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Abstract. This paper presents a compact wideband rectifier
for low-power Internet of Things (IoT) and Wireless Sensor
Network (WSN) applications, which enables efficient energy
harvesting across multiple frequency bands. The proposed
wideband rectifier operates efficiently over a broad band-
width from 0.5-1.4 GHz covering the DTV band, LTE-700,
ISM-900, and GSM-900. It employs a Coupled Three-Line
Transformer (CTLT) as an impedance matching network to
achieve a compact design and robust performance across
a wide bandwidth. The circuit uses a voltage doubler con-
figuration with SMS7630 diodes. It was designed, simulated,
and validated through fabrication. At 0 dBm, it achieves
a Power Conversion Efficiency (PCE) greater than 57%
with a 3 k2 load. The results show that the CTLT matching
network can also maintain a high PCE over a wide range of
load impedance from 2 to 7 k2. The design has a maximum
efficiency of 74,2% at 0.65 GHz; it is compact with an elec-
trical size of 0.4282 x0.037A , outperforming conventional
rectifiers in efficiency and size. This rectifier is well-suited
for powering battery-less 10T applications and WSN devices.

Keywords
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1. Introduction

Technological advancements have transformed indus-
trial operations. The fifth industrial revolution (Industry 5.0)
emphasizes value-driven strategies, integrating human-cen-
tric and sustainable technological solutions to achieve social
and industrial objectives. It complements Industry 4.0,
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which is technology-driven. Energy-efficient approaches to
autonomous device operation are key enablers for Industry
5.0 [1]. The emergence of the Internet of Things (1oT) has
introduced numerous low-power devices into the environ-
ment, such as sensor nodes, which are connected through the
Internet. By 2025, over 30.9 billion 10T devices are expected
to be in use [2], but their reliance on costly batteries with
limited capacity necessitates frequent replacement for con-
tinuous operation.

Radio Frequency Energy Harvesting (RFEH) offers
a sustainable solution by converting ambient RF energy to
DC power for 10T and Wireless Sensor Network (WSN)
applications [3]. The rectifier is a critical component in
an RFEH system. Figure 1 shows a block diagram of
an RFEH system, which comprises an antenna, impedance
matching network, rectifier, and load.

Rectifiers are classified according to their operating
frequency as single-band, multiband, and wideband. The
single-band rectifier captures energy from a single
frequency of interest and converts it to DC power. This
rectifier can achieve high Power Conversion Efficiency
(PCE). However, since RF energy is spread across a wide
frequency spectrum, the single-band rectifier captures insuf-
ficient power for most applications. To improve the har-
vested power, multiband rectifiers [4-7] or wideband recti-
fiers [8-10] are employed. Multiband rectifiers comprise an
array of single-band rectifiers that combine their outputs or
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Fig. 1. Block diagram of a Radio Frequency Energy Harvesting
(RFEH) system.
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a single circuit tuned to multiple frequencies to achieve in-
creased total power output. Wideband rectifiers capture en-
ergy from various sources over a continuous frequency
range. Designing efficient wideband rectifiers is more chal-
lenging than designing multiband rectifiers because of the
non-linear behavior of Schottky diodes [3], [11].

In recent years, the wideband rectifiers have gained
significant research attention due to their versatility in appli-
cations. In [12], a wideband rectifier based on parallel-shunt
diode topology was proposed for energy harvesting in
3G/4G, the ISM band, and biomedical applications. It em-
ploys a series transmission line for impedance matching, but
has a complex design and low PCE at low input power lev-
els. In [13], a wideband rectifier operating from 1.7 GHz to
2.5 GHz was designed using a voltage doubler topology with
an inductor and transmission lines as a matching network.
The rectifier offers a simple design but achieves low PCE.
In [14], a wideband rectifier for energy harvesting in a fre-
quency range from 1.9 GHz to 2.5 GHz was presented. It
utilizes a half-wave topology with transmission lines as
a matching network. The rectifier has a complex design with
low PCE. A wideband rectifier with an exponential tapered
transmission line impedance matching network was reported
in [15]. The rectifier has a fractional bandwidth of 194%
with a maximum efficiency of 68.8% at 21 dBm input
power. The rectifier in [16] achieved a PCE greater than 50%
in a frequency range from 0.39 GHz to 2.90 GHz using
a multi-stage matching network. In [17], a rectifier using
an impedance compression circuit was proposed with a PCE
over 50% from 0.33 GHz to 2.61GHz.

Most existing wideband rectifiers rely on complex im-
pedance matching networks, requiring high input power and
specific loads. Different wideband matching networks in-
clude: transmission lines [12-14], tapered lines [15], and
multi-stage matching network [16]. Hence, there is still
a need to design efficient and compact wideband rectifiers
that are suitable for ambient energy harvesting.

The Coupled Three-Line Transformer (CTLT) was
used in [18] as an impedance transformer for wideband im-
pedance transformation (50-170 Q). The use of CTLT for
rectifier impedance matching is underexplored, offering new
opportunities for compact, efficient designs.

This paper proposes a novel wideband rectifier that uti-
lizes a Coupled Three-Line Transformer (CTLT) as an im-
pedance matching network for the 0.5-1.4 GHz frequency
range. The 0.5-1.4 GHz range covers key RF bands such as
the DTV, LTE-700, GSM-900, and ISM-900. The CTLT en-
ables a simple, compact design with high PCE, wideband
impedance transformation and stable performance over var-
ying loads. The main contribution of this work is the use of
a CTLT as an impedance matching network for a high effi-
ciency, and compact wideband rectifier design. Section 2
presents the theoretical analysis of the CTLT, Section 3 de-
tails the design methodology of the wideband rectifier. Sec-
tion 4 discusses the results of the fabricated wideband recti-
fier and compares its performance with other wideband
rectifiers in the literature, followed by the conclusion in
Sec. 5.

2. Coupled Three-Line Transformer

The coupled three-line transformer (CTLT) is widely
used in microwave and RF circuits for applications such as
impedance matching [18], wideband filters [19], [20] and
couplers [21], [22]. Unlike the conventional quarter-wave
transformer, which is limited to narrowband impedance
matching, the CTLT offers greater flexibility and a compact
structure for wideband impedance matching due to its mul-
tiple design parameters.

The CTLT is a six-port network consisting of three
symmetric coupled lines, each of length | as shown in Fig. 2
[18]. The outer lines have width, wi, the middle line has
width, w, and a gap S separating adjacent lines. The length |
is a quarter-wavelength at the center frequency. The CTLT
transforms the load impedance Z, to the source impedance
Zs.

The CTLT, implemented on a microstrip, supports
three quasi-TEM propagation modes (a, b, and c). Each line
i of the CTLT has a modal impedance Zoi (i =1,2,3 and
k =a,b,c).The impedance matrix CTLT is a 6 x 6 matrix,
which depends on the modal impedances Zoi, and electrical
lengths (&, 6, &) determined by the microstrip geometry of
the CTLT (I, wi, W, S).

3. Design Methodology

This section presents the proposed rectifier design. The
circuit diagram of the proposed wideband RF rectifier using
a CTLT transformer as an impedance matching network is
shown in Fig. 3.

The source impedance of the RF input is 50 Q. The rec-
tifier comprises a voltage doubler, a matching network, and
a load designed to operate efficiently for 0.5-1.4 GHz. The
impedance matching is achieved through a series inductor
and a CTLT. The design methodology flow chart is shown
in Fig. 4.
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Fig. 2. Schematic diagram of a coupled three-line transformer.
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Fig. 3. Schematic diagram of the proposed wideband rectifier.
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Fig.4. Flow chart of the wideband rectifier

methodology.

design

3.1 Voltage Doubler

The voltage doubler consists of an SOT-23 package
(which includes two SMS7630 diodes), a DC block capaci-
tor Cy, and a DC pass filter C,. SMS7630 diode from Sky-
works was selected as the rectifying element due to its high
saturation current, low emission coefficient, and low junc-
tion capacitance [23]. The capacitors C; and C; are properly
selected to be as high as possible to minimize the ripple ef-
fect during rectification, subject to availability of Murata
components. The values of each capacitor were chosen as
100 nF. Advanced Design System (ADS) was used for the
simulation. Source-pull simulation was performed to deter-
mine the load that can provide the optimal efficiency across
the rectifier operating frequencies. The optimal load of the
rectifier design is found to be 3 kQ. The voltage doubler
converts RF signals into DC signals by full-wave rectifica-
tion. The voltage doubler operates as follows: during the
negative wave cycle, D; conducts and charges capacitor C;
whereas, on the positive wave cycle D, conducts and charges
capacitor C,. The voltage across the first capacitor V¢ and
the output voltage Vo are calculated as [24]:

Vcl :Vin _Vthl' (1)
At the output
Vout :VCZ = 2\/in _Vthl _Vth2' (2)

where Vi, is the RF input signal, Vini and Vi are the
threshold voltages for D; and D, respectively.

The rectifier input impedance depends on the RF input
power Pin, operating frequency f, diode non-linear imped-
ance Zg and the load R,

zZ, =f {P

in?

f,Z4, R} (3)

The input impedance of the voltage doubler connected
to the load was measured using Harmonic Balance (HB)
simulation in ADS. Figure 5 shows the rectifier input imped-
ance against frequency when Pi;=0dBm and R_=3 kQ.
The rectifier has a complex and non-linear input impedance
including capacitive reactance. It can be observed from
Fig. 5 that the real part of the input impedance decreases
from 128 Q at 0.5 GHz down to 23 Q at 1.4 GHz. The im-
aginary part of the input impedance also decreases in mag-
nitude from 247.96 Q at 0.5 GHz to 21.8 Q at 1.4 GHz.

As it was shown in [18], the CTLT offers a wideband
matching for only real valued impedances. However, due to
the complex input impedance of the rectifier, it is necessary
to minimize the capacitive reactance. Hence, an inductor is
connected in series to the input of the rectifier. The value of
the inductor is carefully selected to reduce the effect of the
capacitive reactance at the center frequency which is
0.95 GHz.
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Fig. 5. Rectifier input impedance against frequency.
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Fig. 6. Sy for different inductor values on Smith chart.
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L [S111(0.95 GHz) | S11(0.95 GHz) Zin (0.95 GHz)
(nH) (dB) (MagZ£Phase) Q)

24 -4.35 0.61/-35.02° 84.5-j93

27 5.2 0.55/-33.1° 91.5-j785

30 -6.21 0.49./-29/66° 97.75-j62.25

33 -6.39 0.48/-23.82° 109 - j54.9

36 -5.97 0.5/-17.98° 126 — j52.45

Tab. 1. |Sul, Si1and Z;, for different inductor values on Smith
chart.

From Fig. 5, the input impedance at the center fre-
quency, Zin(0.95 GHz) = (43.67 — j147.64) Q. Given the re-
actance, the value of the inductor is obtained analytically as
24.7 nH. Using this inductor value and employing available
inductors from Murata components, several simulations
were carried out in ADS to determine the optimal inductor
value. Figure 6 shows the Sy; for different inductor values on
Smith chart. The S/, Si and Zi, at the center frequency
for different inductor values are shown in Tab. 1. It can be
observed that the inductors with 30 nH and 33 nH have the
best | S11| and Sy; response at center frequency compared to
the other inductors.

3.2 Wideband Impedance Matching Network

To achieve a wideband performance, the matching net-
work combines an inductor and a CTLT. The CTLT pro-
vides a wideband performance at the center frequency. The
circuit is designed on a 0.762 mm-thick (h =0.762 mm),
Taconic RF-35 substrate, with a relative dielectric electric
&=3.5 and a loss tangent tans= 0.0018. The performance
of the transformer depends on the values of I, wi, w,, and S.
The length | of CTLT is determined at the quarter wave-
length of the center frequency (0.95 GHz) as 47.7 mm, while
the gap S is set at 0.2 mm (for maximum bandwidth, S is
chosen as small as possible). Increasing the bandwidth of the
proposed structure would correspondingly demand both the
increment of the width and the decrement of the gaps, as well
as minimum adjustment of w;, where w, > w; [18]. Based on
this, woand w; are chosen to be wi= 0.3 mm, w,=0.6 mm
as a starting point.

The inductor values of 24 nH, 27 nH, 30 nH, 33 nH
and 36 nH from Murata components are simulated along
with CTLT to determine the optimal value of the inductor
based on the rectifier design bandwidth. Figure 7 shows the
corresponding | S11| response against frequency for different
inductor values.

It can be observed from Fig. 7 that, among the different
inductors, the 30 nH outperforms the other inductors in
terms of bandwidth and maximum | Si;| . One reason that the
value of the inductor changed from theoretically calculated
value to 30 nH could be that the Murata inductor model pre-
sents real-world components with parasitic components.

The plot of | S11 | against frequency of the rectifier with
a series connected 30 nH inductor only, CTLT only and that

[Sy,| (dB)

0.4 0.6 0.8 1 1.2 1.4 1.6
Frequency (GHz)

Fig. 7. Simulated |Sy;| of the rectifier against frequency for
different inductor values combined with CTLT.

2 30 { -CTLT Only
)
& 40 1 —CTLT with Inductor
-50 --Inductor only
-60 T T T T T
0.4 0.6 0.8 1 1.2 14 1.6
Frequency (GHz)

Fig. 8. Simulated |Sy| of the rectifier against frequency.

of series 30 nH inductor along with CTLT is shown in Fig. 8.
It can be observed that the inductor only and the CTLT only
responses exhibit a narrowband response, while the inductor
along with CTLT provides a wideband performance with
agood Sy | response.

The CTLT parameters were circuit optimized using
gradient optimization in ADS to ensure |Si;| <-10dB
at 0 dBm input power across the design frequencies of
0.5-1.4 GHz. The optimized values are: |=50.58 mm,
wy = 0.23 mm, wz=1.95 mmand S = 0.47 mm. It can be ob-

5

[Sy| (dB)
r

-30 T T T
0.4 0.6 0.8 1 1.2 1.4 1.6
Frequency (GHz)

Fig.9. Simulated |S;;| of the rectifier against frequency at
different Pi,.
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Fig. 10. Simulated |Sy;| of the rectifier against frequency after
optimization.
- Circuit L
Parameter Initial Optimized EM Optimized
(mm) (mm) (mm)
Wy 0.30 0.23 0.21
W, 0.60 1.95 2.00
S 0.20 0.47 0.50
| 47.7 50.58 50.69
Tab. 2. Physical parameters of the coupled three-line

transformer.
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Fig. 11. Layout diagram of the proposed wideband rectifier.
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Fig. 12. Simulated 4th order harmonics spectrum in dBm of the
rectifier at different Pj,.

served from Fig. 9 that at 0-5dBm input power range,
|S11] <—10 dB across the design frequencies. At -5 dBm
input power, the | Si1| response is acceptable.

After the circuit optimization, the electromagnetic
(EM) simulation and optimization was performed using the
same design parameters. The goal of the EM based optimi-
zation was to achieve an RF-DC efficiency of greater than
55% across the rectifier design frequencies. Figure 10 shows

the circuit and EM optimized |S:;| against frequency at
0 dBm. Figure 11 shows the layout of the proposed rectifier
after optimization in ADS. The physical parameters of the
CTLT are presented in Tab. 2.

Figure 12 shows 4th order harmonics of the proposed
rectifier simulated in ADS. It can be observed that the pro-
posed rectifier has a strong DC output, which confirms the
circuit is functioning as intended. Besides, the harmonics
present are well suppressed.

4. Fabrication and Measurements

The wideband rectifier was designed and fabricated on
a RF-35 Taconic substrate. The measurement setup includes
a signal generator (APSIN12G) and a digital multimeter.
Figure 13(a) is a photograph of the measurement setup; Fig-
ure 13(b) shows the prototype of the fabricated wideband
rectifier. The EM simulated and measured |Si;| of the rec-
tifier is shown in Fig. 14 for comparison. As it can be seen,
both the simulated and measured results are in good agree-
ment, with minor deviations probably, due to soldering
losses and diode modelling error.

The rectifier PCE (#ece) is calculated as:

Toce = (Voc” / R, )x100% @)

in

where Vpc is the output voltage across the load.

Figure 15 shows the comparison of the measured and
simulated PCE under different input powers from —20 dBm
to 0 dBm with a load of 3 kQ. From the figure, it can be seen
that, when the input power is between -5 dBm to 0 dBm, the
PCE from 0.5-1.3 GHz is greater than 52%. This shows the
high level of efficiency of the rectifier over a wide range of
frequencies. The rectifier performs optimally at 0 dBm with
an efficiency more than 57% from 0.5-1.4 GHz. The
CTLT’s low insertion loss as established in [18] contributes
to the rectifier’s high efficiency (>57%) across 0.5-1.4 GHz.

Digital
Multimeter

4 | .
12 GHz RF °
Generator

= Uem 1 8
(b)

Fig. 13. (a) Photograph of the measurement setup. (b) Photo-
graph of the fabricated rectifier prototype.
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Fig. 14. Simulated and measured |S,;| of the rectifier against
frequency.
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Fig. 15. Simulated and measured PCE against frequency for
different input powers.

The measured and simulated PCE of the rectifier ver-
sus Pi, for (a) 0.65 and 0.8 GHz and (b) 1 and 1.2 GHz are
shown in Fig. 16, respectively. The rectifier achieves maxi-
mum PCE values of 74.2%, 67.68%, 63.18% and 63.18% at
0 dBm for the following frequencies: 0.65 GHz, 0.8 GHz,
1 GHz and 1.2 GHz, respectively. Figure 17 compares the
simulated and measured PCE versus load for different input
power values. The maximum PCE was observed for 3 kQ2 at
0dBm. The rectifier performance is relatively stable
(PCE > 50%), when the load ranges from 2—7 kQ and the
input power is from -5 dBm to 0 dBm. Also, the rectifier has
a relatively stable PCE across the loads from 2-15 kQ for
—-5dBm to —20dBm. The rectifier performs optimally
(PCE > 50%), when the input power is from -5 to 0 dBm.

The performance of the proposed wideband rectifier
was compared to related works in Tab. 3. The rectifier
achieves a PCE greater than 57% across its operating band-
width at a low input power of 0 dBm, with a maximum PCE
of 74.2%. In contrast, the rectifiers in [15-17, 25-27] which
achieve PCEs above 50%, but require high input power lev-
els (8-23.5 dBm), have limited suitability for ambient en-
ergy harvesting, where available power is typically below
0 dB.

The rectifier in [28] achieves a PCE greater than 40%
at 0 dBm, but its maximum PCE is 63% at a much higher
input power of 10 dBm, indicating lower efficiency. The
proposed rectifier has a narrower bandwidth compared with
[15] (0.06-3.91 GHz) and [25] (0.6-3.8 GHz). However, its

e Sim: 0.65 GH
70 ] Sim: V.05 Gz
60 - -)feas:0.65 GHz
J p— .
9;.\; 50 - Sim: 0.8 GHz
g 40 A - Meas: 0.8 GHz
>
2 30 A
£
=20 A
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0 T
30 25 20 -15 -10 -5 0 5 10
Pin(dBm)
(a)
80
=—Sim: 1 GHz
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01 _sim:120m
=Sim: 1. z
@ S0 M 1.2 GH
e - HE N 4
< 40 - eas z
2
2 30 1
2
E 20 A
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0 = T T T T T T T
=30 25 20 <15 -10 -5 0 5 10
P;,(dBm)
(b)
Fig. 16. Simulated and measured PCE of the proposed wideband
rectifier against different input powers P;,: (a) 0.65 and
0.8 GHz; (b) 1 and 1.2 GHz.
==Sim: 0 dBm Meas: 0 dBm ==Sim: -5 dBm == Meas: - 5dBm
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g
E 40.00
2 30.00
20.00
10.00
0.00 + r
1 3 5 7 9 11 13 15
Ry (kQ)

Fig. 17. Simulated and measured PCE of the proposed wideband
rectifier against load for different input powers.

high PCE at low input power compensates for this, as ambi-
ent energy harvesting prioritizes efficiency over ultra-wide
bandwidths. The 0.5-1.4 GHz range covers key RF bands
like the DTV, LTE-700, GSM-900 and ISM-900. The recti-
fier in [28] has a bandwidth of 0.87-2.0 GHz (1.13 GHz),
which is slightly wider than the proposed design, but its PCE
is lower.

In terms of size, the proposed rectifier is compact,
measuring 72.3 x 6.3 mm?, with an electrical size of
0.4281 x 0.0374. It is smaller than the designs in [26]
(670 mm?), (528 mm?), [27] (570 mm?),and  [30]
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(6871 mm?), but larger than [15] (141 mm?), [16] (99 mm?),
[17] (120 mm?) and [28] (114 mm?). The rectifier in [16] is
the most compact among those listed in Tab. 3, but it re-
quires a high input power of 20 dBm, reducing its suitability
for low-power applications. The proposed rectifier balances
size and efficiency, making it suitable for integration into
compact devices such as loT devices. The proposed rectifier
employs a CTLT structure, reducing design complexity
while maintaining high performance. In contrast, [16], [17],
[25-27, 29, 30] use complex designs increasing fabrication
costs, while [15] has moderate complexity and [28] is also
simple but less efficient. Its low input power requirement,
high PCE, compact size, and simple design make the pro-
posed rectifier suitable for harvesting RF signals in applica-
tions like 10T devices and wearable electronics.

PCE, Pin at operating bandwidth . )
Size Design
Ref. Pi (mm?) | complexity
BW |PCE " Max PCE
(dBm)
0.06— 68.8% @
[15] s01]>%0| 17 21 dBm 141 | Moderate
0.39- 71.7% @
[16] 29| 50| 20 26 dBm 99 | complex
0.33- 8.5— 79.7% @
(171 261 70| " 235| 19dBm | 20 | Complex
0.6— 66.6% @
[25] 38| >50 8 8 dBm 528 | Complex
0.54— 80% @
[26] 13|>50| 10 lodam | 670 | Complex
0.2— 78.2% @
[27] 32 >50 15 15 dBm 570 Complex
0.87— 63% @ .
[28] 20 >40 0 10 dBm 114 Simple
1.55— -5.0- 70% @
[29] 26| >0 sol adm | NA | Complex
2.3- —20.0— 67% @
[30] 28 >30 100 7dBm 6871 | Complex
This
work [0.5- 74.2% @ .
with 14| %7 0 0dBm 459 | Simple
CTLT

Tab. 3. Comparison with other related works.

5. Conclusion

This paper presents a wideband rectifier using a Cou-
pled Three-line Transformer (CTLT) for low-power Internet
of Things (IoT) and Wireless Sensor Network (WSN) appli-
cations. The detailed design procedure of the impedance
matching network was presented. The rectifier has a simple
structure, operates from 0.5-1.4 GHz and achieves a Power
Conversion Efficiency (PCE) greater than 57% at 0 dBm
across the design range. It has a maximum efficiency of
74.2% at 0 dBm. The design maintains stable performance
(>50% PCE) for loads from 2—7 kQ with a compact electri-
cal size of 0.4281 x 0.0371. While the proposed design
achieves high PCE at low input power, its bandwidth is nar-
rower than some recent designs. The measured results

showed that the proposed rectifier design is suitable for
wideband rectifier applications. Future research includes in-
tegrating an antenna with the rectifier and extending the
bandwidth further.
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