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Abstract. This study proposes a new solution to overcome
the high peak-to-average power ratio (PAPR) in Orthogonal
Time Frequency Space (OTFS) by using an Artificial Neural
Network (ANN) algorithm. The algorithm checks the magni-
tude (power) of each element in the matrix of the first stage
of the inverse symplectic finite Fourier transform (ISFFT)
process against a pre-specified threshold and, consequently
adjusts the elements whose magnitudes exceed the threshold.
This is achieved by using the ANN algorithm to apply frac-
tional shifts to the elements of the original delay-Doppler
(DD) data matrix without changing their orientation. The
simulation results demonstrated a significant PAPR reduc-
tion while maintaining the system performance in terms of
the Bit Error Rate (BER), with almost the same computational
complexity of the conventional OTFS system.
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1. Introduction
Orthogonal time frequency space (OTFS) is an attrac-

tive system which provides a significant improvement in the
transmission quality of a high Doppler environment, and one
of the possible future 6G communication technologies [1].
However, as any other multicarrier technique, OTFS suffers
from the high peak-to-average power ratio (PAPR) due to the
unpredictable matching of baseband signals’ phases during
the operations of transformation from delay-Doppler (DD)
domain to time-frequency (TF) domain, i.e., the operation of
inverse symplectic finite Fourier transform (ISFFT) [1], [2].
The components with high peaks will be clipped when pass-
ing through the non-linear power amplifier (NLPA), where
the saturation level is the edge of NLPA linearity, causing
a distorted waveform. In other words, the clipped signal
will introduce an out-of-band radiation and in-band distor-
tion, which, in return, will decay system performance [1–3].
Consequentially, several studies on various aspects of PAPR
reduction have been conducted to overcome this challenge.

It is possible to, broadly, classify these studies into four cate-
gories; namely: distortionless schemes (e.g., selective map-
ping (SLM) and partial transmit sequence (PTS)) [4], [5];
clipping and filtering [6], [7]; encoding schemes [8], [9];
and artificial intelligence networks (ANN) enabled meth-
ods [10], [11]. Each of these approaches needs a trade off
between PAPR reduction, system performance and computa-
tional complexity. This work is related to the ANN-enabled
category for PAPR reduction, hence we will focus our ana-
lysis on recent works presented under this category. In [12],
the PAPR reduction method based on the autoencoder (AE)
architecture through deep learning (DL) techniques was pre-
sented, where the encoder was designed to reduce the PAPR
while the decoder was trained to reconstruct the original
signal. This work needed a recovery process at the receiver,
resulting in, an additional computational complexity. In [10],
an automatic amplitude reduction neural network algorithm
was proposed. The algorithm was combined with PTS and
SLM methods using the Vendermonde matrix for generating
phase sequences, to reduce complexity when selecting the op-
timal phase. Moreover, a particle swarm optimization (PSO)
algorithm was used with sub-optimal PTS/SLM in [13]. Al-
though, both approaches showed significant PAPR reduction
results, the BER showed unreasonable performance levels
indicating that the OTFS with PAPR reduction performed
better than the original OTFS frame. Also, there were very
limited details about the construction and recovery process of
the proposed schemes. For instance, the parameters of OTFS
channel, power amplifier, detectors, SLM/PTS recovery, etc.,
were not provided. Also, an OFSM-PAPR reduction scheme
based on random-SLM and orthogonal-SLM was proposed
in [14]. Even though it showed reasonable results in terms
of CCDF-PAPR and BER, it suffered from the overall high
computational complexity where its detectors needed to be
modified to introduce the transmitted side information of
SLM used at the transmitter.

To the best of the authors’ knowledge, there was no
previous study that addressed the subject of OTFS-PAPR
reduction using ANN technique as proposed in this paper,
except the work related to OFDM-PAPR reduction reported
in [3] which used similar ANN approach.
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In this paper, the proposed ANN scheme is applied to
reduce the PAPR in OTFS system while maintaining rea-
sonable BER performance levels. Here, the first transfor-
mation process of the ISFFT (i.e., IFFT[·]) is considered
for power peaks measurement for each element of the IFFT
output matrix. The element with the peak that exceeds the
given threshold (usually the saturation level of the NLPA) is
adjusted via the ANN process which reduces the particular
peak by shifting the elements of the original delay-Doppler
(DD) matrix fractionally. This modification leads to reduc-
ing the PAPR while maintaining the system performance
(BER). In addition, no recovery process is required at the
receiver, as neither side information for PAPR reduction is
transmitted nor high modification is applied to the original
data phases/magnitudes. Consequently, no significant addi-
tional computational complexity is required with this scheme
as the proposed ANN algorithm only operates when the mag-
nitude of an element of the IFFT matrix exceeds the given
threshold.

The main contributions of this study include:

• The concept of artificial neural networks (ANN) was
implemented to maintain the power peaks of an OTFS
system within a certain threshold. This was achieved by
considering only the first matrix of the ISFFT process
for identifying peaks which exceed the threshold. Con-
sequently, the proposed approach attained satisfactory
performance targets with low level of computational
complexity when compared to techniques based on, for
example, deep learning.

• The proposed ANN scheme satisfied a reasonable
OTFS-PAPR reduction while maintaining an acceptable
system BER performance, in the presence of a multi-
fading channel.

• Unlike the conventional techniques (such as clipping,
SLM/PTS, etc.), the proposed ANN technique did not
require transmission of side information for a recov-
ery process at the receiver. As a result, the original
OTFS detectors (without any modification) can be used
to detect the transmitted information, making the com-
putational complexity of the proposed scheme almost
equivalent to that of the conventional OTFS system.

The rest of the paper is organized as follows. In Sec. 2,
the OTSM system model together with the proposed ANN
scheme for PAPR reduction are presented. Simulation re-
sults and discussions are given in Sec. 3. Finally, concluding
remarks are provided in Sec. 4.

2. System Model
Assume that the OTFS system operates on a 𝑃-path of

channel with a bandwidth 𝐵, maximum delay spread 𝜏max,
and maximum Doppler shift 𝜈max. The equivalent discrete-
time baseband model is obtained by sampling the continuous-
time OTFS signal at a sampling frequency 𝑓s = 𝐵 = 1/𝑇s,
where 𝑇s denotes the sampling interval. The discrete-time
domain OTFS frame contains 𝑁𝑀 samples subdivided into
𝑁 blocks, with 𝑀 samples per block, as shown in Fig. 1.
Hence, the OTFS frame duration is 𝑇f = 𝑁𝑇 where 𝑇 = 𝑀𝑇s
which denotes the duration of each block. Consequently,
every 𝑇 seconds, the discrete spectrum of each block is ob-
tained resulting from an 𝑀-point discrete Fourier transform
(DFT), where the spectrum samples are spaced byΔ 𝑓 = 1/𝑇 .
By collecting all 𝑁 spectra of bandwidth 𝐵 = 𝑀Δ 𝑓 along
the time axis defines the discrete time-frequency domain,
as shown in Fig. 1, [15–17]. It is worth mentioning that
the main source of PAPR rise in any multicarrier technique
(say OFDM, OTFS, OTSM, etc.) is the length/size of the
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Fig. 1. Block diagram of OTFS with the proposed ANN-PAPR reduction.
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sub carrier itself. Hence, with an increased size (𝑁 × 𝑀)
of the OTFS matrix, the PAPR will increase dramatically,
regardless of use of a pilot scheme during the process. Of
course, using the pilot scheme will make the situation worse
but not as much as the size of the OTFS matrix. Therefore,
with the emphasis on dimensionality, this work is focused on
studying PAPR in a multicarrier OTFS system without use
of a pilot scheme.

2.1 Principle of OTFS
In this section, the principle of OFTS will be explained

using relevant information presented in [15–18]. Denote the
transmitted and received blocks as X and Y, respectively.
Consider that both blocks are two-dimensional (2D) which
indicate symbols of delay-Doppler (DD) matrix, i.e. X,Y ∈
𝑀 × 𝑁 , with x𝑚 and y𝑚 be the symbol vectors in the 𝑚-th
row, where x𝑚 = [𝑋 (𝑚, 0) , 𝑋 (𝑚, 1) , . . . , 𝑋 (𝑚, 𝑁 − 1)]T

and y𝑚 = [𝑌 (𝑚, 0) , 𝑌 (𝑚, 1) , . . . , 𝑌 (𝑚, 𝑁 − 1)]T, given
that 𝑚 = 0, 1, . . . , 𝑀 − 1 and 𝑛 = 0, 1, . . . , 𝑁 − 1 denote
the delay and Doppler indices respectively. Based on the
principle of OTFS, the DD information symbol matrix X is
generated from a certain QAM alphabet A =

{
𝑎1, . . . , 𝑎𝑄

}
of size 𝑄, i.e., X ∈ C𝑀×𝑁 . Hence, to transfer this ma-
trix to time-frequency matrix Xtf, the inverse symplectic fast
Fourier transform (ISFFT) process is applied as follows:

Xtf [𝑙, 𝑘] =
1

√
𝑀𝑁

𝑁−1∑︁
𝑛=0

𝑀−1∑︁
𝑚=0

X [𝑚, 𝑛] ej2𝜋{ 𝑛𝑘
𝑁

− 𝑚𝑙
𝑀 ) (1)

for 𝑙 = 0, 1, . . . , 𝑀 − 1 and 𝑘 = 0, 1, . . . , 𝑁 − 1, where
Xtf ∈ C𝑀×𝑁 . Next, this matrix Xtf is converted to 1D
continuous-time waveform 𝑠(𝑡) using a transmit waveform
gtx (𝑡) as:

𝑠(𝑡) =
𝑁−1∑︁
𝑘=0

𝑀−1∑︁
𝑙=0

Xtf [𝑙, 𝑘] gtx (𝑡 − 𝑘𝑇) ej2𝜋𝑙Δ 𝑓 (𝑡−𝑘𝑇 ) . (2)

Notice that for rectangular waveform, Gtx =

diag
[
gtx (0), gtx (𝑇/𝑀), . . . , gtx (((𝑀 − 1) 𝑇/𝑀)

]
∈ C𝑀×𝑀

reduces to the identity matrix I𝑀 , and S = IFFT
[
XT

tf
]

in ma-
trix form. This is followed by the row-wise vectorization to
obtain the time domain samples vector with length of 𝑁𝑀×1
as [15]:

s = vec (S) ∈ C𝑀𝑁×1. (3)

Next, the cyclic prefix (CP) is added to the tail of s
with the length ≥ 𝑙max, where 𝑙max is the maximum chan-
nel delay spread. Consider a baseband equivalent chan-
nel model with 𝑃 propagation paths. For the 𝑖-th path,
𝑖 = 0, 1, . . . , 𝑃 − 1, the complex path gain is g𝑖 , and the
actual delay and Doppler shift are 𝜏𝑖 = 𝑙𝑖

𝑀Δ 𝑓
and 𝜈𝑖 = 𝜅𝑖

𝑁𝑇
,

respectively, where 𝜏𝑖 ≤ 𝜏max =
𝑙max
𝑀Δ 𝑓

and | 𝜈𝑖 |≤ 𝜈max,
𝑙𝑖 , 𝜅𝑖 ∈ R are the normalized delay and normalized Doppler
shift, respectively, and 𝑙max ∈ R is the normalized delay as-
sociated with 𝜏max [15–17]. Considering that the channel is
under-spread, i.e., 𝜏max𝜈max ≪ 1 and 𝑇Δ 𝑓 = 1, the received

signal 𝑟 (𝑡), after transmitting 𝑠(𝑡) over a time-varying chan-
nel with delay-Doppler channel response ℎ (𝜏, 𝜈), is given
as:

𝑟 (𝑡) =
∫

𝑔 (𝜏, 𝑡) 𝑠 (𝑡 − 𝜏) d𝜏 + 𝜔(𝑡) (4)

where 𝑔 (𝜏, 𝑡) =
∫
𝜈
ℎ (𝜏, 𝜈) ej2𝜋𝜈 (𝑡−𝜏 )d𝜈 is the delay-time

response, with ℎ(𝜏, 𝜈) = ∑𝑃
𝑝=1 ℎ𝑝𝛿

(
𝜏 − 𝜏𝑝

)
𝛿
(
𝜈 − 𝜈𝑝

)
, and

𝜔(𝑡) is independent and identically distributed additive white
Gaussian noise (iid AWGN) with zero mean and variance
𝜎2
𝜔 . After removing the cyclic prefix and by sampling the

received signal at a rate 𝑓s = 𝑀/𝑇 = 𝑀Δ 𝑓 , the vector
r = {𝑟 (𝑛)}𝑁𝑀−1

𝑛=0 is formed as:
r = Hs + w (5)

where H ∈ C𝑀𝑁×𝑀𝑁 is the channel matrix as formulated
in [15], [18]. The vector r𝑛 ∈ C𝑀×1, for 𝑛 = 0, 1, . . . , 𝑁 − 1
is converted to the delay-time matrix Ỹ ∈ C𝑀×𝑁 as:

Ỹ = Grx ·
(
vec−1

𝑀,𝑁 (r)
)

(6)

where vec−1
𝑀,𝑁

(r) is the operation to convert r𝑛 to the matrix
𝑀 × 𝑁 , and the diagonal matrix Grx is the receiver pulse
shaping matrix, considering that Grx = I𝑀 for rectangular
pulse shaping waveforms, i.e., Ỹ = vec−1

𝑀,𝑁
(r). Next, the

time-frequency transform is performed as Ytf ∈ M × N re-
ceived samples matrix, by applying 𝑀-points DFT operation
on the delay-time samples, hence Ytf = F𝑀 · Ỹ. These op-
erations is known as Wigner transform [15], [17]. To get
back to the delay-Doppler domain, an SFFT operation is per-
formed. Hence, operations of SFFT and Wigner transform
can be simplified as:

Y = FH
𝑀 · Ytf · F𝑁 = Ỹ · F𝑁 . (7)

For the detection process, two multipath channel model
detectors; namely: Message Passing (MP) detector and
Maximum-Ratio Combining (MRC) detector have been im-
plemented with the assumption that their channel state in-
formation is known to the receiver. While the MP detector
is considered for the channel model of 𝐿-taps with unform
power, the MRC detector is considered for the multipath fad-
ing channel of EVA model at a high speed user. Both models
were represented in [15]. Hence, for the MP scenario, given
that the OTFS input-output relation y = H · x + z, where
y = vec

(
YT

)
, x = vec

(
XT

)
are the corresponding samples

vectors, with x, y ∈ C𝑁𝑀×1. Accordingly, a 𝑁𝑀 variable
nodes corresponding to x and 𝑁𝑀 observation nodes corre-
sponding to y is considered as the MP system model. After
some analysis steps, based on [15], [16], the MP detection
can be expressed as:

𝑥 [𝑐] = arg max
𝑎 𝑗 ∈A

(
𝑝
(𝑖)
𝑐

(
𝑎 𝑗

) )
, 𝑐 = 0, 1, . . . , 𝑁𝑀 − 1 (8)

where 𝑥 [·] is the estimated information element, A ={
𝑎1, 𝑎2, . . . , 𝑎𝑄

}
represents a modulation alphabet of size

𝑄, and 𝑝
(𝑖)
𝑐

(
𝑎 𝑗

)
is the probability mass function (pmf) of

the alphabet corresponds to the message passed from a vari-
able node 𝑥 [𝑐] to the observation nodes 𝑦[𝑑] (as expressed
in (9)). Let I(𝑑) and J (𝑐) denote the sets of indeces with
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nonzero elements in the 𝑑-th row and 𝑐-th column, respec-
tively, with 𝑐, 𝑑 = 0, 1, . . . , 𝑁𝑀 − 1 and 𝑑 ∈ J (𝑐), the pmf
can be expressed as:

𝑝
(𝑖)
𝑐

(
𝑎 𝑗

)
=

∏
𝑒∈J(𝑐)

𝜉 (𝑖) (𝑒, 𝑐, 𝑗)∑𝑄

𝑘=1 𝜉
(𝑖) (𝑒, 𝑐, 𝑘)

(9)

where 𝜉 (𝑖)
𝑑,𝑐

represents the approximate Gaussian random vari-
able, associated with 𝑖-th iteration, of the mean 𝜇 (𝑖)

𝑑,𝑐
and vari-

ance
(
𝜎

(𝑖)
𝑑,𝑐

)2
of the interference

∑
𝑒∈I(𝑑) ,𝑒≠𝑐 𝑥 [𝑒]𝐻 [𝑑, 𝑒] +

𝑧[𝑑]. For the second scenario, that is MRC detector with
EVA channel mode, after removing the cyclic prefix com-
ponents, recalling the transmitted and received subvectors
(along the Doppler domain) x𝑚, y𝑚 ∈ C𝑁×1, respectively,
for 𝑚 = 0, 1, . . . , 𝑀 − 1, the matrix channel H contains sub-
matrices K𝑚,𝑙 ∈ C𝑁×𝑁 representing the linear-time variant
channel between the𝑚-th received block and the [𝑚 − 𝑙]𝑀 -th
transmitted block for 𝑙 ∈ L, where L is the set of the distinct
normalized delay shifts of the channel. Hence, the received
samples can be expressed as: y𝑚 =

∑
𝑙∈L K𝑚,𝑙 ·x[𝑚−𝑙 ]𝑀 +z𝑚

where z𝑚 ∈ C𝑁×1 is the AWGN noise and x[𝑚−𝑙 ]𝑀 can
be reduced to x𝑚−𝑙 after removing the cyclic prefix. Let
b𝑙
𝑚 ∈ C𝑁×1 be the channel impaired signal component of x𝑚

in the received vectors y𝑚+𝑙 after removing the interference
of other transmitted symbol vectors x𝑘 for 𝑘 ≠ 𝑚. Thus, un-
der assumption that the x𝑚 was estimated from the previous
iteration, b𝑙

𝑚 can be expressed as:

b𝑙
𝑚 = y𝑚+𝑙 −

∑︁
𝑙′∈L,𝑙′≠𝑙

K𝑚+𝑙,𝑙′ · x̂𝑚+𝑙−𝑙′︸                         ︷︷                         ︸
inter-delay-interference

(10)

where x̂𝑚+𝑙−𝑙′ = 0 for𝑚+𝑙−𝑙′ < 0, 0 ≤ 𝑙′ ≤ 𝑙max and K𝑚+𝑙,𝑙′
are the submatrices of the extended delay-Doppler channel
matrix H. Given that y𝑚′ =

∑
𝑙′∈L K𝑚′ ,𝑙′ · x𝑚′−𝑙′ + z𝑚′ with

𝑚′ = 𝑚 + 𝑙 and by substituting this expression into (10), it
yields:

b𝑙
𝑚= K𝑚+𝑙,𝑙 ·x𝑚+

∑︁
𝑙′∈L,𝑙′≠𝑙

K𝑚+𝑙,𝑙′ ·
(
x𝑚+𝑙−𝑙′ − x̂𝑚+𝑙−𝑙′

)
+ z𝑚+𝑙︸                                                   ︷︷                                                   ︸

interference and noise

.

(11)

Performing maximal ratio combining of the channel
impaired components b𝑙

𝑚 results in:

c𝑚 =

(∑︁
𝑙∈L

K†
𝑚+𝑙,𝑙 · K𝑚+𝑙,𝑙

)−1

·
(∑︁
𝑙∈L

K†
𝑚+𝑙,𝑙 · b𝑙

𝑚

)
= D−1

𝑚 · g𝑚

(12)

where c𝑚 ∈ C𝑁×1 is the vector output of the maximal
ratio combiner, D𝑚 =

∑
𝑙∈L K†

𝑚+𝑙,𝑙 · K𝑚+𝑙,𝑙 and g𝑚 =∑
𝑙∈L K†

𝑚+𝑙,𝑙 · b𝑙
𝑚. The symbol-by-symbol maximum like-

lihood detection (MLD) is implemented resulting in the hard
estimates given by:

x̂𝑚 [𝑛] = arg min︸  ︷︷  ︸
𝑎 𝑗 ∈Q

|𝑎 𝑗 − c𝑚 [𝑛] | (13)

where 𝑎 𝑗 is a signal from the QAM alphabet A of size Q
with 𝑗 = 1, 2, . . . ,Q and 𝑛 = 0, 1, . . . , 𝑁 − 1. Once x̂𝑚 is
updated, 𝑚 is increased and the same procedure is repeated
to estimate all 𝑀 symbol vectors x̂𝑚.

2.2 Proposed ANN Scheme for OTFS-based
PAPR Reduction
It is well known that the PAPR reduction process is

implemented, mainly, at the transmitter, hence, it is perti-
nent first to introduce the proposed artificial neural network
(ANN) scheme for PAPR reduction, herein referred to as
ANN-PAPR. The key characteristic of the proposed scheme,
which distinguishes it from most of the traditional PAPR re-
duction techniques, is its ability to modify the delay-Doppler
information matrix in a manner that maintains the orientation
of its elements, eliminating the need for a recovery process
at the receiver. This, in turn, removes the computational
complexity associated with the recovery process [3]. For
implementing the ANN-PAPR scheme, a backpropagation
learning method is utilized on a single-neuron, feedforward
ANN model with multiple inputs, a sigmoid activation func-
tion and a single output [19].

From Fig. 1, each complex symbol in the information
symbol matrix X ∈ C𝑀×𝑁 , in the delay-Doppler domain, is
obtained from a modulation alphabet A =

{
𝑎1, 𝑎2, . . . , 𝑎𝑄

}
.

By applying the first stage of ISFFT process which takes
an 𝑀-point DFT of the columns of X, the transformed x ma-
trix is obtained. Next, the magnitude of each element of x,
i.e., |𝑥(𝑛, 𝑚) |, is computed and compared to a given threshold
𝛾, (𝛾 = 𝜖 𝐴0), where 0 < 𝜖 < 1 is for controlling the thresh-
old level and 𝐴0 is the saturation level of a certain non-linear
power amplifier. If |𝑥(𝑛, 𝑚) | ≤ 𝛾, the ANN-PAPR reduc-
tion scheme is not implemented and the element 𝑥(𝑛, 𝑚) is
stored at its corresponding location in a new matrix x′. On
the other hand, if |𝑥(𝑛, 𝑚) | > 𝛾, then this particular element
𝑥(𝑛, 𝑚) is adjusted to 𝑥′ (𝑛, 𝑚) via the ANN-PAPR reduction
scheme by modifying the elements of the original delay-
Doppler matrix X, that is 𝑋 (𝑚, 𝑛) for 𝑚 = [0, 1, . . . , 𝑀 − 1]
and 𝑛 = [0, 1, . . . , 𝑁 − 1] until the threshold condition is
satisfied, i.e., |𝑥′ (𝑛, 𝑚) | ≤ 𝛾.

It is worth noting that during our study of ISFFT behav-
ior, we found that the resulting matrix x of the 𝑀-DFT trans-
formation is equivalent to the Heisenberg output transform
matrix S ∈ C𝑀×𝑁 . In other words, variations in the elements
of S are directly linked to variations in their counterparts in
x. Therefore, and without loss of generality, we utilized this
feature and based our study on applying the proposed ANN-
PAPR scheme to adjust the elements of the matrix X whose
magnitudes in the matrix x exceed the specified threshold.

Figure 2 depicts the ANN model used and its compo-
nents for performing the desired adjustments. To derive the
ANN model, let the error Γ = |𝛾 − |𝑥(𝑛, 𝑚) | | represents the
difference between the threshold and magnitude of |𝑥(𝑛, 𝑚) |
and 𝜂 denotes the ANN learning rate (set to 0.5 in this study
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Fig. 2. Block diagram of the proposed ANN scheme.

without prejudicing other values in the range). Then the in-
cremental change Δ𝑥 in the transform x is obtained using the
𝑀-DFT transform matrix F𝑀 as follows [3]:

Δ𝑥 = 𝜂 · Γ · F𝑀 . (14)

Consequently, the original Delay-Data matrix is up-
dated to x̄ = x + Δ𝑥 and the modified transformed element is
expressed as:

𝑥(𝑛, 𝑚) = [x̄(𝑚) · F𝑀 (𝑛)]T (15)

where, x̄(𝑚) =


𝑥(𝑛, 0)
𝑥(𝑛, 1)
...

𝑥(𝑛, 𝑀 − 1)


, F𝑀 (𝑛) =


e

−j2𝜋 (0)𝑚
𝑁

e
−j2𝜋 (1)𝑚

𝑁

...

e
−j2𝜋 (𝑁−1)𝑚

𝑁


.

Next, the magnitude of the adjusted element is checked
against the threshold 𝛾 as follows:

X(𝑛, 𝑚) = 𝛾

1 + e−| 𝑥̄ (𝑛,𝑚) | . (16)

Finally, to maintain its original orientation, the adjusted
element is modified and stored in its corresponding location
inside the transformed matrix x′ as:

𝑥′ (𝑛, 𝑚) = X(𝑛, 𝑚)𝑥(𝑛, 𝑚)
|𝑥(𝑛, 𝑚) | . (17)

This process is iterated until the condition is satisfied,
that is |𝑥′ (𝑛, 𝑚) | ≤ 𝛾 or the error Γ = |𝛾 − |𝑥(𝑛, 𝑚) | | = 𝛿 is
a tolerable error margin (𝛿 = 0.005 in this study as stopping
criterion). Algorithm 1 lists the steps required to implement
the ANN model. After adjusting all the elements of x whose
magnitudes exceeded the specified threshold 𝛾, the second
stage of the ISFFT transform will be performed to obtain the
Heisenberg transform as the final output.

Algorithm 1. Proposed ANN algorithm pseudocode.

Initialize: 𝑀, 𝑁 , X, F𝑀 , 𝛾, 𝜂, 𝛿.
Remark: 𝛼 ∈ {𝑛 : 0, . . . , 𝑁 − 1}, 𝛽 ∈ {𝑚 : 0, . . . , 𝑀 − 1}.

for 𝑛 = 0 : 𝑁 − 1 [Delay dimension]
for 𝑚 = 0 : 𝑀 − 1 [Doppler dimension]

if |𝑥 (𝑛, 𝑚) | > 𝛾 → 𝑥 (𝛼, 𝛽) = 𝑥 (𝑛, 𝑚) , Γ , 𝑖 = 1.
Γ = |𝛾 − |𝑥 (𝛼, 𝛽) | |

while |Γ | > 𝛿 & 𝑖 = max. iter.
Δ𝑥 = 𝜂 · Γ · F𝑀 [Eq. (14)]
x̄ = x + Δ𝑥

𝑥̄ (𝛼, 𝛽) = [x̄(𝑚) · F𝑀 (𝑛) ]T [Eq. (15)]
X(𝛼, 𝛽) = 𝛾

1 + e| 𝑥̄ (𝛼,𝛽) |
[Eq. (16)]

𝑥′ (𝛼, 𝛽) = X(𝛼, 𝛽)𝑥 (𝑛, 𝑚)
|𝑥 (𝑛, 𝑚) | [Eq. (17)]

Γ = |𝛾 − |𝑥′ (𝛼, 𝛽) | |
𝑖 = 𝑖 + 1

end while
end if

end for
end for

Output: (𝑥′ (𝛼, 𝛽) ) .

The PAPR performance is studied by considering the
well-known Complementary Cumulative Distribution func-
tion of PAPR (CCDF-PAPR) (with a rectangular pulse shape)
which is computed at the output of Heisenberg operation
s ∈ C𝑁𝑀×1 as [15], [20]:

𝑃 (PAPR > 𝜇0) = 1 − (1 − e−𝜇0 )𝑀𝑁 (18)

where 𝑃 (PAPR > 𝜇0) is the probability that the PAPR ex-
ceeds a given threshold 𝜇0 (which is abbreviated in some
literature as PAPR0) and the PAPR is calculated as

PAPR =

max
𝑛

{
|𝑠 (𝑛) |2

}
E

{
|𝑠 (𝑛) |2

} , (19)

where E {·} is the expectation operation, i.e., the average
power of the transmitted OTFS frame s. Notice that the
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theoretical CCDF-based SLM-PAPR reduction technique is

expressed as
(
1 − (1 − e−𝜇0 )𝑀𝑁

)𝑈
. Finally, the OTFS frame

is transmitted through the physical channel after passing
through the non-linear power amplifier (NLPA). In this study,
the NLPA Solid-State power amplifier (SSPA) is considered,
Rapp model [21], [22]. This kind of power amplifier ignores
the effect of phase modification, hence only the amplitude of
the input signal is amplified with the following expression:

A [|s|] = 𝐾1 |s|[
1 +

(
𝐾1 |s|
𝐴0

)2𝜌
] 1

2𝜌
(20)

where 𝐴0 =
√︁

IBO · 𝐸 {s} is the saturating amplitude at a spe-
cific input-back-off (IBO), 𝐾1 (ignored in this study) is the
small signal gain, 𝜌 (set to 3 in this study) is a parame-
ter which controls the smoothness of the transition from the
linear region to the saturation region . Notice that, at the
receiver, no further operation is needed, where the message
point (MP) detector is applied after CP removal and SFFT
operation as explained in the previous section.

2.3 Computational Complexity
As the proposed ANN-PAPR reduction scheme is ap-

plied at the transmitter, it is relevant to consider the compu-
tational complexity for the OTFS modulation in conjunction
with the proposed ANN-PAPR scheme, in addition to the
computational complexity of SLM scheme at the transmitter.
Notice that, a specific operation is not required at the receiver
to detect the ANN-based OTFS signal, which means that the
same MP or MRC detector of the conventional OTFS is used
for the proposed signal detection, and, as a result, the com-
putational complexity of the conventional OTFS detector is
maintained, i.e., O (niter𝑁𝑀𝑆𝑄) for MP detector with 𝑆 set
of observation nodes, and O

(
𝑀

(
𝑁3 + niter𝑁

2 |L|
) )

for MRC
detector where niter is the number of detector’s iteration and
L is the set of the distinct normalized delay shifts of the
channel [15]. Unlike in other techniques, say SLM and PTS
scheme, where it needs a spatial detector (depending on the
suggested SLM/PTS scheme) for side information recovery,
which increases the computational complexity. Therefore,
comparisons of computational complexity at the transmitter
only is considered as discussed below for the proposed ANN-
based OTFS, conventional OTFS, and SLM-OTFS systems.

Referring to [15] and [23], the following discussions
are provided. The original OTFS complexity in terms of
the respective number of complex multiplications (CMs)
is equivalent to

(
𝑀𝑁log2 (𝑀) + 𝑀𝑁

2 log2 (𝑁)
)
. Addition-

ally, the complexity produced by the proposed ANN-PAPR
scheme can be observed, mainly, in (15) and in the oper-
ation of the ANN algorithm (Algorithm 1) with the maxi-
mum iterations equals to Iiter. Particularly, Equation (15)
shows CMs equal to

(
𝑀
2 log2 (𝑀)

)
where the operation is

vectorizal applied, simultaneously, for vectors 𝑀 and 𝑁 , i.e.
the same as OFDM frame operation with 𝑀 = 𝑁 . The
resulting complexity order of iteration is O(Iiter). Conse-
quently, the overall complexity order of the proposed OTFS

is
(

2𝑁 + 1
2

)
𝑀log2 (𝑀) + Iiter

(
𝑀𝑁

2 log2 (𝑁)
)
+ O(Iiter). It is

worth mentioning here that the proposed ANN-PAPR scheme
only operates for a specific transferred element 𝑥(𝛼, 𝛽)
where 𝛼 ∈ [0, 1, . . . , 𝑁 − 1] and 𝛽 ∈ [0, 1, . . . , 𝑀 − 1]
of the matrix x whose magnitude exceeds the threshold.
Hence, for an overall number of elements R < 𝑁𝑀 for
which magnitudes are over the given threshold, the complex-
ity order is

(
𝑀𝑁log2 (𝑀) + 𝑀𝑁

2 log2 (𝑁)
)
+ O(R). More-

over, for SLM-OTFS, a number of candidate phase vector
𝑈 is generated where each is with dimension of 𝑀 , i.e.,
P𝑢 =

[
𝑝𝑢,0, 𝑝𝑢,1, . . . , 𝑝𝑢,𝑀−1

]
with 𝑢 ∈ [0, 1, . . . ,𝑈 − 1],

P𝑢 is a candidate phase vector, and 𝑝𝑢,𝑚 ∈ [−1, 1]. Each
𝑢 SLM vector is element-by-element multiplied by the cor-
responding element of each 𝑚-row of delay-Doppler matrix.
Next, the process of ISFFT and Heisenberg transform are
applied. Therefore, the overall SLM-OTFS complexity is
𝑈-times equivalent to that of the conventional OTFS, i.e.,(
𝑈𝑀𝑁log2 (𝑀) + 𝑈𝑀𝑁

2 log2 (𝑁)
)
. Figure 3 shows a compar-

ison of the CMs computational complexity between the con-
ventional (original) OTFS system (as a reference), the pro-
posed OTFS-based ANN-PAPR reduction scheme, and the
OTFS-based SLM-PAPR reduction scheme. From the figure
we can observe that the iteration factor results in increased
complexity. However, with high value of 𝑁 the complexity
deviation between the original OTFS and the ANN-based
OTFS becomes narrow, even with higher iteration factor. On
the other hand, the CMs of SLM-OTFS shows a very high
difference in complexity compared to the other two systems,
especially with the increase in the number of phase vectors
𝑈. Lastly, it is important to re-iterate that, with the proposed
ANN-PAPR reduction scheme, there is no need for any re-
covery process at the receiver. As a result, this unique feature
of the technique renders the transformation process free from
additional computational complexity at the receiver.
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Fig. 3. CMs Computational Complexity of original OTFS,
OTFS with the proposed ANN-PAPR reduction and
OTFS with the SLM-PAPR reduction at different val-
ues of 𝑁 , Iiter, and 𝑈 phase vectors.
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3. Simulation Results and Discussions
In this section, we present the results of the proposed

ANN-PAPR reduction scheme applied to an OTFS system.
The simulation code (MATLAB-R2023b) of [15] was mod-
ified to include the ANN-PAPR reduction scheme and used
in this study. Table 1 lists the parameters used in the sim-
ulation. For any pulse shaping waveform, the OTFS signal
is considered to be critically sampled, i.e., assuming that
𝑇Δ 𝑓 = 1. Also, a perfect channel state information is as-
sumed, and the channel is supposed to be under-spread, i.e.,
𝜏max𝜈max ≪ 1. The assumed channel models are the channel
with 4-taps of uniform power (applied with MP detector) and
the EVA channel model at user’s speed of 500 km/h (applied
with MRC detector) [15]. Notice that the obtained CCDF-
PAPR simulation results have been referenced to the theo-
retical curves of the original PAPR of OTFS frame and the
SLM-distortionless PAPR reduction technique, which shows
the best characterization of PAPR at specific𝑈-phase vectors
of OTFS frame.

3.1 CCDF-PAPR Performance
This section provides comparisons of CCDF-PAPR per-

formance with respect to a certain PAPR, in addition to
OTFS signal amplitude as a function of time. Besides, more
comparisons are presented in Tab. 2. Figure 4 shows the
CCDF-PAPR performance of theoretical PAPR for the origi-
nal OTFS (i.e., without PAPR reduction) and for SLM scheme
(with 𝑈 = 4 and 16 candidate phase vectors) and estimated
PAPR of the proposed OTFS with the ANN algorithm (ANN-
PAPR), in terms of IBO = 5 and 7 dB at different levels of the
threshold 𝛾 (i.e., at 𝜖 = 0.7, 0.8 and 0.9) and 𝑁 = 𝑀 = 32 for

the DD matrix. From the figure, we can observe that the the
response of the proposed ANN-PAPR scheme is superior to
that of the theoretical SLM approach for all levels of thresh-
old when considering both IBOs (5 and 7 dB). In the case of
highest levels of threshold (at IBO = 7dB and 𝜖 = 0.9), the
ANN scheme can reduce the PAPR by up to 5.5 dB below
the original OTFS-PAPR and the gains by about 3 and 2 dB
over the SLM scheme with 𝑈 = 4 and 𝑈 = 16, respectively,
at CCDF = 10−4. Notice that some PAPR curves of the
ANN scheme did not show any performance after a specific
CCDF probability (i.e., does not achieve the CCDF prob-
ability level 10−4), which means that the ANN algorithm
did not catch further OTFS elements whose magnitudes ex-
ceeded the specified CCDF threshold. In other words, the
number of elements that exceed a certain CCDF probability
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Fig. 4. Comparison of CCDF-PAPR for the proposed ANN-
OFTS at different values of IBO [dB] and 𝜖 with
𝑁 = 𝑀 = 32, with respect to the theoretical PAPR
of SLM and original OTFS (i.e., non-PAPR reduction).

Name Abbreviation Value
Number of subcarriers in frequency (delay) 𝑀 32, 64

Number of symbols in time (Doppler) 𝑁 32, 64
Size of QAM constellation 𝑀-QAM 4, 16, 64

Channel model-1 channel with 𝐿-taps of uniform power 4-taps
Channel model-2 (delays) EVA channel model [0 30 150 310 370 710 1090 1730 2510] × 10−9

Channel model-2 (pdp) EVA channel model [0 − 1.5 − 1.4 − 3.6 − 0.6 − 9.1 − 7.0
−12.0 − 16.9]

Carrier frequency 𝑓c [Hz] 4 × 109

Subcarrier spacing Δ 𝑓 [Hz] 15000

One time symbol duration in OTFS frame 𝑇 =
1
Δ 𝑓

1
15000

Number of SLM candidate phase vectors (blocks) 𝑈 4, 16
PA input-back-off [dB] IBO 3–9

Scale factor of threshold level 𝜖 0.1–0.9

Tab. 1. List of parameters used in the simulation process.

CCDF-PAPR PAPR of prop.
ANN (w.o. SLM/PTS) [dB]

PAPR of
OTFS-NN [10] [dB]

PAPR of
OTFS-PSO [13] [dB]

SLM PTS SLM PTS

10−3
≪ 2.5

for subcarriers’
length of 1024

≈ 8.5
for subcarriers’
length of 256

≈ 7.75
for subcarriers’
length of 256

≈ 7
for subcarriers’
length of 512

≈ 6.5
for subcarriers’
length of 512

Tab. 2. CCDF-PAPR comparisons performance between the proposed OTFS-ANN, the prposal of [10], and the proposal of [13].
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(P𝑟 [PAPRANN > PAPR0]) is limited by the use of the ANN
scheme. Hence, no further operation is needed by ANN
scheme, resulting in no additional computational complex-
ity. Additionally, the ANN scheme can reduce the PAPR
even more, however, this could adversely affect the system
performance in terms of the bit error rate (BER), as will be
explained later. Also, notice that, despite the reasonable level
of PAPR reduction achieved by the SLM approach, it intro-
duced very high system computational complexity where the
ISFFT operated𝑈 (number of SLM candidate phase vectors)
times for each element in the DD matrix.

Finally, Figure 5 illustrates the time domain OTFS sig-
nal with/without NLPA effect with/without ANN scheme. It
demonstrates the effectiveness of the ANN scheme in only
adjusting the ISFFT elements whose magnitudes exceed the
given threshold 𝜖 . Hence the original OTFS sample, which
was clipped by the NLPA (red dotted line) because it ex-
ceeds the saturation level, has been processed by the pro-
posed ANN scheme to produce the modified sample with
lower PAPR (black semi-dotted line). On the other hand,
samples which were below the threshold, proceed without
being processed by the ANN, eliminating any consequential
computational complexity.

Even though, no previous study was reported on PAPR
reduction of an OTFS-based system using ANN as proposed
in this work, simulation results of [10] and [13] are pre-
sented in Tab. 2 for comparison purposes. In [10] ANN
was combined with SLM/PTS schemes, while in [13] the
particle swarm optimization (PSO) algorithm was used with
sub-optimal PTS/SLM. Table 2 shows CCDF-PAPR compar-
isons performance between the proposed ANN-based OTFS,
OTFS-NN-SLM/PTS [10], and OTFS-PSO-SLM/PTS [13].

Considering that the number of subcarriers (length of a trans-
mitted frame), mentioned in the table, is the 1D time domain
samples vector with length of𝑁𝑀×1 which is obtained by the
row-wise vectorization of the matrix Xtf. Hence, from the ta-
ble, it can be observed that the CCDF-PAPR of the proposed
OTFS-ANN is overcome the others, even though the length
of the transmitted frame of the proposed OTFS-ANN is twice
as long as the OTFS-NN-SLM/PTS scheme and three times
as long as the OTFS-PSO-SLM/PTS. For example, based on
the best case of all proposals, at CCDF = 10−3, the proposed
OTFS-ANN capables to gain about 9 dB of PAPR reduc-
tion from the original OTFS with the frame length of 1024.
Whereas, the OTFS-NN-SLM/PTS can reduce PAPR to only
≈ 3 dB for NN-SLM and to ≈ 3.5 dB for NN-PTS with the
frame length of 256, the OTFS-PSO-SLM/PTS can achieve
the same gain of the latter with the frame length of 512.

For an additional comparisons of PAPR, a higher size
of constellation points and delay-Doppler matrix, namely
64-QAM and 𝑁 = 𝑀 = 64, have been implemented at differ-
ent values of IBO in [dB] and threshold level (𝜖) as shown in
Tab. 3. As can be observed from the table that, the maximum,
mean and hence the PAPR of the original OTFS (without
ANN or NLPA) were fixed while the values of the IBO and
𝜖 were modified. This result is logical, because no factor
affect the original OTFS frame. However, in the presence of
NLPA and the proposed ANN scheme with reduced values
of either IBO or 𝜖 , further reductions in the maximum, mean
and PAPR of ANN-based OTFS system can be obtained.
Consequently, the lower the value of IBO or 𝜖 , the lower will
be obtained PAPR. Note that this may inadvertently affect
the system BER performance, as will be explained in the
next section.
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Fig. 5. Comparison of PAPR for time-domain original OTFS (input to the NLPA) and output of NLPA (the OTFS frame with/without ANN) for
16-QAM of 𝑁 = 𝑀 = 32, IBO = 7 dB and 𝜖 = 0.8.
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64-QAM of OTFS
with 𝑵 = 𝑴 = 64 at
different values of
IBO [dB] and 𝝐

Max. of original
OTFS frame

(w.o. ANN / NLPA)

Max. of
ANN-OTFS

frame

Mean. of original
OTFS (w.o. ANN / NLPA)

frame

Mean. of
ANN-OTFS

frame

Original
OTFS PAPR

ANN-OTFS
PAPR

9 and 0.9 17.4908 15.2321 5.7136 5.6915 3.061257351 2.676289203
7 and 0.9 17.4908 12.0663 5.7136 5.6288 3.061257351 2.143671831
5 and 0.9 17.4908 9.4681 5.7136 5.4354 3.061257351 1.741932516
3 and 0.9 17.4908 7.2806 5.7136 5.0065 3.061257351 1.454229502
1 and 0.9 17.4908 5.4106 5.7136 4.2978 3.061257351 1.25892317
9 and 0.7 17.4908 12.4742 5.7136 5.6681 3.061257351 2.200772746
9 and 0.5 17.4908 9.0864 5.7136 5.4447 3.061257351 1.668852278
9 and 0.3 17.4908 5.4537 5.7136 4.3887 3.061257351 1.242668672
9 and 0.1 17.4908 1.8212 5.7136 1.741 3.061257351 1.04606548

Tab. 3. Comparison of CCDF-PAPR for the original OTFS (w.o. ANN) and the proposed ANN-OFTS at different values of IBO [dB] and 𝜖 with
𝑁 = 𝑀 = 64 and 64-QAM.

Annotation: The high-power amplifier (HPA) operation
within the linear region is adjusted to overcome the non-
linearity distortions that occur when amplifying a signal with
a non-constant envelope. Either one of the parameters, re-
ferred to as Input Back-Off (IBO) or Output Back-Off (OBO),
is used to adjust the operational range of the HPA. IBO is de-
fined as the difference between the maximum possible input
power and the actual input power, relative to the input power
that produces maximum output. While OBO is defined as the
difference between the amplifier’s maximum possible output
power and its actual output power. The core difference be-
tween the two parameters is that, IBO is a measure of the
input signal’s level relative to the point of maximum output,
while OBO is a measure of the output signal’s level relative
to its maximum potential [24], [25]. The IBO parameter has
been selected in this study based on the solid-state power
amplifier (SSPA) model considered in [21]. Notice that, at
very low IBO, say IBO = 0 dB, no output signal is obtained
(impractical), while at a very high IBO, say IBO ≥ 10 dB,
the effect of the power amplifier is mostly negligible.

3.2 System Performance
This part discusses the system performance (BER) for

the modified OTFS based on the proposed ANN scheme at
different kinds of detectors, i.e., the MP detector without con-
sidering a speed of user, and the Maximum-Ratio combining
(MRC) detector with user’s speed of 500 km/h. For the MP
detector, the BER performance of the proposed ANN-based
OTFS is illustrated with 𝑁 = 𝑀 = 32 at different scaling of
threshold level, that is 𝜖 = 0.7, 0.8, 0.9, for both 4-QAM and
16-QAM at IBO = 5 dB (in Fig. 6) and IBO = 7 dB (in Fig. 7),
where both cases refer to the theoretical OTFS performance
(i.e., without the effect of the NLPA nor the proposed ANN
scheme). These two figures show that the non-linearity level
of the NLPA (i.e., the IBO value) affects the overall system
performance, regardless of the presence of the PAPR reduc-
tion process. For instance, the OTFS system with IBO = 5 dB
performs worse than the one with IBO = 7 dB, which means
that the linearity of the NLPA has been slightly extended,
producing an OTFS signal with a lower distortion. This is
further proved by comparing the OTFS system performance,
in both figures, at all levels of threshold. It is possible to
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Fig. 6. BER of 4-QAM and 16-QAM for original OTFS frame
and the proposed ANN-OTFS frame at variant values of
𝜖 with 𝑁 = 𝑀 = 32 and IBO = 5 dB.
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Fig. 7. BER of 4-QAM and 16-QAM for original OTFS frame
and the proposed ANN-OTFS frame at variant values of
𝜖 with 𝑁 = 𝑀 = 32 and IBO = 7 dB.

notice that the system performance (for both 4-QAM and
16-QAM) with IBO = 7 dB for all values of 𝜖 is superior
to that of IBO = 5 dB, which means that the main source
of bit errors is the saturation level of the NLPA, and not
the threshold levels introduced by the ANN scheme. For
the MRC detector, Figure 8 shows the performance of the
proposed ANN-OTFS at the user’s speed of 500 km/h with
𝑁 = 𝑀 = 32, 𝜖 = 0.9, IBO = 7 dB and the modulation
of 4-QAM and 16-QAM. The performance of original OTFS
and the proposed ANN-OTFS, of MRC detector, is compared
with that of MP detector (without a speed of user). In gen-
eral, it can be observed that, at high SNR, the performance of
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MRC is better than that of MP, despite the high user speed,
for both modulation sizes 4-QAM and 16-QAM. Notice that,
for all scenarios in this figure, the proposed ANN-OTFS per-
forms mostly identical to the original OTFS (i.e., without
any PAPR reduction). To conclude, from all BER figures, it
can be observed that the ANN-enabled system performs very
close to the original OTFS when the threshold is a bit lower
than the NLPA saturation level (that is 𝜖 = 0.9) which is good
enough, for both 4-QAM and 16-QAM. This is because, the
main aim is to pass the OTFS signal through the NLPA with
a magnitude mostly equal to the saturation level. In other
words, operating the ANN scheme at a threshold level equiv-
alent to 𝜖 = 0.9 of the NLPA saturation level satisfies both
the PAPR reduction and BER performance levels. This is ad-
dition to the distinct feature of the proposed ANN-scheme of
not requiring a recovery process at the receiver, resulting in
a lower computational complexity compared to conventional
PAPR reduction techniques.

Annotation: it is noticed that some BER curves show
rising at their tails (i.e., at high SNR). The likely reason be-
hind this situation is the high number of simulation iterations,
which is typically > 1, 000, 000 iterations. With this in mind,
each simulation per BER cure will take very long time, espe-
cially with high sizes of delay-Doppler matrices. Therefore,
a lower number of iterations has been considered for these
simulation results, with focus on the convergence/divergence
between the BER performance of original OTFS and that of
the proposed ANN-based OTFS. Otherwise, this increase in
BER after SNR = 25 dB could also be attributed to errors,
probably, produced from the effect of NLPA, channel, or the
detector itself. It is worth mentioning that the ANN opera-
tion does contribute to this problem as the increase in BER
even happened with the original OTFS signal which did not
include the ANN process.

Last but not lease, Figures 9 and 10 illustrate the BER
performance for higher size of delay-Doppler matrix and
order of constellation mapping, that is 𝑁 = 𝑀 = 64 and
64-QAM respectively, at variant values of IBO (in Fig. 9)
and 𝜖 (in Fig. 10), considering the MRC detector with user’s
speed of 500 Km/h. As can be noticed from these figures,
the lower values of IBO or 𝜖 the worse BER performance is
introduced. For instance, at IBO = 3 in Fig. 9, the BER of
both the original OTFS and ANN-OTFS are perform badly,
even with high value of the threshold (at 𝜖 = 0.9). This is
because of the considered low IBO value of the power am-
plifier. However, it can be noticed that the performance of
the proposed ANN-based OTFS is not too far, in somehow,
from the original OTFS. This gap is due to the additional cut
which is produced by the threshold of ANN itself, that is at
𝜖 = 0.9 which means 10% below the original signal peak is
removed in addition to the clipping of the considered IBO.
Moreover, at IBO = 9 dB, the BER of original OTFS and the
proposed ANN-based OTFS are identical. This analysis is
confirmed in Fig. 10 when the performance of the proposed
ANN-based OTFS become worse when reducing further the
threshold level 𝜖 even though the IBO is high, namely at

IBO = 9 dB, because the lower threshold means nothing but
higher clipping level which produces a significant distorted
signal out of the ANN scheme. In general, from all BER
figures (Figs. 6–10), the BER performance of OTFS system
(with/without the proposed ANN scheme) becomes worse
with increasing the size of constellation points, i.e., from
4-QAM to 64-QAM. This suggests that the likely reason
behind this result is the channel effects and, probably, due to
the inter-modulation-interference and detectors’ errors.
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Fig. 8. BER of 4-QAM and 16-QAM for original OTFS frame
and the proposed ANN-OTFS frame using MP and MRC
(at speed of 500 km/h) detectors, 𝜖 = 0.9, 𝑁 = 𝑀 = 32
and IBO = 7 dB.
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the ANN-OTFS performance at different values of IBO
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4. Conclusion
In this work, a simple, yet effective artificial neural

network-based PAPR reduction method was proposed which
also achieved reasonable levels of system BER performance
and lower computational complexity. The proposed ANN-
PAPR reduction scheme was operated only to reduce the
magnitude of any ISFFT sample element which exceeded the
specified threshold level 𝛾 = 𝜖 𝐴0. In fact satisfactory levels
of PAPR reduction and BER performance were achieved with
an ANN threshold level of up to 𝜖 = 0.9 which favourably
compares to the theoretical results. In addition, the pro-
posed scheme does not require a recovery process at the
receiver which further lower the computational complexity,
unlike conventional PAPR reduction techniques. Moreover,
the proposed ANN-PAPR technique can be recommended as
a reasonable solution for reducing the PAPR of any multicar-
rier communication system including 5G/6G systems.
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