal
features, a large number of layers are still required to stack
and achieve a global model in the time dimension. TCNs,
on the other hand, achieve exponentially larger receptive
fields with fewer layers by stacking dilated convolutions.
Equation (2) and Equation (3) are the equations for calcu-
lating the RF of DW convolution and TCN, respectively,
where layer represents the number of stacked layers and k
is the kernel size. TCNs are introduced to address the limi-
tations of DW convolution in modeling global temporal
dependencies, thereby enhancing the extraction of temporal
features. While DW convolution excels at capturing instan-
taneous local features from multivariate sensor signals,
TCNs perform global modeling in the time dimension. The
combination of both techniques will allow the model to
recognize both rapid changes over short periods and subtle
trends over longer periods, improving the accuracy of fall
predictions. Since TCNs converge features to the last step,
the last step output of the last layer of TCNs is used as
input to the classification layer.

RFDWfIayer = R':Dwflayer—l + (k _l)’ (2)

RF ¢y =1+ (k-2 -1). (3)

Knowledge Distillation: Knowledge Distillation
(KD) [8] transfers the knowledge from a teacher model to
a student model effectively, enabling the student model to
learn more implicit features while maintaining a small
model size. This improves the performance of the student
model, achieving a balance between performance and the
number of parameters. During the training process, the loss
function of KD enables the student model to learn from the
teacher model. The Losskp [22] is shown in (4) and con-
sists of two parts: LoSShara and L0SSsoft [22]. o IS @ hyperpa-
rameter that controls the trade-off between hard and soft
losses; as a increases, the student model places more em-
phasis on learning from the teacher model.

Losshara IS the cross-entropy loss function (5), where
the student model learns the distribution of real labels. y
represents the probability of each category in the true label
and y represents the probability of each category predicted
by the student model. Losss is a loss function based on
Kullback-Leibler (KL) divergence, defined in (6). The
student model learns from the teacher model through
Losssott, Where b, Py, Ps denote the batch size, the prediction
distribution from the teacher model, and the prediction
distribution from the student model, respectively. T is
a temperature hyperparameter to regulate the prediction
distribution of the teacher model; the larger T is, the
smoother the prediction distribution becomes, allowing the
student model to gain more information beyond just the real
label.

L0Ss, = ax LSS,y +(1—a)xLoss., 4
LOSS g = Z Y log ¥, ®)
1 P ( PIT )
L =T?x=x> " “txlog—=—. (6)
0SS, Xbxz'leXOg(Pt/T)

Four experiments are conducted, as described below:
(1) Compare the effects of different window sizes on model
performance using the fused dataset to determine the opti-
mal window size. (2) Evaluate the performance of the pro-
posed IWRPPC-TCN on SisFall, KFall, and the fused da-
taset using a five-fold cross-validation method. (3) Design
a large model IWRPPC-TCN-L and a small model IwWRPPC-
TCN-S and validate the effectiveness of the homogeneous
model knowledge distillation method. (4) Compare the
IWRPPC-TCN with conventional lightweight networks
(lightweight to meet the requirements of wearable device
deployments) and other state-of-the-art fall prediction mod-
els to comprehensively evaluate the strengths and weak-
nesses of each model in the fall prediction task.

3.4 Experimental Environment and
Parameter Settings

The model architecture is implemented using Pytorch
version 2.3.0 and Python 3.9.19. Training and testing were
conducted on an Intel i5-13500H processor, with a hard-
ware configuration of 16 GB of RAM and an NVIDIA
RTX 4060 GPU. To test the performance of the proposed
models, the experimental parameters are set to the base
settings of the optimizer, choosing the AdamW algorithm,
the learning rate is set to 0.0001, and the cross-entropy loss
function is chosen. The batch size and the number of train-
ing rounds are 128 and 300, respectively. The T and the a
of Losskp are set to 10 and 0.5, respectively.

3.5 Evaluation Metrics

To objectively evaluate the performance of the pro-
posed algorithm, several metrics for generalized model
evaluation are used, including Accuracy (Acc), Sensitivity
(Sen), Specificity (Spe), Precision (Prec), and F1 Score
(F1). The equations [16] for these metrics are defined as
follows:

Acc=__ PHTN._ @)
TP+TN+FP+FN
en=—1" ®)
TP+FN
Spe= N , 9)
TN+FP
T L (10)
TP+FP
F1=9x Prec xSen . (11)
Prec+Sen

4. Results Analysis and Discussion

In order to assess the generalization ability of the
model and reduce the risk of overfitting due to accidental
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dataset partitioning, a five-fold cross-validation method is
used, where the dataset is randomly split into five subsets,
with 80% of the data used for training and 20% for testing
in each fold. Due to the influence of fall prediction lead
time and window size, the final number of intercepted data
contains a total of 4,138 fall data samples (1,797 from
SisFall and 2,341 from KFall) and 5,431 ADL data samples
(2,702 from SisFall and 2,729 from KFall).

4.1 Evaluation Results of Window Size

To investigate the impact of window size on model
performance, different window sizes are selected for com-
parison experiments. Given that the entire falling action
lasts only about 0.8 s, the window size between 0.5 s and
1 s can capture the key information about the human pos-
ture transformation before a fall event happens. As shown
in Fig. 5, the model performs optimally with a window size
of 0.75s, achieving the following metrics: accuracy of
98.57%, sensitivity of 98.60%, specificity of 98.54%, pre-
cision of 98.11%, and F1 Score of 98.35%. The figure
clearly illustrates that as the window size increases or de-
creases; the model performance decreases correspondingly.
Therefore, in subsequent experiments, the window size is
setto 0.75 s.

4.2 Comparison of Models Used in Fall
Prediction

To further validate the performance of the proposed
IWRPPC-TCN, comparing it with some other deep learning
models for fall prediction. Table 1, Table 2, and Table 3
show the evaluation results of each model. These results
highlight the strengths and weaknesses of each model,
despite potential differences in data preprocessing methods
across frameworks.

Table 1 presents the performance comparison of dif-
ferent models on the KFall dataset. From the comparison

best compared to other models with 99.13% accuracy,
99.57% sensitivity, and 98.76% specificity. It is noteworthy
that FDSNeXt, augmented by the multiscale and multi-
branch block (MK), ranks second only to the proposed
model in terms of prediction performance. The good per-
formance of these two models further highlights the sub-
stantial advantages of the multiscale and multi-branch de-
sign in feature extraction. The 1DConv-LSTM model,
which is widely used in the field of fall, performs well in
terms of sensitivity with 99.32%, second only compared to
the IWRPPC-TCN. Additionally, LSTM cannot process
data in parallel, leading to increased inference time, which
may affect the timeliness of predictions.

Overall, the accuracy of all models exceeded 98%.
However, almost all models suffer from the prediction
imbalance problem. Analysis of the reasons revealed that
there are ADLSs like fall events in the KFall dataset, such as
quickly sitting down, lying down, and jogging. Using data
visualization, finding that the data and the magnitude of
change of these actions at certain moments are similar to
the fall activities. Therefore, it is difficult for the model to
effectively distinguish these ADL’s actions from fall
events, leading to an imbalanced prediction.
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Fig. 5. Effect of window size on model performance (fused

results, the proposed IWRPPC-TCN-S model performs the dataset).
Models Acc (%) | Sen (%) | Spe (%) | Prec (%) | F1 (%) | Model Size (KB)

*MobileNet [3] 98.44 | 9815 | 98.68 98.47 | 98.30 74

*ConvNeXt [4] 98.03 | 9830 | 97.81 97.45 | 97.87 36

1DConv-LSTM [12] 98.00 [ 99.32 | 96.84 N/A N/A 717

PreFallKD [22] 98.05 | 9479 | 9853 90.62 | 92.66 58

*FDSNeXt [30] 98.97 | 99.19 [ 98.79 98.60 | 98.89 283

*|WwRPPC-TCN-S(ours) | 99.13 | 9957 | 98.76 98.56 | 99.06 60

Tab. 1. Comparison of the performance of different models (KFall), the models labeled * in the table are trained using the data preprocessing
method, while the models not labeled * keep the predicted data reported in their original papers.
Models Acc (%) | Sen (%) | Spe (%) | Prec (%) | F1 (%) | Model Size (KB)
*MobileNet [3] 97.11 97.30 97.01 95.57 96.42 74
*ConvNeXt [4] 96.89 96.90 96.91 95.44 96.14 36
spatio-temporal GNN [17] | 96.10 76.20 N/A 83.50 79.70 N/A
1DConv-LSTM [29] 95.30 92.33 98.02 N/A 95.00 N/A
*EDSNeXt [30] 97.27 97.19 97.34 96.04 96.61 283
*lwRPPC-TCN-S(ours) 97.62 97.58 97.67 96.54 97.05 60
Tab. 2. Comparison of the performance of different models (SisFall), models labeled * in the table are trained using data preprocessing

methods, while the models not labeled * keep the predicted data reported in their original papers.
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Table 2 demonstrates the performance comparison of
different models on the SisFall dataset. It is worth noting
that the models generally perform worse on the SisFall
dataset compared to the KFall dataset. However, the predic-
tive balance of the models on SisFall is better than that on
KFall. Although the spatio-temporal GNN model can ex-
tract spatio-temporal features and enhance the processing of
the spatial features, its sensitivity is only 76.20%, indicat-
ing that the model struggles with predicting fall events. In
contrast, the proposed IWRPPC-TCN-S achieves 97.62%
accuracy, 97.58% sensitivity, 97.67% specificity, 96.54%
precision, and 97.05% F1 Score on the SisFall dataset.
Except for specificity, which is slightly lower than that of
1DConv-LSTM (98.02%), all other metrics exceed those of
the comparison models, and the model exhibits better bal-
ance. On the other hand, the accuracy of 1DConv-LSTM is
only 95.30%, and its sensitivity is only 92.33%. Both accu-
racy and sensitivity are significantly lower than the
IWRPPC-TCN-S, indicating an imbalance in its predictions.
These results indicate that the overall performance of the
IWRPPC-TCN-S on the SisFall dataset is better than other
compared models.

4.3 Evaluation Results of IWRPPC-TCN on
the Fused Dataset and Knowledge
Distillation Method

Since no previous research has conducted a fall pre-
diction study using a dataset that incorporates both KFall
and SisFall, models are reproduced from related research
and apply data preprocessing methods for model training.
As shown in Tab.3, the PCNN-Transformer model
achieves excellent and balanced performance on the fused
dataset, with accuracy, sensitivity, and specificity all at
98.60%. Although this model slightly outperforms the
IWRPPC-TCN-S in overall performance, demonstrating the
advantages of the Transformer architecture and multi-scale
convolution in feature extraction, it is still not as good as
the IwRPPC-TCN-S with Knowledge Distillation
(IWRPPC-TCN-S (KD)). Additionally, the model size of
the PCNN-Transformer prevents it from being deployed in
wearable devices. Finally, the large-size model called
IWRPPC-TCN-L delivers the best overall performance,
with an accuracy of 99.20%, a sensitivity of 99.18%, and
a specificity of 99.21%.

Confusion matrices are displayed in Fig. 6, the model
predicts a total of 137 erroneous samples in the tests of

five-fold cross-validation, including 79 ADL samples and
58 fall samples. The performance of the IWRPPC-TCN with
different parameter scales on the fused datasets is evaluated
for the fall prediction task, with the experimental results
shown in Fig. 7.

As shown in Tab. 1, Tab. 2, and Tab. 3, the accuracy
of all models on the fused dataset is lower than that on the
KFall dataset. This discrepancy primarily stems from the
fact that the fusion dataset contains both fall and ADL
samples from different experimental settings, resulting in
a certain degree of data distribution difference between the
various data sources, which leads to a decrease in perfor-
mance compared to a single dataset. Nevertheless, com-
pared with traditional lightweight models (MobileNet and
ConvNeXt) and existing fall prediction models, the pro-
posed IwRPPC-TCN-S achieves better performance on
KFall, SisFall, and the fused dataset, which validates its
robust generalization ability.

Overall, the introduction of the fused dataset enhances
the diversity of the training data and strengthens the cross-
scene adaptability of the model, albeit at the expense of
some optimal performance on a single dataset.

To further validate the effectiveness of the Knowledge
Distillation strategy, a large model, IWRPPC-TCN-L, is
constructed by increasing the number of convolutional
channels, the size of the convolutional kernel, and the
number of stacked layers in the model, with hyperparame-
ters as shown in Tab. 4. Among them, IWRPPC Layer refers
to the number of stacked layers of IWRPPC block; Large
Kernel size and Small Kernel size are arrays of the large
and small convolutional kernel sizes in different block,
respectively; Channel size is an array indicating the number
of output feature channels for each block; expansion ratio
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- 1000
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Fig. 6. Confusion matrix of IWRPPC-TCN-S (fused dataset).

Models Acc (%) | Sen (%) | Spe (%) | Prec (%) | F1 (%) | Model Size (KB)
*MobileNet [3] 97.82 97.51 98.04 97.45 97.48 74
*ConvNeXt [4] 97.05 96.70 97.34 96.50 96.59 36

*PCNN-Transformer [16] 98.60 98.60 98.60 98.17 98.38 1356
*1DConv-LSTM [29] 97.87 96.33 99.04 98.71 97.50 248
*FDSNeXt [30] 97.80 97.97 97.66 96.96 97.46 283
*lwRPPC-TCN-S(ours) 98.57 98.60 98.54 98.11 98.35 60
*lwRPPC-TCN-S(KD)(ours) | 98.88 98.84 98.91 98.58 98.71 60
*IwRPPC-TCN-L (ours) 99.20 99.18 99.21 98.96 99.07 325

Tab. 3. Comparison of the performance of different models (fused data), the models labeled * in the table are trained using the data
preprocessing methods, while the models not labeled * keep the predicted data reported in their original papers.
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Fig. 7. Effect of knowledge distillation on model performance (fused dataset).

refers to the expansion ratio in the serial Group PW convo-
lutional; Embedding Kernel size/stride represents the con-
volutional kernel size and stride of the embedding layer;
Down Sample Kernel size/stride represents the convolu-
tional kernel size and stride of the downsampling layer; De-
Embedding Kernel size/stride represents the convolutional
kernel size and stride of the de-embedding layer; TCN
Layer represents the number of stacked layers of TCN;
TCN Kernel size/stride represents the convolutional kernel
size and stride of TCN; TCN Channel size is an array indi-
cating the number of output feature channels for each TCN
block; TCN Dilation represents the dilation of the TCN.

Since the structural reparameterization only merges
the convolution kernels during the inference stage,
IWRPPC-TCN-L is chosen not to merge the convolutional
kernels as the teacher model, as its architecture is closer to
the student model IWRPPC-TCN-S in the training stage,
which facilitates better knowledge transfer. As shown in
Fig. 7, IwRPPC-TCN-S(KD) outperforms the original
IWRPPC-TCN-S in overall performance metrics: the omis-
sion rate decreases from 1.40% to 1.16%, an improvement
of 17.14%, and the false alarm rate decreases from 1.46%
to 1.09%, an improvement of 25.34%, which verifies that

Hyperparameter IWRPPC-TCN-L |IwRPPC-TCN-S
IWwRPPC Layer 3 2
Large Kernel size/stride [19,11,7]/[1,1, 1] [11,7]/[1,1]
Small Kernel size/stride [3,3,31/]1,1,1] [3,31/]1,1]
Channel size [32, 16, 8] [8, 4]
Expansion ratio 3 2
Embedding Kernel size/stride 2/1
Down Sample Kernel size/stride 2/2
De-Embedding Kernel size/stride 1/1
TCN Layer 4

TCN Kernel size/stride [7,7,7,71/[1,1,1,1]
TCN Channel size [6, 6, 6, 6]
TCN Dilation 2

Tab. 4. Hyperparameter settings for IwRPPC-TCN-L and
IWRPPC-TCN-S.

Models Acc Sen Spe Prec F1
%) | B | 0 | %) | %)
ConvNeXt-Like 97.83 | 98.27 | 97.50 | 96.76 | 97.50
ConvNeXt-Like +Re- | o551 | 9847 [ 97.99 | 97.40 | 97.94
Parameters
ConvNeXit-Like + parallel | 98.19 | 98.24 | 98.16 | 97.60 | 97.92
ConvNeXt-Like + Re-
Parameters + parallel 98.36 | 98.62 | 98.16 | 97.61 | 98.11
ConvNeXt-Like + Re-
Parameters + parallel + TCN 98.57 | 98.60 | 98.54 | 98.11 | 98.35

Tab. 5. Ablation experiments on the IWRPPC block and the
TCNs block (fused dataset).

the homogeneous knowledge distillation technique effec-
tively improves the performance while controlling the
model size, making it suitable for resource-constrained
wearable device deployment.

5. Ablation Study

To validate the effectiveness of the proposed IWRPPC
block and TCNs block, an ablation experiment is designed
and compared with different blocks to better understand its
impact on the performance.

To validate the effectiveness of the proposed IWRPPC
block and TCNs in the fall prediction task, a series of abla-
tion models are constructed by incrementally incorporating
the structural reparameterization technique, parallel convo-
lutional structures, and the TCNs block into the ConvNeXt-
Like block. The ConvNeXt-like model incorporates the
concept of decoupling within the ConvNeXt architecture.
Specifically, it replaces the reparameter-DW convolution in
Fig. 3 with the standard DW convolution and transforms
the parallel structure into a serial structure. The experi-
mental results are shown in Tab. 5, where the introduction
of either structural reparameterization or parallel structure
alone improves all model metrics compared to the
ConvNeXt-Like baseline. When both techniques are ap-



RADIOENGINEERING, VOL. 35, NO. 1, APRIL 2026

93

plied simultaneously, performance increases further, sensi-
tivity peaks at 98.62%, indicating that the IWRPPC block
offers significant advantages in feature extraction and de-
coupling of cross-variate dependencies in time-series data.
Additionally, the structural reparameterization technique
amplifies the receptive field and improves the learning
ability of long-term and short-term features. Introducing the
TCN block augments global temporal modeling: although
the sensitivity of the IWRPPC-TCN-S model is slightly
lower than the model without TCN, it achieves the best
overall results: 98.57% accuracy, 98.60% sensitivity, and
98.54% specificity, demonstrating an optimal balance be-
tween model size and performance.

6. Conclusions

A lightweight fall prediction model is proposed, com-
bining the advantages of ConvNeXt, GroupNet, and TCN.
By adjusting the model architecture, the decoupled extrac-
tion of temporal and spatial features from time-series data
is achieved, making it more suitable for processing time-
series data. Table 1 and Table 2 show the comparison re-
sults of the model on the KFall and SisFall datasets, respec-
tively. On the KFall dataset, the model achieves 99.13%
accuracy. On the SisFall dataset, the accuracy is 97.62%,
outperforming all the compared models. Compared with
ConvNeXt, the accuracy of the model is improved by
1.10% and 0.73%, respectively. Additionally, to validate
the generalization ability of the model and to address the
issue of limited fall data, experiments are conducted by
fusing the SisFall and KFall datasets. The knowledge distil-
lation technique is also employed to improve the perfor-
mance of the model without increasing the size of the mod-
el. The experimental results in Tab. 3 show that by fusing
the two public datasets, the accuracy of the model trained
without the knowledge distillation technique reaches
98.57%. After using the knowledge distillation technique,
the accuracy of the model is improved to 98.88%. Moreo-
ver, the size of the proposed model is only 60 KB, which
meets the requirements for deployment of wearable devic-
es, and the fall prediction lead time is 250 ms, allowing
sufficient time for model inference and activation of protec-
tive equipment, such as airbags need some time to operate.
These results indicate that the IWRPPC-TCN model has
significant potential in loT and smart healthcare applica-
tions. Future research will explore ways to minimize infer-
ence energy consumption, ultimately enabling the efficient
deployment of 10T-based wearable devices.
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