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Abstract. With the aging society intensifying, the problem 

of elderly falls has become a key issue of social concern. 

Research on fall prediction based on Internet of Things 

(IoT) technology has received widespread attention. To 

effectively predict fall events, a lightweight IoT-based fall 

prediction model called lwRPPC-TCN (lightweight Re-

Parameters-Parallel-Convolutional Temporal Convolu-

tional Network) is proposed. The model utilizes the tem-

poral data collected by IoT sensors in the input stage and 

achieves efficient decoupled extraction of temporal and 

spatial features through lwRPPC blocks. The subsequent 

Temporal Convolutional Networks (TCNs) further 

strengthens the ability of modeling the global temporal 

dependency, thus optimizing the processing capability of 

sensor time-series data. To validate the generalization 

ability of the model and mitigate fall data scarcity, two 

public datasets, SisFall and KFall, are fused, and the per-

formance of the model is evaluated by five-fold cross-

validation. In addition, a homogeneous (models belong to 

the same model family) knowledge distillation technique is 

introduced to improve the performance of the model. Ex-

perimental results demonstrate that the proposed lwRPPC-

TCN achieves an accuracy of 98.88% on the fused dataset, 

outperforming existing fall prediction models, with a fall 

prediction lead time (interval between the fall prediction 

time and the collision time) of 250 ms, and a compact 

model size of 60 KB, which makes it suitable and possible 

to deploy in a resource-constrained wearable device. 
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1. Introduction 

With the global aging population intensifying, fall 

events have emerged as a predominant cause of accidental 

injuries and mortality in older adults. According to the 

World Health Organization, vulnerable fractures are mostly 

triggered by minor external forces (falling from a standing 

height). This phenomenon is more likely to occur in older 

adults. By 2019, data reveal 178 million incident fractures 

worldwide, a 33.4% increase in the absolute number of 

new fractures compared to 1990 [1]. This phenomenon not 

only inflicts severe physical and psychological conse-

quences on the elderly but also imposes substantial socio-

economic and caregiving burdens on families and 

healthcare systems. Therefore, developing smart healthcare 

systems that can predict fall alarms will become critical to 

mitigating risks and enhancing safety for aging popula-

tions. 

Conventional fall protection systems predominantly 

depend on video surveillance, ground-based sensors, or 

pressure-sensitive mats [2]. However, these approaches are 

limited by reliance on fixed-location infrastructure, high 

implementation costs, and cumbersome deployment. In 

recent years, with the development of wearable technology 

and Internet of Things (IoT) devices, fall protection sys-

tems based on wearable devices have become a promising 

alternative. IoT’s inertial sensors, such as accelerometers 

and gyroscopes, are used widely to capture kinematic pa-

rameters, facilitate real-time monitoring of postural transi-

tions, and gait dynamics. This multimodal sensor data 

enables robust fall risk assessment through quantitative 

analysis of movement patterns preceding instability events. 

Nevertheless, deploying efficient and accurate fall 

prediction models on resource-constrained wearable devic-

es remains challenging. While deep learning, particularly 

Convolutional Neural Networks (CNNs), has advanced 

temporal analysis and anomaly detection, conventional 

CNNs are often computationally intensive and parameter-

heavy, rendering them impractical for edge devices with 

restricted processing capabilities and power budgets. To 

bridge this gap, lightweight CNN variants (e.g., MobileNet 

[3], ConvNeXt [4]) had emerged as a critical research 

focus. These architectures reduce some level of computa-

tional, and memory demands through techniques such as 

Depthwise Separable convolutions and parameter pruning, 

while preserving almost the same performance, thereby 

aligning with the constraints of wearable platforms. Build-
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ing on these advancements, a novel lightweight fall predic-

tion framework is proposed that it synergizes the hierar-

chical design of ConvNeXt [4], ModernTCN [5], with the 

grouping design of GroupNet [6] and combines TCNs [7]. 

The main contributions are summarized as follows: 

(1) A lightweight Re-Parameters-Parallel Convolu-

tional-Temporal Convolutional Network (called lwRPPC-

TCN) for fall prediction is proposed, which delivers better 

performance by decoupling the extraction of temporal and 

spatial features and modeling global temporal dependency 

while meeting the deployment requirements of resource-

constrained wearable devices and IoT environments. 

(2) The lwRPPC-TCN demonstrates scalable perfor-

mance through modular hyperparameter adjustments. 

Based on this, the large model lwRPPC-TCN-L and the 

small model lwRPPC-TCN-S, suitable for deployment, are 

designed, and the knowledge distillation [8] technique is 

adopted to effectively improve the performance of the 

lwRPPC-TCN-S without increasing its parameters. 

(3) Evaluations on two public datasets, SisFall [9] and 

KFall [10], demonstrate that the proposed model exhibits 

good performance. To enhance its generalization and ro-

bustness across diverse real-world scenarios and to address 

the limitations posed by the scarcity of fall samples in 

a single dataset, an innovative approach by fusing SisFall 

and KFall through advanced data preprocessing techniques 

is proposed. 

2. Related Work 

2.1 Fall Prediction Methods 

The rapid advancement of deep learning has led to 

numerous fall prediction algorithms, primarily utilizing 

CNNs and Recurrent Neural Networks (RNNs), 

particularly Long Short-Term Memory (LSTM) [11]. 

However, standalone CNNs or RNNs often struggle to 

comprehensively capture spatio-temporal relationships in 

motion sensor data. To address this limitation, Koo et al. 

[12] and Yu et al. [13] proposed a network called Conv-

LSTM to combine CNNs and LSTMs, effectively 

extracting long-term and short-term temporal dependencies 

in the time-series data. Their approach not only improved 

temporal efficiency by using CNNs to preprocess input 

data for LSTMs but also achieved great performance on the 

two public datasets of SisFall and KFall. 

Recent research have explored more sophisticated 

architectures, including Transformer [14] and Graph 

Neural Networks (GNNs) [15], to enhance the model’s 

performance. Al-qaness et al. [16] proposed a multi-branch 

PCNN-Transformer Network that leverages both parallel 

convolutional pathways and Transformer mechanisms, 

achieving superior results on the SisFall, UniMib-SHAR, 

and MobiAct datasets. Wang et al. [17] designed a spatio-

temporal graph neural network (SPGN) that reformulates 

inertial measurement unit (IMU) time-series data as 

topological graphs to capture spatial features. While 

demonstrating high specificity on SisFall, DOFDA, and 

ConFall12 datasets, their approach exhibited some 

limitations in the sensitivity of fall events. 

Although existing methods perform well on bench-

mark datasets, their high computational complexity and 

substantial number of parameters constrain their deploy-

ment on resource-constrained wearable devices. In con-

trast, the proposed lwRPPC-TCN model introduces a novel 

approach by decoupling temporal and spatial feature ex-

traction, enhancing fall prediction accuracy while main-

taining model scalability and compactness suitable for 

wearable devices. Compared to the existing CNN-based 

models, our approach integrates TCNs to model global 

temporal dependencies, addressing the challenge of tem-

poral and spatial feature fusion in fall prediction. 

2.2 Lightweight Fall Prediction Models 

To employ deep learning technology on wearable de-

vices and mobile terminals, the lightweight model design 

should become a critical research focus, current approaches 

fall into two categories: one is lightweight network design, 

Yu et al. [18] proposed a network called TinyCNN, a two-

stage quantized network with 546 parameters, achieving an 

inference time of 0.037 s on an Arduino Nano BLE 33 

sense microcontroller; another one is post-hoc compression 

of existing models, employing techniques like model prun-

ing [19], knowledge distillation [8], [20], and quantization 

[21]. For instance, Chi et al. [22] implemented a Vision 

Transformer (ViT)-to-CNN distillation framework. Chi’s 

method improved several performance metrics on the KFall 

dataset, but the sensitivity was only 94.79%, revealing 

fundamental limitations in the capacity of the student mod-

el to learn discriminative spatio-temporal patterns from 

limited sensor data. Although the aforementioned models 

satisfy the requirements for embedded deployment in terms 

of model size, their predictive performance is suboptimal. 

The lwRPPC-TCN exhibits good architectural scala-

bility, where parametric scaling proportionally enhances 

performance. To optimize the performance, homogeneous 

knowledge distillation is implemented by training two 

structurally homogeneous variants: a high-capacity teacher 

model and a deployable student model. As theorized by 

Hao et al. [23], homogeneous models share similar induc-

tive biases, enabling more consistent feature space align-

ment and efficient knowledge transfer. Experiments 

demonstrate that using knowledge distillation, the 

lwRPPC-TCN-S model outperforms the lightweight model 

trained separately in terms of performance while maintain-

ing the model size. 

2.3 Data Enhancement and Data Fusion 

Beyond architectural challenges, the inherent rarity of 

fall events in the real world poses significant data acquisi-
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tion hurdles. Data augmentation methods such as flipping, 

rotating, cropping, scaling, etc., commonly used in the 

computer vision field, do not apply to multivariate time-

series data due to their disruption of temporal causality. 

While generative adversarial networks (GANs) [24] have 

been explored for data generation, it is not possible to 

prove whether the data generated by GANs is fall or Activ-

ity of Daily Living (ADL).  

While most prior research focuses on individual da-

tasets, a novel approach for constructing a comprehensive 

training dataset by fusing two publicly available datasets, 

SisFall and KFall, is proposed to overcome challenges 

related to sensor heterogeneity, temporal misalignment, 

and data imbalance through advanced data preprocessing 

techniques. This dataset fusion enhances the representa-

tiveness of the training data, enabling more robust and 

generalized fall prediction across diverse environments and 

populations. Experimental results demonstrate that the 

proposed lwRPPC-TCN model exhibits good prediction 

performance on the fused dataset. 

3. Methods 

This section details the datasets, preprocessing pro-

cess, and architecture of the proposed lwRPPC-TCN, fol-

lowed by the knowledge distillation methodology. 

3.1 Datasets 

Two public fall datasets are used to validate the per-

formance of the fall prediction model. They are SisFall [9] 

and KFall [10], as described in the following. 

The SisFall [9] dataset comprises Inertial Measure-

ment Unit (IMU) data collected from a waist-mounted 

sensor device containing two 3-axis accelerometers and 

a 3-axis gyroscope. The dataset includes 4505 samples: 

2,707 samples of 19 distinct ADL types (such as walking 

slowly or quickly, jogging slowly or quickly, and sitting in 

half or low height chair, etc.) and 1,798 samples of 15 

distinct fall types (such as forward falls, backward falls, 

and lateral falls, etc.). The sampling frequency is 200 Hz. 

Utilizing the data from one of the acceleration sensors 

(±16G) and the gyroscope(±2,000°/s). 

The KFall dataset [10] collects data via a wearable 

waist-mounted inertial sensor device, which consists of 

a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis 

magnetometer. The dataset comprises 5,075 samples, 2,729 

samples of 21 distinct ADL types (most types of the ADLs 

are same as SisFall, but there exist minor differences, such 

as standing for 30 s, picking up an object from the floor, 

and lying on the bed for 30 s, etc.), and 2,346 samples of 

15 distinct fall types (the fall types are the same as the 

SisFall). The sampling frequency is 100 Hz. 

3.2 Data Preprocessing 

The inherent scarcity of fall samples within individual 

datasets will lead to insufficient training instances and 

limited scenario diversity. To address this limitation, a new 

dataset has been adopted that fuses KFall and SisFall. Dur-

ing data fusion, the sampling frequencies, sensor specifica-

tions, and data formats of the two datasets are first aligned 

to ensure that the data from different sources are compara-

ble in terms of time domain and magnitude. Although 

SisFall and KFall employ sensors with differing sampling 

frequencies, their sensor measurement ranges, three-

dimensional orientations, and the wearing positions of the 

acquisition devices are entirely identical. To reconcile this 

discrepancy, the SisFall dataset is downsampled using 

a quadratic linear interpolation method, followed by range 

normalization to align the datasets, where all data points 

are divided by the maximum value within the operational 

range of the sensor. The normalization equation is as fol-

lows:  

 
norm raw max/ Range .X X  (1) 

In (1), Xraw represents the raw data extracted from the 

above two datasets, Xnorm is the data obtained after normal-

ization, and the maximum measurement range of the sen-

sors is represented by Rangemax. After normalization, Xnorm 

will be converted into a format suitable for input to the 

lwRPPC-TCN.  

Considering the computational limitations of weara-

ble devices, a sliding data window is employed as the input 

of the model. The fall impact labels of the fall samples, the 

lead time for intercepting the fall data, and the length of the 

window size are three key factors that will influence the 

performance of the model. Given that a safe airbag needs 

about 200 ms to operate [25], and model inference time, 

selecting 250 ms for our model’s fall prediction lead time. 

Since the SisFall dataset lacks explicit fall impact labels, 

analyzing the KFall dataset first and find that the fall im-

pact moment of most fall events coincides with the peak of 

the sum magnitude vector (SMV) of the acceleration data, 

and the impact moment of a few fall events occurs after 

this peak. Therefore, the same peak-based criterion is used 

to label fall impact time in SisFall. Considering the re-

source limitations of wearable devices and the performance 

of the model, the experimental results indicate that a win-

dow size of 750 ms is optimal. Figure 1 shows an intercep-

tion of a fall window. 

3.3 Model Architecture 

The inverted bottleneck block in MobileNet V2 [3] 

consists of two Pointwise (PW) convolutions and one 

Depthwise (DW) convolution. Through efficient channel 

expansion and contraction design, along with the applica-

tion of Depthwise Separable convolution, the block signifi-

cantly enhances computational efficiency without sacrific-

ing performance, making the model fit for lightweight 

neural network design. However, for wearable devices 

with extremely limited memory, the large-channel DW 

convolution in the middle layer of the inverted bottleneck 

block still exceeds the memory capacity. In order to address 
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Fig. 1. Example of Interception Window (KFall). The blue area represents the ADL data before the fall, the gray area represents the data after 

the fall, the data during the fall is represented between the black dashed lines, and the data in the intercepted window is represented 

between the red dashed lines. 

PW ConvDW Conv

(M × C) × N (M × C × R) × N (M × C)  × N
(output)

M × C × N
(input)

M × C × N

 

Fig. 2. ConvNeXt block, DW Conv and PW Conv represent 

Depthwise Convolution and Pointwise Convolution, 

M, C, N, and R denote the number of variables, the 

number of channels after embedding, the length of the 

timeseries data after embedding, and the expansion 

ratio of the PW Conv. 

this problem, ConvNeXt V1 [4] proposes the ConvNeXt 

block (Fig. 2), which reduces the number of parameters 

and inference latency by forwarding the DW convolution, 

making it more suitable for resource-constrained mobile 

devices. 

Learned from ConvNeXt, an lwRPPC block is pro-

posed (Fig. 3), which extends the ConvNeXt block by 

incorporating structural reparameterization [26] techniques. 

A combined structure of large and small kernel convolu-

tions at the DW convolutional layer is introduced to cap-

ture the long-term and short-term feature dependencies in 

the time-series data better. Additionally, two parallel 

Group PW convolutional branches [27] replace the serial 

PW convolutional layer in the ConvNeXt block. Ultimate-

ly, the outputs of the two parallel convolutional branches 

are summed and added to the input features via a residual 

connection to generate the output at last stage. The specific 

design details of this block will be elaborated in the follow-

ing sections. 

The overall fall prediction model architecture (Fig. 4) 

consists of an embedding layer, two lwRPPC block layers, 

a downsampling layer, a de-embedding layer, 4 TCN block 

layers, and a classification layer. 

Embedding Layer: The extraction of spatial features 

from time-series data is crucial for improving the perfor-

mance of the model. However, due to discrepancies in 

multi-source sensor data, such as accelerometers and gyro-

scopes, mixing multivariate variables directly will lead to 

confusion with irrelevant information, resulting in the loss 

of univariate independence. Each variable is embedded 

separately to enhance univariate independence and expres-

siveness while also capturing cross-variable dependencies. 

Specifically, the input time-series data Xin ∈ RM  L, first 

undergoes an unsqueeze operation to produce 

Xunsqueeze ∈ RM  1  L. It then passes through the embedding 

layer to generate Xemb ∈ RM  C  N, where C is the embedded 

dimensions, and N is the embedded sequence length. This 

embedding process preserves the variable dimensions 

while enhancing the representation of univariate variables, 

which facilitates the subsequent extraction of cross-

variable feature dependencies and learning of univariate 

expressions.  

Lightweight Re-parameters-Parallel Convolution-

al Block: Following the lightweight design principle of the 

ConvNeXt block (Fig. 2), which moves the DW convolu-

tion in the inverted bottleneck block forward before the 

first PW convolution, an lwRPPC block is proposed. This 

block is more suitable for feature extraction and processing 

of time-series data. First, the 1D convolution is used in-

stead of the 2D convolution, since time-series data is inher-

ently one-dimensional. 1D convolution slides the filter only 

along the time axis, directly capturing local dependencies 

between neighboring time steps in the sequence without 

introducing spatial dimensions unrelated to the temporal 

information. Furthermore, the filter size in 1D convolution 

is typically smaller, resulting in fewer parameters and lower 
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M × C × N

(output)

 

Fig. 3.  lwRPPC block, Reparameter-DW Conv represents DW convolution using structural reparameterization, Group PW Conv represents 

PW convolution with group design, G denotes the number of convolutional groups. 
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Linear
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Fig. 4. lwRPPC-TCN Architecture diagram. 

computational effort. This enhances computational effi-

ciency and reduces the risk of model overfitting. 

Considering the long sequence length of the temporal 

data, it will be challenging to capture the long-term de-

pendency when extracting features by simply using a small 

convolution kernel. Such a problem will be effectively 

addressed through structural reparameterization techniques 

[26] (which combine large convolution kernels [28] and 

small convolution kernels). The large kernel convolution is 

adept at capturing long-term feature dependencies in the 

temporal data, while the small kernel convolution excels at 

extracting local feature dependencies. The structural repa-

rameterization technique leverages the advantages of both 

large and small kernel convolutions, enabling the model to 

capture both long-term and short-term dependencies in the 

temporal data. 

In the ConvNeXt block, after the first DW convolu-

tion layer completes feature fusion, the result was directly 

fed into the single-branch serial PW convolution to learn 

univariate expressions and multivariate dependencies joint-

ly. That approach was prone to poor performance. In con-

trast, the lwRPPC block (Fig. 3) uses a multi-branch struc-

ture while replacing the PW convolution with Group PW 

convolution. These two Group PW convolutions with dy-

namic tensor reshaping are used to learn univariate expres-

sion forms and multivariate dependencies, respectively, by 

varying the input shape and the number of groups. Specifi-

cally, the serial Group PW convolution on the top side of 

Fig. 3 changes the input shape to (M × C) × N and utilizes 

the Group PW convolution with Group as M to learn the 

univariate expression form. In contrast, the serial Group 

PW convolution on the bottle side changes the input shape 

to (C × M) × N, using the Group PW convolution with the 

number of groups set to C to learn the multivariate interde-

pendencies. Learning spatial features through this multi-

branch Group PW convolution complements the learning of 

temporal features by Reparameter-DW. Both Reparameter-

DW and the branching serial Group PW convolution only 

extract features in one dimension of temporal, univariate, 

and multivariate, decoupling the extraction of temporal and 

spatial features from the time-series data. Eventually, 

a residual connection is introduced to enhance the stability 

and overall performance of model training. 

Downsample Block: The Downsample block is 

a standard 1D convolutional layer, which is designed to 

reduce the time-series length and the number of channels, 

effectively decreasing the model size and inference latency. 

De-embedding Layer: The de-embedding layer 

serves as the inverse of the channel expansion performed 

by the embedding layer. Using a learned weight matrix, it 

projects the multichannel representations of univariate 

inputs back to a space that corresponds one-to-one with the 

original sensor axes. This transformation preserves the 

feature information extracted in the previous layers while 

enabling the subsequent TCNs to perform convolution and 

causal modeling more directly on the original time-series 

frames. 

TCNs: Although structural reparameterization ex-

pands the receptive field (RF) of DW convolution, enabling 
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the extraction of both long-term and short-term temporal 

features, a large number of layers are still required to stack 

and achieve a global model in the time dimension. TCNs, 

on the other hand, achieve exponentially larger receptive 

fields with fewer layers by stacking dilated convolutions. 

Equation (2) and Equation (3) are the equations for calcu-

lating the RF of DW convolution and TCN, respectively, 

where layer represents the number of stacked layers and k 

is the kernel size. TCNs are introduced to address the limi-

tations of DW convolution in modeling global temporal 

dependencies, thereby enhancing the extraction of temporal 

features. While DW convolution excels at capturing instan-

taneous local features from multivariate sensor signals, 

TCNs perform global modeling in the time dimension. The 

combination of both techniques will allow the model to 

recognize both rapid changes over short periods and subtle 

trends over longer periods, improving the accuracy of fall 

predictions. Since TCNs converge features to the last step, 

the last step output of the last layer of TCNs is used as 

input to the classification layer. 

 _ _ 1RF RF ( 1),DW layer DW layer k    (2) 

 
TCNRF 1 ( 1)(2 1)layerk    . (3) 

Knowledge Distillation: Knowledge Distillation 

(KD) [8] transfers the knowledge from a teacher model to 

a student model effectively, enabling the student model to 

learn more implicit features while maintaining a small 

model size. This improves the performance of the student 

model, achieving a balance between performance and the 

number of parameters. During the training process, the loss 

function of KD enables the student model to learn from the 

teacher model. The LossKD [22] is shown in (4) and con-

sists of two parts: Losshard and Losssoft [22]. α is a hyperpa-

rameter that controls the trade-off between hard and soft 

losses; as α increases, the student model places more em-

phasis on learning from the teacher model. 

Losshard is the cross-entropy loss function (5), where 

the student model learns the distribution of real labels. y 

represents the probability of each category in the true label 

and ŷ represents the probability of each category predicted 

by the student model. Losssoft is a loss function based on 

Kullback-Leibler (KL) divergence, defined in (6). The 

student model learns from the teacher model through 

Losssoft, where b, Pt, Ps denote the batch size, the prediction 

distribution from the teacher model, and the prediction 

distribution from the student model, respectively. T is 

a temperature hyperparameter to regulate the prediction 

distribution of the teacher model; the larger T is, the 

smoother the prediction distribution becomes, allowing the 

student model to gain more information beyond just the real 

label. 

  KD hard softLoss Loss 1 Loss ,α α      (4)

 
hard 1

ˆLoss log ,n

i i iy y   (5) 

  

 
2

soft 1

/1
Loss log .

/

sb t
i

t

P TP
T

b T P T
     (6) 

Four experiments are conducted, as described below: 

(1) Compare the effects of different window sizes on model 

performance using the fused dataset to determine the opti-

mal window size. (2) Evaluate the performance of the pro-

posed lwRPPC-TCN on SisFall, KFall, and the fused da-

taset using a five-fold cross-validation method. (3) Design 

a large model lwRPPC-TCN-L and a small model lwRPPC-

TCN-S and validate the effectiveness of the homogeneous 

model knowledge distillation method. (4) Compare the 

lwRPPC-TCN with conventional lightweight networks 

(lightweight to meet the requirements of wearable device 

deployments) and other state-of-the-art fall prediction mod-

els to comprehensively evaluate the strengths and weak-

nesses of each model in the fall prediction task. 

3.4 Experimental Environment and 

Parameter Settings 

The model architecture is implemented using Pytorch 

version 2.3.0 and Python 3.9.19. Training and testing were 

conducted on an Intel i5-13500H processor, with a hard-

ware configuration of 16 GB of RAM and an NVIDIA 

RTX 4060 GPU. To test the performance of the proposed 

models, the experimental parameters are set to the base 

settings of the optimizer, choosing the AdamW algorithm, 

the learning rate is set to 0.0001, and the cross-entropy loss 

function is chosen. The batch size and the number of train-

ing rounds are 128 and 300, respectively. The T and the α 

of LossKD are set to 10 and 0.5, respectively.  

3.5 Evaluation Metrics 

To objectively evaluate the performance of the pro-

posed algorithm, several metrics for generalized model 

evaluation are used, including Accuracy (Acc), Sensitivity 

(Sen), Specificity (Spe), Precision (Prec), and F1 Score 

(F1). The equations [16] for these metrics are defined as 

follows: 

 TP +TN
Acc= ,

TP +TN +FP +FN
 (7) 

 TP
Sen = ,

TP +FN
 (8) 

 TN
Spe= ,

TN +FP
 (9) 

 TP
Prec=

TP +FP
,  (10) 

 Prec ×Sen
F1= 2× .

Prec +Sen
 (11) 

4. Results Analysis and Discussion 

In order to assess the generalization ability of the 

model and reduce the risk of overfitting due to accidental 
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dataset partitioning, a five-fold cross-validation method is 

used, where the dataset is randomly split into five subsets, 

with 80% of the data used for training and 20% for testing 

in each fold. Due to the influence of fall prediction lead 

time and window size, the final number of intercepted data 

contains a total of 4,138 fall data samples (1,797 from 

SisFall and 2,341 from KFall) and 5,431 ADL data samples 

(2,702 from SisFall and 2,729 from KFall). 

4.1 Evaluation Results of Window Size 

To investigate the impact of window size on model 

performance, different window sizes are selected for com-

parison experiments. Given that the entire falling action 

lasts only about 0.8 s, the window size between 0.5 s and 

1 s can capture the key information about the human pos-

ture transformation before a fall event happens. As shown 

in Fig. 5, the model performs optimally with a window size 

of 0.75 s, achieving the following metrics: accuracy of 

98.57%, sensitivity of 98.60%, specificity of 98.54%, pre-

cision of 98.11%, and F1 Score of 98.35%. The figure 

clearly illustrates that as the window size increases or de-

creases; the model performance decreases correspondingly. 

Therefore, in subsequent experiments, the window size is 

set to 0.75 s. 

4.2 Comparison of Models Used in Fall 

Prediction 

To further validate the performance of the proposed 

lwRPPC-TCN, comparing it with some other deep learning 

models for fall prediction. Table 1, Table 2, and Table 3 

show the evaluation results of each model. These results 

highlight the strengths and weaknesses of each model, 

despite potential differences in data preprocessing methods 

across frameworks. 

Table 1 presents the performance comparison of dif-

ferent models on the KFall dataset. From the comparison 

results, the proposed lwRPPC-TCN-S model performs the 

best compared to other models with 99.13% accuracy, 

99.57% sensitivity, and 98.76% specificity. It is noteworthy 

that FDSNeXt, augmented by the multiscale and multi-

branch block (MK), ranks second only to the proposed 

model in terms of prediction performance. The good per-

formance of these two models further highlights the sub-

stantial advantages of the multiscale and multi-branch de-

sign in feature extraction. The 1DConv-LSTM model, 

which is widely used in the field of fall, performs well in 

terms of sensitivity with 99.32%, second only compared to 

the lwRPPC-TCN. Additionally, LSTM cannot process 

data in parallel, leading to increased inference time, which 

may affect the timeliness of predictions. 

Overall, the accuracy of all models exceeded 98%. 

However, almost all models suffer from the prediction 

imbalance problem. Analysis of the reasons revealed that 

there are ADLs like fall events in the KFall dataset, such as 

quickly sitting down, lying down, and jogging. Using data 

visualization, finding that the data and the magnitude of 

change of these actions at certain moments are similar to 

the fall activities. Therefore, it is difficult for the model to 

effectively distinguish these ADL’s actions from fall 

events, leading to an imbalanced prediction. 

 

Fig. 5. Effect of window size on model performance (fused 

dataset). 

Models Acc (%) Sen (%) Spe (%) Prec (%) F1 (%) Model Size (KB) 

*MobileNet [3] 98.44 98.15 98.68 98.47 98.30 74 

*ConvNeXt [4] 98.03 98.30 97.81 97.45 97.87 36 

1DConv-LSTM [12] 98.00 99.32 96.84 N/A N/A 717 

PreFallKD [22] 98.05 94.79 98.53 90.62 92.66 58 

*FDSNeXt [30] 98.97 99.19 98.79 98.60 98.89 283 

*lwRPPC-TCN-S(ours) 99.13 99.57 98.76 98.56 99.06 60 

Tab. 1. Comparison of the performance of different models (KFall), the models labeled * in the table are trained using the data preprocessing 

method, while the models not labeled * keep the predicted data reported in their original papers. 

Models Acc (%) Sen (%) Spe (%) Prec (%) F1 (%) Model Size (KB) 

*MobileNet [3] 97.11 97.30 97.01 95.57 96.42 74 

*ConvNeXt [4] 96.89 96.90 96.91 95.44 96.14 36 

spatio-temporal GNN [17] 96.10 76.20 N/A 83.50 79.70 N/A 

1DConv-LSTM [29] 95.30 92.33 98.02 N/A 95.00 N/A 

*FDSNeXt [30] 97.27 97.19 97.34 96.04 96.61 283 

*lwRPPC-TCN-S(ours) 97.62 97.58 97.67 96.54 97.05 60 

Tab. 2. Comparison of the performance of different models (SisFall), models labeled * in the table are trained using data preprocessing 

methods, while the models not labeled * keep the predicted data reported in their original papers. 
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Table 2 demonstrates the performance comparison of 

different models on the SisFall dataset. It is worth noting 

that the models generally perform worse on the SisFall 

dataset compared to the KFall dataset. However, the predic-

tive balance of the models on SisFall is better than that on 

KFall. Although the spatio-temporal GNN model can ex-

tract spatio-temporal features and enhance the processing of 

the spatial features, its sensitivity is only 76.20%, indicat-

ing that the model struggles with predicting fall events. In 

contrast, the proposed lwRPPC-TCN-S achieves 97.62% 

accuracy, 97.58% sensitivity, 97.67% specificity, 96.54% 

precision, and 97.05% F1 Score on the SisFall dataset. 

Except for specificity, which is slightly lower than that of 

1DConv-LSTM (98.02%), all other metrics exceed those of 

the comparison models, and the model exhibits better bal-

ance. On the other hand, the accuracy of 1DConv-LSTM is 

only 95.30%, and its sensitivity is only 92.33%. Both accu-

racy and sensitivity are significantly lower than the 

lwRPPC-TCN-S, indicating an imbalance in its predictions. 

These results indicate that the overall performance of the 

lwRPPC-TCN-S on the SisFall dataset is better than other 

compared models. 

4.3 Evaluation Results of lwRPPC-TCN on 

the Fused Dataset and Knowledge 

Distillation Method 

Since no previous research has conducted a fall pre-

diction study using a dataset that incorporates both KFall 

and SisFall, models are reproduced from related research 

and apply data preprocessing methods for model training. 

As shown in Tab. 3, the PCNN-Transformer model 

achieves excellent and balanced performance on the fused 

dataset, with accuracy, sensitivity, and specificity all at 

98.60%. Although this model slightly outperforms the 

lwRPPC-TCN-S in overall performance, demonstrating the 

advantages of the Transformer architecture and multi-scale 

convolution in feature extraction, it is still not as good as 

the lwRPPC-TCN-S with Knowledge Distillation 

(lwRPPC-TCN-S (KD)). Additionally, the model size of 

the PCNN-Transformer prevents it from being deployed in 

wearable devices. Finally, the large-size model called 

lwRPPC-TCN-L delivers the best overall performance, 

with an accuracy of 99.20%, a sensitivity of 99.18%, and 

a specificity of 99.21%. 

Confusion matrices are displayed in Fig. 6, the model 

predicts a total of 137 erroneous samples in the tests of 

five-fold cross-validation, including 79 ADL samples and 

58 fall samples. The performance of the lwRPPC-TCN with 

different parameter scales on the fused datasets is evaluated 

for the fall prediction task, with the experimental results 

shown in Fig. 7.  

As shown in Tab. 1, Tab. 2, and Tab. 3, the accuracy 

of all models on the fused dataset is lower than that on the 

KFall dataset. This discrepancy primarily stems from the 

fact that the fusion dataset contains both fall and ADL 

samples from different experimental settings, resulting in 

a certain degree of data distribution difference between the 

various data sources, which leads to a decrease in perfor-

mance compared to a single dataset. Nevertheless, com-

pared with traditional lightweight models (MobileNet and 

ConvNeXt) and existing fall prediction models, the pro-

posed lwRPPC-TCN-S achieves better performance on 

KFall, SisFall, and the fused dataset, which validates its 

robust generalization ability.  

Overall, the introduction of the fused dataset enhances 

the diversity of the training data and strengthens the cross-

scene adaptability of the model, albeit at the expense of 

some optimal performance on a single dataset. 

To further validate the effectiveness of the Knowledge 

Distillation strategy, a large model, lwRPPC-TCN-L, is 

constructed by increasing the number of convolutional 

channels, the size of the convolutional kernel, and the 

number of stacked layers in the model, with hyperparame-

ters as shown in Tab. 4. Among them, lwRPPC Layer refers 

to the number of stacked layers of lwRPPC block; Large 

Kernel size and Small Kernel size are arrays of the large 

and small convolutional kernel sizes in different block, 

respectively; Channel size is an array indicating the number 

of output feature channels for each block; expansion ratio 

 

Fig. 6. Confusion matrix of lwRPPC-TCN-S (fused dataset). 

 

Models Acc (%) Sen (%) Spe (%) Prec (%) F1 (%) Model Size (KB) 

*MobileNet [3] 97.82 97.51 98.04 97.45 97.48 74 

*ConvNeXt [4] 97.05 96.70 97.34 96.50 96.59 36 

*PCNN-Transformer [16] 98.60 98.60 98.60 98.17 98.38 1356 

*1DConv-LSTM [29] 97.87 96.33 99.04 98.71 97.50 248 

*FDSNeXt [30] 97.80 97.97 97.66 96.96 97.46 283 

*lwRPPC-TCN-S(ours) 98.57 98.60 98.54 98.11 98.35 60 

*lwRPPC-TCN-S(KD)(ours) 98.88 98.84 98.91 98.58 98.71 60 

*lwRPPC-TCN-L(ours) 99.20 99.18 99.21 98.96 99.07 325 

Tab. 3. Comparison of the performance of different models (fused data), the models labeled * in the table are trained using the data 

preprocessing methods, while the models not labeled * keep the predicted data reported in their original papers. 
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Fig. 7. Effect of knowledge distillation on model performance (fused dataset). 

refers to the expansion ratio in the serial Group PW convo-

lutional; Embedding Kernel size/stride represents the con-

volutional kernel size and stride of the embedding layer; 

Down Sample Kernel size/stride represents the convolu-

tional kernel size and stride of the downsampling layer; De-

Embedding Kernel size/stride represents the convolutional 

kernel size and stride of the de-embedding layer; TCN 

Layer represents the number of stacked layers of TCN; 

TCN Kernel size/stride represents the convolutional kernel 

size and stride of TCN; TCN Channel size is an array indi-

cating the number of output feature channels for each TCN 

block; TCN Dilation represents the dilation of the TCN. 

Since the structural reparameterization only merges 

the convolution kernels during the inference stage, 

lwRPPC-TCN-L is chosen not to merge the convolutional 

kernels as the teacher model, as its architecture is closer to 

the student model lwRPPC-TCN-S in the training stage, 

which facilitates better knowledge transfer. As shown in 

Fig. 7, lwRPPC-TCN-S(KD) outperforms the original 

lwRPPC-TCN-S in overall performance metrics: the omis-

sion rate decreases from 1.40% to 1.16%, an improvement 

of 17.14%, and the false alarm rate decreases from 1.46% 

to 1.09%, an improvement of 25.34%, which verifies that 
 

Hyperparameter lwRPPC-TCN-L lwRPPC-TCN-S 

lwRPPC Layer 3 2 

Large Kernel size/stride [19, 11, 7] / [1, 1, 1] [11, 7] / [1, 1] 

Small Kernel size/stride [3, 3, 3] / [1, 1, 1] [3, 3] / [1, 1] 

Channel size [32, 16, 8] [8, 4] 

Expansion ratio 3 2 

Embedding Kernel size/stride 2 / 1 

Down Sample Kernel size/stride 2 / 2 

De-Embedding Kernel size/stride 1 / 1 

TCN Layer 4 

TCN Kernel size/stride [7, 7, 7, 7] / [1, 1, 1, 1] 

TCN Channel size [6, 6, 6, 6] 

TCN Dilation 2 

Tab. 4. Hyperparameter settings for lwRPPC-TCN-L and 

lwRPPC-TCN-S. 
 

Models 
Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

Prec 

(%) 

F1 

(%) 

ConvNeXt-Like 97.83 98.27 97.50 96.76 97.50 

ConvNeXt-Like + Re-

Parameters 
98.21 98.47 97.99 97.40 97.94 

ConvNeXt-Like + parallel 98.19 98.24 98.16 97.60 97.92 

ConvNeXt-Like + Re-

Parameters + parallel 
98.36 98.62 98.16 97.61 98.11 

ConvNeXt-Like + Re-

Parameters + parallel + TCN 
98.57 98.60 98.54 98.11 98.35 

Tab. 5. Ablation experiments on the lwRPPC block and the 

TCNs block (fused dataset). 

the homogeneous knowledge distillation technique effec-

tively improves the performance while controlling the 

model size, making it suitable for resource-constrained 

wearable device deployment. 

5. Ablation Study 

To validate the effectiveness of the proposed lwRPPC 

block and TCNs block, an ablation experiment is designed 

and compared with different blocks to better understand its 

impact on the performance. 

To validate the effectiveness of the proposed lwRPPC 

block and TCNs in the fall prediction task, a series of abla-

tion models are constructed by incrementally incorporating 

the structural reparameterization technique, parallel convo-

lutional structures, and the TCNs block into the ConvNeXt-

Like block. The ConvNeXt-like model incorporates the 

concept of decoupling within the ConvNeXt architecture. 

Specifically, it replaces the reparameter-DW convolution in 

Fig. 3 with the standard DW convolution and transforms 

the parallel structure into a serial structure. The experi-

mental results are shown in Tab. 5, where the introduction 

of either structural reparameterization or parallel structure 

alone improves all model metrics compared to the 

ConvNeXt-Like baseline. When both techniques are ap-
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plied simultaneously, performance increases further, sensi-

tivity peaks at 98.62%, indicating that the lwRPPC block 

offers significant advantages in feature extraction and de-

coupling of cross-variate dependencies in time-series data. 

Additionally, the structural reparameterization technique 

amplifies the receptive field and improves the learning 

ability of long-term and short-term features. Introducing the 

TCN block augments global temporal modeling: although 

the sensitivity of the lwRPPC-TCN-S model is slightly 

lower than the model without TCN, it achieves the best 

overall results: 98.57% accuracy, 98.60% sensitivity, and 

98.54% specificity, demonstrating an optimal balance be-

tween model size and performance. 

6. Conclusions 

A lightweight fall prediction model is proposed, com-

bining the advantages of ConvNeXt, GroupNet, and TCN. 

By adjusting the model architecture, the decoupled extrac-

tion of temporal and spatial features from time-series data 

is achieved, making it more suitable for processing time-

series data. Table 1 and Table 2 show the comparison re-

sults of the model on the KFall and SisFall datasets, respec-

tively. On the KFall dataset, the model achieves 99.13% 

accuracy. On the SisFall dataset, the accuracy is 97.62%, 

outperforming all the compared models. Compared with 

ConvNeXt, the accuracy of the model is improved by 

1.10% and 0.73%, respectively. Additionally, to validate 

the generalization ability of the model and to address the 

issue of limited fall data, experiments are conducted by 

fusing the SisFall and KFall datasets. The knowledge distil-

lation technique is also employed to improve the perfor-

mance of the model without increasing the size of the mod-

el. The experimental results in Tab. 3 show that by fusing 

the two public datasets, the accuracy of the model trained 

without the knowledge distillation technique reaches 

98.57%. After using the knowledge distillation technique, 

the accuracy of the model is improved to 98.88%. Moreo-

ver, the size of the proposed model is only 60 KB, which 

meets the requirements for deployment of wearable devic-

es, and the fall prediction lead time is 250 ms, allowing 

sufficient time for model inference and activation of protec-

tive equipment, such as airbags need some time to operate. 

These results indicate that the lwRPPC-TCN model has 

significant potential in IoT and smart healthcare applica-

tions. Future research will explore ways to minimize infer-

ence energy consumption, ultimately enabling the efficient 

deployment of IoT-based wearable devices. 
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