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Abstract. Cognitive radio (CR) systems enable dynamic
spectrum sharing but face substantial challenges in optimiz-
ing the rates of secondary users (SUs), particularly in sce-
narios where multiple SUs compete for the limited resources
of the primary user (PU). To address this issue, we propose
a multi-unmanned aerial vehicle (UAV)-assisted CR system in
which reconfigurable intelligent surfaces (RISs) are mounted
on UAVs to enhance spectral efficiency. Furthermore, we
cast this challenge as a multi-agent Markov decision pro-
cess (MDP), providing a formal framework to explore the
critical trade-off between independent decision-making and
centralized coordination. Consequently, we leverage estab-
lished deep reinforcement learning algorithms to probe this
trade-off. To provide a comprehensive performance evalua-
tion, we adopt a Multi-Agent Proximal Policy Optimization
(MAPPO) algorithm to maximize the sum rate of the pro-
posed system. Numerical results demonstrate that the devel-
oped UAV-RIS-assisted system adopting the MAPPO algo-
rithm can achieve a faster convergent speed and higher sum
rate when compared with that adopting Independent Prox-
imal Policy Optimization (IPPO) and MAPPO with a clip-
ping scheme. In addition, for the MAPPO with a clipping
scheme, a selected moderate clipping parameter can effec-
tively balance the trade-off between training stability and
learning efficiency.
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multi-agent, MAPPO, spectrum sharing

1. Introduction
The rapid proliferation of wireless communication ser-

vices has led to an unprecedented demand for spectrum re-
sources, resulting in severe spectrum scarcity that constrains
the advancement of next-generation communication systems.
Cognitive radio (CR) technology emerged as a promising
paradigm to address this challenge by enabling secondary

users (SUs) to dynamically access temporarily unutilized
licensed spectrum without causing interference to primary
users (PUs) [1]. With this dynamic spectrum sharing mech-
anism, spectrum efficiency can be significantly improved,
particularly in resource-constrained environments. As a re-
sult, CR has been considered highly beneficial in mission-
critical applications such as military and emergency com-
munications, where reliability and security requirements are
stringent. Moreover, recent advances in signal processing
and cooperative spectrum sensing have further enhanced the
adaptability of CR systems to heterogeneous traffic patterns
and varying interference levels.

Despite these advantages, the practical deployment of
CR systems in large-scale or complex scenarios remains chal-
lenging. One major limitation stems from the reliance of
conventional CR systems on static spectrum sensing and al-
location strategies [2], which severely restricts adaptability
to rapidly changing spectrum demands and environmental
conditions [3]. Such static approaches often result in ineffi-
cient spectrum utilization, particularly under highly dynamic
conditions. Furthermore, the high sensing latency and the
limited spatial diversity of static sensors aggravate detec-
tion errors in mobile environments. Another critical issue
arises from the fact that traditional CR architectures are tai-
lored for single-user or small-scale settings. These designs
lack robust coordination and optimization mechanisms re-
quired for multi-user environments [4]. Therefore, efficiently
managing spectrum sharing and controlling interference in
resource-constrained environments remains a critical chal-
lenge for contemporary CR systems [5].

The integration of unmanned aerial vehicles (UAVs)
into CR systems has recently attracted significant research
interest owing to their capability to enhance wireless com-
munication performance [6], [7]. UAVs can be deployed as
aerial base stations or relays to overcome obstacles and extend
coverage to otherwise inaccessible regions, thereby improv-
ing spectrum utilization in CR networks [8], [9]. In addition,
the rapid deployment and mobility make UAVs well-suited
for on-demand communication scenarios, enabling quick re-
sponses in dynamic environments [10]. Similarly, the ap-
plication of reconfigurable intelligent surfaces (RISs) in CR
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systems has emerged as a promising approach to enhance
spectrum access and communication reliability [11], [12]. By
dynamically adjusting the phase shifts of the elements, RISs
can reconfigure wireless propagation conditions, thus facil-
itating more efficient spectrum utilization [13]. Moreover,
RISs can be strategically positioned to suppress interference
at specific locations and improve communication quality for
both PU and SU, while incurring low hardware costs and
power consumption [14].

Motivated by these inherent advantages, recent works
have proposed the joint integration of UAV and RIS in
CR systems, leading to hybrid UAV-RIS-assisted architec-
tures [15], [16]. Such architectures have provided new op-
portunities for three-dimensional coverage and interference
management beyond what ground-only or stationary deploy-
ments can achieve [18], [17]. For example, in a downlink
multi-antenna base station (BS) and single-antenna user set-
ting, equipping a UAV with an RIS and jointly optimizing
BS beamforming and RIS phase shifts can improve system
energy efficiency by nearly 50% compared to conventional
amplify-and-forward relaying schemes [19]. Despite this
potential, realizing such improvements in practice remains
challenging. In particular, the dynamic nature of UAV chan-
nels, imperfect channel feedback, and the requirement for
joint optimization of UAV trajectories, RIS phase configura-
tions, and transmit power allocation across multiple agents
demand sophisticated control strategies. However, research
addressing these challenges remains scarce. Furthermore,
even with RIS assistance, outage probability remains consid-
erably high under low transmit power conditions, leading to
substantial resource consumption [20].

Reinforcement learning (RL) has recently been intro-
duced into CR systems as a powerful tool for performance
optimization [21], [22]. For example, a cooperative spec-
trum sensing algorithm based on deep reinforcement learn-
ing (DRL) was proposed in [23] to enhance the quality of
spectrum sensing accuracy. To further improve reliability,
a partially cooperative multi-agent RL (PCMARL) spectrum
sensing optimization algorithm was developed in [24] to ad-
dress the limitations of incomplete statistical information
regarding PU. In addition, RL has been applied to power
control within CR systems, where SUs are capable of learn-
ing energy harvesting and transmit power adaptation strate-
gies under dynamic environmental conditions. Specifically,
a deep Q-network (DQN) is employed to regulate SU transmit
power [25]. Nevertheless, the application of RL in CR sys-
tems still faces the following challenge: the learning process
is inherently complex and often constrained by the limited
availability of training data, which hampers robust policy
learning in practical deployments.

In this paper, we propose a UAV- and RIS-assisted CR
system based on DRL to maximize the sum rate of all SUs
while satisfying the minimum rate requirement of the PU. The
system model assumes that the instantaneous spectrum occu-
pancy state of the PU is unavailable, and only outdated state
information can be inferred from the automatic repeat request

(ARQ) feedback at the PU during the previous transmission
round. The proposed work lies in the area of radio communi-
cation systems and signal processing, focusing on UAV- and
RIS-assisted cognitive radio with learning-based resource
optimization. We study spectrum sharing and interference-
constrained resource allocation in such UAV/RIS-enabled
networks within a multi-agent reinforcement learning frame-
work. The contributions of this paper are listed as follows:

• We propose a CR system assisted by UAV-mounted
RISs and further extend the system from a single UAV–
RIS pair to a multi-UAV and multi-RIS scenario. This
three-dimensional architecture differs from most exist-
ing works that consider either a single UAV or a single
RIS, and it is more suitable for large-scale multi-cell
wireless networks.

• We adopt a practical assumption that the instantaneous
spectrum occupancy state of the PU cannot be perfectly
observed and can only be inferred through ARQ feed-
back (ACK/NACK/no feedback). Under this partially
observable condition, we formulate the joint optimiza-
tion of RIS phase shifts, UAV altitudes, and SU trans-
mit powers as a multi-agent Markov decision process
(MDP) to maximize the SU sum rate while ensuring
the PU rate requirement.

• We develop a Multi-Agent Proximal Policy Optimiza-
tion (MAPPO) algorithm under the Centralized Train-
ing Decentralized Execution (CTDE) framework to
solve the continuous-action multi-agent problem. To
provide a comprehensive performance evaluation, we
further compare the MAPPO with Independent Proxi-
mal Policy Optimization (IPPO) and a MAPPO variant
with clipping (MAPPO-pure). Simulation results show
that the MAPPO-based scheme achieves faster conver-
gence and a higher SU sum rate compared with these
baseline approaches.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a comprehensive introduction to the system
model. Section 3 presents the problem formulation. Sec-
tion 4 details the proposed algorithms. Section 5 presents
the experimental results. Section 6 provides detailed discus-
sions and analysis of the obtained results. Finally, Section 7
concludes the paper.

2. System Model
As illustrated in Fig. 1, we consider a CR system as-

sisted by an UAV and an RIS, where the UAV, equipped with
the RIS, serves as a relay for the SU link. This architecture
aims to enhance the data rate of the SU while mitigating in-
terference to the PU. Specifically, we adopt a multi-cell CR
framework, where each SU cell consists of a secondary trans-
mitter (ST), a UAV equipped with an RIS, and a secondary
receiver (SR). Additionally, a PU cell is considered, compris-
ing a primary transmitter (PT) and a primary receiver (PR).



RADIOENGINEERING, VOL. 35, NO. 1, APRIL 2026 119

Fig. 1. The UAV-RIS-assisted CR communication system,
where each SU is equipped with a UAV and RIS, and
the RIS is deployed on the UAV.

Let the number of SU cells be 𝑀 , and let the number
of UAVs and RISs be 𝐿. For simplicity, we assume 𝑀 = 𝐿.
Each RIS is composed of 𝑁 passive reflecting elements. We
respectively define the channel gains of PT-RIS, ST-RIS, RIS-
PR, RIS-SR, PT-PR, PT-SR, ST-SR, and ST-PR at the 𝑡-th
time slot as h𝑃𝑅𝑙

𝑡 ∈ C𝑁×1, h𝑆𝑚𝑅𝑙

𝑡 ∈ C𝑁×1, h𝑅𝑙𝑃
𝑡 ∈ C𝑁×1,

h𝑅𝑙𝑆𝑚
𝑡 ∈ C𝑁×1, ℎ𝑃𝑃𝑡 , ℎ𝑃𝑆𝑚𝑡 , ℎ𝑆𝑚𝑆𝑚𝑡 , and ℎ𝑆𝑚𝑃𝑡 . Due to signif-

icant path loss, we neglect signals that undergo two or more
reflections via the RIS. The transmit power of the PT is fixed
and denoted as 𝑃𝑃 , while the transmit power of the 𝑚-th ST
is denoted as 𝑃𝑆𝑚𝑡 ∈ [0, 𝑃max].

We define the spectrum state of the PU link in the 𝑡-th
time slot as 𝑠𝑃𝑡 ∈ {0, 1}, where 𝑠𝑃𝑡 = 1 indicates that the
PU is active, and 𝑠𝑃𝑡 = 0 indicates that the PU is idle. Fur-
thermore, the spectrum occupancy is modeled as a Markov
process, a common approach in CR networks [1], [2], where
the transition probability from state 𝑖 to state 𝑗 is denoted by
𝑃𝑖 𝑗 . Accordingly, the transition probability matrix is given
by

P =

[
𝑃00 𝑃01
𝑃10 𝑃11

]
. (1)

2.1 Channel Model
For the 𝑡-th time slot, the distance between the 𝑚-th ST

and the 𝑙-th RIS can be given by

𝑑
(ST)𝑚𝑅𝑙

𝑡 =

√︂(
𝑥
𝑅𝑙

𝑡 − 𝑥 (ST)𝑚
)2
+

(
𝑦
𝑅𝑙

𝑡 − 𝑦 (ST)𝑚
)2
+

(
𝐻
𝑅𝑙

𝑡

)2

(2)

where the coordinates of the RIS are assumed to be identical
to those of the UAV. Similarly, the distance between the SR
and the RIS is defined in the same manner. Note that 𝑥𝑡

𝑅𝑙
and

𝑦𝑡
𝑅𝑙

represent the 𝑥 and 𝑦 coordinates of the 𝑙-th RIS at time 𝑡,
while 𝐻𝑡

𝑅𝑙
denotes the height of the RIS, and the coordinates

of the 𝑚-th ST are denoted by 𝑥(ST)𝑚 and 𝑦(ST)𝑚 .

The channels between the PT and the RIS, the ST and
the RIS, the RIS and the PR, and the RIS and the SR are
modeled as probabilistic channels. As an example, we con-
sider the fading of the channel between the 𝑚-th ST and the
𝑙-th RIS, expressed as

h𝑆𝑚𝑅𝑙

𝑡 =

√√√ 𝜌(
𝑑
(ST)𝑚𝑅𝑙

𝑡

)2

[
𝑃
𝑆𝑚𝑅𝑙 ,LoS
𝑡 h𝑆𝑚𝑅𝑙 ,LoS

𝑡

+𝜅
(
1 − 𝑃𝑆𝑚𝑅𝑙 ,LoS

𝑡

)
h𝑆𝑚𝑅𝑙 ,NLoS
𝑡

]
(3)

where 𝜌 denotes the channel power gain at a reference dis-
tance of 1 meter, which is related to the reference path loss 𝜌0
(in dB) by 𝜌 = 10−𝜌0/10, and 𝜅 represents the additional at-
tenuation factor for the non-line-of-sight (NLoS) component.
In addition, 𝑃𝑆𝑚𝑅𝑙 ,LoS

𝑡 is the line-of-sight (LoS) probability
in 𝑡-th time slot, given by [19]

𝑃
𝑆𝑚𝑅𝑙 ,LoS
𝑡 =

1

1 + 𝐶 exp
(
−𝐷

[
𝜃
𝑆𝑚𝑅𝑙

𝑡 − 𝐶
] ) (4)

where 𝐶 and 𝐷 are the environment parameters, 𝜃𝑆𝑚𝑅𝑙

𝑡 =

180
𝜋

sin−1
(

𝐻

𝑑
(ST)𝑚𝑅𝑙
𝑡

)
is the elevation from the ST to RIS.

h𝑆𝑚𝑅𝑙 ,LoS
𝑡 ∈ C𝑁×1 denotes the LoS link and h𝑆𝑚𝑅𝑙 ,NLoS

𝑡 ∈
C𝑁×1 is the NLoS link.

Assume that the small-scale fading of the ground-to-
ground links between the PT and PR, PT and SR, ST and SR,
and ST and PR can be modeled by the Rician fading channel,
which is suitable for scenarios with a dominant line-of-sight
path [18]. For example, the fading of the channel between
the ST and SR can be expressed as

ℎ
𝑆𝑚𝑆𝑚
𝑡 =

√︃
𝜌
(
𝑑 (ST)𝑚𝑆𝑚

)−2
(√︂

𝐾

𝐾 + 1
ℎ
𝑆𝑚𝑆𝑚 ,LoS
𝑡

+
√︂

1
𝐾 + 1

ℎ
𝑆𝑚𝑆𝑚 ,NLoS
𝑡

)
(5)

where 𝑑 (ST)𝑚𝑆𝑚 denotes the distance between the ST and the
SR, and 𝐾 is the Rician factor.

2.2 Data Rate Analysis
To analyze the performance of the proposed system, we

first derive its signal-to-interference-plus-noise ratio (SINR),
which is a key performance metric to quantify the quality of
a communication link. The SINRs at the PR and the𝑚-th SR
in the 𝑡-th time slot are given by

SINR𝑃
𝑅

𝑡 =

𝑠𝑃𝑡

���ℎ𝑃𝑇𝑃𝑅

𝑡 +∑𝐿
𝑙=1 h𝑅𝑙𝑃

𝑅

𝑡 𝚽𝑙
𝑡h
𝑃𝑇𝑅𝑙

𝑡

���2 √︁
𝜁 𝑙

𝐼𝑆𝑇 (𝑡) + (𝜎𝑃
𝑅 )2

, (6)

and

SINR𝑆
𝑅

𝑚 =

���ℎ𝑆𝑇𝑆𝑅𝑚𝑡 +∑𝐿
𝑙=1 h𝑅𝑙𝑆

𝑅
𝑚

𝑡 𝚽𝑙
𝑡h
𝑆𝑇𝑚𝑅𝑙

𝑡

���2 √︃
𝜁
𝑆𝑇𝑚
𝑡

𝐼𝑃𝑇 (𝑡) + 𝐼𝑆𝑇
𝑗
(𝑡) + (𝜎𝑆𝑅𝑚 )2

(7)
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where 𝚽𝑙
𝑡 = diag

(
ej𝜃1

𝑡 , ej𝜃2
𝑡 , . . . , ej𝜃𝑁𝑡

)
denotes the phase

shift matrix of the 𝑙-th RIS, with 𝜃𝑛𝑡 ∈ [0, 2𝜋) being the
phase shift of the 𝑛-th element. In addition,

(
𝜎𝑃𝑅

)2 and(
𝜎𝑆𝑅𝑚

)2 denote the additive white Gaussian noise (AWGN)
powers at the PR and the𝑚-th SR, respectively. Furthermore,
𝐼𝑆𝑇 (𝑡) is the total interference at the PR from all STs, while
𝐼𝑃𝑇 (𝑡) and 𝐼𝑇

𝑆𝑇𝑗
(𝑡) represent the interference at the SR from

the PT and from all STs except the 𝑚-th one, respectively.

Therefore, the data rate that can be achieved at PR is

𝐶𝑃
𝑅

𝑡 = log2

(
1 + SINR𝑃

𝑅

𝑡

)
. (8)

Similarly, the data rate of the 𝑚-th SR can be expressed as

𝐶
𝑆𝑅𝑚
𝑡 = log2

(
1 + SINR𝑆

𝑅
𝑚

𝑡

)
. (9)

According to (9), the sum rate of all SRs is

𝐶𝑆
𝑅

𝑡 =
∑︁𝑀

𝑚=1
𝐶
𝑆𝑅𝑚
𝑡 . (10)

3. Problem Formulation
To maximize the achieved sum rate of all SRs, we

formulate the joint optimization problem by optimizing the
phase shift matrix of the RIS, the altitude of the UAV, and
the transmit power of ST 𝑃𝑆𝑚𝑡 , given by

max
𝚽𝑙

𝑡 ,𝐻
𝑙
𝑡 ,𝜁

𝑆𝑇𝑚
𝑡

𝑇∑︁
𝑡=0

𝐶𝑆
𝑅

𝑡

(
𝚽𝑙
𝑡 , 𝐻

𝑙
𝑡 , 𝜁

𝑆𝑇𝑚
𝑡

)
(11a)

s.t.
���𝚽𝑙,𝑖
𝑡

��� = 1, ∀𝑖 = 1, 2, . . . , 𝑁, (11b)

𝜁
𝑆𝑇𝑚
𝑡 ∈ [0, 𝜁max] , (11c)

𝐻𝑙𝑡 ∈ [0, 𝐻max] , (11d)

if 𝑠𝑃𝑡 = 1 : 𝐶𝑃
𝑅

𝑡

(
𝚽𝑙
𝑡 , 𝐻

𝑙
𝑡 , 𝜁

𝑆𝑇𝑚
𝑡

)
≥ 𝛼𝑃 , (11e)

𝐶
𝑆𝑅𝑚
𝑡 ≥ 𝐶𝑆

req
𝑚

𝑡 (11f)

where Φ
𝑙,𝑖
𝑡 represents the 𝑖-th diagonal element of the phase

shift matrix. The maximum transmit power of each ST is
denoted by 𝜁max, and the UAV altitude is constrained within
the range [0, 𝐻max]. Furthermore, (11e) ensures that the
achievable rate of the PU is not lower than the minimum re-
quirement 𝛼𝑃 when the PR is active. Meanwhile, the sum
rate of all SUs satisfies 𝐶𝑆𝑚𝑡 ≥ 𝐶𝑆

req
𝑚

𝑡 , as specified in (11f).
However, in practical systems without spectrum sensing, the
spectrum occupancy state 𝑠𝑃𝑡 of the PU remains unknown.

Even though the spectrum state is obtained, the achiev-
able rate of PU and the interference threshold typically re-
main unknown to SU due to the non-cooperative nature of
the PU. To tackle these challenges, we formulate the op-
timization problem as a MDP, characterized by the tuple

(S,A, 𝑟𝑡 , 𝑝, 𝛾). Specifically, S denotes the state space,
A represents the action space, 𝑟𝑡 is the reward function,
𝑝 = Pr (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ) defines the transition probability from
state 𝑠𝑡 ∈ S to 𝑠𝑡+1 ∈ S under action 𝑎𝑡 ∈ A, and 𝛾 ∈ [0, 1]
is the discount factor. In particular, the components of this
MDP are detailed as follows.

• Agent: The agent consists of an ST, an RIS, and a UAV,
which are jointly coordinated by an intelligent decision-
making unit. The agent interacts with the environment
to learn an optimal policy that maximizes the sum rate
of the SUs while ensuring reliable communication for
the PU.

• State 𝒔𝒕 : The agent infers the spectrum occupancy
state by monitoring the ARQ feedback from the PR.
The state can be categorized into three cases: 1) ACK:
Indicates successful communication, i.e., 𝐶𝑃𝑡 ≥ 𝛼𝑃 ,
implying that the interference caused by SU spectrum
sharing does not degrade PU communication perfor-
mance. 2) NACK: Indicates communication failure,
i.e., 𝐶𝑃𝑡 < 𝛼𝑃 , which is attributed to excessive interfer-
ence from the SU. 3) No Feedback (NF): Indicates that
the PU is idle.
Thus, the state of PU at the 𝑡-th time slot can be denoted
as 𝑠𝑃𝑡 ∈ {NF,ACK,NACK}.
In addition, the agent has access to the states of the SU,
RIS, and UAV, which collectively define the local ob-
servation of the𝑚-th agent at the 𝑡-th time slot, given by

𝑠𝑚𝑡 =

{
𝑠𝑃𝑡−1, 𝑠

𝑆𝑚
𝑡 , h𝑡 , 𝐻𝑙𝑡−1 | ∀𝑡,∀𝑚,∀𝑙

}
(12)

where 𝑠𝑆𝑚𝑡 = 1 indicates that the rate requirement of
the 𝑚-th SU is met; otherwise, 𝑠𝑆𝑚𝑡 = 0. h𝑡 denotes
the channel state information and 𝐻𝑙

𝑡−1 represents the
altitude of the 𝑙-th UAV at the previous time slot.
Accordingly, the global system state at the 𝑡-th time slot
is expressed as

𝑠𝑡 =
{
𝑠1𝑡 , 𝑠

2
𝑡 , . . . , 𝑠

𝑀
𝑡 | ∀𝑡

}
. (13)

• Action 𝒂𝒕 : For the 𝑡-th time slot, the agent selects an ac-
tion to interact with the environment, which includes the
phase shift of the RIS 𝚽𝑙

𝑡 , the transmit power of the ST
𝑃
𝑆𝑚
𝑡 , and the altitude of the UAV 𝐻𝑙𝑡 . To simplify the

analysis, it is assumed that the RIS elements operate in-
dependently, i.e., there is no mutual coupling between
elements. Under this assumption, the RIS phase shift
matrix 𝚽𝑙

𝑡 can be equivalently represented as a vector,
denoted as 𝜃𝑙𝑡 =

[
𝜃
𝑙,1
𝑡 , 𝜃

𝑙,2
𝑡 , . . . , 𝜃

𝑙,𝑁
𝑡

]
. The action space

can be defined by

𝑎𝑚𝑡 =

{
𝜃𝑙𝑡 , 𝑃

𝑆𝑚
𝑡 , 𝐻𝑙𝑡 |∀𝑡,∀𝑚,∀𝑙

}
. (14)

Thus, the joint action space of all agents can be ex-
pressed as

𝑎𝑡 =
{
𝑎1
𝑡 , 𝑎

2
𝑡 , ..., 𝑎

𝑀
𝑡 |∀𝑡

}
. (15)
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• Reward function 𝒓𝒕 : The reward function is developed
to maximize the sum rate of all SUs. Assuming a global
reward is shared for all agents, the instantaneous reward
at time slot 𝑡 is defined as

𝑟𝑡 =

{
𝐶𝑆𝑡 + 𝐴 , if 𝑠𝑃𝑡 = NF or ACK
−𝐾, if 𝑠𝑃𝑡 = NACK (16)

where 𝐴 = 𝜉
𝑀∑
𝑚=1

min
{
𝐶
𝑆𝑚
𝑡 − 𝐶

𝑆
req
𝑚

𝑡 , 0
}

serves a penalty

term derived from the constraint (11f). Specifically,
when the minimum sum rate requirement for SUs is not
met, the agent incurs a penalty scaled by the adjust-
ment parameter 𝜉. Furthermore, a fixed penalty −𝐾 is
imposed whenever the feedback is NACK.

Therefore, the optimization problem can be solved by
identifying the optimal policy 𝜋∗ for the Markov process,
which maximizes the expected cumulative reward of all SUs,
given by

𝜋∗ = arg max
𝜋
E [𝑈𝑡 | 𝜋] (17)

where 𝑈𝑡 denotes the discounted cumulative reward, given
by

𝑈𝑡 =

𝑇∑︁
𝑡=0

𝛾𝑡𝑟𝑡+1. (18)

4. Algorithm Design for Multi-Agent
UAV-RIS-Assisted CR Systems
For the multi-agent scenario with a continuous variable

space, we adopt two algorithms, i.e., IPPO and MAPPO, to
solve the formulated problem by jointly optimizing the phase
shift of the RIS, the UAV altitude, and the transmit power of
the SU.

4.1 IPPO
The IPPO algorithm extends Proximal Policy Optimiza-

tion (PPO) to multi-agent tasks using a decentralized training
and execution framework, where each agent independently
operates its own PPO instance. IPPO employs an Actor-
Critic (AC) architecture [26], where the actor network se-
lects actions to maximize cumulative rewards while the critic
network estimates state-value functions to enable policy up-
dates.

In the IPPO algorithm, the advantage function at the
𝑡-th time slot can be defined as [27]

𝐴
(
𝑠𝑚𝑡 , 𝑎

𝑚
𝑡

)
=

𝑇−𝑡∑︁
𝑙=0
(𝛾𝜆)𝑙𝛿𝑚𝑡+𝑙 (19)

where 𝛾 is the discount factor, 𝜆 is the Generalized Advan-
tage Estimation (GAE) parameter, and 𝛿𝑚𝑡 is the temporal-
difference (TD) error for the 𝑡-th time slot, given by

𝛿𝑚𝑡 = 𝑟𝑚𝑡 + 𝛾𝑉𝜑𝑚

(
𝑠𝑚𝑡+1

)
−𝑉𝜑𝑚

(
𝑠𝑚𝑡

)
(20)

where 𝑉𝜑𝑚

(
𝑠𝑚𝑡

)
= E [𝑈𝑡 |𝑠𝑡 ] is the state value function and

𝜑𝑚 denotes the critic-network parameters of the agent.

The objective function of the actor-network for the𝑚-th
SU is expressed as [28]

𝐽𝑚 (𝜇) = E𝑠𝑚𝑡 ,𝑎𝑚𝑡
[
min

(
𝑝𝑡𝜇𝐴𝜋𝑚old

(
𝑠𝑚𝑡 , 𝑎

𝑚
𝑡

)
,

clip
(
𝑝𝑡𝜇, 1 − 𝜀, 1 + 𝜀

)
𝐴𝜋𝑚old

(
𝑠𝑚𝑡 , 𝑎

𝑚
𝑡

) )]
(21)

where 𝜇 denotes the actor-network parameter, 𝜀 is the clip
parameter, and 𝑝𝑡𝜇 is the importance sampling ratio of the
current policy and the previous policy, expressed as

𝑝𝑡𝜇 =
𝜋𝜇𝑚new

(
𝑎𝑚𝑡

��𝑠𝑚𝑡 )
𝜋𝜇𝑚old

(
𝑎𝑚𝑡

��𝑠𝑚𝑡 ) . (22)

With the clip function, the magnitude of the policy
update can be controlled in (1 − 𝜀, 1 + 𝜀) to avoid over-
adjustment, thus improving the stability and convergence of
the algorithm.

The loss function of the critic network for 𝑚-th agent
can be defined as

𝐿𝑚 (𝜑) = E𝑠𝑚𝑡
[
max

( (
𝑉𝜑𝑚

new (𝑠
𝑚
𝑡 ) −

∑︁
𝜏>𝑡

𝛾𝜏−𝑡𝑟𝜏
)2
,(

clip
(
𝑉𝜑𝑚

new (𝑠
𝑚
𝑡 ), 𝑉𝜑𝑚

old
(𝑠𝑚𝑡 ) − 𝜀, 𝑉𝜑𝑚

old
(𝑠𝑚𝑡 ) + 𝜀

)
−

∑︁
𝜏>𝑡

𝛾𝜏−𝑡𝑟𝜏
)2

)]
(23)

where 𝜑𝑚new and 𝜑𝑚old denote the parameters of the current and
previous critic network, respectively. The update of the loss
function is restricted within a trust region, thereby enhancing
training stability by preventing overly aggressive parameter
shifts in response to individual samples.

4.2 MAPPO
For multi-agent reinforcement learning, a widely

adopted framework is CTDE [29]. This paradigm is par-
ticularly effective as it enables coordination during the train-
ing phase while maintaining agent autonomy during exe-
cution, facilitating efficient real-time decision-making. Our
approach leverages this framework [30], [31], and the specific
architecture is illustrated in Fig. 2.

As depicted in Fig. 3, the centralized critic processes
the global state, denoted as 𝑆, which encompasses informa-
tion from all agents [32]. This input is passed through three
fully-connected (FC) layers with neuron counts of 256, 256,
and 128 [33], to output a single state-value,𝑉 (𝑆). In contrast,
each decentralized actor operates solely on its local observa-
tion 𝑜𝑖 (e.g., ARQ, SU state, channel state information (CSI)).
It utilizes an identical network structure to produce a multi-
dimensional action distribution 𝜋(𝑎𝑖 |𝑜𝑖), which determines
the agent’s next action (e.g., Phase, Alt, Power) [34].
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Fig. 2. The framework of MAPPO, where each agent contains
a critic and actor network, respectively, interacting with
the environment to maximize or minimize the objective
function.

Fig. 3. The Actor-Critic architecture of the proposed MAPPO
algorithm under the CTDE framework.

Unlike IPPO, which exclusively utilizes local inputs,
MAPPO incorporates a centralized value function that inte-
grates global information potentially unavailable in agents’
local observations, thereby enabling PPO to effectively im-
plement the CTDE framework within multi-agent systems.
Consequently, the advantage function of MAPPO is defined
as [35]

𝐴
(
𝑠𝑡 , 𝑎

𝑚
𝑡

)
=

𝑇∑︁
𝑡=0
(𝛾𝜆)−𝑡𝛿𝑡 (24)

where 𝛿𝑡 represents the TD error, calculated by

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝜑𝑚 (𝑠𝑡+1) −𝑉𝜑𝑚 (𝑠𝑡 ) (25)

where 𝑟𝑡 denotes the immediate reward received at time step
𝑡, 𝛾 represents the discount factor quantifying the impor-
tance of future rewards, and 𝑉𝜑𝑚 (𝑠𝑡 ) is the centralized value
function parameterized by 𝜑𝑚.

In (24), (𝛾𝜆)−𝑡 serves as a discount factor that reduces
the impact of past rewards on the current advantage esti-
mation, where 𝜆 ∈ [0, 1] is an additional damping factor.
Moreover, with (24), the weighted TD errors can be aggre-
gated over the episode, quantifying how much better or worse
taking action 𝑎𝑡 in global state 𝑠𝑡 is compared to the expected
action under the current policy [36].

Algorithm 1. Training procedure of MAPPO.

Initialize the actor-network 𝜇 and critic network 𝜑.
Initialize the policy 𝜋.
for 𝑒 = 1→ 𝐸 do

Each agent obtains the initial state 𝑠𝑚0 .
for 𝑡 = 1→ 𝑇 do

Each agent executes action 𝑎𝑚𝑡 according to 𝜋𝜇𝑚old

(
𝑎𝑚𝑡

��𝑠𝑚𝑡 )
.

Each agent obtains the reward 𝑟𝑡 according to (16) and the next
state 𝑠𝑚

𝑡+1.
Store trajectory (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 ) in the experience pool D.
if Experience pool is full then

Sample a small batch from D.
Estimate the advantage function (24).
Each agent updates the actor-network 𝜇𝑚new with policy gradi-
ent.
Each agent updates the critic-network 𝜑𝑚

new by minimizing the
loss function.
Update the policy 𝜋𝑚old ← 𝜋𝑚new.

end if
end for

end for

According to [37], the objective functions of the actor
and critic networks in MAPPO align with those in IPPO, dif-
fering only in their reliance on the global state, expressed as

𝐽𝑚 (𝜇) = E𝑠𝑡 ,𝑎𝑚𝑡
[
min

(
𝑝𝑡𝜇𝐴𝜋𝑚old

(
𝑠𝑡 , 𝑎

𝑚
𝑡

)
,

clip
(
𝑝𝑡𝜇, 1 − 𝜀, 1 + 𝜀

)
𝐴𝜋𝑚new

(
𝑠𝑡 , 𝑎

𝑚
𝑡

) )]
(26)

and

𝐿𝑚 (𝜑) = −E𝑠𝑡
min ©­«

(
𝑉𝜑𝑚

new (𝑠𝑡 ) −
∑︁
𝜏>𝑡

𝛾𝜏−𝑡𝑟𝜏

)2

,(
clip

(
𝑉𝜑𝑚

new (𝑠𝑡 ) −𝑉𝜑𝑚
old
(𝑠𝑡 ) ,−𝜀, +𝜀

)
−

∑︁
𝜏>𝑡

𝛾𝜏−𝑡𝑟𝜏

)2ª®¬
 (27)

where 𝑠𝑡 is the global state of all agents.

The MAPPO algorithm is detailed in Algorithm 1. Ini-
tially, all network parameters, including those of the actor
and critic networks, are randomly initialized, and the agent
policy is set accordingly. The algorithm then iteratively ex-
ecutes for 𝐾 episodes, each comprising 𝑇 time steps. At the
beginning of each episode, every agent observes its initial
state 𝑠𝑚0 .

4.3 MAPPO-pure
In addition to the MAPPO algorithm, we develop

a novel MAPPO algorithm named MAPPO-pure, which elim-
inates redundant PU state information from the global state
input. This modification aims to evaluate the effect of re-
ducing the input state space on the learning efficiency and
overall performance of the algorithm. Both MAPPO and
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MAPPO-pure employ a clipping parameter 𝜀, which is cru-
cial for controlling convergence and ensuring stability during
the training process [38].

4.4 Computational Complexity and Onboard
Resource Requirements

To evaluate the computational burden of the proposed
multi-agent UAV-RIS cooperation algorithm in the online
phase [39], let 𝑀 denote the number of agents, 𝑑s the state
dimension of a single agent, 𝑑a the action dimension, and
consider an actor network with architecture

𝑑s → ℎ1 → ℎ2 → ℎ3 → 𝑑a.

The total number of multiply-accumulate (MAC) oper-
ations required for one multi-agent decision can be approxi-
mated by

𝐶online ≈ 𝑀
(
𝑑sℎ1 + ℎ1ℎ2 + ℎ2ℎ3 + ℎ3𝑑a

)
. (28)

In our setting, we have 𝑀 = 3, 𝑑s ≈ 9, 𝑑a ≈ 12,
ℎ1 = ℎ2 = 256, and ℎ3 = 128. Substituting these values
into (28) yields

𝐶online ≈ 3.1 × 105 MACs per time slot

which corresponds to the computation scale of a compact
deep neural network (DNN). The complexity of channel and
SINR calculations in the environment is further limited by
the number of cells𝑀 and RIS elements 𝑁 = 10, and is on the
order of 103 operations per time slot under the current con-
figuration, thus constituting a secondary overhead compared
with actor inference.

Let 𝑓dec (in Hz) denote the decision frequency. Approx-
imating each MAC as two floating-point operations (FLOPs),
the required floating-point throughput of the online inference
phase can be written as

𝐶FLOPs ≈ 2𝐶online 𝑓dec. (29)

For a conservative upper-bound decision frequency of 𝑓dec =
100 Hz, substituting into (29) gives

𝐶FLOPs ≈ 6 × 107 FLOPs/s ≈ 0.06 GFLOPS.

By comparison, the NVIDIA Jetson Nano, a standard
embedded platform for UAVs, delivers a peak throughput of
472 GFLOPS (FP16) within a 5–10 W power envelope [40].
Consequently, the proposed algorithm utilizes a negligible
fraction of the available onboard resources, even at a 100 Hz
decision rate. Furthermore, given the offline execution of the
critic network via CTDE and the passive nature of the RIS,
the proposed scheme imposes minimal hardware overhead,
ensuring practical feasibility [41].

5. Numerical Results
This section evaluates the proposed IPPO and MAPPO

algorithms within the UAV-RIS-assisted CR system, focus-
ing on the impact of the clipping parameter and RIS element
count on the SU sum rate. To investigate input dimensional-
ity, we introduce MAPPO-pure, a streamlined variant exclud-
ing redundant PU state information. The simulation deploys
three SUs with a maximum UAV altitude of 𝐻max = 30. The
UAV coordinates are set as

[
80, 40, 𝐻1

𝑡

]
,
[
120, 100, 𝐻2

𝑡

]
, and[

80, 160, 𝐻3
𝑡

]
, where 𝐻𝑚𝑡 denotes the dynamic altitude of the

𝑚-th UAV at time slot 𝑡.
To ensure simulation realism, the system parameters

align with standard urban micro-cell scenarios. We set the
carrier frequency to 2.4 GHz, yielding a theoretical reference
path loss of 40 dB. For simplicity, we assume that all trans-
mitters and receivers are equipped with isotropic antennas,
corresponding to an antenna gain of 0 dBi. Standard ur-
ban blockage is modeled using probabilistic LoS parameters
(𝐶 = 10, 𝐷 = 0.6) and an attenuation factor 𝜅 = 0.1, while
a Rician factor of 𝐾 = 10 captures the strong LoS component
of low-altitude UAVs. Furthermore, considering the shared
spectrum nature, the noise floor is set to −80 dBm to account
for the aggregate interference in an interference-limited en-
vironment. Table 1 details these settings.

Figure 4 illustrates the training dynamics of the Actor
and Critic networks within the MAPPO framework. The Ac-
tor loss (blue curve) exhibits an initial upward trend, reflect-
ing the active optimization of the policy surrogate function.
Subsequently, the curve flattens and stabilizes, indicating that
the policy has converged to a robust strategy. Meanwhile, the
Critic loss (red curve) displays high-frequency oscillations
within a bounded range. These fluctuations are attributed
to the stochastic nature of the wireless environment, which
introduces variance. Despite this variance, the Critic loss
remains stable without divergence, confirming that the net-
work effectively maintains a reliable estimate of the global
state value throughout the training process.

Symbol Description Value Unit
𝑓c Carrier frequency 2.4 GHz
𝐶, 𝐷 Environmental parameters

(LoS probability)
10, 0.6 –

𝜌0 Reference path loss at 1 m 40 dB
𝐺t, 𝐺r Antenna gain of transmitter

and receiver
0 dBi

𝜅 NLoS attenuation factor 0.1 –
𝐾 Rician factor of ground links 10 –
𝑑RIS Spacing between adjacent RIS

elements
𝜆/2 m

𝜎2 Effective noise power
(interference-limited)

−80 dBm

𝑃𝑃 Transmit power of PT 40 dBm
𝜁max Max transmit power of STs 35 dBm
𝑁 Number of elements per RIS 10 –
𝐻max Maximum UAV altitude 30 m
𝛼 Learning rate (Actor & Critic) 0.0005 –
𝛾 Discount factor 0.99 –

Tab. 1. Simulation and system parameters.
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Fig. 4. Training loss of the Actor and Critic networks. The
left axis represents the Actor loss, while the right axis
indicates the Critic loss, allowing for a simultaneous vi-
sualization of their convergence behaviors.

Figures 5 and 6 demonstrate the cumulative reward and
average achievable user rate versus episode to evaluate the ef-
fectiveness of policy optimization and communication qual-
ity. As shown in Fig. 5, MAPPO achieves rapid policy learn-
ing during the initial training phase (approximately the first
200 episodes), as evidenced by a steep increase in cumula-
tive reward. The performance curve becomes stable around
the 400th episode, converging to a reward level substantially
higher than that of IPPO.

Figure 6 further shows the data rate of the algorithms
over episodes. First, we can observe that MAPPO consis-
tently increases the achievable user rate during the training
process and maintains a high, stable rate upon convergence.
In contrast, IPPO demonstrates limited improvement, accom-
panied by greater fluctuation in the later stages and a signif-
icantly lower final average rate. These results indicate that
MAPPO is more effective in enhancing the data rate and
communication stability, benefiting from its exploitation of
shared global state information.

Figure 7 illustrates the sum rate of secondary users as
a function of the number of RIS reflecting elements, 𝑁 , for
three different algorithms: IPPO, MAPPO, and MAPPO-
pure. The sum rate increases monotonically with 𝑁 for all
methods, which demonstrates the performance benefit of en-
larging the RIS reflecting aperture. Notably, MAPPO con-
sistently outperforms IPPO across all values of 𝑁 , with the
performance gap becoming more pronounced as 𝑁 increases.
This trend highlights the superior capability of MAPPO to
leverage additional beamforming degrees of freedom offered
by the RIS. Among the three approaches, MAPPO-pure con-
sistently achieves the highest sum rate across all configura-
tions, demonstrating that eliminating redundant PU-related
inputs from the global state improves learning efficiency, par-
ticularly in high-dimensional settings.

Figure 8 illustrates the variations of the average reward
for different clipping parameters, revealing an inverse rela-
tionship between the coefficient value and convergence speed.
Specifically, when 𝜀 = 0.1, the system achieves the highest
average rewards but converges more slowly. In contrast, 𝜀 =

0.3 accelerates convergence at the cost of reduced rewards.

Fig. 5. The comparison of convergence performance under dif-
ferent algorithms.

Fig. 6. The achievable sum rate of SUs with different algorithms.

Fig. 7. Impact of the Number of RIS Elements on the System
Sum Rate.
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Fig. 8. The cumulative reward of SUs versus different clip pa-
rameters in the MAPPO algorithm.

Numerical results indicate that a clipping coefficient of
𝜀 = 0.2 achieves an optimal trade-off between stability and
convergence speed, which is crucial for ensuring reliable and
efficient spectrum sharing in dynamic cognitive radio envi-
ronments.

Figure 9 plots a spatio-temporal visualization of the
phase shift configurations across the RIS elements for Agent 2
over the training process. The heatmap utilizes a chromatic
spectrum ranging from deep blue to vibrant red, correspond-
ing to phase values within the interval [0, 2𝜋] radians. Each
row denotes an individual reflecting element, indexed by
𝑛 = 1, 2, . . . , 10. At the initial training stages, the phase con-
figurations exhibit high-frequency oscillations, reflecting the
exploratory behavior inherent to the initial learning process.
As training progresses, the phase distribution transitions from
randomness to a more structured configuration.

To evaluate the performance of our approach, the Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) al-
gorithm was selected as the baseline for our experiments.
MADDPG is a pioneering work that introduced the CTDE
framework, which has since become a standard paradigm
in the field of multi-agent systems. A direct comparison
with MADDPG under this framework allows for a clear and
meaningful assessment of the practical gains achieved by the
improvements introduced in our study.

Figure 10 illustrates the reward progression of both al-
gorithms during training. The results unequivocally demon-
strate that the MAPPO-based agent significantly outperforms
MADDPG. In contrast, the reward curve for MADDPG not
only exhibits slow convergence and a lower performance
ceiling but also displays severe oscillations throughout the
training process, revealing inherent instability in its learn-
ing procedure.

From a theoretical standpoint, MADDPG’s subopti-
mal performance can be attributed to intrinsic limitations.
First, the centralized critic, based on Q-learning, suffers
from significant estimation errors when dealing with the
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Fig. 9. RIS Phase Variations for Agent 2. Color indicates the
phase value [0, 2𝜋].

Fig. 10. Convergence performance comparison between the
MAPPO algorithm and the MADDPG baseline.

high-dimensional joint action space. These inaccurate value
estimates propagate through the policy network, resulting in
unreliable gradients that misguide the actor’s updates and
destabilize the learning process. Second, MADDPG is noto-
riously sensitive to hyperparameter settings. The algorithm
lacks the robustness to adapt to the dynamic wireless en-
vironment, where slight deviations in tuning can trigger the
severe oscillations and the catastrophic performance collapse
observed in the later stages of training.

6. Discussion
In this section, we aim to provide a comprehensive an-

alysis of the simulation results, delving into the underlying
mechanisms that contribute to the observed performance dif-
ferences between the IPPO and MAPPO algorithms. We
focus on several critical factors that impact system perfor-
mance, such as the advantages of the CTDE framework in
multi-agent systems, the sensitivity of the algorithms to the
clipping coefficient, and the influence of the chosen channel
models on the robustness of the algorithms. Through this
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discussion, we seek to understand the role of each element
in shaping the learning dynamics and overall efficiency of
UAV-RIS-assisted cognitive radio systems. Additionally, we
explore potential challenges and areas for improvement.

6.1 MAPPO Framework Analysis
The defining advantage of MAPPO lies in its inher-

ent capability for multi-agent collaborative optimization.
Whereas IPPO adopts a decentralized training paradigm that
constrains each agent to operate solely on localized observa-
tions, which is a computationally efficient but inherently sub-
optimal approach, MAPPO’s CTDE architecture fundamen-
tally addresses the partial observability challenge in multi-
agent systems. Specifically, the CTDE framework enables
agents to leverage global state information during policy op-
timization while maintaining decentralized decision-making,
thereby achieving a principled balance between exploration
and exploitation in cooperative tasks.

In spectrum sharing scenarios characterized by non-
stationary channel conditions and competitive resource allo-
cation, IPPO’s independent learning mechanism inevitably
incurs coordination inefficiencies due to the absence of joint
action-value estimation. Conversely, MAPPO’s centralized
critic network facilitates coordinated policy updates through
shared value function approximation, effectively mitigating
the curse of dimensionality in multi-agent reinforcement
learning. Empirical evaluations demonstrate that MAPPO
achieves significantly faster convergence and higher cumu-
lative reward compared to IPPO, with performance gains
in high-interference operational regimes. These quantita-
tive results validate the theoretical premise that global state
awareness is essential for optimizing cooperative strategies
in electromagnetic spectrum-sharing applications.

6.2 Clipping Coefficient Effects
The clipping coefficient serves as a critical hyperpa-

rameter in MAPPO, mediating the trade-off between policy
update stability and learning efficiency. The experimental re-
sults indicate that this parameter exerts a non-linear influence
on the magnitude of policy gradient updates. Specifically,
a smaller clipping coefficient effectively constrains policy di-
vergence, thereby enhancing stability but at the cost of slower
convergence. Conversely, larger values accelerate learning
by permitting more substantial updates, yet at the expense of
increased reward variance and potential instability.

An appropriately tuned clipping coefficient achieves
a Pareto-optimal balance between these competing objec-
tives, reducing excessive policy change while maintaining
sample efficiency. This observation is consistent with the-
oretical predictions from trust region policy optimization,
where bounded policy updates prevent destructive gradient
steps. Moreover, future implementations may benefit from
adaptive scheduling of the clipping coefficient, such as by em-
ploying annealing strategies that transition from exploratory
to exploitative phases based on policy entropy metrics.

6.3 Channel Modeling Validation
The developed environmental simulation framework in-

corporates a hybrid channel model to capture the complexity
of real-world wireless communication environments. For air-
to-ground links, a probabilistic LoS/NLoS model is adopted
to capture altitude-dependent signal propagation dynamics,
accounting for the varying likelihood of unobstructed paths
as a function of UAV elevation. For ground-to-ground links,
a Rician fading model is employed to characterize domi-
nant LoS components superimposed with multipath scatter-
ing effects. This dual-model design achieves a balance be-
tween computational tractability and physical-layer realism
by jointly modeling deterministic path loss and stochastic
fading characteristics. Moreover, the integration of envi-
ronmental noise and frequency-selective attenuation further
enhances scenario realism, thereby facilitating robust vali-
dation of DRL-based resource allocation algorithms under
diverse channel conditions.

6.4 Future Research Directions
The proposed framework faces two fundamental chal-

lenges requiring further investigation. First, ensuring long-
term adaptability is essential for real-world deployment.
While the current algorithms optimize short-term spectrum
sharing, they lack mechanisms to handle non-stationary user
behaviors and dynamic interference patterns. Second, scala-
bility limitations become pronounced in large-scale multi-
agent systems, where coordination complexity grows ex-
ponentially with agent count, potentially degrading perfor-
mance through increased interference and computational
overhead. Addressing these challenges calls for lightweight
yet robust coordination mechanisms and adaptive learning ar-
chitectures capable of maintaining a balance between global
cooperation and decentralized execution. Future research
directions include the integration of domain-specific priors,
such as integrating domain-specific knowledge into the DRL
framework to enhance scalability.

7. Conclusion
In this paper, we propose the IPPO and MAPPO al-

gorithms for a multi-UAV-and-RIS-assisted CR system to
address the challenge of multiple SUs attempting to share
the PU spectrum. Furthermore, we formulate the problem as
an MDP process to maximize the sum rate of SUs by jointly
optimizing the phase shift of the RIS, the altitude of the UAV,
and the transmit power of the SU. In addition, we introduce
a variant of the MAPPO algorithm termed MAPPO-pure to
further investigate the impact of global state information on
system performance. Simulation results demonstrate that the
MAPPO algorithm, which employs a centralized training and
decentralized execution framework, achieves higher system
performance compared to the IPPO algorithm. Moreover, the
clipping coefficient on the stability and convergence speed of
the training of the proposed algorithm is investigated.
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The source codes for the simulations are available at:
https://github.com/piko-mo/CR-with-UAV-and-RIS

Acknowledgments
This work was supported by the Hainan Province

Science and Technology Special Fund under Grant
ZDYF2024GXJS292.

References

[1] SANDYA, B. H., NAGAMANI, K., SHAVANTHI, L. A review
of cognitive radio spectrum sensing methods in communication
networks. In International Conference on Communication and
Signal Processing (ICCSP). Chennai (India), 2018, p. 457–461.
DOI: 10.1109/ICCSP.2018.8524489

[2] SALAMEH, H. B., ABDEL-RAZEQ, S., AL-OBIEDOLLAH, H.
Integration of cognitive radio technology in NOMA-based
B5G networks: State of the art, challenges, and enabling
technologies. IEEE Access, 2023, vol. 11, p. 12949–12962.
DOI: 10.1109/ACCESS.2023.3242645

[3] BOSTIAN, C. W., YOUNG, R. A. The Application of Cognitive Ra-
dio to Coordinated Unmanned Aerial Vehicle (UAV) Missions. Final
Technical Report, Virginia Polytechnic Institute and State University,
2011, p. 1–33.

[4] CHATTERJEE, S., DE, S. QoE-aware cross-layer adaptation for
D2D video communication in cooperative cognitive radio net-
works. IEEE Systems Journal, 2022, vol. 16, no. 2, p. 2078–2089.
DOI: 10.1109/JSYST.2021.3123463

[5] MUSA, A., HALLOUSH, R., SALAMAH, H. B., et al. Exploit-
ing MIMO and cognitive radio for improved performance in indoor
communication systems. In International Conference on Multimedia
Computing, Networking and Applications (MCNA). Valencia (Spain),
2023, p. 80–84. DOI: 10.1109/MCNA59361.2023.10185644

[6] HASAN, K. M., YU, S., SONG, M. Secured full-duplex
UAV-aided spectrum-sharing network based on NOMA. In
IEEE 20th International Conference on Mobile Ad Hoc and
Smart Systems (MASS). Toronto (Canada), 2023, p. 125–133.
DOI: 10.1109/MASS58611.2023.00023

[7] FIROUZJAEI, H. M., ZERAATKAR, J. M., ARDEBILIPOUR, M. A
virtual MIMO communication for a UAV-enabled cognitive relay net-
work. IEEE Sensors Journal, 2023, vol. 23, no. 17, p. 20267–20274.
DOI: 10.1109/JSEN.2023.3294280

[8] WANG, Z., ZHOU, F., WANG, Y., et al. Joint 3D trajectory and
resource optimization for a UAV relay-assisted cognitive radio net-
work. China Communications, 2021, vol. 18, no. 6, p. 184–200.
DOI: 10.23919/JCC.2021.06.015

[9] BHOWMICK, A., ROY, S. D., KUNDU, S. Throughput of an energy-
harvesting UAV-assisted cognitive radio network. In National Con-
ference on Communications (NCC). Kharagpur (India), 2020, p. 1–6.
DOI: 10.1109/NCC48643.2020.9056090

[10] KRAYANI, A., ALAM, S. A., MARCENARO, L., et al. An
emergent self-awareness module for physical layer security in
cognitive UAV radios. IEEE Transactions on Cognitive Com-
munications and Networking, 2022, vol. 8, no. 2, p. 888–906.
DOI: 10.1109/TCCN.2022.3161937

[11] NIU, H., LIN, Z., AN, K., et al. Active RIS-assisted secure trans-
mission for cognitive satellite terrestrial networks. IEEE Transac-
tions on Vehicular Technology, 2023, vol. 72, no. 2, p. 2609–2614.
DOI: 10.1109/TVT.2022.3208268

[12] ZHANG, L., WANG, Y., TAO, W., et al. Intelligent reflecting
surface aided MIMO cognitive radio systems. IEEE Transactions
on Vehicular Technology, 2020, vol. 69, no. 10, p. 11445–11457.
DOI: 10.1109/TVT.2020.3011308

[13] HE, J., YU, K., ZHOU, Y., et al. Reconfigurable intelligent surface
enhanced cognitive radio networks. In IEEE 92nd Vehicular Technol-
ogy Conference (VTC2020-Fall). Victoria (Canada), 2020, p. 1–5.
DOI: 10.1109/VTC2020-Fall49728.2020.9348788

[14] ALLU, R., TAGHIZADEH, O., SINGH, S. K., et al. Robust
beamformer design in active RIS-assisted multiuser MIMO cog-
nitive radio networks. IEEE Transactions on Cognitive Com-
munications and Networking, 2023, vol. 9, no. 2, p. 398–413.
DOI: 10.1109/TCCN.2023.3235788

[15] YU, Y., LIU, X., LIU, Z., et al. Joint trajectory and resource opti-
mization for RIS-assisted UAV cognitive radio. IEEE Transactions
on Vehicular Technology, 2023, vol. 72, no. 10, p. 13643–13648.
DOI: 10.1109/TVT.2023.3270313

[16] VO, N. V., LONG, N. Q., DANG, V.-H., et al. Physical layer security
in cognitive radio networks for IoT using UAV with reconfigurable
intelligent surfaces. In International Joint Conference on Computer
Science and Software Engineering (JCSSE). Lampang (Thailand),
2021, p. 1–5. DOI: 10.1109/JCSSE53117.2021.9493817

[17] HU, H., DA, X., HUANG, Y., et al. SE and EE optimization for cogni-
tive UAV network based on location information. IEEE Access, 2019,
vol. 7, p. 162115–162126. DOI: 10.1109/ACCESS.2019.2951702

[18] ALI, M., YASIR, M. N., BHATTI, M. S. D., et al. Optimization
of spectrum utilization efficiency in cognitive radio networks. IEEE
Wireless Communications Letters, 2023, vol. 12, no. 3, p. 426–430.
DOI: 10.1109/LWC.2022.3229110

[19] POGAKU, A. C., DO, D.-T., LEE, B. M., et al. UAV-assisted RIS
for future wireless communications: A survey on optimization and
performance analysis. IEEE Access, 2022, vol. 10, p. 16320–16336.
DOI: 10.1109/ACCESS.2022.3149054

[20] YANG, P., YANG, L., KUANG, W., et al. Outage performance of
cognitive radio networks with a coverage-limited RIS for interference
elimination. IEEE Wireless Communications Letters, 2022, vol. 11,
no. 8, p. 1694–1698. DOI: 10.1109/LWC.2022.3174639

[21] NGUYEN, D. C., LOVE, D. J., BRINTON, C. G. Intelligent
spectrum sensing and resource allocation in cognitive networks
via deep reinforcement learning. In IEEE International Confer-
ence on Communications (ICC). Rome (Italy), 2023, p. 4603–4608.
DOI: 10.1109/ICC45041.2023.10279539

[22] SHAN, Z., LIU, P., WANG, L., et al. A cognitive multi-carrier
radar for communication interference avoidance via deep rein-
forcement learning. IEEE Transactions on Cognitive Communi-
cations and Networking, 2023, vol. 9, no. 6, p. 1561–1578.
DOI: 10.1109/TCCN.2023.3306854

[23] SARIKHANI, R., KEYNIA, F. Cooperative spectrum sensing meets
machine learning: Deep reinforcement learning approach. IEEE
Communications Letters, 2020, vol. 24, no. 7, p. 1459–1462.
DOI: 10.1109/LCOMM.2020.2984430

[24] KHAF, S., ALKHODARY, M. T., KADDOUM, G. Partially coop-
erative scalable spectrum sensing in cognitive radio networks under
SDF attacks. IEEE Internet of Things Journal, 2022, vol. 9, no. 11,
p. 8901–8912. DOI: 10.1109/JIOT.2021.3116928



128 S. QIAN, L. HU, Y. QIAN, ET AL., DEEP REINFORCEMENT LEARNING IN MULTIPLE UAV-AND-RIS ASSISTED . . .

[25] XIE, H., LIN, R., WANG, J., et al. Power allocation of en-
ergy harvesting cognitive radio based on deep reinforcement learn-
ing. In International Conference on Communication and Infor-
mation Systems (ICCIS). Chongqing (China), 2021, p. 45–49.
DOI: 10.1109/ICCIS53528.2021.9645987

[26] SUTTON, R. S., MCALLESTER, D., SINGH, S., et al. Policy gradi-
ent methods for reinforcement learning with function approximation.
In International Conference on Neural Information Processing Sys-
tems (NIPS). Denver (USA), 1999, p. 1057–1063.

[27] SCHULMAN, J., MORITZ, P., LEVINE, S., et al. High-dimensional
continuous control using generalized advantage estimation. In Inter-
national Conference on Learning Representations (ICLR). San Juan
(Puerto Rico), 2016, p. 1–14. DOI: 10.48550/arXiv.1506.02438

[28] SCHULMAN, J., WOLSKI, F., DHARIWAL, P., et al. Prox-
imal policy optimization algorithms. arXiv, 2017, p. 1–12.
DOI: 10.48550/arXiv.1707.06347

[29] CHAI, J., LI, W., ZHU, Y., et al. UNMAS: Multiagent reinforce-
ment learning for unshaped cooperative scenarios. IEEE Transac-
tions on Neural Networks and Learning Systems, 2023, vol. 34, no. 4,
p. 2093–2104. DOI: 10.1109/TNNLS.2021.3105869

[30] LUONG, N. C., HOANG, D. T., GONG, S., et al. Applications of
deep reinforcement learning in communications and networking: A
survey. IEEE Communications Surveys and Tutorials, 2019, vol. 21,
no. 4, p. 3133–3174. DOI: 10.1109/COMST.2019.2916583

[31] FOERSTER, J., FARQUHAR, G., AFOURAS, T., et al. Counter-
factual multi-agent policy gradients. In International Conference on
Artificial Intelligence (AAAI). New Orleans (USA), 2018, p. 1–11.
DOI: 10.48550/arXiv.1705.08926

[32] YU, C., VELU, A., VINITSKY, E., et al. The surprising effectiveness
of PPO in cooperative multi-agent games. In International Confer-
ence on Neural Information Processing Systems (NIPS). New Orleans
(USA), 2022, p. 1–30. DOI: 10.48550/arXiv.2103.01955

[33] MNIH, V., BADIA, A. P., MIRZA, M., et al. Asynchronous meth-
ods for deep reinforcement learning. In International Conference on
Machine Learning (ICML). New York (USA), 2016, p. 1928–1937.
DOI: 10.48550/arXiv.1602.01783

[34] HU, J., HU, S., LIAO, S.-W. Policy regularization via noisy advantage
values for cooperative multi-agent actor-critic methods. arXiv, 2021,
p. 1–10. DOI: 10.48550/arXiv.2106.14334

[35] LYU, G., LI, M. Multi-agent cooperative control in neu-
ral MMO environment based on MAPPO algorithm. In IEEE
5th International Conference on Artificial Intelligence Cir-
cuits and Systems (AICAS). Hangzhou (China), 2023, p. 1–4.
DOI: 10.1109/AICAS57966.2023.10168653

[36] ZHANG, B., YANG, K. Multi-UAV searching trajectory
optimization algorithm based on deep reinforcement learn-
ing. In IEEE 23rd International Conference on Communi-
cation Technology (ICCT). Wuxi (China), 2023, p. 640–644.
DOI: 10.1109/ICCT59356.2023.10419808

[37] KANG, H., CHANG, X., MISIC, J., et al. Cooperative UAV
resource allocation and task offloading in hierarchical aerial
computing systems: A MAPPO-based approach. IEEE Inter-
net of Things Journal, 2023, vol. 10, no. 12, p. 10497–10509.
DOI: 10.1109/JIOT.2023.3240173

[38] FENG, Z., HUANG, M., WU, D., et al. Multi-agent reinforce-
ment learning with policy clipping and average evaluation for UAV-
assisted communication Markov game. IEEE Transactions on Intelli-
gent Transportation Systems, 2023, vol. 24, no. 12, p. 14281–14293.
DOI: 10.1109/TITS.2023.3296769

[39] SZE, V., CHEN, Y.-H., YANG, T.-J., et al. Efficient process-
ing of deep neural networks: A tutorial and survey. Pro-
ceedings of the IEEE, 2017, vol. 105, no. 12, p. 2295–2329.
DOI: 10.1109/JPROC.2017.2761740

[40] FRANKLIN, D. Jetson Nano Brings AI Computing to Every-
one. NVIDIA Technical Blog, 2019. [Online]. Available at:
https://blogs.nvidia.com/blog/2019/03/18/jetson-nano-aicomputing/

[41] LANE, N. D., BHATTACHARYA, S., GEORGIEV, S., et al.
DeepX: A software accelerator for deep learning on mobile de-
vices. In ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks (IPSN). Vienna (Austria), 2016, p. 1–12.
DOI: 10.1109/IPSN.2016.7460664

About the Authors . . .

Siyu QIAN received the B.E. degree in Communication En-
gineering from Nanjing Institute of Technology, Nanjing,
China in 2024, and is currently pursuing the M.E. degree in
Communication Engineering at Nanjing University of Sci-
ence and Technology, Nanjing, China. His current research
interests with intelligent reflecting surface, unmanned aerial
vehicle communications, and Covert communication system
design.

Linzi HU received the B.E. degree in Communication Engi-
neering from Nanjing University of Science and Technology,
Nanjing, China in 2023. She is currently working toward
the M.E. degree in Communication Engineering at Nanjing
University of Science and Technology, Nanjing, China. Her
research interests include wireless communications, signal
processing, and information security.

Yuwen QIAN (corresponding author) received the Ph.D. de-
gree in Automatic Engineering from Nanjing University of
Science and Technology, Nanjing, China, in 2011. From Jul.
2002 to Jun. 2011, he was a Lecturer in Automation School
of Nanjing University of Science and Technology. Since
May 2019, he has been an Associate Professor in School of
Electronic and Optical Engineering, Nanjing University of
Science and Technology, China.

Long SHI received the Ph.D. degree in Electrical Engineer-
ing from the University of New South Wales, Sydney, Aus-
tralia, in 2012. From 2013 to 2016, he was a Postdoctoral
Fellow at the Institute of Network Coding, Chinese Univer-
sity of Hong Kong, China. From 2014 to 2017, he was
a Lecturer at Nanjing University of Aeronautics and Astro-
nautics, Nanjing, China. From 2017 to 2020, he was a Re-
search Fellow at the Singapore University of Technology and
Design. Now he is a Professor at the School of Electronic
and Optical Engineering, Nanjing University of Science and
Technology, Nanjing, China. His research interests include
blockchain networks, wireless communications, and feder-
ated learning.


