ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

December 2018, Volume 27, Number 4 [DOI: 10.13164/re.2018-4]

Show all Hide all

M. Hagara, P. Kubinec [references] [full-text] [DOI: 10.13164/re.2018.0919] [Download Citations]
About Edge Detection in Digital Images

Edge detection is one of the most commonly used procedures in digital image processing. In the last 30-40 years, many methods and algorithms for edge detection have been proposed. This article presents an overview of edge detection methods, the methods are divided according to the applied basic principles. Next, the measures and image database used for edge detectors performance quantification are described. Ordinary users as well as authors proposing new edge detectors often use Matlab function without understanding it in details. Therefore, one chapter is devoted to some of Matlab function parameters that affect the final result. Finally, the latest trends in edge detection are listed. Picture Lena and two images from Berkeley segmentation data set (BSDS500) are used for edge detection methods comparison.

  1. QIU, T., YAN, Y., LU, G. An autoadaptive edge-detection algorithm for flame and fire image processing. IEEE Transactions on Instrumentation and Measurement, 2012, vol. 61, no. 5, p. 1486–1493. DOI: 10.1109/TIM.2011.2175833
  2. AL-GHAILI, A. M., MASHOHOR, S., RAMLI, A. R., ISMAIL, A. Vertical-edge-based car-license-plate detection method. IEEE Transactions on Vehicular Technology, 2013, vol. 62, no. 1, p. 26–38. DOI: 10.1109/TVT.2012.2222454
  3. CHEN, J., HUANG, C., DU, Y., LIN, C. Combining fractionalorder edge detection and chaos synchronisation classifier for fingerprint identification. IET Image Processing, 2014, vol. 8, no. 6, p. 354–362. DOI: 10.1049/IET-IPR.2012.0660
  4. BASELICE, F., FERRAIOLI, G., REALE, D. Edge detection using real and imaginary decomposition of SAR data. IEEE Transactions on Geoscience and Remote Sensing, 2014, vol. 52, no. 7, p. 3833–3842. DOI: 10.1109/TGRS.2013.2276917
  5. JIN, R., YIN, J., ZHOU, W., YANG, J. Improved multiscale edge detection method for polarimetric SAR images. IEEE Geoscience and Remote Sensing Letters, 2016, vol. 13, no. 8, p. 1104–1108. DOI: 10.1109/LGRS.2016.2569534
  6. LIU, C., XIAO, Y., YANG, J. A coastline detection method in polarimetric SAR images mixing the region-based and edge-based active contour models. IEEE Transactions on Geoscience and Remote Sensing, 2017, vol. 55, no. 7, p. 3735–3747. DOI: 10.1109/TGRS.2017.2679112
  7. SAHEBA, S. M., UPADHYAYA, T. K., SHARMA, R. K. Lunar surface crater topology generation using adaptive edge detection algorithm. IET Image Processing, 2016, vol. 10, no. 9, p. 657–661. DOI: 10.1049/iet-ipr.2015.0232
  8. WANG, Y., TAVANAPONG, W., WONG, J., et al. Part-based multiderivative edge cross-sectional profiles for polyp detection in colonoscopy. IEEE Journal of Biomedical and Health Informatics, 2014, vol. 18, no. 4, p. 1379–1389. DOI: 10.1109/JBHI.2013.2285230
  9. PRATT, W. K. Digital Image Processing. 4th ed., Hoboken, New Jersey (USA): John Wiley & Sons, 2007. ISBN: 9780471767770
  10. CANNY, J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, vol. 8, no. 6, p. 679–698. DOI: 10.1109/TPAMI.1986.4767851
  11. CHANDA, B., KUNDU, M. K., PADMAJA, Y. V. A multi-scale morphologic edge detector. Pattern Recognition, 1998, vol. 31, no. 10, p. 1469–1478. DOI: 10.1016/S0031-3203(98)00014-4
  12. LEE, J. S., HARALICK, R. M., SHAPIRO, L. G. Morphologic edge detection. IEEE Journal of Robotics and Automation, 1987, vol. 3, no. 2, p. 142–156. DOI: 10.1109/JRA.1987.1087088
  13. SHUI, P., WANG, F. Anti-impulse-noise edge detection via anisotropic morphological directional derivatives. IEEE Transactions on Image Processing, 2017, vol. 26, no. 10, p. 4962–4977. DOI: 10.1109/TIP.2017.2726190
  14. GONZALEZ, R. C., WOODS, R. E., EDDINS, S. Digital Image Processing Using MATLAB. 2nd ed. Gatesmark Publishing (USA), 2009. ISBN: 978-0982085400
  15. ROSIN, P. L. Unimodal thresholding. Pattern Recognition, 2001, vol. 34, no. 11, p. 2083–2096. DOI: 10.1016/S0031- 3203(00)00136-9
  16. BRINK, A. D., PENDOCK, N. E. Minimum cross-entropy threshold selection. Pattern Recognition, 1966, vol. 29, no. 1, p. 179–188. DOI: 10.1016/0031-3203(95)00066-6
  17. OTSU, N. A threshold selection method from gray-level histogram. IEEE Transactions on Systems, Man, and Cybernetics, 1979, vol. 9, no. 1, p. 62–66. DOI: 10.1109/TSMC.1979.4310076
  18. SEN, D., PAL, S. K. Thresholding for edge detection in SAR images. In Proceedings of IEEE-International Conference on Signal Processing, Communications and Networking. Chennai (India), 2008, p. 311–316. DOI: 10.1109/ICSCN.2008.4447210
  19. CHOW, C. K., KANEKO, T. Automatic boundary detection of the left ventricle from cineangiograms. Computers and Biomedical Research, 1972, vol. 5, no. 4, p. 388–410. DOI: 10.1016/0010- 4809(72)90070-5
  20. NAIN, N., JINDAL, G., GARG, A., JAIN, A. Dynamic thresholding based edge detection. In Proceedings of the World Congress on Engineering WCE 2008. London (U.K.), 2008, p. 694–699. ISBN: 978-988-98671-9-5
  21. CANNY, J. Finding edges and lines in images. Report AI-TR-720, MIT Artificial Intelligence Laboratory, Cambridge, MA, 1983.
  22. LACROIX, V. A three-module strategy for edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, vol. 10, no. 6, p. 803–810. DOI: 10.1109/34.9103
  23. MARR, D., HILDRETH, E. Theory of edge detection. Proceedings of the Royal Society of London, Series B, Biological Sciences, 1980, vol. 207, no. 1167, p. 187–217. DOI: 10.1098/rspb.1980.0020
  24. LI, Z., YANG, Y., JIANG, W. Multi-scale morphologic tracking approach for edge detection. In Proceedings of the Fourth International Conference on Image and Graphics. Sichuan (China), 2007, p. 358–362. DOI: 10.1109/ICIG.2007.86
  25. BAO, P., ZHANG, L., WU, X. Canny edge detection enhancement by scale multiplication. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, vol. 27, no. 9, p. 1485–1490. DOI: 10.1109/TPAMI.2005.173
  26. MALLAT, S., ZHONG, S. Characterization of signals from multiscale edges. Transactions on Pattern Analysis and Machine Intelligence, 1992, vol. 14, no. 7, p. 710–732. DOI: 10.1109/34.142909
  27. MALLAT, S., HWANG, W. L. Singularity detection and processing with wavelets. IEEE Transactions on Information Theory, 1992, vol. 32, no. 2, p. 617–643. DOI: 10.1109/18.119727
  28. HASSANZADEH, M. R., ARDESHIR, G. R., KARAMI MOLLAEI, M. R. Two new methods for finding endocardial and epicardial boundaries in echocardiographic images using wavelet analysis. European Journal of Scientific Research, 2009, vol. 27, no. 2, p. 264–274. ISSN: 1450-216X
  29. ZHANG, L., BAO, P. Edge detection by scale multiplication in wavelet domain. Pattern Recognition Letters, 2002, vol. 23, no. 14, p. 1771–1784. DOI: 10.1016/S0167-8655(02)00151-4
  30. HEDDLEY, M., YAN, H. Segmentation of color images using spatial and color space information. Journal of Electronic Imaging, 1992, vol. 1, no. 4, p. 374–380. DOI: 10.1117/12.61158
  31. FAN, J., YAU, D. K. Y., ELMAGARMID, A. K., AREF, W. G. Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Transactions on Image Processing, 2001, vol. 10, no. 10, p. 1454–1466. DOI: 10.1109/83.951532
  32. KOSCHAN, A. A comparative study on color edge detection. In Proceedings of the 2nd Asian Conference on Computer Vision ACCV´95, Singapore, 1995, p. 574–578.
  33. TRAHANIAS, P. E., VENETSANOPOULOS, A. N. Color edge detection using vector order statistics. IEEE Transactions on Image Processing, 1993, vol. 2, no. 2, p. 259–264. DOI: 10.1109/83.217230
  34. TRAHANIAS, P. E., VENETSANOPOULOS, A. N. Vector order statistics operators as color edge detectors. IEEE Transactions on Systems, Man, and Cybernetics, 1996, vol. 26, no. 1, p. 135–143. DOI: 10.1109/3477.484445
  35. PELI, T., MALAH, D. A study of edge detection algorithms. Computer Graphics Image Processing, 1982, vol. 20, no. 1, p. 1–21. DOI: 10.1016/0146-664X(82)90070-3
  36. MARTIN, D., FOWLKES, C., TAL, D., MALIK, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the IEEE international conference on computer vision (ICCV 2001). Vancouver (Canada), 2001, p. 416–425. DOI: 10.1109/ICCV.2001.937655
  37. ARBELAEZ, P., MAIRE, M., FOWLKES, C., MARTIN, D. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, vol. 33, no. 5, p. 898–916. DOI: 10.1109/TPAMI.2010.161
  38. ARORA, S., HANMANDLU, M., GUPTA, G. Edge detection of digital color images using information sets. Journal of Electronic Imaging, 2016, vol. 25, no. 6, id. no. 061607. DOI: 10.1117/1.JEI.25.6.061607
  39. VIGNESH, K., ARORA, S., HANMANDLU, M. Edge detection using fractional derivatives and information sets. Journal of Electronic Imaging, 2018, vol. 27, no. 5, id. 051226. DOI: 10.1117/1.JEI.27.5.051226
  40. YI, S., LABATE, D., EASLEY, G. R., KRIM, H. A shearlet approach to edge analysis and detection. IEEE Transactions on Image Processing, 2009, vol. 18, no. 5, p. 929–941. DOI: 10.1109/TIP.2009.2013082
  41. JIANG, W., LAM, K., SHEN, T. Efficient edge detection using simplified Gabor wavelets. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2009, vol. 39, no. 4, p. 1036–1047. DOI: 10.1109/TSMCB.2008.2011646
  42. AGAIAN, S. S., PANETTA, K. A., NERCESSIAN, S. C., DANAHY, E. E. Boolean derivatives with application to edge detection for imaging systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, vol. 40, no. 2, p. 371–382. DOI: 10.1109/TSMCB.2009.2024771
  43. GAO, C. B., ZHOU, J. L., HU, J. R., LANG, F. N. Edge detection of colour image based on quaternion fractional differential. IET Image Processing, 2011, vol. 5, no. 3, p. 261–272. DOI: 10.1049/iet-ipr.2009.0409
  44. MAIRAL, J., LEORDEANU, M., BACH, F., et al. Discriminative sparse image models for class-specific edge detection and image interpretation. In Proceedings of European Conference on Computer Vision (ECCV). Marseille (France), 2008, p. 43–56. DOI: 10.1007/978-3-540-88690-7_4
  45. WANG, Q., ZHANG, G. Ore image edge detection using HOGindex dictionary learning approach. The Journal of Engineering, 2017, vol. 2017, no. 9, p. 542–543. DOI: 10.1049/joe.2017.0343
  46. MELIN, P., GONZALES, C. I., CASTRO, J. R., et al. Edgedetection method for image processing based on generalized type2 fuzzy logic. IEEE Transactions on Fuzzy Systems, 2014, vol. 22, no. 6, p. 1515–1525. DOI: 10.1109/TFUZZ .2013.2297159
  47. VERMA, O. P., PARIHAR, A. S. An optimal fuzzy system for edge detection in color images using bacterial foraging algorithm. IEEE Transactions on Fuzzy Systems, 2017, vol. 25, no. 1, p. 114–127. DOI: 10.1109/TFUZZ.2016.2551289
  48. MATHIEU, B., MELCHIOR, P., OUSTALOUPE, A., et al. Fractional differentiation for edge detection. Signal Processing, 2003, vol. 83, no. 11, p. 2421–2432. DOI: 10.1016/S0165- 1684(03)00194-4
  49. AMOAKO-YIRENKYI, P., APPATI, J. K., DONTWI, I. K. A new construction of a fractional derivative mask for image edge analysis based on Riemann-Liouville fractional derivative. Advances in Difference Equations, 2016, no. 1, p. 1–23. DOI: 10.1186/s13662-016-0946-8
  50. NANDAL, A., GAMBOA-ROSALES, H., DHAKA, A., et al. Image edge detection using fractional calculus with feature and contrast enhancement. Circuits, Systems, and Signal Processing, 2018, vol. 37, no. 9, p. 3946–3972. DOI: 10.1007/s00034-018-0751-6
  51. LOVERRO, A. Fractional calculus: history, definitions and applications for the engineer. Technical report, University of Notre Dame, Notre Dame (USA), 2004, p. 1–28.

Keywords: Image processing, edge detection, gradient operator, morphological operator, fractional differentiation, Berkeley segmentation data set (BSDS), NYU depth dataset, Matlab

A. Dziekonski, M. Mrozowski [references] [full-text] [DOI: 10.13164/re.2018.0930] [Download Citations]
Single and Dual-GPU Generalized Sparse Eigenvalue Solvers for Finding a Few Low-Order Resonances of a Microwave Cavity Using the Finite-Element Method

This paper presents two fast generalized eigenvalue solvers for sparse symmetric matrices that arise when electromagnetic cavity resonances are investigated using the higher-order finite element method (FEM). To find a few low-order resonances, the locally optimal block conjugate gradient (LOBPCG) algorithm with null-space deflation is applied. The computations are expedited by using one or two graphical processing units (GPUs) as accelerators. The performance of the solver is tested for single and dual GPU hardware setups, making use of two types of GPU: NVIDIA Kepler K40s and NVIDIA Pascal P100s. The speed of the GPU-accelerated solvers is compared to a multithreaded implementation of the same algorithm using a multicore central processing unit (CPU, Intel Xeon E5-2680 v3 with twelve cores). It was found that, even for the least efficient setups, the GPU-accelerated code is approximately twice as fast as a parallel CPU-only implementation.

  1. KRAKIWSKY, S. E., TURNER, L. E., OKONIEWSKI, M. M. Acceleration of finite-difference time-domain (FDTD) using graphics processor units (GPU). In IEEE MTT-S International Microwave Symposium Digest. Fort Worth (USA), 2004, p. 1033–1036. DOI: 10.1109/MWSYM.2004.1339160
  2. INMAN, M. J., ELSHERBENI, A. Z. Programming video cards for computational electromagnetics applications. IEEE Antennas and Propagation Magazine, 2005, vol. 47, no. 6, p. 71–78. DOI: 10.1109/MAP.2005.1608730
  3. SYPEK, P., DZIEKONSKI, A., MROZOWSKI, M. How to render FDTD computations more effective using a graphics accelerator. IEEE Transactions on Magnetics, 2009, vol. 45, no. 3, p. 1324–1327. DOI: 10.1109/TMAG.2009.2012614
  4. DE DONNO, D., ESPOSITO, A., TARRICONE, L., et al. Introduction to GPU computing and CUDA programming: A case study on FDTD [EM programmer’s notebook]. IEEE Antennas and Propagation Magazine, 2010, vol. 52, no. 3, p. 116–122. DOI: 10.1109/MAP.2010.5586593
  5. DE DONNO, D., ESPOSITO, A., MONTI, G., et al. Parallel efficient method of moments exploiting graphics processing units. Microwave and Optical Technology Letters, 2010, vol. 52, no. 11, p. 2568–2572. DOI: 10.1002/mop.25534
  6. DE DONNO, D., ESPOSITO, A., MONTI, G., et al. MPIE/MoM acceleration with a general-purpose graphics processing unit. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 9, p. 2693–2701. DOI: 10.1109/TMTT.2012.2203924
  7. MU, X., ZHOU, H.-X., CHEN, K., et al. Higher order method of moments with a parallel out-of-core LU solver on GPU/CPU platform. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 11, p. 5634–5646. DOI: 10.1109/TAP.2014.2350536
  8. GUAN, J., YAN, S., JIN, J.-M. An OpenMP-CUDA implementation of multilevel fast multipole algorithm for electromagnetic simulation on multi-GPU computing systems. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 7, p. 3607–3616. DOI: 10.1109/TAP.2013.2258882
  9. KLOCKNER, A., WARBURTON, T., BRIDGE, J., et al. Nodal discontinuous galerkin methods on graphics processors. Journal of Computational Physics, 2009, vol. 228, no. 21, p. 7863–7882. DOI: 10.1016/j.jcp.2009.06.041
  10. CAPOZZOLI, A., KILIC, O., CURCIO, C., et al. The success of GPU computing in applied electromagnetics. Applied Computational Electromagnetics Society Journal, 2018, vol. 33, no. 2. ISSN: 1054-4887
  11. DZIEKONSKI, A., LAMECKI, A., MROZOWSKI, M. GPU acceleration of multilevel solvers for analysis of microwave components with finite element method. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 1, p. 1–3. DOI: 10.1109/LMWC.2010.2089974
  12. DZIEKONSKI, A., LAMECKI, A., MROZOWSKI, M. Tuning a hybrid GPU-CPU V-cycle multilevel preconditioner for solving large real and complex systems of FEM equations. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 619–622. DOI: 10.1109/LAWP.2011.2159769
  13. DINH, Q., MARECHAL, Y. Toward real-time finite-element simulation on GPU. IEEE Transactions on Magnetics, 2016, vol. 52, no. 3, p. 1–4. DOI: 10.1109/TMAG.2015.2477602
  14. DZIEKONSKI, A., SYPEK, P., LAMECKI, A., et al. Generation of large finite-element matrices on multiple graphics processors. International Journal for Numerical Methods in Engineering, 2013, vol. 94, no. 2, p. 204–220. DOI: 10.1002/nme.4452
  15. MENG, H.-T., NIE, B.-L., WONG, S., et al. GPU accelerated finite-element computation for electromagnetic analysis. IEEE Antennas and Propagation Magazine, 2014, vol. 56, no. 2, p. 39–62. DOI: 10.1109/MAP.2014.6837065
  16. AURENTZ, J. L., KALANTZIS, V., SAAD, Y. Cucheb: a GPU implementation of the filtered lanczos procedure. Computer Physics Communications, 2017, vol. 220, p. 332–340. DOI: 10.1016/j.cpc.2017.06.016
  17. ANZT, H., TOMOV, S., DONGARRA, J. Accelerating the LOBPCG method on GPUs using a blocked sparse matrix vector product. In Proceedings of the Symposium on High Performance Computing (HPC). Alexandria (USA), 2015, p. 75–82.
  18. KREUTZER, M., ERNST, D., BISHOP, A. R., et al. Chebyshev filter diagonalization on modern manycore processors and GPGPUs. In Proceedings of the International Conference on High Performance Computing. Frankfurt (Germany), 2018, p. 329–349. DOI: 10.1007/978-3-319-92040-5_17
  19. RODRIGUES, W., PECCHIA, A., DER MAUR, M. A., et al. A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs. Journal of Computational Electronics, 2015, vol. 14, no. 2, p. 593–603. DOI: 10.1007/s10825-015-0695-z
  20. DZIEKONSKI, A., REWIENSKI, M., SYPEK, P., et al. GPUaccelerated LOBPCG method with inexact null-space filtering for solving generalized eigenvalue problems in computational electromagnetics analysis with higher-order FEM. Communications in Computational Physics, 2017, vol. 22, no. 4, p. 997–1014. DOI: 10.4208/cicp.OA-2016-0168
  21. RUBIO, J., ARROYO, J., ZAPATA, J. Analysis of passive microwave circuits by using a hybrid 2-D and 3-D finite-element mode-matching method. IEEE Transactions on Microwave Theory and Techniques, 1999, vol. 47, no. 9, p. 1746–1749. DOI: 10.1109/22.788618
  22. ZHU, Y., CANGELLARIS, A. C. Multigrid Finite Element Methods for Electromagnetic Field Modeling. John Wiley & Sons, 2006. ISBN: 9780471741107
  23. INGELSTROM, P. A new set of H (curl)-conforming hierarchical basis functions for tetrahedral meshes. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 1, p. 106–114. DOI: 10.1109/TMTT.2005.860295
  24. KNYAZEV, A. V. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM Journal on Scientific Computing, 2001, vol. 23, no. 2, p. 517–541. DOI: 10.1137/S1064827500366124
  25. ARBENZ, P., GEUS, R. Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems. Applied Numerical Mathematics, 2005, vol. 54, no. 2, p. 107–121. DOI: 10.1016/j.apnum.2004.09.026
  26. DZIEKONSKI, A., LAMECKI, A., MROZOWSKI, M. A memory efficient and fast sparse matrix vector product on a GPU. Progress in Electromagnetics Research, 2011, vol. 16, p. 49–63. DOI:10.2528/PIER11031607
  27. DZIEKONSKI, A., SYPEK, P., LAMECKI, A., et al. Communication and load balancing optimization for finite element electromagnetic simulations using multi-GPU workstation. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 8, p. 2661–2671. DOI: 10.1109/TMTT.2017.2714670
  28. REWIENSKI, M., DZIEKONSKI, A., LAMECKI, A., et al. A stabilized complex LOBPCG eigensolver for the analysis of moderately lossy EM structures. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 1, p. 7–9. DOI: 10.1109/LMWC.2017.2771289
  29. LAMECKI, A., BALEWSKI, L., MROZOWSKI, M. An efficient framework for fast computer aided design of microwave circuits based on the higher-order 3D finite-element method. Radioengineering, 2014, vol. 23, no. 4, p. 970–978.
  30. DZIEKONSKI, A., MROZOWSKI, M. Block conjugate-gradient method with multilevel preconditioning and GPU acceleration for fem problems in electromagnetics. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 6, p. 1039–1042. DOI: 10.1109/LAWP.2018.2830124
  31. AMDAHL, G. M. Validity of the single processor approach to achieving large scale computing capabilities. In Proceedings of the AFIPS Spring Joint Computer Conference. Atlantic City (USA), 1967, p. 483–485.

Keywords: FEM, generalized eigenvalue problem, GPU, Maxwell's equations, resonators

P. Pinho, N. Carvalho [references] [full-text] [DOI: 10.13164/re.2018.0937] [Download Citations]
Evaluation of Planar Elliptical Antenna Array with Inner Counter-elliptical Slot

This paper presents and analyzes a low profile planar antenna array of elliptical elements with inner counter-elliptical slots. The antenna has single feed and provides two main directive radiation components (front and back), with gain higher than 7dBi and circular polarization (CP) over the entire 5 GHz ISM and UNII bands. This approach also cancels the null over the elevation plane, which makes it suitable for bidirectional communications, also for proximity coverage. The inner slot of elliptical shape provides three additional degrees of freedom to match the planar monopole and/or array in impedance and polarization over the desired frequency band. An electromagnetic (EM) model of the proposed antenna is developed for numerical analysis and optimization. The principle of operation and parametric study of the antenna are provided. The antenna is fabricated and experimental results are presented. The number of elements in the array are chosen according to the desired gain and the inner elliptical slot parameters (major Radius, elliptical Ratio and Rotation) scaled for impedance and polarization matching.

  1. KAJIWARA, A. Line-of-sight indoor radio communication using circular polarized waves. IEEE Transactions on Vehicular Technology, 1995, vol. 44, no. 3, p. 487–493. DOI: 10.1109/25.406616
  2. TOH, B. Y., CAHILL, R., FUSCO, V. F. Understanding and measuring circular polarization. IEEE Transactions on Education, 2003, vol. 46, no. 3, p. 313–318. DOI: 10.1109/TE.2003.813519
  3. RAO, P. N., SARMA, N. Fractal boundary circularly polarised single feed microstrip antenna. Electronics Letters, 2008, vol. 44, no. 12, p. 713–714. DOI: 10.1049/el:20080706
  4. TRINH-VAN S., KIM, H. B., KWON, G., et al. Circularly polarized spidron fractal slot antenna arrays for broadband satellite communications in ku-band. Progress In Electromagnetics Research, 2013 vol. 137, p. 203–218. DOI: 10.2528/PIER13010401
  5. NASIMUDDIN, CHEN, Z. N. Aperture-coupled asymmetrical c-shaped slot microstrip antenna for circular polarisation. IET Microwaves, Antennas and Propagation, 2009 vol. 3, no. 3, p. 372–378. DOI: 10.1049/iet-map.2008.0126
  6. REZAEIEH, S. A., KARTAL, M. A new triple band circularly polarized square slot antenna design with crooked T and F-shape and strips for wireless applications. Progress In Electromagnetics Research, 2011, vol. 121, p. 1–18. DOI: 10.2528/PIER11081506
  7. LEE, W. S, OH, K. S., YU, J. W. A wideband planar monopole antenna array with circular polarized and band-notched characteristics. Progress In Electromagnetics Research, 2012, vol. 128, p. 381–398. DOI:10.2528/PIER12040307
  8. GHOBADI, A., DEHMOLLAIAN, M. A printed circularly polarized Y-shaped monopole antenna. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 22–25. DOI: 10.1109/LAWP.2011.2181314
  9. VARUM, T., MATOS, J. N., PINHO, P., OLIVEIRA, A. O. Printed antenna for DSRC systems with omnidirectional circular polarization. In Proceedings of the 15th IEEE International Conference on Intelligent Transportation Systems. Anchorage (USA), 2012, p. 1–4. DOI: 10.1109/ITSC.2012.6338677
  10. YANG, S., CHAIR, R., KISHK, A. A., et al. Study on sequential feeding networks for subarrays of circularly polarized elliptical dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 2, p. 321–333. DOI: 10.1109/TAP.2006.889819
  11. BANCROFT, R., BATEMAN, B. An omnidirectional planar microstrip antenna. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 11, p. 3151–3154. DOI: 10.1109/TAP.2004.832338
  12. BRAS, L., CARVALHO, N. B., PINHO, P. Circular polarized planar elliptical antenna array. In Proceedings of the 7th European Conference on Antennas and Propagation (EuCAP). Gothenburg (Sweden), 2013, p. 891–893.
  13. SUN, Y. Y., CHEUNG, S. W., YUK, T. I. Studies of planar antennas with different radiator shapes for ultra-wideband bodycentric wireless communications. In Proceedings of Progress In Electromagnetics Research Symposium (PIERS). Suzhou (China), 2011, p. 1415–1419.
  14. HFSS - ANSYS CORPORATION. HFSS 3D Full-wave Electromagnetic Field Simulation. [Online] Available at: http://www.ansys.com/

Keywords: Axial Ratio (AR), Circular Polarization (CP), front-back radiation, Planar Elliptical Antenna Array (PEAA), Planar Elliptical Monopole (PEM), wide bandwidth

H. T. Thuy, S. D. Sun [references] [full-text] [DOI: 10.13164/re.2018.0942] [Download Citations]
Direct Demodulation of Optical BPSK/QPSK Signals without Digital Signal Processing

We experimentally demonstrate the coherent detection of 5-Gbd/s BPSK/QPSK signal by direct phase compensation of the phase noise without using a sophisticated digital signal processing algorithm. The phase compensation is achieved by applying simply an error signal to a phase modulator located at the local oscillator for coherent detection, where the error signal is generated to keep the same power level for binary or quadrature signal.

  1. KIKUCHI, K. Fundamentals of coherent optical fiber communication. Journal of Lightwave Technology, 2016, vol. 34, no. 1, p. 157–179. DOI: 10.1109/JLT.2015.2463719
  2. LEVEN, A., KANEDA, N., UT-VA KOC, et al. Coherent receivers for practical optical communication systems. In Proceedings of IEEE Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference. Anaheim (CA, USA), 2007. DOI: 10.1109/OFC.2007.4348697
  3. IP, E., PAK TAO LAU, A., BARROS, D. J. F., et al. Coherent detection in optical fiber systems. Optics Express, 2008, vol. 16, no. 2, p. 753–791. DOI: 10.1364/OE.16.000753
  4. COLAVOLPE, G., FOGGI, T., FORESTIERI, E., et al. Impact of phase noise and compensation techniques in coherent optical systems. Journal of Lightwave Technology, 2011, vol. 29, no. 18, p. 2790–2800. DOI: 10.1109/JLT.2011.2164237
  5. TSUKAMOTO, S., KATOH, K., KIKUCHI, K. Coherent demodulation of optical multilevel phase-shift-keying signals using homodyne detection and digital signal processing. IEEE Photonics Technology Letters, 2006, vol. 18, no. 10, p. 1131–1133. DOI: 10.1109/LPT.2006.873921
  6. LY-GAGNON, D.-S., TSUKAMOTO, S., KATOH, K., et al. Coherent detection of optical quadrature-phase-shift-keying signal with carrier phase estimation. Journal of Lightwave Technology, 2006, vol. 24, no. 1, p. 12–21. DOI: 10.1109/JLT.2005.860477
  7. PETROU, C. S., VGENIS, A., ROUDAS, I., et al. Quadrature imbalance compensation for PDM QPSK coherent optical systems. IEEE Photonics Technology Letters, 2009, vol. 21, no. 24, p. 1876–1878. DOI: 10.1109/LPT.2009.2034750
  8. FORESTIERI, E., SECONDINI, M., FRESI, F., et al. Extending the reach of short-reach optical interconnects with DSP-Free direct detection. Journal of Lightwave Technology, 2017, vol. 35, no. 15, p. 3174–3181. DOI: 10.1109/JLT.2016.2647243
  9. HERZOG, F. T. An optical phase locked loop for coherent space communications. Doctoral Thesis. Swiss Federal Institute of Technology, Zurich, 2006.
  10. HA, T. T., SEO, D. S. Direct detection of optical BPSK/QAM without digital signal processing. In Proceedings of 151st the IIER International Conference. Osaka (Japan), 2018, p. 73–75.
  11. HERZOG, F., KUDIELKA, K., ERNI, D., et al. Optical phase locked loop for transparent inter-satellite communications. Optics Express, 2005, vol. 13, no. 10, p. 3816–3821. DOI: 10.1364/OPEX.13.003816
  12. PARK, H. C., LU, M., BLOCH, E., et al. 40Gbit/s coherent optical receiver using a Costas loop. Optics Express, 2012, vol. 20, no. 26, p. B197–B203. DOI: 10.1364/OE.20.00B197
  13. FATADIN, I., SAVORY, S. J., IVES, D. Compensation of quadrature imbalance in an optical QPSK coherent receiver. IEEE Photonics Technology Letters, 2008, vol. 20, no. 20, p. 1733–1735. DOI: 10.1109/LPT.2008.2004630
  14. SAKAMOTO, T., CHIBA, A., KANNO, A., et al. Real-time homodyne reception of 40-Gb/s BPSK signal by digital optical phase-locked loop. In 36th European Conference and Exhibition on Optical Communication (ECOC). Torino (Italy), 2010. DOI: 10.1109/ECOC.2010.5621234
  15. LEYVA, J. A. L., HIDALGP, C. E. R. Interconnecting university networks using a full-duplex FSO system using coherent detection and polarization-division multiplexing: Design and simulation. In Proceeding of IEEE Optical Interconnects Conference (OI). San Diego (CA, USA), 2015. DOI: 10.1109/OIC.2015.7115702
  16. ZHU, Z., ZHOU, H., XIE, W., et al. 10-Gb/s homodyne receiver based on Costas loop with enhanced dynamic performance. In Proceeding of 16th International Conference on Optical Communication and Networks (ICOCN). Wuzhen (China), 2017. DOI: 10.1109/ICOCN.2017.8121575

Keywords: Phase noise, BPSK, QPSK, coherent detection, coherent optical communication

A. Banerjee, K. Patra, S. Chatterjee, B. Gupta, A. K. Bandyopadhyay [references] [full-text] [DOI: 10.13164/re.2018.0948] [Download Citations]
Theoretical Investigations on the Resonance Characteristics of CPW-Fed Miniaturized Strip Monopole Antennas

Novel closed form expressions to investigate CPW-fed miniaturized planar monopole antennas are presented. The analysis of a CPW-fed strip monopole structure is further extended to derive expressions for the input impedances of miniaturized strip-monopoles supporting slow wave propagation. The concept includes the modification of the propagation constants of the structures and the modeling of them into their equivalent straight rectangular strip-monopoles on planar substrates. The meandered/miniaturized strip-monopole radiators are disintegrated to model them as the superposition of simpler structures and circuit theoretic analyses are performed. The correctness of the reported expressions is validated against the simulations as well as the experimental measurements. Such closed-form analysis facilitates simpler design procedures against other available techniques such as conformal mapping and full wave analysis. The circuit theoretic approach reduces the computational requirements as against the available commercial EM solvers and provides a suitable interface platform for system analysis.

  1. KIM, J., RAHMAT-SAMII, Y. Planar inverted-F antennas on implantable medical devices: Meandered type versus spiral type. Microwave and Optical Technology Letters, 2006, vol. 48, no. 3, p. 567–572. DOI: 10.1002/mop.21409
  2. KARACOLAK, T., HOOD, A. Z., TOPSAKAL, E. Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 4, p. 1001–1008. DOI: 10.1109/TMTT.2008.919373
  3. LIU, W. C., GHAVAMI, M., CHUNG, W. C. Triple-frequency meandered monopole antenna with shorted parasitic strips for wireless application. IET Microwaves, Antennas and Propagation, 2009, vol. 3, no. 7, p. 1110–1117. DOI: 10.1049/ietmap.2008.0204
  4. LIU, W. C., CHEN, Y. C. Compact strip-monopole antenna for WLAN-band USB dongle application. Electronics Letters, 2011, vol. 47, no. 8, p. 479–480. DOI: 10.1049/el.2010.3234
  5. ZUO, S. L., ZHANG, Z., Y., YANG, J. W. Planar meander monopole antenna with parasitic strips and sleeve feed for DVBH/LTE/GSM850/900 operation in the mobile phone. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 27–30. DOI: 10.1109/LAWP.2012.2234717
  6. MAURYA, N. K., BHATTACHARYA, R. CPW-fed dual-band pseudo-monopole antenna for LTE/WLAN/WiMAX with its usage in MIMO. In IEEE International Symposium on Antennas and Propagation (APSURSI). Fajardo (Puerto Rico), 2016. DOI: 10.1109/APS.2016.7695936
  7. BHATTACHARYA, R., GARG, R., BHATTACHARYA, T. K. A compact Yagi-Uda type pattern diversity antenna driven by CPW-fed pseudomonopole. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 1, p. 25–32. DOI: 10.1109/TAP.2015.2499756
  8. WANG, C. J., HSIAO, K. L. CPW-fed monopole antenna for multiple system integration. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 2, p. 1007–1011. DOI: 10.1109/TAP.2013.2290551
  9. ESTARKI, M. D., VAUGHAN, R. G. Theoretical methods for the impedance and bandwidth of the thin dipole. IEEE Antennas and Propagation Magazine, 2013, vol. 55, no. 1, p. 62–81. DOI: 10.1109/MAP.2013.6474485
  10. KOLUNDZIJA, B. M., OGNJANOVIC, J. S., SARKAR, T. K. WIPLD: Electromagnetic Modeling of Composite Metallic and Dielectric Structures. Norwood (MA): Artech House, 2000. ISBN: 978-0890063583
  11. WOLFF, I. Coplanar Microwave Integrated Circuits. Chapter 2. Wiley Interscience, 2006. ISBN: 978-0-471-12101-5
  12. TAFLOVE, A., UMASHANKAR, K. R. The finite-difference time-domain method for numerical modeling of electromagnetic wave interactions. Electromagnetics, 1990, vol. 10, no. 1, p. 105–126. DOI: 10.1080/02726349008908231
  13. JONES, D. S. Methods in Electromagnetic Wave Propagation. Oxford: Clarendon Press, 1979.
  14. LEE, Y. H., JUNG, J. H., PARK, I. Multiple meander strip monopole antenna. Electronics Letters, 2005, vol. 41, no. 7, p. 391–393. DOI: 10.1049/el:20058255
  15. BANERJEE, A., BANDYOPADHYAY, A. K. Theoretical investigation on the input impedance of a CPW-fed strip monopole antenna. Microwave and Optical Technology Letters, 2017, vol. 59, no. 2, p. 346–348. DOI: 10.1002/mop.30287
  16. HIROI, Y., FUJIMOTO, K. Practical usefulness of normal mode helical antenna. In IEEE Antennas and Propagation Society International Symposium. Amherst (MA, USA), 1976, p. 238–241. DOI: 10.1109/APS.1976.1147656
  17. NAKANO, H., TAGAMI, H., YAMAUCHI, J. Numerical analysis of an axial mode zigzag antenna. Electronics Letters, 1985, vol. 21, no. 14, p. 606–608. DOI: 10.1049/el:19850428
  18. JORDAN, E. C., BALMAIN, K. G. Electromagnetic Waves and Radiating Systems. Prentice-Hall of India (Pvt.), Ltd, 1964. ISBN: 0132499959
  19. ROY, M. N., BANDYOPADHYAY, A. K. Input impedance and radiation efficiency of a center-fed dipole antenna with feed points displaced transverse to dipole axis. Proc. IEEE (Letters), 1969, vol. 57, no. 7, p. 1344–1345. DOI: 10.1109/PROC.1969.7270
  20. KRAUS, J. D. Antennas. McGraw-Hill, 1950. ISBN: 0070354227
  21. RYDER, J. D. Networks, Lines and Fields. New Delhi: Prentice Hall, 2003. ISBN: 978-8120302990
  22. WALDRON, R. A. A helical coordinate system and its applications in electromagnetic theory. The Quarterly Journal of Mechanics and Applied Mathematics, 1958, vol. 11, no. 4, p. 438–461. DOI: 10.1093/qjmam/11.4.438
  23. KOMPFNER, R. Travelling-wave tubes. Reports on Progress in Physics, 1952, vol. 15, p. 275–327. DOI: 10.1088/0034- 4885/15/1/309
  24. BANERJEE, A, CHATTERJEE, S., GUPTA, B., BANDYOPADHYAY, A. K. Theoretical investigation on input characteristics of CPW-fed wide rectangular monopole structures. In 2017 IEEE International Conference on Antenna Innovations and Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM). Bangalore (India), November 2017. DOI: 10.1109/IAIM.2017.8402614
  25. WHEELER, H. A. A helical antenna for circular polarization. Proceedings of the IRE, 1947, vol. 35, no. 12, p. 1484–1488. DOI: 10.1109/JRPROC.1947.234573
  26. KRAUS, J. D. The helical antenna. Proceedings of the IRE, 1949, vol. 37, no. 3, p. 263–272. DOI: 10.1109/JRPROC.1949.231279
  27. Ansoft Corp HFSS v.13
  28. Zealand Corp IE3D v.10
  29. HARRINGTON, R. F. Time-Harmonic Electromagnetic Fields. New York: McGraw-Hill, 1961. ISBN: 0-471-20806-X
  30. LAOHAPENSAENG, C., FREE, C., ROBERTSON, I. D. Simplified analysis of printed strip monopole antenna fed by a CPW. In Proceedings of the Asia-Pacific Microwave Conference. Suzhou (China), 2005. DOI: 10.1109/APMC.2005.1606956

Keywords: CPW-Fed Miniaturized Monopole Antennas, Resonance Characteristics Prediction, Closed Form Expressions, Induced EMF Method, Circuit Model Analysis

A. Pascawati, P. Hazdra, T. Lonsky, M. R. K. Aziz [references] [full-text] [DOI: 10.13164/re.2018.0956] [Download Citations]
Excitation of a Conducting Cylinder Using the Theory of Characteristic Modes

This paper describes the application of the theory of characteristic modes to excite a conducting cylinder representing the chassis of a rocket. Mode excitation is achieved by cutting H-shaped slots on the cylinder at specific locations where the maximum of modal current distribution occurs. The L-matching network is designed to match the impedance of the slots to the input coaxial cable. Finally, the proposed concept is verified during manufacturing and measurement. It is shown that the measured results are in excellent agreement with the simulation.

  1. PRADES, J., GHIOTTO, A., KERHERVE, E., et al. Broadband sounding rocket antenna for dual-band telemetric and payload data transmission. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 540–543. DOI: 10.1109/LAWP.2015.2457338
  2. FILHO, P. C. R., TINOCO-S, A. F., NASCIMENTO, D. C., et al. A telemetry antenna design for a sounding rocket competition. IEEE Antennas and Propagation Magazine, 2017, vol. 59, no. 3, p. 100–140. DOI: 10.1109/MAP.2017.2686096
  3. HE, Y., SEZAI, T., SUNAMI, K. The FDTD analysis of the radiation pattern of an antenna mounted on a rocket. In Proceeding of International Symposium on Antennas and Propagation (ISAP). Okinawa (Japan), 2016, p. 668–669. ISBN: 9784885523137
  4. SRIPHO, P., DUANGSI, S., HONGTHONG, M. Comparison of antenna for dti rocket telemetry system. In Proceedings of the Second Asian Conference on Defence Technology (ACDT). Chiang Mai (Thailand), 2016, p. 105–110. DOI: 10.1109/ACDT.2016.7437652
  5. FILHO, P. C. R., TINOCO-S, A. F., NASCIMENTO, D. C., et al. Flush-mounted telemetry antenna design for a sounding rocket competition. In Proceedings of IEEE Antennas and Propagation Society International Symposium (APSURSI). Orlando (USA), 2013, p. 2173–2174. DOI: 10.1109/APS.2013.6711745
  6. ALBI, R., ZICH, R. E. Wrap-around antenna for rocket telemetry. In Proceedings of IEEE Antennas and Propagation Society International Symposium (APSURSI). Orlando (USA), 2013, p. 1998–1999. DOI: 10.1109/APS.2013.6711657
  7. MARTENS, R., SAFIN, E., MANTEUFFEL, D. Inductive and capacitive excitation of the characteristic modes of small terminals. In Proceedings of Loughborough Antennas & Propagation Conference (LAPC). Loughborough (UK), 2011, p. 1–4. DOI: 10.1109/LAPC.2011.6114141
  8. MARTENS, R., SAFIN, E., MANTEUFFEL, D. Selective excitation of characteristic modes on small terminals. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP). Roma (Italy), 2011, p. 2492–2496. ISBN: 9788882020743
  9. LI, M., BEHDAD, N. Dual-band platform-mounted HF/VHF antenna design using the characteristic mode theory. IET Microwaves, Antennas & Propagation, 2018, vol. 12, no. 4, p. 452–458. DOI: 10.1049/iet-map.2017.0612
  10. SHIH, T., BEHDAD, N. Design of vehicle-mounted, compact VHF antennas using characteristic mode theory. In Proceedings of the 11th European Conference on Antennas and Propagation (EUCAP). Paris (France), 2017, p. 1765–1768. DOI: 10.23919/EuCAP.2017.7928334
  11. GARBACZ, R. J., TURPIN R. H. A generalized expansion for radiated and scattered fields. IEEE Transactions on Antennas and Propagation, 1971, vol. 19, no. 3, p. 348–358. DOI: 10.1109/TAP.1971.1139935
  12. HARRINGTON, R. F., MAUTZ, J. R. Theory of characteristic modes for conducting bodies. IEEE Transactions on Antennas and Propagation, 1971, vol. 19, no. 5, p. 622–628. DOI: 10.1109/TAP.1971.1139999
  13. CHEN, Y., WANG, C.-F. Characteristic Modes: Theory and Applications in Antenna Engineering. New Jersey (USA): John Wiley, 2015. ISBN: 9781119038429
  14. CABEDO-FABRES, M., ANTONINO-DAVIU, E., VALERONOGUEIRA, A., et al. The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications. IEEE Antennas and Propagation Magazine, 2007, vol. 49, no. 5, p. 52–68. DOI: 10.1109/MAP.2007.4395295
  15. LAPPALAINEN, J., YLA-OIJALA, P., TZAROUCHIS, D., et al. Resonances of characteristic modes for perfectly conducting objects. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 10, p. 5332–5339. DOI: 10.1109/TAP.2017.2741063
  16. Online. Available at: https://www.cst.com/
  17. HARRINGTON, R. F. Field Computation by Moment Method. New Jersey (USA): John Wiley, 1993. ISBN: 9780780310148
  18. CAPEK, M., HAZDRA, P., MASEK. M., LOSENICKY, V. Analytical representation of characteristic mode decomposition. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 2, p. 713–720. DOI: 10.1109/TAP.2016.2632725
  19. POZAR, D. M. Microwave Engineering. 4th ed., New Jersey (USA): John Wiley, 2011. ISBN: 9781118213636
  20. LEE, C.-T., SU, S.-W., CHEN, S.-C., FU, C.-S. Low-cost, directfed slot antenna built in metal cover of notebook computer for 2.4-/5.2-/5.8-GHz WLAN operation. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 5, p. 2677–2682. DOI: 10.1109/TAP.2017.2679070
  21. Online. Available at: https://www.rohde-schwarz.com

Keywords: Theory of characteristic modes, excitation of modes, coupling elements, matching networks

K. Nafkha, H. Ragad, A. Gharsallah [references] [full-text] [DOI: 10.13164/re.2018.0961] [Download Citations]
Analysis of Plane Waves Spectra in a Weakly-Disturbed Flat Reverberation Chamber by Information Theory Criteria

This work aims to present the impact of disturbing the stationary modes in a rectangular-shaped reverberation chamber by small-dimensioned stirrers. The study focuses on plane wave’s modeling of the electric field inside a flat cavity using information theory criteria. The emphasis is on anisotropy of the number of plane-waves distribution in the cavity and a strong increase near stirrers. The distributions of the plane wave spectra are studied for a set of reverberation chamber configurations at frequencies close to and far superior to the lowest usable frequency.

  1. HUANG, Y., EDWARDS, D. J. An investigation of electromagnetic fields inside a moving wall mode-stirred chamber. In the 8th International Conference on Electromagnetic Compatibility. Edinburgh (UK), 1992, p. 115–119. ISBN: 0-85296-554-0
  2. CLEGG, J., MARVIN, A. C., DAWSON, J. F, et al. Optimization of stirrer designs in a reverberation chamber. IEEE Transactions on Electromagnetic Compatibility, November 2005, vol. 47, no. 4, p. 824–832. DOI: 10.1109/TEMC.2005.860561
  3. HILL, D. A. Electronic mode stirring for reverberating chambers. IEEE Transactions on Electromagnetic Compatibility, November 1994, vol. 36, no. 4, p. 294–299. DOI: 10.1109/15.328858
  4. HILL, D. A. Plane wave integral representation for fields in reverberation chambers. IEEE Transactions on Electromagnetic Compatibility, August 1998, vol. 40, no. 3, p. 209–217. DOI: 10.1109/15.709418
  5. ROSENGREN, K., KILDAL, P. Study of distributions of modes and plane waves in reverberation chambers for the characterization of antennas in a multipath environment. Microwave and Optical Technology Letters, 2001, vol. 30, no. 6, p. 386–391. DOI: 10.1002/mop.1323
  6. KILDAL, P., CHEN, X., ORLENIUS, C., et al. Characterization of reverberation chambers for OTA measurements of wireless devices: physical formulations of channel matrix and new uncertainty formula. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 8, p. 3875–3891. DOI: 10.1109/TAP.2012.2201125
  7. HOLLOWAY, C. L., HILL, D. A., LADBURY, J., et al. Shielding effectiveness measurements of materials using nested reverberation chambers. IEEE Transactions on Electromagnetic Compatibility, May 2003, vol. 45, no. 2, p. 350–356. DOI: 10.1109/TEMC.2003.809117
  8. DEGROAT, R. D., DOWLING, E. M., LINEBARGER, D. A. The constrained MUSIC problem. IEEE Transactions on Signal Processing, March 1993, vol. 41, no. 3, p. 1445–1449. DOI: 10.1109/78.205753
  9. ROY, R., KAILATH, T. ESPRIT - Estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics Speech and Signal Processing, July 1989, vol. 37, no. 7, p. 984–995. DOI: 10.1109/29.32276
  10. WAX, M., KAILATH, T. Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech and Signal Processing, April 1985, vol. 33, no. 2, p. 387–392. DOI: 10.1109/TASSP.1985.1164557
  11. AKAIKE, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory. Tsahkadsor (USSR), September 1971, p. 267–281.
  12. RISSANEN, J. Modeling by shortest data description length. Automatica, 1978, vol. 14, no. 5, p. 465–471. DOI: 10.1016/0005- 1098(78)90005-5
  13. EVANS, J. E., JOHNSON, J. R., SUN, D. F. High resolution angular spectrum estimation techniques for terrain scattering analysis and angle of arrival estimation. In Proceedings of the 1st Acoustics, Speech, and Signal Processing Workshop on Spectral Estimation. Hamilton (Canada), August 1981, p. 134–139.
  14. PILLAI, S. U., KWON, B. H. Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Transactions on Acoustics, Speech, and Signal Processing, January 1989, vol. 37, no. 1, p. 8–15. DOI: 10.1109/29.17496
  15. INTERNATIONAL ELECTROTECHNICAL COMMISSION. Electromagnetic Compatibility (EMC) - Part 4-21: Testing and Measurement Techniques - Reverberation Chamber Test Methods (IEC 61000-4-21). 224 pages. [Online] Cited 2011-01-27. Available at : https://webstore.iec.ch/publication/4191

Keywords: Reverberation chamber, plane wave number, MDL criterion, AIC criterion, antenna array processing

Z. L. Zhang, K. Wei, J. Xie, J. Y. Li, L. Wang [references] [full-text] [DOI: 10.13164/re.2018.0969] [Download Citations]
The MIMO Antenna Array with Mutual Coupling Reduction and Cross-polarization Suppression by Defected Ground Structures

This paper proposes two types of defected ground structures (DGSs) for achieving the mutual coupling (MC) reduction and the antenna cross-polarization (XP) suppression respectively in a MIMO (multiple input multiple output) wireless communication system. The novel periodic fractal DGS (PFDGS) are presented to reduce the MC between antenna elements. About 20 dB MC reduction is achieved, which contributes to improve the antenna efficiency and increase the MIMO system channel capacity. However, the method of using DGS or other decoupling structures for MC reduction will degrade the antenna XP level unnecessarily. For solving this problem, another arc-shaped DGS is etched under each patch to suppress the antenna XP level. In this way, the XP level is suppressed from −10 dB to −34.6 dB in the boresight direction. Moreover, the arc-shaped DGS will not degrade the MC reduction performance.

  1. WEI, K., LI, J. Y., WANG, L., et al. S-shaped Periodic Defected Ground Structures (PDGS) to reduce microstrip antenna array mutual coupling. Electronics Letters, 2016, vol. 52, no. 15, p. 1288−1290. DOI: 10.1049/el.2016.0667
  2. GUHA, D., BISWAS, S., JOSEPH, T., et al. Defected ground structure to reduce mutual coupling between cylindrical dielectric resonator antennas. Electronics Letters, 2008, vol. 44, no. 14, p. 836−837. DOI: 10.1049/el:20081189
  3. GUHA, D., BISWAS, S., BISWAS, M., et al. Concentric ringshaped defected ground structures for microstrip applications. IEEE Antennas and Wireless Propagation Letters, 2006, vol. 5, no. 1, p. 402−405. DOI: 10.1109/LAWP.2006.880691
  4. HABASHI, A., NOURINIA, J., GHOBADI, C. Mutual coupling reduction between very closely spaced patch antennas using lowprofile folded split-ring resonators (FSRRs). IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 862−865. DOI: 10.1109/LAWP.2011.2165931
  5. XIAO, S., TANG, M. C., BAI, Y. Y., et al. Mutual coupling suppression in microstrip array using defected ground structure. IET Microwave, Antennas and Propagation, 2011, vol. 5, no. 12, p. 1488−1494. DOI: 10.1049/iet-map.2010.0154
  6. BAIT-SUWAILAM, M. M., SIDDIQUI, O. F., RAMAHI, O. M. Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 876−878. DOI: 10.1109/LAWP.2010.2074175
  7. HAMMOODI, A. I., AL-RIZZO, H. M., ISAAC, A. A. Mutual coupling reduction between two monopole antennas using fractal based DGS. In IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting. Vancouver (Canada), 2015, p. 416−417. DOI: 10.1109/APS.2015.7304594
  8. KAKAOYIANNIS, C. G., CONSTANTINOU, P. Reducing coupling in compact arrays for WSN nodes via pre-fractal defected ground structures. In Proc. of the 39th European Microwave Conference. Roma (Italy), 2009. DOI: 10.23919/EUMC.2009.5295996
  9. WEI, K., LI, J. Y., WANG, L., et al. Mutual coupling reduction by novel fractal defected ground structure band-gap filter. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 10, p. 4328−4335. DOI: 10.1109/TAP.2016.2591058
  10. ZHANG, S., GLAZUNOV, A. A., YING, Z., et al. Reduction of the envelope correlation coefficient with improved total efficiency for mobile LTE MIMO antenna arrays: Mutual scattering mode. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 6, p. 3280−3291. DOI: 10.1109/TAP.2013.2248071
  11. ZHANG, S., LAU, B. K., TAN, Y., et al. Mutual coupling reduction of two PIFAs with a T-shape slot impedance transformer for MIMO mobile terminals. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 3, p. 1521−1530. DOI: 10.1109/TAP.2011.2180329
  12. LI, H., XIONG, J., HE, S. A compact planar MIMO antenna system of four elements with similar radiation characteristics and isolation structure. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 1107−1110. DOI: 10.1109/LAWP.2009.2034110.
  13. IBRAHIM, A. A., ABDALLA, M. A., ABDEL-RAHMAN, A. B., et al. Compact MIMO antenna with optimized mutual coupling reduction using DGS. International Journal of Microwave and Wireless Technologies, 2014, vol. 6, no. 2, p. 173−180. DOI: 10.1017/S1759078713001013
  14. BAO, Z. D., ZONG, X. Z., NIE, Z. P., et al. Design and discussion of a broadband cross-dipole with high isolation and low crosspolarisation utilising strong mutual coupling. IET Microwave, Antennas and Propagation, 2014, vol. 8, no. 5, p. 315−322. DOI: 10.1049/iet-map.2013.0440
  15. ZHANG, C., KUHN, M., MAHFOUZ, M., et al. Planar antipodal Vivaldi antenna array configuration for low cross-polarization and reduced mutual coupling performance. In IEEE Antennas and Propagation Society International Symposium. Honolulu (HI, USA), 2007, p. 725−728. DOI: 10.1109/APS.2007.4395596
  16. CHENG, Y,-F., DING, X., SHAO, W., et al. Reduction of mutual coupling between patch antennas using a polarization-conversion isolator. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 1257−1260. DOI: 10.1109/LAWP.2016.2631621
  17. BLANCH, S., ROMEU, J., CORDELLA, I. Exact representation of antenna system diversity performance from input parameter description. Electronics Letters, 2003, vol. 39, no. 9, p. 705−707. DOI: 10.1049/el:20030495
  18. KUMAR, C., GUHA, D. Nature of cross-polarized radiations from probe-fed circular microstrip antennas and their suppression using different geometries of defected ground structure (DGS). IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 1, p. 92−101. DOI: 10.1109/TAP.2011.2167921
  19. GUHA, D., KUMAR, C., PAL, S. Improved cross-polarization characteristics of circular microstrip antenna employing arc-shaped defected ground structure (DGS). IEEE Antennas and Wireless Propagation Letters, 2010, vol. 8, p. 1367−1369. DOI: 10.1109/LAWP.2009.2039462

Keywords: DGS, mutual coupling suppression, fractal structure, cross-polarization, MIMO system

E. Fritz-Andrade, H. Jardon-Aguilar, J. A. Tirado-Mendez [references] [full-text] [DOI: 10.13164/re.2018.0976] [Download Citations]
Mutual Coupling Reduction of Two 2x1 Triangular-Patch Antenna Array Using a Single Neutralization Line for MIMO Applications

In this paper, a novel structure of two interlaced antenna arrays for MIMO applications is presented. It consists of two 2x1 triangular patch array antennas, which have all elements separated by a short distance among them (0.22λ0), where mutual coupling can be very poor (S21 = –7.81 dB). To overcome such weakness, a simple and efficient method is used: one neutralization line (NL) is introduced to increase the decoupling between both ports, reaching up to –29 dB at the central frequency, and below –20 dB over a large bandwidth. The whole MIMO antenna array has dimensions of 1.56λ0 × 0.3λ0 and has a gain of 9.11 dBi. Its diversity parameters describe it as a useful radiator for MIMO communications systems.

  1. VAUGHAN, G., ANDERSEN, J. B. Antenna diversity in mobile communications. IEEE Transactions on Vehicular Technology, 1987, vol. 36, no. 4, p. 149–172. DOI: 10.1109/T-VT.1987.24115
  2. ZHAO, J., LI, Y., SUN, G. The effect of mutual coupling on capacity of 4-element squared antenna array MIMO systems. In IEEE 5th International Conference on Wireless Communications, Networking and Mobile Computing. Beijing (China), 2009, p. 1–4. DOI: 10.1109/WICOM.2009.5301788
  3. ZHANG, S., PEDERSEN, G. F. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 166–169. DOI: 10.1109/LAWP.2015.2435992
  4. ABDULLAH, M., BAN, Y.-L., KANG, K., et al. Compact fourport MIMO antenna system at 3.5 GHz. In 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Chongqin (China), 2017. DOI: 10.1109/IAEAC.2017.8054098
  5. NIRMAL, P., NANDGAONKA, A. B., NALBALWA, S. L. A MIMO antenna: Study on reducing mutual coupling and improving isolation. In IEEE International Conference on Recent Trends in Electronics Information Communication Technology (RTEICT). Bagalore (India), May, 2016, p. 1736–1740. DOI: 10.1109/RTEICT.2016.7808131
  6. LIU, Z., SHI, Y., SHI, D., GAO, Y. Mutual coupling reduction of a 2.6 GHz dual-element MIMO antenna system with EBG structures. In 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS). Beijing (China), 2014, p. 1–4. DOI: 10.1109/URSIGASS.2014.6929527
  7. RADHI, A. H., AZIZ, N. A., NILAVALAN, R., et al. Mutual coupling reduction between two PIFA using uni-planar fractal based EBG for MIMO application. In 2016 Loughborough Antennas & Propagation Conference (LAPC). Loughborough (United Kingdom), 2016, p. 1–5. DOI: 10.1109/LAPC.2016.7807564
  8. FARAHANI, M., ZAID, J., DENIDNI, T. A., AKBARI, M., et al. Mutual coupling reduction in millimeter-wave MIMO dielectric resonator antenna using metamaterial polarization rotator wall. In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. San Diego (USA), 2017, p. 1261–1262. DOI: 10.1109/APUSNCURSINRSM.2017.8072673
  9. LI, Q., FERESIDIS, A. P. Reduction of mutual coupling between compact MIMO antennas arrays. In 2010 Loughborough Antennas & Propagation Conference. Loughborough (United Kingdom), 2010, p. 277–280. DOI: 10.1109/LAPC.2010.5666191
  10. SOLTANI, S., LOTFI, P., MURCH, R. D. Design of compact dual-band dual-port WLAN MIMO antennas using slots. In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Vancouver (Canada), 2015, p. 924–925. DOI: 10.1109/APS.2015.7304849
  11. ELFERGANI I. T. E., HUSSAINI, A. S., RODRIGUEZ, J., et al. Compact and closely spaced tunable printed F-slot multiple-input– multiple-output antenna system for portable wireless applications with efficient diversity. IET Science, Measurement & Technology, 2014, vol. 8, no. 6, p. 359–369. DOI: 10.1049/iet-smt.2013.0276
  12. TALUJA, P. S., HUGHES, B. L. Diversity limits of compact broadband multi-antenna systems. IEEE Journal on Selected Areas in Communications, 2013, vol. 31, no. 2, p. 326–337. DOI: 10.1109/JSAC.2013.130219
  13. FARSI, S., ALIAKBARIAN, H., SCHREURS, D., et al. NAUWELAERS B., et al. Mutual coupling reduction between planar antennas by using a simple microstrip U-section. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 1501–1503. DOI: 10.1109/LAWP.2012.2232274
  14. MAK, A. C. K., ROWELL, C. R., MURCH, R. D. Isolation enhancement between two closely packed antennas. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 11, p. 3411–3419. DOI: 10.1109/TAP.2008.2005460
  15. GHALOUA, A., ZBITOU, J., LATRACH, M., EL ABDELLAOUI L., et al. Mutual coupling reduction and miniaturization arrays antennas using new structure of EBG. In 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). Fez (Morocco), 2017, p. 1–5. DOI: 10.1109/WITS.2017.7934593
  16. BALANIS, C. A. Antenna Theory: Analysis and Design. 4th ed. New Jersey (USA): John Wiley & Sons, 2016 ISBN: 9781118642061
  17. KHRAISAT, Y. S. H., OLAIMAT, M. M. Comparison between rectangular and triangular patch antennas array. In 2012 19th International Conference on Telecommunications (ICT). Jounieh (Lebanon), 2012, p. 1–5. DOI: 10.1109/ICTEL.2012.6221265
  18. HANNACHI, C., TATU, S. O. Performance comparison of 60 GHz printed patch antennas with different geometrical shapes using miniature hybrid microwave integrated circuits technology. IET Microwaves, Antennas & Propagation, 2017, vol. 11, no. 1, p. 106–112. DOI: 10.1049/iet-map.2015.0720
  19. LEVINE, E., MALAMUD, G., SHTRIKMAN, S., TREVES, D. A study of microstrip array antennas with the feed network. IEEE Transactions on Antennas and Propagation, 1989, vol. 37, no. 4, p. 426–434. DOI: 10.1109/8.24162
  20. DIALLO, A., LUXEY, C., LE THUC, P., STARAJ, R., et al. Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 11, p. 3063–3074. DOI: 10.1109/TAP.2006.883981
  21. LIN, S.-Y., LIU, I.-H. Small inverted-U loop antenna for MIMO applications. Progress In Electromagnetics Research C, 2013, vol. 34, p. 69–84. DOI: 10.2528/PIERC12082901
  22. MALVIYA, L., PANIGRAHI, R. K., KARTIKEYAN, M. V. MIMO antennas with diversity and mutual coupling reduction techniques: a review. International Journal of Microwave and Wireless Technologies, May 2017, vol. 9, no. 8, p. 1763–1780. DOI: 10.1017/S1759078717000538
  23. HONG, J.-S., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. New York (USA): John Wiley & Sons, 2001, p. 79–81. ISBN: 0-89006-513-6
  24. CHEN, Z. N., LIU, D., NAKANO, H., QING, X., ZWICK, TH. (eds). Handbook of Antenna Technologies. 1st ed. Singapore (Singapore): Springer Singapore, 2016. ISBN: 9789814560436
  25. ANDUJAR, A. ANGUERA, J. MIMO multiband antenna system combining resonant and nonresonant elements. Microwave and Optical Technology Letters, 2014, vol. 56, no. 5, p. 1076–1084. DOI: 10.1002/mop.28282
  26. BHAVARTHE, P. P., RATHOD, S. S., REDDY, K. T. V. Mutual coupling reduction in patch antenna using Electromagnetic Band Gap (EBG) structure for IoT application. In 2018 International Conference on Communication Information and Computing Technology (ICCICT). Mumbai (India), February 2018, p. 1–4. DOI: 10.1109/ICCICT.2018.8325867
  27. BOUKARKAR, A., LIN, X. Q., JIANG, Y., et al. A miniaturized extremely close-spaced four-element dual-band MIMO antenna system with polarization and pattern diversity. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 1, p. 134–137. DOI: 10.1109/LAWP.2017.2777839
  28. KHARCHE, S., REDDY, G. S., MUKHERJEE, J., GUPTA, R. Mutual coupling reduction by using tilted variable length SRR like structure in UWB MIMO antennas. In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. San Diego (USA), July 2017, p. 2285–2286. DOI: 10.1109/APUSNCURSINRSM.2017.8073185
  29. ZHAI, G., CHEN, Z. N., QING, X. Mutual coupling reduction of a closely spaced four-element MIMO antenna system using discrete mushrooms. IEEE Transactions on Microwave Theory and Techniques, October 2016, vol. 64, no. 10, p. 3060–3067. DOI: 10.1109/TMTT.2016.2604314

Keywords: Linear antenna arrays, microstrip antennas, mutual coupling, neutralization line, patch antennas

B. Azarm, J. Nourinia, Ch. Ghobadi, M. Majidzadeh, N. Hatami [references] [full-text] [DOI: 10.13164/re.2018.0983] [Download Citations]
A Compact WiMAX Band-Notched UWB MIMO Antenna with High Isolation

A multiple-input-multiple-output (MIMO) antenna is proposed for ultra-wideband (UWB) applications with high isolation capability. The proposed MIMO structure consists of two simple square monopole antennas with slotted ground plane structure with S11 bandwidth of 2.2 to 10.8 GHz and isolation level better than -30 dB. U-shaped and L-shaped slots are adopted to realize a notched band within 3.3-3.8 GHz relating to WiMAX frequency band. With the aim of enhancing the isolation between the monopole antennas, two parasitic structures are wisely embedded between the monopole antennas on backside of the substrate. The MIMO antenna prototype with a compact size of 25×38 mm2 is fabricated and measured. Based on the simulation and experimental results, the proposed MIMO antenna well-performs in ultra-wideband (UWB) band-notched MIMO application.

  1. ZHENG, L., TSE, D.N.C. Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 2003, vol. 49, p. 1073–1096. DOI: 10.1109/TIT.2003.810646
  2. YANG, Y., CHU, Q., MAO, CH. Multiband MIMO antenna for GSM, DCS and LTE indoor applications. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1573–1576. DOI: 10.1109/LAWP.2016.2517188
  3. ZHANG Y., WANG, P. Single ring two-port MIMO antenna for LTE applications. Electronics Letters, 2016, vol. 50, p. 998–1000. DOI: 10.1049/el.2016.0857
  4. LI, Z., DU, Z., TAKAHASHI, M., SAITO, K., ITO, K. Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 2, p. 473–481. DOI: 10.1109/TAP.2011.2173432
  5. CHENG, C. M, CHEN, W. S., LIN, G. Q., CHEN, H. M. Four antennas on smart watch for GPS/UMTS/ WLAN MIMO application. In International Conference on Computational Electromagnetics (ICCEM). Kumamoto (Japan), 2017, p. 346–348. DOI: 10.1109/COMPEM.2017.7912744
  6. KHAN, A. A., JAMALUDDIN, M. H., AQEEL, S., et al. Dualband MIMO dielectric resonator antenna for WiMAX/WLAN applications. IET Microwaves, Antennas and Propagation, 2017, vol. 11, no. 1, pp. 113-120. DOI: 10.1049/iet-map.2015.0745
  7. JEHANGIR, S. S., SHARAWI, M. S. A miniaturized UWB biplanar Yagi-like MIMO antenna system. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2320–2323. DOI: 10.1109/LAWP.2017.2716963
  8. TAO, J., FENG, Q. Compact ultrawideband MIMO antenna with half-slot structure. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 792–795. DOI: 10.1109/LAWP.2016.2604344
  9. AZARM, B., GHOBADI, C., NOURINIA, J., et al. A bandnotched square monopole antenna designed for bandwidth enhancement in UWB applications. Applied Computational Electromagnetics Society (ACES) Journal, 2017, vol. 32, no. 10, p. 929–934.
  10. LEE, C. H., WU, J. H., HSU, C. I. G., CHAN, H. L., CHEN, H. H. Balanced band-notched UWB filtering circular patch antenna with common-mode suppression. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2812–2815. DOI: 10.1109/LAWP.2017.2748279
  11. CHEN, W. X., LEE, C. H., HSU, C. I. G. CM suppression enhancement for balanced band-notched UWB closed-aperture antenna. Electronics Letters, 2017, vol. 53, no. 19, p. 1291–1292. DOI: 10.1049/el.2017.2271
  12. KUNDU, S., JANA, S. K. Leaf-shaped CPW-fed UWB antenna with triple notch bands for ground penetrating radar applications. Microwave and Optical Technology Letters, 2018, vol. 60, no. 4, p. 930–936. DOI: 10.1002/mop.31075
  13. KUNDU, S. Balloon-shaped CPW fed printed UWB antenna with dual frequency notch to eliminate WiMAX and WLAN interferences. Microwave and Optical Technology Letters, 2018, vol. 60, no. 7, p. 1744–1750. DOI: 10.1002/mop.31230
  14. CHANDEL, R., GAUTAM, A. K. Compact MIMO/diversity slot antenna for UWB applications with band-notched characteristic. Electronics Letters, 2016, vol. 52, no. 5, p. 336–338. DOI: 10.1049/el.2015.3889
  15. TOKTAS, A. G-shaped band-notched ultra-wideband MIMO antenna system for mobile terminals. IET Microwaves, Antennas and Propagation, 2017, vol. 11, no. 5, p. 718–725. DOI: 10.1049/iet-map.2016.0820
  16. ZANG, J., WANG, X. A compact tri-band printed antenna for MIMO applications. Radioengineering, 2015, vol. 24, no. 2, p. 462–469. DOI: 10.13164/re.2015.0462
  17. ABDALLA, M. A., IBRAHIM, A. A. Simple mu-negative half mode CRLH antenna configuration for MIMO applications. Radioengineering, 2017, vol. 26, no. 1, p. 45–50. DOI: 10.13164/re.2017.0045
  18. TANG, T. C., LIN, K. H. An ultrawideband MIMO antenna with dual band-notched function. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 1076–1079. DOI: 10.1109/LAWP.2014.2329496
  19. LIU, Y. Y., TU, Z. H. Compact differential band-notched steppedslot UWB-MIMO antenna with common-mode suppression. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 16, p. 593–596. DOI: 10.1109/LAWP.2016.2592179
  20. Ansoft High Frequency Structure Simulation (HFSS). ver. 15.
  21. FEDERAL COMMUNICATIONS COMMISSION, Washington, D.C. 20554. First Report and Order. 118 pages. [Online] Cited 2001-10-16.
  22. https://literature.cdn.keysight.com/litweb/pdf/5989-7606EN.pdf
  23. CHANDEL, R., GAUTAM, A. K., RAMBABU, K. Tapered fed compact UWB MIMO-diversity antenna with a dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 4, p. 1677–1684. DOI: 10.1109/TAP.2018.2803134 About the Authors

Keywords: Monopole antennas, ultra wideband (UWB), multiple-input–multiple-output (MIMO), WiMAX band-notched function, high isolation

S. Kundu, A. Chatterjee, S. K. Jana, S. K. Parui [references] [full-text] [DOI: 10.13164/re.2018.0990] [Download Citations]
A High Gain Dual Notch Compact UWB Antenna with Minimal Dispersion for Ground Penetrating Radar Application

A compact (27.5×16.5×0.8 mm3) co-planar waveguide fed printed ultra-wideband antenna operating in the impedance band of 1.75-10.3 GHz with two wide frequency notch bands at 2.2–3.9 GHz and 5.1–6 GHz, is introduced. Dual notch is achieved by inserting U-slot on the radiator and with inverted patch shaped downscaled parasitic load at the opposite end of feed line. Maximum antenna gain augmentation by about 5 dBi is achieved without changing the bandwidth, by incorporating a dual layer reflective frequency selective surface (FSS) of dimension 33×33×1.6 mm3 below the antenna. The antenna-FSS composite structure exhibits maximum radiation in the broadside direction with a peak gain of 9 dBi and an average radiation efficiency of more than 80% in the operating band. Antenna transfer function and group delay are experimentally studied in ground coupling mode of ground penetrating radar (GPR). Linear magnitude response of transfer function and consistent, flat group delay are achieved, that ensure minimal antenna dispersion and its ability for GPR application.

  1. DANIELS, D. J. Ground Penetrating Radar. 2nd ed. London, (UK): IET Press, 2004. ISBN: 9780863413605
  2. JOL, H. M. (Ed.). Ground Penetrating Radar Theory and Applications. Elsevier, 2008. ISBN: 9780444533487
  3. FEDERAL COMMUNICATIONS COMMISSION, Washington, D.C. 20554. First Report and Order. 118 pages. [Online] Cited 2001-10-16. Available at: https://transition.fcc.gov/Bureaus/Engineering_Technology/Orders /2002/fcc02048.pdf
  4. HONG, S., SHIN, J., PARK, H., et al. Analysis of the band stop techniques for ultrawideband antenna. Microwave and Optical Technology Letters, 2007, vol. 49, no. 5, p. 1058–1062. DOI: 10.1002/mop.22363
  5. LEE, W. S., KIM, D. Z., KIM, K. J., et al. Wideband planar monopole antennas with dual band-notched characteristics. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 6, p. 2800–2806. DOI: 10.1109/TMTT.2006.874895
  6. FARROKH-HESHMAT, N., NOURINIA, J., GHOBADI, C. Band-notched ultra-wideband printed open-slot antenna using variable on-ground slits. Electronics Letters, 2009, vol. 45, no. 21, p. 1060–1061. DOI: 10.1049/el.2009.1887
  7. MA, T. G., HUA, R. C., CHOU, C. F. Design of a multiresonator loaded band-rejected ultrawideband planar monopole antenna with controllable notched bandwidth. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 9, p. 2875–2883. DOI: 10.1109/TAP.2008.928778
  8. SIDDIQUI, J. Y., SAHA, C., ANTAR, Y. M. Compact dual-SRRloaded UWB monopole antenna with dual frequency and wideband notch characteristics. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 100–103. DOI: 10.1109/LAWP.2014.2356135
  9. KUNDU, S., JANA, S. K. Leaf-shaped CPW-fed UWB antenna with triple notch bands for ground penetrating radar applications. Microwave and Optical Technology Letters, 2018, vol. 60, no. 4, p. 930–936. DOI: 10.1002/mop.31075
  10. SARKAR, D., SRIVASTAVA, K. V., SAURAV, K. A compact microstrip-fed triple band-notched UWB monopole antenna. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 396–399. DOI: 10.1109/LAWP.2014.2306812
  11. LIANG, J., CHIAU, C. C., CHEN, X. D., et al. Study of a printed circular disk monopole antenna for UWB systems. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 11, p. 3500–3504. DOI: 10.1109/TAP.2005.858598
  12. SRIFI, M. N., PODILCHAK, S. K., ESSAAIDI, M., et al. Compact disc monopole antennas for current and future ultrawideband (UWB) applications. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 12, p. 4470–4480. DOI: 10.1109/TAP.2011.2165503
  13. SIDDIQUI, J. Y., SAHA, C., ANTAR, Y. M. Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 8, p. 4015–4020. DOI: 10.1109/TAP.2014.2327124
  14. LUKES, Z., LACIK, J., RAIDA, Z. Modeling and optimizing antennas for rotational spectroscopy applications. Radioengineering, 2006, vol. 15, no. 4, p. 91–95. ISSN: 1210- 2512
  15. LIU, H., ZHAO, J., SATO, M. A hybrid dual-polarization GPR system for detection of linear objects. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 317–320. DOI: 10.1109/LAWP.2014.2363826
  16. SCHNEIDER, J., MRNKA, M., GAMEC, J., et al. Vivaldi antenna for RF energy harvesting. Radioengineering, 2016, vol. 25, no. 4, p. 666–671. DOI: 10.13164/re.2016.0666
  17. LESTARI, A. A., YAROVOY, A. G., LIGTHART, L. P. RCloaded bow-tie antenna for improved pulse radiation. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 10, p. 2555–2563. DOI: 10.1109/TAP.2004.834444
  18. CHATTERJEE, A., PARUI, S. K. Gain enhancement of a wideslot antenna using dual-layer, bandstop frequency selective surface as a substrate. Microwave and Optical Technology Letters, 2015, vol. 57, no. 9, p. 2016–2020. DOI: 10.1002/mop.29250
  19. PIRHADI, A., BAHRAMI, H., NASRI, J. Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 4, p. 2101–2106. DOI: 10.1109/TAP.2012.2186230
  20. CHATTERJEE, A., PARUI, S. K. Performance enhancement of a dual-band monopole antenna by using a frequency-selective surface-based corner reflector. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 6, p. 2165–2171. DOI: 10.1109/TAP.2016.2552543
  21. CHEN, H.-Y., TAO, Y. Performance improvement of a U-slot patch antenna using a dual-band frequency selective surface with modified Jerusalem cross elements. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 9, p. 3482–3486. DOI: 10.1109/TAP.2011.2161440
  22. FOROOZESH, A., SHAFAI, L. Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 2, p. 258–270. DOI: 10.1109/TAP.2009.2037702
  23. CHATTERJEE, A., PARUI, S. K. Frequency-dependent directive radiation of monopole-dielectric resonator antenna using a conformal frequency selective surface. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 5, p. 2233–2239. DOI: 10.1109/TAP.2017.2677914
  24. AHMED, A., ZHANG, Y., BURNS, D., et al. Design of UWB antenna for air-coupled impulse ground-penetrating radar. IEEE Geoscience and Remote Sensing Letters, 2016, vol. 13, no. 1, p. 92–96. DOI: 10.1109/LGRS.2015.2498404
  25. SHAO, J., FANG, G., FAN, J., et al. TEM horn antenna loaded with absorbing material for GPR applications. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 523–527. DOI: 10.1109/LAWP.2014.2311436
  26. KUNDU, S., JANA, S. K. A compact umbrella shaped UWB antenna for ground coupling GPR applications. Microwave and Optical Technology Letters, 2017, vol. 60, no. 1, p. 146–151. DOI: 10.1002/mop.30928
  27. KUNDU, S., JANA, S. K. A leaf-shaped CPW-fed UWB antenna for GPR applications. Microwave and Optical Technology Letters, 2018, vol. 60, no. 4, p. 941–945. DOI: 10.1002/mop.31089
  28. COMPUTER SIMULATION TECHNOLOGY (CST), CST Microwave Studio. [Online] Cited 2015-10-26. Available at: https://www.cst.com/Products/CSTMWS. 2015
  29. CHO, Y. J., KIM, K. H., CHOI, D. H., et al. A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 5, p. 1453–1460. DOI: 10.1109/TAP.2006.874354
  30. https://www.rohde-schwarz.com/us/product/zvl13- productstartpage_63493-10575.html
  31. BALANIS C. A. Antenna Theory: Analysis and Design. 3rd ed. Hoboken: Wiley, 2005. ISBN: 978-0471667827
  32. MURAMOTO, M., ISHII, N., ITOH, K. Radiation efficiency measurement of a small antenna using the Wheeler method. Electronics and Communication in Japan, 1996, vol. 79, no. 6, p. 93–100. DOI: 10.1002/ecja.4410790610

Keywords: UWB antenna, frequency selective surface (FSS), ground penetrating radar, high gain, and notch.

A. Quddus, R. Saleem, M. F. Shafique, S. U. Rehman [references] [full-text] [DOI: 10.13164/re.2018.0998] [Download Citations]
Compact Electronically Reconfigurable WiMAX Band- Notched Ultra-wideband MIMO Antenna

A low-profile electronically reconfigurable WiMAX band-notched dual port multiple-input multipleoutput (MIMO) antenna design for ultra-wideband application has been presented. The two symmetrical MIMO antenna elements proposed in this work exhibit a good impedance match (VSWR ≤ 2) over frequency band of 3 to 12 GHz, while offering high isolation. The decoupling structure is used to enhance the isolation level above 25 dB over the entire UWB spectrum. The reconfigurable band notch characteristic in MIMO design is achieved by inserting PIN diodes along the filtering Ω-shaped slotted structure in main radiators. Notch appears for WiMAX 3.5 GHz (3.2 - 3.8 GHz) frequency band by switching the PIN diode to ‘ON’ state. The proposed antenna is fabricated and measured, the results suggest its appropriateness for UWB applications where WiMAX band notch characteristics may be desired on-demand.

  1. ZHU, J., LI, S., FENG, B., et al. Compact dual polarized UWB quasi-self-complementary MIMO/diversity antenna with bandrejection capability. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 905–908. DOI: 10.1109/LAWP. 2015.2479622
  2. ZHANG, J. Y., ZHANG, F., TIAN, W. P., et al. ACS-fed UWBMIMO antenna with shared radiator. Electronics Letters, 2015, vol. 51, p. 1301–1302. DOI: 10.1049/el.2015.1327
  3. HUANG, H., LIU, Y., GONG, S. Uniplanar differentially driven UWB polarisation diversity antenna with band-notched characteristics. Electronics Letters, 2015, vol. 51, p. 206-207. DOI: 10.1049/el.2014.3626
  4. MAO, C. X., CHU, Q. X. Compact coradiator UWB-MIMO antenna with dual polarization. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 9, p. 4474–4480. DOI: 10.1109/ TAP.2014.2333066
  5. SHABBIR, T., SALEEM, R., AKRAM, A., et al. UWB-MIMO quadruple with FSS-inspired decoupling structures and defected grounds. Applied Computational Electromagnetics Society Journal, 2015, vol. 20, no. 2, p. 184–190. ISSN: 1054-4887
  6. KHAN, M. S., CAPOBIANCO, A. D., ASIF, S., et al. Compact 4 × 4 UWB-MIMO antenna with WLAN band rejected operation. Electronics Letters, 2015, vol. 51, p. 1048–1050. DOI: 10.1049/ el.2015.1252
  7. JAFRI, S. I., SALEEM, R., SHAFIQUE, M. F., et al. Compact reconfigurable multiple-input-multiple-output antenna for ultrawideband applications. IET Microwaves, Antennas & Propagation, 2016, vol. 10, p. 413–419. DOI: 10.1049/iet-map.2015.0181
  8. OJAROUDI, N., GHADIMI, N. UWB small slot antenna with WLAN frequency band-stop function. Electronics Letters, 2013, vol. 49, no. 21, p. 1317–1318. DOI: 10.1049/el.2013.2577
  9. DISSANAYAKE, T., ESSELLE, K. P. Prediction of the notch frequency of slot loaded printed UWB antennas. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 11, p. 3320–3325. DOI: 10.1109/TAP.2007.908792
  10. HUANG, C. Y., HUANG, S. A., YANG, C. F. Band-notched ultra-wideband circular slot antenna with inverted C-shaped parasitic strip. Electronics Letters, 2008, vol. 44, no. 15, p. 891–892. DOI: 10.1049/el:20081143
  11. OJAROUDI, N., OJAROUDI, M., GHADIMI, N. Dual bandnotched small monopole antenna with novel W-shaped conductor backed-plane and novel T-shaped slot for UWB applications. IET Microwaves, Antennas & Propagation, 2013, vol. 7, no. 1, p. 8–14. DOI: 10.1049/iet-map.2012.0180
  12. CAI, Y. Z., YANG, H. C., CAI, L. Y. Wideband monopole antenna with three band-notched characteristics. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 607–610. DOI: 10.1109/LAWP.2014.2313178
  13. KARIMIAN, R., ORAIZI, H., FAKHTE, S. Design of a compact ultra-wide-band monopole antenna with band rejection characteristics. IET Microwaves, Antennas & Propagation, 2014, vol. 8, no. 8, p. 604–610. DOI: 10.1049/iet-map.2013.0085
  14. LIU, J. J., ESSELLE, K. P., HAY, S. G., et al. Planar ultra-wideband antenna with five notched stop bands. Electronics Letters, 2013, vol. 49, no. 9, p. 579–580. DOI: 10.1049/el.2012.4123
  15. LIU, L., CHEUNG, S. W., YUK, T. I. Compact MIMO antenna for portable UWB applications with band-notched characteristic. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 5, p. 1917–1924. DOI: 10.1109/TAP.2015.2406892
  16. SOLTANI, S., LOTFI, P., MURCH, R. D. A port and frequency reconfigurable MIMO slot antenna for WLAN applications. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 4, p. 1209–1217. DOI: 10.1109/TAP.2016.2522470
  17. KHAN, M. S., CAPOBIANCO, A. D., NAQVI, A., et al. Compact planar UWB MIMO antenna with on-demand WLAN rejection. Electronics Letters, 2015, vol. 51, no. 13, p. 963–964. DOI: 10.1049/el.2015.1056
  18. BADAMCHI, B., NOURINIA, J., GHOBADI, C., et al. Design of compact reconfigurable ultra-wideband slot antenna with switchable single/dual band notch functions. IET Microwaves, Antennas & Propagation, 2014, vol. 8, no. 8, p. 541–548. DOI: 10.1049/iet-map.2013.0311
  19. ZHENG, S. H., LIU, X., TENTZERIS, M. M. Optically controlled reconfigurable band-notched UWB antenna for cognitive radio systems. Electronics Letters, 2014, vol. 50, no. 21, p. 1502–1504. DOI: 10.1049/el.2014.2226
  20. TASOUJI, N., NOURINIA, J., GHOBADI, C., et al. A novel printed UWB slot antenna with reconfigurable band-notch characteristics. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 922–925. DOI: 10.1109/ LAWP.2013.2273452
  21. LI, Y. S., LI, W. X., YE, Q. B. A reconfigurable triple-notch-band antenna integrated with defected microstrip structure band-stop filter for ultra-wideband cognitive radio applications. International Journal of Antennas and Propagation, 2013, vol. 2013, p. 1–13. DOI: 10.1155/2013/472645
  22. LI, Y. S., LI, W. X., YE, Q. B. Miniaturization of asymmetric coplanar strip-fed staircase UWB Antenna with reconfigurable notch band. Microwave and Optical Technology Letters, 2013, vol. 55, no. 7, p. 1467–1470. DOI: 10.1002/ mop.27634
  23. LI, Y. S., LI, W. X., YE, Q. B. A reconfigurable wide slot antenna integrated with SIRs for UWB/ multi-band communication applications. Microwave and Optical Technology Letters, 2013, vol. 55, no. 1, p. 52–55. DOI: 10.1002/mop.27253
  24. LI, Y. S., LI, W. X., YU, W. H. A switchable UWB slot antenna using SIS-HSIR and SIS-SIR for multi-mode wireless communications applications. Applied Computational Electromagnetics Society Journal, 2012, vol. 27, no. 4, p. 340–351. ISSN: 1054-4887
  25. KALTEH, A. A., DADASHZADEH, G. R., NASERMOGHADASI, M., et al. Ultra-wideband circular slot antenna with reconfigurable notch band function. IET Microwaves, Antennas & Propagation, 2012, vol. 6, no. 1, p. 108–112. DOI: 10.1049/iet-map.2011.0125
  26. BILAL, M., KHALIL, K., SALEEM, R., et al. An interdigital FSS based dual channel UWB-MIMO antenna array for system-inpackage applications. Applied Computational Electromagnetics Society Journal, 2017, vol. 32, no. 3, p. 203–208. ISSN: 1054-4887
  27. TOKTAS, A. G-shaped band-notched ultra-wideband MIMO antenna system for mobile terminals. IET Microwaves, Antennas & Propagation, 2016, vol. 11, no. 5, p. 718–725. DOI: 10.1049/ietmap.2016.0820
  28. BLANCH, S., ROMEU, J., CORBELLA, I., Exact representation of antenna system diversity performance from input parameter description. Electronics Letters, 2003, vol. 39, p. 705–707. DOI: 10.1049/el:20030495
  29. CHANDEL, R., GAUTAM, A. K., RAMBABU, K. Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 4, p. 1677–1684. DOI: 10.1109/TAP.2018.2803134

Keywords: Band-notch, isolation, multiple-input multiple-output (MIMO), PIN diodes, reconfigurable, ultra-wideband (UWB), WiMAX

Z. M. Loni, H. G. Espinosa, D. V. Thiel [references] [full-text] [DOI: 10.13164/re.2018.1006] [Download Citations]
Floating Hemispherical Helical Antenna: Analysis of Gain, Efficiency and Resonant Frequency

This paper reports the effect of seawater conductivity on gain, efficiency and resonant frequency of a hemispherical helical antenna. The size of the copper ground plane for the hemispherical antenna can be reduced using conductive seawater as part of the ground plane for the antenna. Seawater increases the gain from 6 dBi to 8 dBi but with a decreased efficiency. The simulated radiation efficiency of the antenna on water surface is 61%. Specific Absorption Rate (SAR) results show absorption of 2.19 W/kg. This paper also reports the design of a low cost floating buoy. The buoy provides a waterproof setup for the circuitry and antenna. The buoy can be effectively used for shallow water coastal monitoring.

  1. LIU, L., ZHOU, S., CUI, J. Prospects and problems of wireless communication for underwater sensor network. Wireless Communication and Mobile Computing, special issue on Underwater Sensor Networks: Architectures and Protocols, 2008, no. 8, p. 977–994. DOI: 10.1002/wcm.654
  2. WEBSTER, T., LEMKERT, C. J. Sediment resuspension within a micro tidal estuary/embayment and the implication to channel management. Journal of Coastal Research, 2002, vol. 36, Special Issue International Coastal Symposium (ICS 2002), p. 753–759. DOI: 10.2112/1551-5036-36.sp1.753
  3. HEIDEMANN, J., STOJANOVIC, M., ZORZI, M. Underwater sensor networks: applications, advances and challenges, Philosophical Transactions of the Royal. Society A, 2012, vol. 370, p. 158–175. DOI: 10.1098/rsta.2011.0214
  4. KLEIN, L., SWIFT, C. T. An improved model for the dielectric constant of seawater at microwave frequencies. IEEE Transactions on Antennas and Propagation, 1977, vol. 25, no. 1, p. 104–111. DOI: 10.1109/JOE.1977.1145319
  5. AL SHAMMAA, A. I., SHAW, A., SAMAM, S. Propagation of electromagnetic waves at MHz frequencies through seawater. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 11, p. 2843–2849. DOI: 10.1109/TAP.2004.834449
  6. ABDOU, A., SHAW, A., MASON, A., et al. Wireless sensor network for underwater communication. In IET Conference on Wireless Sensor Systems. London (UK), 2012, p. 3–8. DOI: 10.1049/cp.2012.0579
  7. LONI, Z. M., ESPINOSA, H. G., THIEL, D. V. Floating monopole antenna on a tethered subsurface sensor at 433 MHz for ocean monitoring applications. IEEE Journal on Oceanic Engineering, Oct 2017, vol. 42, no. 4, p. 818–825. DOI: 10.1109/JOE.2016.2639111
  8. LONI, Z. M., ESPINOSA, H. G., THIEL, D. V. Insulated wire fed floating monopole antenna for coastal monitoring. Radioengineering, April 2018, vol. 27, no. 1, p. 127–133. DOI: 10.13164/re.2018.0127
  9. JACKSON, N. C., THIEL, D. V. ISM band 2.45 GHz propagation studies in a coastal environment. In International Antenna Propagation Symposium Tasmania. Australia, 2015, p. 663–666. ISBN: 978-4-8855-2302-1
  10. JAMES, D. A., GALEHAR, A., THIEL, D. V. Mobile sensor communications in aquatic environments for sporting applications. Procedia Engineering, 2010, vol. 2, no. 2, p. 3017–3022. DOI: 10.1016/j.proeng.2010.04.104
  11. SAFAAI-JAAZ, A., CARDOSO, J. C. Radiation characteristics of a spherical helical antenna. IEE Proceedings Microwaves, Antennas and Propagation, 1996, vol. 143, no. 1, p. 7–12. DOI: 10.1049/ip-map: 19960037
  12. HUI, T. H., CHAN, Y. K., YUNG, N. K. E. The input impedance and the antenna gain of the spherical helical antenna. IEEE Transactions on Antennas and Propagation, 2001, vol. 49, no. 8, p. 1235–1237. DOI: 10.1109/8.943319
  13. LONG, S. A. A combination of linear and slot antennas for quasiisotropic coverage. IEEE Transactions on Antennas and Propagation, 1975, vol. 23, no. 4, p. 572–576. DOI: 10.1109/TAP.1975.1141121
  14. ANDUJAR, A., ANGUERA, J., PUENTE, C., PEREZ, A. On the radiation pattern of L-shaped wire antennas. Progress in Electromagnetic Research M, 2009, vol. 6, p. 91–105. DOI: 10.2528/PIERM09012204
  15. NKOMO, N., GWAMURI, J., SIBANDA, N. R., NKIWANE, L. A study of applications of 3D printing technology and potential applications in the plastic thermoforming industry. IOSR Journal of Engineering, 2017. ISSN (e): 2250-3021, ISSN (p): 2278-8719.
  16. CST MICROWAVE STUDIO, Comput. Simulation Tech., Munich, Germany: Simulia (TM) Dassault Systemes, 2016.
  17. LONI, Z. M., ESPINOSA, H. G., THIEL, D. V. Floating hemispherical helical antenna for ocean sensor networks. IEEE Journal on Oceanic Engineering, 2018, p. 1–8. DOI: 10.1109/JOE.2018.2853198
  18. SOLIDWORKS, Massachusetts, USA, Dassault SystemesSolidWorks Corporation, 2017.
  19. LONI, Z. M., ESPINOSA, H. G., THIEL, D. V. Vertically directed microwave radiation from a floating hemispherical antenna. In Australian Microwave Symposium (AMS). Brisbane (Australia), 2018, p. 45–46. DOI: 10.1109/AUSMS.2018.8346974

Keywords: Hemispherical antenna, vacuum forming, floating buoy, ocean sensors, 3D printing, Specific Absorption Rate (SAR), Wireless Sensor Networks (WSN).

S. Unaldi, N. B. Tesneli, S. Cimen [references] [full-text] [DOI: 10.13164/re.2018.1012] [Download Citations]
A Novel Miniaturized Polarization Independent Frequency Selective Surface with UWB Response

This study presents a novel Frequency Selective Surface (FSS) design with angularly stable and polarization independent band-stop response. The presented FSS comprises of miniaturized unit cells printed on two layers of dielectric substrate. The -3dB bandwidth of proposed FSS is between 2.98 GHz and 10.86 GHz frequencies. The unit cell dimension is 0.064λ×0.064λ with the thickness of 0.02λ, where λ is the wavelength of the lower operational frequency. The proposed FSS has angular stability up to 60 deg for TE polarization. The designed FSS is simulated and analyzed by using the commercial software, CST Microwave Studio. The simulation results are verified by measurements carried on a fabricated prototype and a good agreement is achieved.

  1. MUNK, B. A. Frequency Selective Surfaces: Theory and Design. New York: Wiley, 2000. ISBN: 978-0-471-37047-5
  2. YAHYA, R., NAKAMURA A., ITAMI, M. 3D UWB band-pass frequency selective surface. In IEEE International Symposium Antennas and Propagation (APSURSI). Fajardo (Puerto Rico), 2016, p. 959–960. DOI: 10.1109/APS.2016.7696188
  3. HABIB, S., KIANI, G. I., BUTT, M. F. U. An efficient UWB FSS for electromagnetic shielding. In International Conference on Electromagnetics in Advanced Applications (ICEAA). Verona (Italy), 2017, p. 1543–1546. DOI: 10.1109/ICEAA.2017.8065578
  4. KOCAKAYA, A., ÇAKIR, G., DIKMEN, C. A novel single layer frequency selective surface design for ultra-wide band antenna gain enhancement. In 10th International Conference on Electrical and Electronics Engineering (ELECO). Bursa (Turkey), 2017, p. 1075–1078.
  5. UNALDI, S., BODUR H., CIMEN, S., et al. A novel dual-band FSS reflector for RCS reduction. In International Conference on Engineering and Natural Sciences (ICENS 2016). Sarajevo (Bosna), 2016, p. 752–756. ISBN: 978-605-83575-1-8
  6. FEDERAL COMMUNICATIONS COMMISSION. First Report and Order, Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems, ET Docket 98- 153, FCC 02-48, Feb. 2002.
  7. SOHAIL, I., RANGA, Y., MATEKOVITS, L., et al. A low-profile single-layer UWB polarization stable FSS for electromagnetic shielding applications. In International Workshop on Antenna Technology (iWAT). Sydney (Australia), 2014, p. 220–223. DOI: 10.1109/IWAT.2014.6958643
  8. LIU, L., LI, H., JIN, Z., CAO, Q., et al. Design of FSS-based UWB absorber using multilayer modified circular ring. In International Applied Computational Electromagnetics Society Symposium (ACES). Suzhou (China), 2017. ISBN: 978-0-9960- 0785-6
  9. GURGEL DA SILVA SEGUNDO, F. C., PEREIRA DE SIQUEIRA CAMPOS, A. L. P., GOMEZ NETO, A. A design for ultrawide band frequency selective surface. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2013, vol. 12, no. 2, p. 398–409. DOI: 10.1590/S2179- 10742013000200012
  10. TAHIR, F. A., ARSHAD, T., ULLAH, S., et al. A novel FSS for gain enhancement of printed antennas in UWB frequency spectrum. Microwave and Optical Technology Letters, 2017, vol. 59, no. 10, p. 2698–2704. DOI: 10.1002/mop.30789
  11. SIVASAMY, R., MOORTHY, B., KANAGASABAI, M., et al. Polarization-independent single-layer ultra-wideband frequencyselective surface. International Journal of Microwave and Wireless Technologies, vol. 9, no. 1, p. 93–97. DOI: 10.1017/S1759078715001439
  12. BAISAKHIYA, S., SIVASAMY R., KANAGASABAI, M., et al. Novel compact UWB frequency selective surface for angular and polarization independent operation. Progress In Electromagnetics Research Letters, 2013, vol. 40, p. 71–79. DOI: 10.2528/PIERL13022707
  13. KOCAKAYA, A., ÇAKIR G. A novel angular independent higher order band-stop frequency selective surface for X-band applications. IET Microwaves, Antennas and Propagation, 2018, vol. 12, p. 15–22. DOI: 10.1049/iet-map.2016.0907

Keywords: Angularly stable, miniaturized, FSS, UWB

R. Swain, R. K. Mishra [references] [full-text] [DOI: 10.13164/re.2018.1018] [Download Citations]
Phase Quantized Metasurface Reflectors for X-band Laguerre Gaussian Vortex Beam Generation

From last two decade, there is an exponential growth in consumption of available bandwidth in the radio frequency spectrum. To challenge this issue, improvement in channel capacity is getting huge research attention. Laguerre-Gaussian vortex beams are one of the solution to challenge so-called Multi-Input-Multi-Output (MIMO) technology. However, designing compact portable antennas to generate vortex beams at radio frequencies is still a challenge. We proposed two metasurface reflector models (Track and sector-wise distribution) based on 3-bit phase quantized meta-element analysis to generate fundamental Orbital Angular Momentum (OAM) vortex modes. A microstrip antenna is used as feeding element instead of conventional horn to reduce overall reflector size. Simulated E-field distribution clarifies the spatial vortex mode behavior at X-band. Experimental results of fabricated prototypes at 9.5 GHz, 10 GHz, and 10.5 GHz agrees with simulated far-fields which indicates a broadband characteristic.

  1. ALLEN, L., BEIJERSBERGEN, M. W., SPREEUW, R. J. C., et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, vol. 45, no. 11, p. 8185–8190. DOI: 10.1103/PhysRevA.45.8185
  2. WANG, J., YANG, J.-Y., FAZAL, I. M., et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, vol. 6, no. 7, p. 488–496. DOI: 10.1038/nphoton.2012.138
  3. MOHAMMADI, S. M., DALDORFF, L. K., BERGMAN, J. E., et al. Orbital angular momentum in radio - a system study. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 2, p. 565–572. DOI: 10.1109/TAP.2009.2037701
  4. EDFORS, O., JOHANSSON, A. J. Is orbital angular momentum (OAM) based radio communication an unexploited area? IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 2, p. 1126–1131. DOI: 10.1109/TAP.2011.2173142
  5. CHENG, L., HONG, W., HAO, Z.-C. Generation of electromagnetic waves with arbitrary orbital angular momentum modes. Scientific Reports, 2014, vol. 4, p. 1–5. DOI: 10.1038/srep04814
  6. CHAVEZ-CERDA, S., PADGETT, M. J., ALLISON, I., et al. Holographic generation and orbital angular momentum of highorder Mathieu beams. Journal of Optics B: Quantum and Semiclassical Optics, 2002, vol. 4, no. 2, p. S52–S57. DOI: 10.1088/1464-4266/4/2/368
  7. THIDE, B., THEN, H., SJOHOLM, J., et al. Utilization of photon orbital angular momentum in the low-frequency radio domain. Physical Review Letters, 2007, vol. 99, no. 8, p. 087701-1 to 087701-4. DOI: 10.1103/PhysRevLett.99.087701
  8. TAMBURINI, F., MARI, E., THIDE, B., et al. Experimental verification of photon angular momentum and vorticity with radio techniques. Applied Physics Letters, 2011, vol. 99, no. 20, p. 204102-1 to 204102-3. DOI: 10.1063/1.3659466
  9. TAMBURINI, F., MARI, E., SPONSELLI, A., et al. Encoding many channels on the same frequency through radio vorticity: first experimental test. New Journal of Physics, 2012, vol. 14, no. 3, p. 1–17. DOI: 10.1088/1367-2630/14/3/033001
  10. BENISS, A., NIEMIEC, R., BROUSSEAU, C., et al. Flat plate for OAM generation in the millimeter band. In EuCAP2013-7th European Conference on Antennas & Propagation. Gothenburg (Sweden), 2013, p. 3203–3207.
  11. TENNANT, A., ALLEN, B. Generation of OAM radio waves using circular time-switched array antenna. Electronics Letters, 2012, vol. 48, no. 21, p. 1365–1366. DOI: 10.1049/el.2012.2664
  12. DENG, C., CHEN, W., ZHANG, Z., et al. Generation of OAM radio waves using circular Vivaldi antenna array. International Journal of Antennas and Propagation, 2013, p. 1–7. DOI: 10.1155/2013/847859
  13. WEI, W., MAHDJOUBI, K., BROUSSEAU, C., et al. Generation of OAM waves with circular phase shifter and array of patch antennas. Electronics Letters, 2015, vol. 51, no. 6, p. 442–443. DOI: 10.1049/el.2014.4425
  14. BAI, Q., TENNANT, A., ALLEN, B. Experimental circular phased array for generating OAM radio beams. Electronics Letters, 2014, vol. 50, no. 20, p. 1414–1415. DOI: 10.1049/el.2014.2860
  15. YU, S., LI, L., SHI, G., et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Applied Physics Letters, 2016, vol. 108, no. 24, p. 241901-1–241901-5. DOI: 10.1063/1.4953786
  16. LI, C.-C., WU, L.-S., YIN, W.-Y. A dual-polarized and reconfigurable reflectarray for generation of vortex radio waves. AIP Advances, 2018, vol. 8, no. 5, p. 055331-1– 055331-9. DOI: 10.1063/1.5023282
  17. RAN, Y., LIANG, J., CAI, T., LI, H. High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface. Optics Communication, 2018, vol. 427, p. 101–106. DOI: 10.1016/j.optcom.2018.06.041
  18. BARBUTO, M., TROTTA, F., BILOTTI, F., et al. Circular polarized patch antenna generating orbital angular momentum. Progress In Electromagnetics Research. 2014, vol. 148, p. 23–30. DOI: 10.2528/PIER14050204
  19. ZHANG, D., CAO, X., YANG, H., et al. Radiation performance synthesis for OAM vortex wave generated by reflective metasurface. IEEE Access, 2018, vol. 6, p. 28691–28701. DOI: 10.1109/ACCESS.2018.2839099
  20. YU, N., GENEVET, P., KATS, M. A., et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, vol. 333, no. 6054, p. 333–337. DOI: 10.1126/science.1210713
  21. CUI, T. J., QI, M. Q., WAN, X., et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science & Applications, 2014, vol. 3, no. 10, p. 1–9. DOI: 10.1038/lsa.2014.99

Keywords: Antenna, metasurface, Orbital Angular Momentum (OAM), reflectarray

K. P. Kaur, T. Upadhyaya, M. Palandoken [references] [full-text] [DOI: 10.13164/re.2018.1025] [Download Citations]
Dual-Band Compact Metamaterial-Inspired Absorber with Wide Incidence Angle and Polarization Insensitivity for GSM and ISM Band Applications

A dual-band metamaterial inspired microwave absorber composed of concentric two crossed double-arrow shaped resonators, ring resonator with four splits at the corners and square ring resonator is presented. The proposed RF absorber has the absorption feature of wide incidence angle. The sub-wavelength unit cell of the proposed absorber is structured on a metal backed epoxy glass (FR-4) substrate. The novel absorber has two distinct absorption peaks of 99.4% and 98.6% at the frequencies of 1.94 GHz and 2.4 GHz, respectively. The designed structure is polarisation-insensitive with wide incidence angle of 60° and high absorption rate of 82% for transverse electric and 98% for transverse magnetic modes. Polarization insensitivity of the proposed design is investigated by the waveguide measurement technique with setting different orientation angles for the unit cells. The measured and simulated results have good agreement making the proposed absorber a potential candidate for energy harvesting applications in GSM and ISM band.

  1. VESELAGO, V. G. The electrodynamics of substances with simultaneously negative values of  and . Soviet Physics Uspekhi, 1968, vol. 10, no. 4, p. 509–514. DOI: 10.1070/PU1968v010n04ABEH003699
  2. SHELBY, R. A., SMITH, D. R., SCHULTZ, S. Experimental verification of a negative index of refraction. Science, 2000, vol. 292, no. 5514, p. 77–79. DOI: 10.1126/science.1058847
  3. PALANDOKEN, M. Microstrip antenna with compact anti‐spiral slot resonator for 2.4 GHz energy harvesting applications. Microwave and Optical Technology Letters, 2016, vol. 58, no. 6, p. 1404–1408. DOI: 10.1002/mop.29824
  4. UPADHYAYA, T. K., KOSTA, S. P., JYOTI, R., PALANDOKEN, M. Negative refractive index material-inspired 90-deg electrically tilted ultra wideband resonator. Optical Engineering, 2014, vol. 53, no. 10, p. 1–4. DOI: 10.1117/1.OE.53.10.107104
  5. UPADHYAYA, T. K., KOSTA, S. P., JYOTI, R., PALANDOKEN, M. Novel stacked μ-negative material-loaded antenna for satellite applications. International Journal of Microwave and Wireless Technologies, 2016, vol. 8, no. 2, p. 229–235. DOI: 10.1017/S175907871400138X
  6. PALANDOKEN, M., SONDAS, A. Compact metamaterial based bandstop filter. Microwave Journal, 2014, vol. 57, no. 10, p. 76–84. ISSN: 0192-6225
  7. PALANDOKEN, M., UCAR, M. H. Compact metamaterial‐inspired band‐pass filter. Microwave and Optical Technology Letters, 2014, vol. 56, no. 12, p. 2903–2907. DOI: 10.1002/mop.28724
  8. PALANDOKEN, M., RYMANOV, V., STOHR, A., TEKIN, T. Compact metamaterial-based bias Tee design for 1.55 μm waveguide-photodiode based 71–76 GHz wireless transmitter. In Progress In Electromagnetics Research Symposium. Moscow (Russia), 2012, p. 393–397. ISSN: 1559-9450
  9. LANDY, N. I., SAJUYIGBE, S., MOCK, J. J., et al. Perfect metamaterial absorber. Physical Review Letters, 2008, vol. 100, no. 20, p. 1–4. DOI: 10.1103/PhysRevLett.100.207402
  10. SOOD, D., TRIPATHI, C. C. A polarization insensitive compact ultrathin wide-angle penta-band metamaterial absorber. Journal of Electromagnetic Waves and Applications, 2017, vol. 31, no. 4, p. 394–404. DOI: 10.1080/09205071.2017.1288172
  11. SHARMA, S. K., GHOSH, S., SRIVASTAVA, K. V., SHUKLA, A. Ultra‐thin dual‐band polarization‐insensitive conformal metamaterial absorber. Microwave and Optical Technology Letters, 2017, vol. 59, no. 2, p. 348–353. DOI: 10.1002/mop.30285
  12. RAMYA, S., SRINIVASA RAO, I. A compact ultra‐thin ultra‐wideband microwave metamaterial absorber. Microwave and Optical Technology Letters, 2017, vol. 59, no. 8, p. 1837–1845. DOI: 10.1002/mop.30636
  13. ZHAI, H., ZHANG, B., ZHANG, K., ZHAN, C. A stub-loaded reconfigurable broadband metamaterial absorber with wide-angle and polarization stability. Journal of Electromagnetic Waves and Applications, 2017, vol. 31, no. 4, p. 447–459. DOI: 10.1080/09205071.2017.1293567
  14. ZHAI, H., ZHAN, C., LIU, L., ZANG, Y. Reconfigurable wideband metamaterial absorber with wide angle and polarisation stability. Electronics Letters, 2015, vol. 51, no. 21, p. 1624–1626. DOI: 10.1049/el.2015.1557
  15. ZHAI, H., ZHAN, C., LIU, L., LIANG, C. A new tunable dualband metamaterial absorber with wide-angle TE and TM polarization stability. Journal of Electromagnetic Waves and Applications, 2015, vol. 29, no. 6, p. 774–785, DOI: 10.1080/09205071.2015.1024335
  16. AGARWAL, M., BEHERA, A. K., MESHRAM, M. K. Wideangle quad-band polarisation-insensitive metamaterial absorber. Electronics Letters, 2016, vol. 52, no. 5, p. 340–342. DOI: 10.1049/el.2015.4134
  17. CALOZ, C., ITOH, T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. John Wiley & Sons, 2005, p. 2. ISBN: 978-0-471-66985-2
  18. SMITH, D. R., VIER, D. C., KOSCHNY, T., SOUKOULIS, C. M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 2005, vol. 71, no. 3, p. 1–11. DOI: 10.1103/PhysRevE.71.036617

Keywords: Metamaterials, metamaterial absorber, ring resonators, polarization

R. Hussein, H. A. Atallah, S. Hekal, A. B. Abdel-Rahman [references] [full-text] [DOI: 10.13164/re.2018.1032] [Download Citations]
A New Design for Compact Size Wireless Power Transfer Applications Using Spiral Defected Ground Structures

In this article, a new wireless power transfer (WPT) design is proposed for improving the efficient of system. The suggested system contains two spiral defected ground structure (DGS) resonators coupled back-to-back. The spiral DGS alone acts as band stop filter (BSF), and when the two resonators are coupled back-to-back, a BSF is emerged leading to WPT system. The DGS resonators are loaded through chip capacitors for miniaturization. The proposed structures are fabricated and tested. The proposed system has a highest efficiency of 97.7% at a transmission distance of 10 mm which is suitable for biomedical applications. Both simulated and experimental results are in good concurrence.

  1. EL RAYES, M. M., NAGIB, G., ALI ABDELAAL, W. G. A review on wireless power transfer. International Journal of Engineering Trends and Technology, 2016, vol. 40, no. 5, p. 272–280. ISSN: 2231-5381
  2. HEKAL, S., ABDEL-RAHMAN, A. B., JIA, H., et al. A novel technique for compact size wireless power transfer applications using defected ground structures. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 2, p. 591–599. DOI: 10.1109/TMTT.2016.2618919
  3. DAS BARMAN, S., REZA, A. W., KUMAR, N., et al. Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications. Renewable and Sustainable Energy Reviews, 2015, vol. 51, p. 1525–1552. DOI: 10.1016/j.rser.2015.07.031
  4. ZAINAL ABIDIN, B. M. Z., KHALIFA, O. O., ELSHEIKH, E. M. A., et al. Wireless energy harvesting for portable devices using split ring resonator. In 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE). Khartoum (Sudan), 2015, p. 362–367. DOI: 10.1109/ICCNEEE.2015.7381392
  5. KIBRET, B., TESHOME, A. K., LAI, D. T. H. Analysis of the human body as an antenna for wireless implant communication. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 4, p. 1466–1476. DOI: 10.1109/TAP.2016.2526070
  6. KUNG, M. L., LIN, K. H. Enhanced analysis and design method of dual-band coil module for near-field wireless power transfer systems. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 3, p. 821–832. DOI: 10.1109/TMTT.2015.2398415
  7. HEKAL, S., ABDEL-RAHMAN, A. B. New compact design for short range wireless power transmission at 1 GHz using H-slot resonators. In Proceedings of the 9th European Conference on Antennas and Propagation (EuCAP). Lisbon (Portugal), 2015, p. 1–5. ISSN: 2164-3342
  8. SHARAF, R., HEKAL, S., EL-HAMEED, A. A., et al. A new compact wireless power transfer system using C-shaped printed resonators. In 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS). Monte Carlo (Monaco), 2016, p. 321–323. DOI: 10.1109/ICECS.2016.7841197
  9. MOHD SALLEH, M. H., SEMAN, N., ABANG ZAIDEL, D. N., et al. Investigation of unequal planar wireless electricity device for efficient wireless power transfer. Radioengineering, 2017, vol. 26, no. 1, p. 251–257. DOI: 10.13164/re.2017.0251
  10. PALANDOKEN, M. Compact bioimplantable MICS and ISM band antenna design for wireless biotelemetry applications. Radioengineering, 2017, vol. 26, no. 4, p. 917–923. DOI: 10.13164/re.2017.0917
  11. VISSER, H. J. Indoor wireless RF energy transfer for powering wireless sensors. Radioengineering, 2014, vol. 21, no. 4, p. 963–973. DOI: 10.13164/re.2017.0963
  12. HEKAL, S., ABDEL-RAHMAN, A. B., ALLAM, A., et al. Asymmetric strongly coupled printed resonators for wireless charging applications. In IEEE 17th Annual Wireless and Microwave Technology Conference (WAMICON). Clearwater (FL, USA), 2016, p. 1–5. DOI: 10.1109/WAMICON.2016.7483829

Keywords: Defected ground structure(DGS), spiral, Wireless Power Transfer (WPT)

Y.-J. Cai, F.-Y. Zhang, K.-D. Xu, D.-H. Li [references] [full-text] [DOI: 10.13164/re.2018.1038] [Download Citations]
Super High-Selectivity Fifth-Order Bandpass Filter with Twelve Transmission Zeros

A fifth-order bandpass filter (BPF) with super high selectivity using three pairs of coupled lines and two open stubs is proposed. Twelve transmission zeros (TZs) from 0 to 2f_0 (f_0 denotes center frequency of the passband) and five transmission poles (TPs) in the passband can be obtained to realize good out-of-band suppression and sharp roll-off skirts. For demonstration, a simple BPF prototype centered at 2.04 GHz is designed, fabricated with measured 3-dB fractional bandwidth of 18% and very high transition band roll-off rates of over 567 dB/GHz. Good agreement between the simulations and measurements validates the design method.

  1. HONG, J.-S., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001. ISBN: 0-471-38877-7
  2. GOMEZ-GARCIA, R., ALONSO, J. I. Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques. IEEE Microwave and Wireless Components Letters, 2005, vol. 15, no. 8, p. 530–532. DOI: 10.1109/LMWC.2005.852797
  3. FENG, W. J., CHE, W. Q., XUE, Q. Transversal signal interaction: Overview of high-performance wideband bandpass filters. IEEE Microwave Magazine, 2014, vol. 15, no. 2, p. 84–96. DOI: 10.1109/MMM.2013.2296216
  4. FENG, W. J., CHE, W. Q., CHANG, Y. M., et al. High selectivity fifth-order wideband bandpass filters with multiple transmission zeros based on transversal signal-interaction concepts. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 1, p. 89–97. DOI: 10.1109/TMTT.2012.2227785
  5. XU, K., ZHANG, Y., et al. Novel circular dual-mode filter with both capacitive and inductive source-load coupling for multiple transmission zeros. Journal of Electromagnetic Waves and Applications, 2012, vol. 26 no. 13, p. 1675–1684. DOI: 10.1080/09205071.2012.708966
  6. XUE, Q., JIN, J. Y. Bandpass filters designed by transmission zero resonator pairs with proximity coupling. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 11, p. 4103–4110. DOI: 10.1109/TMTT.2017.2697878
  7. XU, K. D., ZHANG, F. Y., LIU, Y. H., et al. High selectivity seventh-order wideband bandpass filter using coupled lines and open/shorted stubs. Electronic Letters, 2018, vol. 54, no. 4, p. 223–225. DOI: 10.1049/el.2017.4233
  8. XU, K. D., ZHANG, F. Y., LIU, Y. H., et al. Bandpass filter using three pairs of coupled lines with multiple transmission zeros. IEEE Microwave and Wireless Components Letters, 2018. vol. 28, no. 7, p. 576–578. DOI: 10.1109/LMWC.2018.2835643
  9. YANG, T., REBEIZ, G. M. Tunable 1.25–2.1-GHz 4-pole bandpass filter with intrinsic transmission zero tuning. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 5, p. 1569–1578. DOI: 10.1109/TMTT.2015.2409061
  10. AI, J., ZHANG, Y., XU, K. D., et al. Miniaturized quint-band bandpass filter based on multi-mode resonator and λ/4 resonators with mixed electric and magnetic coupling. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 5, p. 343–345. DOI: 10.1109/LMWC.2016.2549643
  11. XU, K. D., LI, M., LIU, Y. H., et al. Compact microstrip triplemode bandpass filters using dual-stub-loaded spiral resonators. Radioengineering, 2017, vol. 26, no. 1, p. 23–29. DOI: 10.13164/re.2017.0023
  12. XU, K. D., BAI, Y., REN, X., XUE, Q. Broadband filtering power dividers using simple three-line coupled structures. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, Early Access, p. 1–8. DOI: 10.1109/TCPMT.2018.2869077
  13. XU, K., LUO, Z., LIU, Y., LIU, Q. H. High-selectivity singleended and balanced bandpass filters using dual-mode ring resonators loaded with multiple stubs. AEU - International Journal of Electronics and Communications, 2018, vol. 96, p. 193–198. DOI: 10.1016/J.AEUE.2018.09.021
  14. AI, J., ZHANG, Y., XU, K. D., et al. Miniaturized frequency controllable bandstop filter using coupled line stubs loaded shorted SIR for tri-band application. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 7, p. 627–629. DOI: 10.1109/LMWC.2017.2711532
  15. ZHANG, B., WU, Y. L., LIU, Y. A. Wideband single-ended and differential bandpass filters based on terminated coupled line structures. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65 no. 3, p. 761–774. DOI: 10.1109/TMTT.2016.2628741

Keywords: Bandpass filter, high-selectivity, coupled lines, transmission poles, transmission zeros

As. Abdipour, Ar. Abdipour, M. Alahverdi [references] [full-text] [DOI: 10.13164/re.2018.1043] [Download Citations]
A Design of Microstrip Lowpass Filter with Wide Rejection Band and Sharp Transition Band Utilizing Semi-Circle Resonators

In this paper, a microstrip lowpass filter with -3 dB cut-off frequency of 2.1 GHz consisting of three cascaded resonators with different semi-circle patches and four suppressors employing radial stubs has been proposed. To indicate the role of each employed microstrip transmission line in the structure of its resonance cell, the equations of the transfer function and transition zero of the resonator have been calculated, separately. The designed filter has been constructed and tested, and a good agreement between the results of simulation and measurement has been achieved. In the whole rejection region, a return loss better than +0.28 dB and a 19.656 GHz stopband bandwidth with high rejection level of 32 dB have been obtained. Moreover, a flat insertion loss close to zero in the passband and sharp cutoff slope (203.57 dB/GHz) can verify desired frequency response. The proposed filter has a high figure of merit equal to 24241.69.

  1. WANG, J., XU, L. J., ZHAO, S., GUO, Y. X., WU, W. Compact quasi-elliptic microstrip lowpass filter with wide stopband. Electronics Letters, 2010, vol. 46, no. 20, p. 1384–1385. DOI: 10.1049/el.2010.1569
  2. LUO, S., ZHU, L., SUN, S. Stopband-expanded low-pass filters using microstrip coupled-line hairpin units. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 8, p. 506–508. DOI: 10.1109/LMWC.2008.2001004
  3. WEI, X. B., WANG, P., LIU, M. Q., SHI, Y. Compact widestopband lowpass filter using stepped impedance hairpin resonator with radial stubs. Electronics Letters, 2011, vol. 47, no. 15, p. 862–863. DOI: 10.1049/el.2011.1414
  4. LI, L., LI, F. Z., MAO, F. J. Compact lowpass filters with sharp and expanded stopband using stepped impedance hairpin units. IEEE Microwave and Wireless Components Letters, 2010, vol. 20, no. 6, p. 310–312. DOI: 10.1109/LMWC.2010.2047457
  5. VELIDI, V. K., SANYAL, S. Sharp roll-off lowpass filter with wide stopband using stub-loaded coupled-line hairpin unit. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 6, p. 301–303. DOI: 10.1109/LMWC.2011.2132120
  6. MANDAL, M. K., MANDAL, P., SANYAL, S., et al. Low insertion-loss, sharp rejection and compact microstrip lowpass filter. IEEE Microwave and Wireless Components Letters, 2006, vol. 16, no. 11, p. 600–602. DOI: 10.1109/LMWC.2006.884777
  7. GOMEZ-GARCIA, R., SANCHEZ-SORIANO, M. A., SANCHEZ RENEDO, M., et al. Extended-stopband microstrip lowpass filter using rat-race directional couplers. Electronics Letters, 2013, vol. 49, no. 4, p. 272–274. DOI: 10.1049/el.2012.4245
  8. WANG, C. J., LIN, C. H. Compact lowpass filter with sharp transition knee by utilising a quasi-ߨ-slot resonator and open stubs. IET Microwaves Antennas and Propagation, 2010, vol. 4, no. 4, p. 512–517. DOI: 10.1049/iet-map.2009.0001
  9. WANG, J., CUI, H., ZHANG, G. Design of compact microstrip lowpass filter with ultra-wide stopband. Electronics Letters, 2012, vol. 48, no. 14, p. 854–856. DOI: 10.1049/el.2012.1362
  10. WEI, F., CHEN, L., SHI, X. W., et al. Compact lowpass filter with wide stop-band using coupled-line hairpin unit. Electronics Letters, 2010, vol. 46, no. 1, p. 88–90. DOI: 10.1049/el.2010.2411
  11. MA, K., YEO, K. S. New ultra-wide stopband low-pass filter using transformed radial stubs. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 3, p. 604–611. DOI: 10.1109/TMTT.2010.2095031
  12. ABDIPOUR, AS., ABDIPOUR, AR., LOTFI, S. A lowpass filter with sharp roll–off and high relative stopband bandwidth using asymmetric high-low impedance patches. Radioengineering, 2015, vol. 24, no. 3, p. 712–716. DOI: 10.13164/re.2015.0712
  13. NOURITABAR, A. R., ABDIPOUR, AS., ABDIPOUR, AR. A design of low-pass filter with wide stopband and sharp roll-off rate using series LC tanks resonator. Applied Computational Electromagnetics Society (ACES) Journal, 2016, vol. 31, no. 11, p. 1343–1350. ISSN: 1054-4887
  14. ABDIPOUR, AR., ABDIPOUR, AS. Compact microstrip lowpass filter with an ultra-wide stopband and sharp transition band using T-shaped and polygon resonators. Progress In Electromagnetics Research C, 2017, vol. 74, p. 51–61. DOI: 10.2528/PIERC16121904
  15. ABDIPOUR, AR., ABDIPOUR, AS., LORESTANI, F. A compact microstrip lowpass filter with sharp roll-off rate and ultra-wide stopband employing coupled polygon patches. Progress In Electromagnetics Research C, 2017, vol. 76, p. 171–183. DOI: 10.2528/PIERC17043003
  16. ABDIPOUR, AS., NOURITABAR, A. R., ABDIPOUR, AR., et al. A miniaturized microstrip lowpass filter with sharp skirt performance and wide stopband utilizing modified hairpin resonator with long straight slots. Progress In Electromagnetics Research C, 2017, vol. 78, p. 83–92. DOI: 10.2528/PIERC17072706
  17. ABDIPOUR, AS., ABDIPOUR, AR. Compact microstrip lowpass filter with high and wide rejection in the stopband utilizing flabelliform resonators. Progress In Electromagnetics Research M, 2017, vol. 60, p. 179–188. DOI: 10.2528/PIERM17072803
  18. ABDIPOUR, AS., ABDIPOUR, AR., KOSRAVI, A. A compact microstrip lowpass filter with ultra-wide rejection band and sharp transition band utilizing combined resonators with triangular patches. Radioengineering, 2018, vol. 27, no. 2, p. 417–424. DOI: 10.13164/re.2018.0417
  19. HONG, J. S., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. 1st ed. John Wiley & Sons, Inc., 2001. ISBN 0-471-22161-9. DOI:10.1002/0471221619

Keywords: Microstrip Lowpass filter, transfer function and transition zero, semi-circle patches

E. S. Kim, K. K. Adhikari, N. Y. Kim [references] [full-text] [DOI: 10.13164/re.2018.1050] [Download Citations]
Split Ring Resonator-based Bandpass Filter with Multi-Transmission Zeros and Flexibly Controllable Bandwidth Using Multipath Source-Load Couplings

This letter presents a high-selectivity compact microstrip bandpass filter (BPF) with a flexibly controllable bandwidth, based on multi-path source-load couplings and a square-type split-ring resonator (STSRR). An STSRR, which is enclosed between the capacitively coupled source and load transmission feed lines, forms the structure of the proposed BPF. The main advantages of the proposed BPF lie in its simple structure and high selectivity due to multiple transmission zeros generated by multipath source-load couplings based on STSRR-enabled magnetic coupling between the feed lines with dual capacitive couplings. In addition, the bandwidth of the proposed BPF can be flexibly controlled by varying the magnetic coupling gap between the STSRR and the feed lines. The measured pass-band insertion and return loss of 0.83 and 27.23 dB, respectively, for a prototype BPF with a central frequency of 3.83 GHz and corresponding bandwidth of 12.98%, demonstrates the validity of the proposed method.

  1. PENDRY, J. B., HOLDEN, A. J., ROBBINS, D. J., STEWART, W. J. Magnetism from conductors and enhanced nonlinear phenomenon. IEEE Transactions on Microwave Theory and Techniques, 1999, vol. 47, no. 11, p. 2075–2084. DOI: 10.1109/22.798002
  2. DURAN-SINDREU, M., VELEZ, P., BONACHE, J., et al. Broadband microwave filters based on open split ring resonators (OSSRs) and open complementary split ring resonators (OCSRRs): Improved models and design optimization. Radioengineering, 2011, vol. 20, no. 4, p. 775–783. ISSN 1210-2512
  3. LIU, H., FAN, Y., ZHANG, Z., ZHAO, Y., et al. Dual-band superconducting bandpass filter using embedded split ring resonator. IEEE Transactions on Applied Superconductivity, 2013, vol. 23, no. 03, p. 1–4. DOI: 10.1109/TASC.2012.2230674
  4. HORESTANI, A. K., DURAN-SINDREU, M., NAQUI, J., et al. S-shaped complementary split ring resonators and their application to compact differential bandpass filters with common-mode suppression. IEEE Microwave and Wireless Components Letters, 2014, vol. 24, no. 3, p. 149–151. DOI: 10.1109/LMWC.2013.2291853
  5. VELEZ, P., NAQUI, J., FERNANDEZ-PRIETO, A., et al. Differential bandpass filter with common-mode suppression based on open split ring resonators and open complementary split ring resonators. IEEE Microwave and Wireless Components Letters, 2013, vol. 23, no. 1, p. 22–24. DOI: 10.1109/LMWC.2012.2236083
  6. BONACHE, J., GIL, I., GARCIA-GARCIA, J., MARTIN, F. Novel microstrip bandpass filters based on complementary splitring resonators. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 1, p. 265–271. DOI: 10.1109/TMTT.2005.861664
  7. KIM, E. S., ADHIKARI, K. K., KIM, N. Y. Miniaturized highselectivity microstrip bandpass filter using capacitively coupled stub-loaded stepped-impedance resonators. Microwave and Optical Technology Letters, 2016, vol. 58, no. 8, p. 2004–2010. DOI: 10.1002/mop.29958
  8. GAO, L., ZHANG, X. Y. High-selectivity dual-band bandpass filter using a quad-mode resonator with source-load coupling. IEEE Microwave and Wireless Components Letters, 2013, vol. 23, no. 9, p. 74–76. DOI: 10.1109/LMWC.2013.2274995
  9. LIANG, J. G., WANG, C., KIM, N. Y. Compact and highly selective dual/tri-band BPFs using folded T-shaped stub-loaded resonators for WLAN and WiMAX applications. Microwave and Optical Technology Letters, 2015, vol. 58, no. 2, p. 312–319. DOI: 10.1102/mop.29557
  10. LINDEN, S., ENKRICH, C., DOLLING, G., KLEIN, M. W., et al. Photonic metamaterials: magnetism at optical frequencies. IEEE Journal of Selected Topics in Quantum Electronics, 2006, vol. 12, no. 6, p. 1097–1105. DOI: 10.1109/JSTQE.2006.880600
  11. LEE, H. J., LEE, J. H., JUNG, H. I. A symmetric metamaterial element-based RF biosensor for rapid and label-free detection. Applied Physics Letters, 2011, vol. 99, p. 1–3. DOI: 10.1063/1.3653959
  12. ADHIKARI, K. K., KIM. N. Y. Ultrahigh-sensitivity mediator-free biosensor based on a microfabricated microwave resonator for the detection of micromolar glucose concentrations. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, p. 319–327. DOI: 10.1109/TMTT.2015.2503275
  13. LIU, M. Q., WANG, C., KIM, N. Y. A compact dual-bandpass filter using triple-mode stub-loaded resonators and outer-folding open-loop resonators. Indian Journal of Engineering & Materials Sciences, 2017, vol. 24, p. 13–17. DOI:10.1587/elex.12.20150676
  14. MAKIMOTO, M., YAMASHITA, S. Microwave Resonator and Filter for Wireless Communication: Theory, Design and Application. Berlin (DE): Springer, 2001. ISBN: 978-3-662- 04325-7
  15. LI, Y., WANG, C., KIM, N. Y. A compact dual-band bandpass filter with high design flexibility using fully isolated coupling paths. Microwave and Optical Technology Letters, 2014, vol. 56, no. 3, p. 642–646. DOI: 10.1002/mop.28170
  16. ADHIKARI, K. K., KIM, N. Y. A miniaturized quad-band bandstop filter with high selectivity based on shunt-connected, Tshaped stub-loaded, stepped-impedance resonators. Microwave and Optical Technology Letters, 2015, vol. 57, no. 5, p. 1129–1132. DOI: 10.1002/mop.29046
  17. DANAEIAN, M., AFROOZ, K., HAKIMI, A. Miniaturization of substrate integrated waveguide filters using novel compact metamaterial unit-cells based on SIR technique. International Journal of Electronics and Communications, 2018, vol. 84, p. 62–73. DOI: 10.1016/j.aeue.2017.11.008
  18. AZAD, A. R., MOHAN, A. Sixteenth-mode substrate integrated waveguide bandpass filter loaded with complementary split-ring resonator. Electronics Letters, 2017, vol. 53, no. 8, p. 546–547. DOI: 10.1049/el.2016.3620
  19. DANAEIAN, M., GHAYOUMI-ZADEH, H. Miniaturized substrate integrated waveguide filter using fractal open complementary split-ring resonators. International Journal of RF Microwave Computer Aided Engineering. 2018, vol. 28, no. 5, p. 1–10. DOI: 10.1002/mmce.21249
  20. CHENG, C. C., CHENG, K. X., KUNG, H. K., et al. A compact low insertion loss bandpass filter based on meandered self-coupled ring resonator. In MATEC Web Conference. 2017, vol. 123, DOI: 10.1051/matecconf/201712300016
  21. DANAEIAN, M., AFROOZ, K., HAKIMI, A., MOZNEBI, A. R. Compact bandpass filter based on SIW loaded by open complementary split-ring resonators. International Journal of RF Microwave Computer Aided Engineering, 2016, vol. 26, no. 8, p. 674–682. DOI: 10.1002/mmce.21017
  22. YAN, T., TANG, X. H., XU, Z. X., LU, D. A novel type of bandpass filter using complementary open-ring resonator loaded HMSIW with an electric cross-coupling. Microwave and Optical Technology Letters, 2016, vol. 58, no. 4, p. 998–1001. DOI: 10.1002/mop.29719

Keywords: Bandpass filter; compact size; multipath coupling; selectivity; split ring resonator; transmission zero

M. Kumar, S. K. Parui, S. Das [references] [full-text] [DOI: 10.13164/re.2018.1056] [Download Citations]
Design of Miniaturized Dual-Band Wilkinson Power Divider Using Dual and Cascade Pi-Shaped Transmission Lines

This paper presents a design of compact dual-band Wilkinson power divider (WPD). The cascaded pi-shape and dual transmission lines are used instead of conventional transmission line sections of the reference WPD in order to miniaturize the circuit area. Therefore, 62% size reduction has been achieved without much affecting the performance of power divider. The insertion-loss of the output ports is within (3.4±0.3)dB, for the reflection coefficient is better than -15 dB and isolation is better than 18 dB at the lower frequency band of 1.1 GHz. Similarly the insertion loss is within (3.4±0.3) dB, for the reflection coefficient better than -18 dB and isolation better than at the upper frequency band of 2.55 GHz. The proposed WPD is analyzed, fabricated and tested. It is found that the measurement results are in good agreement with the simulated one.

  1. POZAR, D. M. Microwave Engineering. 3rd ed. New York: Wiley, 2007. ISBN: 978-8126510498
  2. HONG, J. S. Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001. DOI: 10.1002/0471221619
  3. SRISATHIT, S., CHONGCHEAWCHAMNAN, M., WORAPISHET, A. Design and realization of dual-band 3 dB power divider based on two-section transmission-line topology. Electronics Letters, 2003, vol. 39, no. 9, p. 723–724. DOI: 10.1049/EL:20030483
  4. WU, L., YILMAZ, H., BITZER, T., et al. A dual-frequency Wilkinson power divider: for a frequency and its first harmonic. IEEE Microwave and Wireless Components Letters, 2005, vol. 15, no. 2, p. 107–109. DOI: 10.1109/LMWC.2004.842848
  5. LEI WU, ZENGGUANG SUN, YILMAZ, H., et al. A dual-frequency Wilkinson power divider. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 1, p. 278–284. DOI: 10.1109/TMTT.2005.860300
  6. AVRILLON, S., PELE, I., CHOUSSEAUD, A., TOUTAIN, S. Dual-band power divider based on semi loop stepped-impedance resonators. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 4, p. 1269-1273. DOI: 10.1109/TMTT.2003.809667
  7. CHENG, K. K. M., WONG, F. L. A new Wilkinson power divider design for dual band application. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 9, p. 664–666. DOI: 10.1109/LMWC.2007.903454
  8. ZHANG, H., XIN, H. Designs of dual-band Wilkinson power dividers with flexible frequency ratios. In IEEE MTT-S International Microwave Symposium Digest. Atlanta (USA), 2008, p. 1223–1226. DOI: 10.1109/MWSYM.2008.4633279
  9. CHENG, K. K. M., LAW, C. A novel approach to the design and implementation of dual-band power divider. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 2, p. 487–492. DOI: 10.1109/TMTT.2007.914629
  10. PARK, M. J., LEE, B. Wilkinson power divider with extended ports for dual-band operation. Electronics Letters, 2008, vol. 44, no. 15, p. 916–917. DOI: 10.1049/EL:20080821
  11. LI, X., GONG, S. X., YANG, L., YANG, Y. J. A novel Wilkinson power divider for dual-band operation. Journal of Electromagnetic Waves and Applications, 2009, vol. 23, p. 395–404. DOI: 10.1163/156939309787604346
  12. LEE, J. H., JEON, I. S., CHO, Y. H., et al. Design of dual-band power divider using shunt open-stubs with enhanced attenuation characteristics. In Asia Pacific Microwave Conference Proceedings. Kaohsiung (Taiwan), 2012, p. 1199–1120. DOI: 10.1109/APMC.2012.6421868
  13. WU, G., YANG, L., ZHOU, Y., XU, Q. Wilkinson power divider design for dual-band applications. Electronics Letters, 2014, vol. 50, no. 14, p. 1003–1005. DOI: 10.1049/EL.2014.0741
  14. ZAFAR BEDAR KHAN, ZHAO HUILING, ZHANG YIMIN. Simplified approach for design of dual-band Wilkinson power divider with three transmission line sections. Microwave and Optical Technology Letters, 2016, vol. 58, p. 2374–2377. DOI: 10.1002/MOP.30052
  15. YANG, J., GU, C., WU, W. Design of novel compact coupled microstrip power divider with harmonic suppression. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 9, p. 572–574. DOI: 10.1109/LMWC.2008.2002444
  16. EOM, D. J., KAHNG, S. T. Fully printed dual-band power divider miniaturized by CRLH phase shift lines. ETRI Journal, 2013, vol. 35, p. 150–153. DOI: 10.4218/ETRIJ.13.0212.0131
  17. LIN, C. M., SU, H. H., CHIU, J. C., et al. Wilkinson power divider using microstrip EBG cells for the suppression of harmonics. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 10, p. 700–702. DOI: 10.1109/LMWC.2007.905595
  18. ZHANG, F., LI, C. F. Power divider with microstrip electromagnetic band gap element for miniaturization and harmonic rejection. Electronics Letters, 2008, vol. 44, p. 422–423. DOI: 10.1049/EL:20083693
  19. WOO, D. J., LEE, T. K. Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 6, p. 2139–2144. DOI: 10.1109/TMTT.2005.848772
  20. HAYATI, M., ABDIPOUR, A., ABDIPOUR, A. A Wilkinson power divider with harmonic suppression and size reduction using high low impedance resonator cells. Radioengineering, 2015, vol. 24, no. 1, p. 137–141. DOI: 10.13164/re.2015.0137
  21. BARIK, R. K., KUMAR, K. V. P., KARTHIKEYAN, S. S. A compact wideband harmonic suppressed 10 dB branch line coupler using cascaded symmetric pi sections. Microwave and Optical Technology Letters, 2016, vol. 58, no. 7, p. 1610–1613. DOI: 10.1002/MOP.29870
  22. TANG, C. W., CHEN, M. G., TSAI, C. H. Miniaturization of microstrip branch-line coupler with dual transmission lines. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 3, p. 185–187. DOI: 10.1109/LMWC.2008.916798
  23. ZHANG, G., WANG, J., ZHU, L., WU, W. Dual-band filtering power divider with high selectivity and good isolation. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 10, p. 774–776. DOI: 10.1109/LMWC.2016.2604878
  24. MAKTOOMI, M. A., HASHMI, M. S. A performance enhanced port extended dual-band Wilkinson power divider. IEEE Access, 2017, vol. 5, p. 11832–11840. DOI: 10.1109/ACCESS.2017.2715283
  25. SHAO, C., LI, Y., CHEN, J. X. Compact dual-band microstrip filtering power divider using T-junction structure and quarterwavelength SIR. Electronics Letters, 2017, vol. 53, no. 6, p. 434–436. DOI: 10.1049/EL.2017.0182

Keywords: Wilkinson power divider, dual-band, cascaded pi-shaped line, dual transmission line, miniaturization

W. Marynowski [references] [full-text] [DOI: 10.13164/re.2018.1064] [Download Citations]
Broadband Compact Single-Layer Magic-T Junction with Separation of DC Signals between All Ports

A novel structure for a four-port microstrip magic-T junction is presented. The device is composed of microstrip and slotline circuits etched onto two sides of a dielectric substrate. The device is extremely compact and occupies an area more than three times smaller than similar structures recently reported in the literature. The novelty of the device lies in the use of microstrip/slotline transitions for both input ports: summation (in-phase) port and difference (out-of-phase) port. This ensures electrical separation for DC signals between all four ports, a wide operation band and a very small size for the device. The fabricated prototype operates in a 95% fractional bandwidth with reflection losses better than 10 dB and isolation between input ports better than 35 dB. The insertion losses for the excitation at the summation port are about 0.8 dB and for the excitation at the difference port are about 1.4 dB. In the operation band of the device, the maximum amplitude imbalance is equal to +/-0.3 dB, whereas the maximum phase imbalance is equal to +/-4 deg.

  1. POZAR, D. Microwave Engineering. 3rd ed., New York (USA): Wiley, 2005. ISBN: 0-471-44878-8.
  2. DENG, K. L., WANG H. A miniature broad-band pHEMT MMIC balanced distributed doubler. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 4, p. 1257–1261. DOI: 10.1109/TMTT.2003.809665
  3. MAAS, S. A. Microwave Mixers. London (UK): Artech House, 1993. ISBN: 0-89006-605-1
  4. MARCH, S. A wideband stripline hybrid ring (correspondence). IEEE Transactions on Microwave Theory and Techniques, 1968, vol. 16, no. 6, p. 361–361. DOI: 10.1109/TMTT.1968.1126693
  5. HO, C. H., FAN, L., CHANG, K. Broad-band uniplanar hybridring and branch-line couplers. IEEE Transactions on Microwave Theory and Techniques, 1993, vol. 41, no. 12, p. 2116–2125. DOI: 10.1109/22.260695
  6. HO, C. H., FAN, L., CHANG, K. New uniplanar coplanar waveguide hybrid-ring couplers and magic-T’s. IEEE Transactions on Microwave Theory and Techniques, 1994, vol. 42, no. 12, p. 2440–2448. DOI: 10.1109/22.339779
  7. WANG, T., WU, K. Size-reduction and band-broadening design technique of uniplanar hybrid ring coupler using phase inverter for M(H)MIC’s. IEEE Transactions on Microwave Theory and Techniques, 1999, vol. 47, no. 2, p. 198–206. DOI: 10.1109/22.744295
  8. MO, T. T., XUE, Q., CHAN, C. H. A broadband compact microstrip rat-race hybrid using a novel CPW inverter. IEEE Transactions on Microwave Theory and Techniques, 2007, vol. 55, no. 1, p.161–167. DOI: 10.1109/TMTT.2006.888938
  9. KIM, J. P., PARK, W. S. Novel configurations of planar multilayer magic-T using microstrip-slotline transitions. IEEE Transactions on Microwave Theory and Techniques, 2002, vol. 50, no. 7, p. 1683–1688. DOI: 10.1109/TMTT.2002.800387
  10. U-YEN, K., WOLLACK, E. J., PAPAPOLYMEROU, J., et al. A broadband planar magic-T using microstrip-slotline transitions. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 1, p. 172–177. DOI: 10.1109/TMTT.2007.912213
  11. OKABE, H., CALOZ, C., ITOH, T. A compact enhancedbandwidth hybrid ring using an artificial lumped-element lefthanded transmission-line section. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 3, p. 798–804. DOI: 10.1109/TMTT.2004.823541
  12. SETTALURI, R. K., SUNDBERG, G., WEISSHAAR, A., et al. Compact folded line rat-race hybrid couplers. IEEE Microwave and Guided Wave Letters, 2000, vol. 10, no. 2, p. 61–63. DOI: 10.1109/75.843101
  13. ECCLESTON, K. W., ONG, S. H. M. Compact planar microstripline branch-line and rat-race couplers. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 10, p. 2119–2125. DOI: 10.1109/TMTT.2003.817442
  14. KUO, J. T., WU, J. S., CHIOU, Y. C. Miniaturized rat race coupler with suppression of spurious passband. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 1, p. 46–48. DOI: 10.1109/LMWC.2006.887254
  15. SUNG, Y. J., AHN, C. S., KIM, Y. S. Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure. IEEE Microwave and Wireless Components Letters, 2004, vol. 14, no. 1, p. 7–9. DOI: 10.1109/LMWC.2003.821499
  16. DAVIDOVITZ, M. A compact planar magic-T junction with aperturecoupled difference port. IEEE Microwave and Guided Wave Letters, 1997, vol. 7, no. 8, p. 217–218. DOI: 10.1109/75.605482
  17. HE, F. F., WU, K., HONG, W., et al. A planar magic-T using substrate integrated circuits concept. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 6, p. 386–388. DOI: 10.1109/LMWC.2008.922596
  18. MARYNOWSKI, W., MAZUR, J. Investigation of multilayer magic-T configurations using novel microstrip-slotline transitions. Progress In Electromagnetics Research, PIER, 2012, vol. 129, p. 91–108. DOI: 10.2528/PIER12032303
  19. XIAO, L., PENG, H., YANG, T. The design of a novel compact ultra-wideband (UWB) power divider. Progress In Electromagnetics Research Letters, PIER L, 2014, vol. 44, p. 43–46. DOI: 10.2528/PIERL13111205
  20. BIALKOWSKI, M. E., WANG, Y. Wideband microstrip 180◦ hybrid utilizing ground slots. IEEE Microwave and Wireless Components Letters, 2010, vol. 20, no. 9, p. 495–497. DOI: 10.1109/LMWC.2010.2056677
  21. HENIN, B., ABBOSH, A. Wideband hybrid using three-line coupled structure and microstrip-slot transitions. IEEE Microwave and Wireless Components Letters, 2013, vol. 23, no. 7, p. 335–337. DOI: 10.1109/LMWC.2013.2262930
  22. High Frequency Structure Simulator (HFSS), 2016. http://www.ansoft.com/.
  23. SHUPPERT, B. Microstrip/slotline transitions: modeling and experimental investigation. IEEE Transactions on Microwave Theory and Techniques, 1988, vol. 36, no. 8, p. 1272–1282. DOI: 10.1109/22.3669
  24. ZINIERIS, M. M., SLOAN, R., DAVIS, L. E. A broadband microstrip-to-slot-line transition. Microwave and Optical Technology Letters, 1998, vol. 18, no. 5, p. 339–342. DOI: 10.1002/(SICI)1098- 2760(19980805)18:5<339::AID-MOP9>3.0.CO;2-9

Keywords: Magic-T junction, microwave hybrid, in-phase/out-of-phase divider, power divider

T. Shao, S. Fang, Z. Wang, H. Liu [references] [full-text] [DOI: 10.13164/re.2018.1070] [Download Citations]
A Compact Dual-Band Negative Group Delay Microwave Circuit

A compact dual-band negative group delay circuit (NGDC) is proposed. The proposed NGDC is composed of an open-circuited transmission line and two resistors connected by two transmission lines. The frequency ratio is controlled by the characteristic impedance of the transmission lines. To verify the design concept, a dual-band NGDC with the frequency ratio of n = 2 (Circuit A) and a broadband NGDC with n = 1.16 (Circuit B) are designed and fabricated. The measured group delay value of the Circuit A is -1.19 ns at the center frequencies of lower and upper bands. And the measured NGD bandwidth is 34.6% for the lower band and 16.5% for the upper band, in which the return loss and insertion loss are better than 16.9 dB and 18.2 dB, respectively. From the measurement results of Circuit B, a flat fractional NGD bandwidth of 19.8% with GD of (-1.58 ± 0.13) ns is obtained, in which the return loss and insertion loss are better than 23 dB and 32.5 dB, respectively.

  1. MENG, X. M., YU, C. P., WU, Y. L., et al. Design of dual-band high-efficiency power amplifiers based on compact broadband matching networks. IEEE Microwave Wireless Components Letters, 2018, vol. 28, no. 2, p. 162–164. DOI: 10.1109/LMWC.2017.2787058
  2. LIU, Y., JIANG, S., ZHU, S., et al. Large frequency-ratio dualband and broad dual-band parallel-line couplers. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, vol. 8, no. 1, p. 121–131. DOI: 10.1109/TCPMT.2017.2761991
  3. MYOUNG, S. S., KWON, B. S., KIM, Y. H., et al. Effect of group delay in RF BPF on impulse radio systems. IEICE Transactions on Communications, 2007, vol. 90, no. 12, p. 3514–3522. DOI: 10.1093/ietcom/e90-b.12.3514
  4. EUDES, T., RAVELO, B. Cancellation of delays in the high-rate interconnects with UWB NGD active cells. Applied Physics Research, 2011, vol. 3, no. 2, p. 81–88. DOI: 10.5539/apr.v3n2p81
  5. AHN, K. P., ISHIKAWA, R., HONJO, K. Group delay equalized UWB InGaP/GaAs HBT MMIC amplifier using negative group delay circuits. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 9, p. 2139–2147. DOI: 10.1109/TMTT.2009.2027082
  6. RAVELO, B., PERENNEC, A., ROY, M. L. Experimental validation of the RC-interconnect effect equalization with negative group delay active circuit in planar hybrid technology. In IEEE Workshop on Signal Propagation on Interconnects. Strasbourg, (France), 2009, p. 1–4. DOI: 10.1109/SPI.2009.5089836
  7. CHOI, H., JEONG, Y., KIM, C. D., et al. Efficiency enhancement of feedforward amplifiers by employing a negative group-delay circuit. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 5, p. 1116–1125. DOI: 10.1109/TMTT.2010.2045576
  8. CHOI, H., JEONG, Y., KIM, C. D., et al. Bandwidth enhancement of an analog feed-back amplifier by employing a negative group delay circuit. Progress in Electromagnetics Research, 2010, vol. 105, p. 253–272. DOI: 10.2528/PIER10041808
  9. OH, S. S., SHAFAI, L. Compensated circuit with characteristics of lossless double negative materials and its application to array antennas. IET Microwaves Antennas and Propagation, 2007, vol. 1, no. 1, p. 29–38. DOI: 10.1049/iet-map:20050229
  10. MIRZAEI, H., ELEFTHERIADES, G. V. Realizing non-Foster reactive elements using negative-group-delay networks. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 12, p. 4322–4332. DOI: 10.1109/TMTT.2013.2281967
  11. RAVELO, B. Theory of coupled line coupler-based negative group delay microwave circuit. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 11, p. 3604–3611. DOI: 10.1109/TMTT.2016.2604316
  12. RAVELO, B. Innovative theory on multiband NGD topology based on feedback-loop power combiner. IEEE Transactions on Circuits and Systems II Express Briefs, 2016, vol. 63, no. 8, p. 738–742. DOI: 10.1109/TCSII.2016.2531101
  13. CHAUDHARY, G., JEONG, Y. A finite unloaded quality-factor resonators based negative group delay circuit and its application to design power divider. Microwave and Optical Technology Letters, 2016, vol. 58, no. 12, p. 2918–2921. DOI: 10.1002/mop.30184
  14. WANG, Z., CAO, Y., SHAO, T., et al. A negative group delay microwave circuit based on signal interference techniques. IEEE Microwave Wireless Components Letters, 2018, vol. 28, no. 4, p. 290–292. DOI: 10.1109/LMWC.2018.2811254
  15. CHAUDHARY, G., JEONG, Y. Transmission-type negative group delay networks using coupled line doublet structure. IET Microwaves Antennas and Propagation, 2015, vol. 9, no. 8, p. 748–754. DOI: 10.1049/iet-map.2014.0351
  16. SHAO, T., WANG, Z., FANG, S., et al. A compact transmissionline self-matched negative group delay microwave circuit. IEEE Access, 2017, vol. 5, p. 22836–22843. DOI: 10.1109/ACCESS.2017.2761890
  17. BROOMFIELD, C. D., EVERARD, J. K. A. Broadband negative group delay networks for compensation of microwave oscillators and filters. Electronics Letters, 2000, vol. 36, no. 23, p. 1931–1933. DOI: 10.1049/el:20001377
  18. RAVELO, B., PERENNEC, A., ROY, M. L. Synthesis of broadband negative group delay active circuits. In IEEE MTT-S International Microwave Symposium Digest. Honolulu (USA), 2007, p. 2177–2180. DOI: 10.1109/MWSYM.2007.380357
  19. RAVELO, B., BLASI, S. D. An FET-based microwave active circuit with dual-band negative group delay. Journal of Microwaves, Optoelectronics and Electromagnetic Application, 2011, vol. 10, no. 2, p. 355–366. DOI: 10.1590/S2179-10742011000200006
  20. WU, C. T. M., ITOH, T. Maximally flat negative group-delay circuit: a microwave transversal filter approach. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 6, p. 1330–1342. DOI: 10.1109/TMTT.2014.2320220
  21. WU, C. T. M., GHARAVI, S., DANESHRAD, B., et al. A dualpurpose reconfigurable negative group delay circuit based on distributed amplifiers. IEEE Microwave Wireless Components Letters, 2013, vol. 23, no. 11, p. 593–595. DOI: 10.1109/LMWC.2013.2279104
  22. CHAUDHARY, G., JEONG, Y., LIM, J. Miniaturized dual-band negative group delay circuit using dual-plane defected structures. IEEE Microwave Wireless Components Letters, 2014, vol. 24, no. 8, p. 521–523. DOI: 10.1109/LMWC.2014.2322445
  23. TAHER, H., FARRELL, R. Dual wide-band miniaturized negative group delay circuit using open circuit stubs. Microwave and Optical Technology Letters, 2018, vol. 60, no. 2, p. 428–432. DOI: 10.1002/mop.30979
  24. CHOI, H., JEONG, Y., LIM, J., et al. A novel design for a dualband negative group delay circuit. IEEE Microwave Wireless Components Letters, 2011, vol. 21, no. 1, p. 19–21. DOI: 10.1109/LMWC.2010.2089675

Keywords: Dual-band, broadband, negative group delay, compact, frequency ratio

P. Ourednik, P. Hudec [references] [full-text] [DOI: 10.13164/re.2018.1077] [Download Citations]
TRL-based Measurement of Embedded Circuits in Microwave Printed Circuit Boards Including Frequency Conversion

The paper deals with the measurement of individual components or circuits embedded in more complex radio frequency (RF) or microwave printed circuit board (PCBs). Since no standard RF measurement enables the direct parallel connection of an analyzer to the boards being tested, individual components are often measured by destructively cutting manufactured boards and by attaching the RF connectors to the concerned parts. This article shows that this problem, thanks to suitable calibration standards that have been designed and manufactured, can be solved by vector measurements and a TRL calibration process. The measurements also work when the boards to be measured include frequency conversion. The applicability of the developed method has been verified by practical measurements and its accuracy influenced by variations of the parameters of the surrounding circuits has been investigated by an uncertainty analysis.

  1. RENBI, A., RISSEH, A., QVARNSTROM, R., et al. Impact of etch factor on characteristic impedance, crosstalk and board density. In International Symposium on Microelectronics (IMAPS). San Diego (USA), 2012, vol. 2012, no. 1, p. 312–317. DOI: 10.4071/isom-2012-TP24
  2. TARATEERASETH, V., SEE, K. Y., CANAVERO, F. G., et al. Systematic electromagnetic interference filter design based on information from in-circuit impedance measurements. IEEE Transactions on Electromagnetic Compatibility, 2010, vol. 52, no. 3, p. 588–598. DOI: 10.1109/TEMC.2010.2046419
  3. FORGACS, R. L. In-circuit impedance measurement using current sensing. IEEE Transactions on Instrumentation and Measurement, 1985, vol. IM-34, no. 1, p. 6–14. DOI: 10.1109/TIM.1985.4315246
  4. ZELDER, T., GECK, B. Contactless scattering parameter measurements. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 9, p. 504–506. DOI: 10.1109/LMWC.2011.2162619
  5. STENARSON, J., YHLAND, K., WINGQVIST, C. An in-circuit noncontacting measurement method for s-parameters and power in planar circuits. IEEE Transactions on Microwave Theory and Techniques, 2001, vol. 49, no. 12, p. 2567–2572. DOI: 10.1109/22.971651
  6. OUREDNIK, P., ADLER, V., HUDEC, P. TRL-based measurement of active antennas and other more complex microwave structures. In Proceedings of the 89th Microwave Measurement Conference (ARFTG). Honololu (USA), 2017, p. 1–4. DOI: 10.1109/ARFTG.2017.8000834
  7. DUNSMORE, J.P. Handbook of Microwave Component Measurements: With Advanced VNA Techniques. Wiley, 2012. ISBN: 978-1-119-97955-5
  8. ANDERSON, K., HAWKINS, R., LUI, J., et al. Vector Network Analyzer with Independently Tuned Receivers Characterizes Frequency Translation Devices. U.S. Patent No. 7,248,033. 24 Jul. 2007.
  9. ROHDE & SCHWARZ. R&S ZVA / R&S ZVB / R&S ZVT Vector Network Analyzers Operating Manual. 1185 pages. [Online] Cited 2018-06-10. Available at: https://cdn.rohdeschwarz.com/pws/dl_downloads/dl_common_library/dl_manuals/ gb_1/z/zva_2/ZVA_ZVB_ZVT_OperatingManual_en_30.pdf
  10. ENGEN, G. F., HOER, C. A. Thru-Reflect-Line: An improved technique for calibrating the dual six-port automatic network analyzer. IEEE Transactions on Microwave Theory and Techniques, 1979, vol. 27, no. 12, p. 987–993. DOI: 10.1109/TMTT.1979.1129778
  11. TEPPATI, V., FERRERO, A., SAYED, M. Modern RF and Microwave Measurement Techniques. Cambridge University Press, 2013. ISBN: 9781107036413
  12. JOINT COMMITTEE GUIDES METROLOGY. Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement. 134 pages. [Online] Cited 2018-06-10. Available at: https://www.bipm.org/utils/common/documents/jcgm/JCGM_ 100_2008_E.pdf
  13. LINZCZUK, P., ZDUNEK, P., BARMUTA, P., et al. GPU implementation of multiline TRL calibration for efficient Monte-Carlo uncertainty analysis. InProceedings of the 21st International Conference on Microwave, Radar and Wireless Communications (MIKON). Krakow (Poland), 2016, p. 1–4. DOI: 10.1109/MIKON.2016.7492106
  14. JOINT COMMITTEE GUIDES METROLOGY. Evaluation of Measurement Data - supplement 1 to the ”Guide to the Expression of Uncertainty in Measurement"- Propagation of Distributions Using a Monte Carlo Method. 90 pages. [Online] Cited 2018-06-10. Available at: https://www.bipm.org/utils/common/documents/jcgm/ JCGM_101_2008_E.pdf

Keywords: Microwave measurement, calibration techniques, TRL calibration, vector network analyzer, uncertainty analysis

C.-G. Sun, J.-L. Li [references] [full-text] [DOI: 10.13164/re.2018.1085] [Download Citations]
Wideband Time Reversal of Microwave Signals Based on Phase Conjugating

A phase conjugating network to realize wideband time reversal of microwave signals is studied in this paper. After discussions on the operation principle of the reversed signal in the time and frequency domains, a prototype network based on phase-conjugating mixing is developed. A demonstrator is designed and fabricated, and two examinations are carried out to confirm the presented method. For a fixed LO signal, a chirp RF signal with 40-MHz bandwidth can be phase-conjugated mixing, thus time reversed effectively. To widen the operation bandwidth, a method named dynamically synchronous phase conjugating is proposed; this enables a microwave signal to be dynamically reversed by synchronously varying the LO frequency along with the RF frequency, thus achieving the phase-conjugating dynamically in a wide frequency band. The simulation and experiment results of a wideband microwave signal, ranging from 5.4 to 6.25 GHz under a measured conversion loss of ≤ 10 dB, verify our studies.

  1. IERO, D. A. M., CROCCO, L., ISERNIA, T. On the role and choice of source polarization in time-reversal focusing of vector fields. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 214–217. DOI: 10.1109/LAWP.2015.2438539
  2. LEROSEY, G., ROSNY, J. de, TOURIN, A., et al. Focusing beyond the diffraction limit with far-field time reversal. Science, 2007, vol. 315, no. 5815, p. 1120–1122. DOI: 10.1126/science. 1134824
  3. CARMINATI, R., PIERRAT, R., ROSNY, J. de, et al. Theory of time reversal cavity for electromagnetic fields. Optics Letters, 2007, vol. 32, no. 21, p. 3107–3109. DOI: 10.1364/OL.32. 003107
  4. FINK, M. Time reversal of ultrasonic fields–part I: basic principles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, vol. 39, no. 5, p. 555–566. DOI: 10.1109/58.156174
  5. MUKHERJEE, S., UDPA, L., UDPA, S., et al. Target localization using microwave time-reversal mirror in reflection mode. IEEE Transactions on Antennas and Propagations, 2017, vol. 65, no. 2, p. 820–828. DOI: 10.1109/TAP.2016.2627011
  6. ODEDO, V. C., YAVUZ, M. E., COSTEN, F., et al. Time reversal technique based on spatiotemporal windows for through the wall imaging. IEEE Transactions on Antennas and Propagations, 2017, vol. 65, no. 6, p. 3065–3072. DOI: 10.1109/TAP.2017.2696421
  7. LIU, D., KROLIK, J., CARIN, L. Electromagnetic target detection in uncertain media: time-reversal and minimum-variance algorithms. IEEE Transactions on Geoscience and Remote Sensing, 2007, vol. 45, no. 4, p. 934–944. DOI: 10.1109/TGRS.2006.890411
  8. WANG, B., WU, Y., HAN, F., et al. Green wireless communications: a time-reversal paradigm. IEEE Journal on Selected Areas in Communications, 2011, vol. 29, no. 8, p. 1698–1710. DOI: 10.1109/JSAC.2011.110918
  9. CHEN, Y., HAN, F., YANG, Y.-H., et al. Time-reversal wireless paradigm for green internet of things: an overview. IEEE Internet of Things Journal, 2014, vol. 1, no. 1, p. 81–98. DOI: 10.1109/JIOT.2014.2308838
  10. LEONG, K. M. K. H., WANG, Y., ITOH, T. A full duplex capable retrodirective array system for high-speed beam tracking and pointing applications. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 5, p. 1479–1489. DOI: 10.1109/TMTT.2004.827025
  11. GOSHI, D. S., LEONG, K. M. K. H., ITOH, T. A sparse retrodirective transponder array with a time shared phaseconjugator. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 8, p. 2367–2372. DOI: 10.1109/TAP.2007.901852
  12. MIYAMOTO, R. Y., LEONG, K. M. K. H., JEON, S.-S., et al. Digital wireless sensor server using an adaptive smart-antenna/ retrodirective array. IEEE Transactions on Vehicular Technology, 2003, vol. 52, no. 5, p. 1181–1188. DOI: 10.1109/TVT.2003.816610
  13. CHIU, L., XUE, Q., CHAN, C. H. A 4-element balanced retrodirective array for direct conversion transmitter. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 4, p. 1185–1190. DOI: 10.1109/TAP.2011.2109355
  14. TSAI, J.-W., SHIAU, C.-Y., MA, T.-G. Dual-band retrodirective array with integrated reflection-type and phase conjugating array using synthesized transmission lines. In Proceedings of the 4th Asia-Pacific Conference on Antennas and Propagation (APCAP). Bali Island (Indonesia), 2015, p. 185–186. DOI: 10.1109/APCAP.2015.7374326
  15. RICHARDS, M. A. Fundamentals of Radar Signal Processing. New York (USA): McGraw-Hill, 2005 (chapter 1) ISBN: 0071444742
  16. PIERNAS, D., HAYASHI, H., NISHIKAWA, K., et al. Improvement of the design of 180° rat-race hybrid. Electronics Letters, 2000, vol. 36, no. 12, p. 1035–1036. DOI: 10.1049/el: 20000753
  17. LI, J.-L., SHAO, W., WANG, J.-P., et al. Microwave slow-wave structure and phase-compensation technique for microwave power divider. Radio Engineering, 2014, vol. 23, no. 1, p. 214–221. ISSN: 1210-2512

Keywords: Time reversal, phase conjugating, mixing, synchronism

A. Naderi Saatlo, S. Ozoguz [references] [full-text] [DOI: 10.13164/re.2018.1092] [Download Citations]
Wide Range High Precision CMOS Exponential Circuit Based on Linear Least Squares Approach

A new strategy to implement exponential circuit in CMOS technology is presented in this paper. The proposed method is based on the new approximation function optimized by linear least squares approach to extend the output dynamic range. The current mode method is employed for realization of circuits, because of simple circuitry and intuitive topology. Unlike to the some reported circuits which were designed in the subthreshold region, the proposed design operates in the saturation region which provides acceptable bandwidth for the circuit. In order to validate the circuit performance, the post layout simulation results are presented using HSPICE and Cadence with TSMC level 49 (BSIM3v3) parameters for 0.18 μm CMOS technology. The results demonstrate 78 dB output dynamic range with the linearity error less than ±0.5 dB which shows a remarkable improvement in comparison with previously reported works. A bandwidth of 67 MHz, maximum power consumption of 0.326 mW under supply voltage of 1.5 V, and 0.77% error for temperature variations are further achievement of the design.

  1. MATEO, J., SANCHEZ-MORLA, E., SANTOS, J. L. A new method for removal of powerline interference in ECG and EEG recordings. Computers and Electrical Engineering, 2015, vol. 45, p. 235–48. DOI: 10.1016/j.compeleceng.2014.12.006
  2. VASUNDHARA, PUHAN. N. B., PANDA, G. De-correlated improved adaptive exponential FLAF-based nonlinear adaptive feedback cancellation for hearing aids. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, vol. 65, no. 2, p. 650–662. DOI: 10.1109/TCSI.2017.2730235
  3. DUONG, Q. H., LE, Q., KIM, C. W., et al. A 95-dB linear lowpower variable gain amplifier. IEEE Transactions on Circuits and Systems I: Regular Papers, 2006, vol. 53, no. 8, p. 1648–1657. DOI: 10.1109/TCSI.2006.879058
  4. NADERI, S. A., OZOGUZ, S. Design of high-linear, highprecision analog multiplier free from body effect. Turkish Journal of Electrical Engineering and Computer Sciences, 2016, vol. 24, p. 820–832. DOI:10.3906/elk-1307-159
  5. NADERI, S. A. High-precision CMOS analog computational circuits based on a new linearly tunable OTA. Radioengineering, 2016, vol. 25, no. 2, p. 297–304. DOI: 10.13164/re.2016.0297
  6. AL-SUHAIBANI, E., AL-ABSI, M. A. A new CMOS currentmode controllable-gain square rooting circuit using MOSFET in subthreshold. Analog Integrated Circuits and Signal Processing, 2015, vol. 82, no. 2, p. 431–434. DOI 10.1007/s10470-015-0488-0
  7. AL-TAMIMI, K. M., AL-ABSI, M. A., ABUELMA'ATTI, M. T. Temperature insensitive current-mode CMOS exponential function generator and its application in variable gain amplifier. Microelectronics Journal, 2014, vol. 45, no. 3, p. 345–354. DOI: 10.1016/j.mejo.2013.12.010
  8. WEY, T., JEMISON, W. An automatic gain control circuit with TiO2 memristor variable gain amplifier. Analog Integrated Circuits and Signal Processing, 2012, vol. 73, no. 3, p. 663–672. DOI: 10.1007/s10470-012-9860-5
  9. POPA, C. High-accuracy function synthesizer circuit with applications in signal processing. EURASIP Journal on Advances in Signal Processing, 2012, vol. 146, p. 1–11. DOI: 10.1186/1687-6180-2012- 146
  10. AL-TAMIMI, K. M., AL-ABSI, M. A. A 6.13 μW and 96 dB CMOS exponential generator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, vol. 22, no. 11, p. 2443–2447. DOI: 10.1109/TVLSI.2013.2292093
  11. YANG, S., WANG, C. A low power 48-dB/stage linear-in-dB variable gain amplifier for direct-conversion receivers. Microelectronics Journal, 2012, vol. 43, no. 4, p. 274–279. DOI: 10.1016/j.mejo.2012.01.005
  12. KALENTERIDIS, V., VLASSIS, S., SISKOS, S. 1.5-V CMOS exponential current generator. Analog Integrated Circuits and Signal Processing, 2012, vol. 72, no. 2, p. 333–341. DOI: 10.1007/s10470-012-9836-5
  13. KAO, C., TSENG, C., HSIEH, C. Low-voltage exponential function converter. Circuits, Devices and Systems, 2005, vol. 152, no. 5, p. 485–487. DOI: 10.1049/ip-cds:20045110
  14. DE LA CRUZ BLAS, C., LOPEZ-MARTIN, A. Novel low-power high-dB range CMOS pseudo-exponential cells. ETRI Journal, 2006, vol. 28, no. 6, p. 732–738. DOI: 10.4218/etrij.06.0106.0121
  15. KABOLI, M., GHANAVATI, B., AKHLAGHI, M. A new CMOS pseudo approximation exponential function generator by modified particle swarm optimization algorithm. Integration, the VLSI Journal, 2017, vol. 56, p. 70–76. DOI: 10.1016/j.vlsi.2016.10.003
  16. MORO-FRIAS, D., DE LA CRUZ BLAS, C., SANZ-PASCUAL, T. PWL current-mode CMOS exponential circuit based on maximum operator. IEEE Transactions on Circuits and Systems II: Express Brief, 2015, vol. 62, no. 12, p. 1169–1173. DOI: 10.1109/TCSII.2015.2468972
  17. MISENER, R. C., FLOUDAS, A. Piecewise-linear approximations of multidimensional functions. Journal of Optimization Theory and Applications, 2010, vol. 145, no. 1, p. 120–147. DOI: 10.1007/s10957-009-9626-0
  18. ABUELMATTI, T., ABUELMATI, A. A new current mode CMOS analog programmable arbitrary nonlinear function synthesizer. Microelectronics Journal, 2012, vol. 43, no. 11, p. 802–8. DOI: 10.1016/j.mejo.2012.07.003
  19. SCHIFER, V., EVANS, W. A. Approximations in sinewave generation and synthesis. Radio and Electronic Engineer, 1978, vol. 48, no. 3, p. 113–121. DOI: 10.1049/ree.1978.0016
  20. POPA, C. Low-voltage CMOS current-mode exponential circuit with 70 dB output range. Microelectronics Journal, 2013, vol. 44, no. 12, p. 1348–1357. DOI: 10.1016/j.mejo.2013.09.005
  21. NADERI SAATLO, A., OZOGUZ, S. A new CMOS exponential circuit with extended linear output range. In Proceedings of the 20th European Conference on Circuit Theory and Design (ECCTD)., Linkoping (Sweden), 2011, p. 893–896. DOI: 10.1109/ECCTD.2011.6043814
  22. NADERI, A., KHOEI, A., HADIDI, K. H., et al. A new high speed and low power four-quadrant CMOS analog multiplier in current-mode. AEU-International Journal of Electronics and Communications, 2009, vol. 63, no. 9, p. 769–775. DOI: 10.1016/j.aeue.2008.06.002
  23. FILANOVSKY, M., ALLAM, A. Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, vol. 48, no. 7, p. 876–884. DOI: 10.1109/81.933328
  24. BULT, K., WALLINGA, H. A class of analog CMOS circuits based on the square-law characteristic of an MOS transistor in saturation. IEEE Journal of Solid-State Circuits, 1997, vol. 2, no. 3, p. 357–365. DOI: 10.1109/JSSC.1987.1052733
  25. LIU, H., BOON, C. C., HE, X. F., et al A wideband analogcontrolled variable-gain amplifier with dB-linear characteristic for high-frequency applications. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 2, p. 533–540. DOI: 10.1109/TMTT.2015.2513403
  26. SANCHEZ-RODRIGUEZ, T., GALAN, A., PEDRO, M., et al. Low-power CMOS variable gain amplifier based on a novel tunable transconductor. IET Circuits, Devices and Systems, 2015, vol. 9, no. 2, p. 105–110. DOI: 10.1049/iet-cds.2014.0130

Keywords: Exponential function, new approximation, analog circuit, high precision

D. Cerny, J. Dobes, S. Banas [references] [full-text] [DOI: 10.13164/re.2018.1100] [Download Citations]
Efficient Procedure Improving Precision of High Conditioned Matrices in Electronic Circuits Analysis

In this article, we propose several improvements that could be done to SPICE simulator. The first is based on a functional implementation of device models. The advantages of functional implementation are demonstrated on basic Shichman-Hodges model of MOS transistor. It starts with a description of primary algorithms used in SPICE simulator for the solution of circuits with nonlinear devices and identify the problems that can occur during simulations.Main part of the article is devoted to improved factorization procedure for simulation of the nonlinear electronic circuits. The primary intention of the proposed method is to increase final precision of the result in a case of high condition linear systems. The procedure is based on a use of the iterative methods for solution of nonlinear and linear equations. Utilizing those methods for one iterative process helps to reduce memory consumption during simulation computation, and it can significantly improve simulation precision. The procedure allows to use enumeration with definable precision in a very efficient way.

  1. SAIZ-VELA, A., MIRIBEL-CATALA, P., COLOMER, J., et al. Accurate design of high-voltage multistage voltage doublers based on compact mathematical model. Electronics Letters, 2007, vol. 43, no. 15, p. 797–798. ISSN: 0013-5194. DOI: 10.1049/el:20070405
  2. SANYAL, A., RASTOGI, A., CHEN, W., et al. An efficient technique for leakage current estimation in nanoscaled CMOS circuits incorporating self-loading effects. IEEE Transactions on Computers, 2010, vol. 59, no. 7, p. 922–932. ISSN: 0018-9340. DOI: 10.1109/TC.2010.75
  3. YANG, S., LIU, S., FENG, W., et al. SPICE circuit model of voltage excitation fluxgate sensor. IET Science, Measurement Technology, 2013, vol. 7, no. 3, p. 145–150. ISSN: 1751-8822. DOI: 10.1049/iet-smt.2013.0005
  4. KUMAWAT, R., SAHULA, V., GAUR, M. Probabilistic model for nanocell reliability evaluation in presence of transient errors. IET Computers Digital Techniques, 2015, vol. 9, no. 4, p. 213–220. ISSN: 1751-8601. DOI: 10.1049/iet-cdt.2014.0124
  5. VAN UFFELEN, M., GEBOERS, S., LEROUX, P., et al. SPICE modelling of a discrete COTS SiGe HBT for digital applications up to MGy dose levels. IEEE Transactions on Nuclear Science, 2006, vol. 53, no. 4, p. 1945–1949. ISSN: 0018-9499. DOI: 10.1109/TNS.2006.880949
  6. HUSZKA, Z., CHAKRAVORTY, A. Implementation of delay-timebased nonquasi-static bipolar transistor models in circuit simulators. IEEE Transactions on Electron Devices, 2014, vol. 61, no. 8, p. 3004–3006. ISSN: 0018-9383. DOI: 10.1109/TED.2014.2327664
  7. TANAKA, C., SAITOH, M., OTA, K., et al. SPICE-Based performance analysis of trigate silicon nanowire CMOS circuits. IEEE Transactions on Electron Devices, 2013, vol. 60, no. 4, p. 1451–1456. ISSN: 0018-9383. DOI: 10.1109/TED.2013.2247607
  8. STEINER, M., SIEFER, G., BETT, A. SPICE network simulation to calculate thermal runaway in III-V solar cells in CPV modules. IEEE Journal of Photovoltaics, 2014, vol. 4, no. 2, p. 749–754. ISSN: 2156-3381. DOI: 10.1109/JPHOTOV.2014.2299398
  9. LIN, J., TOH, E. H., SHEN, C., et al. Compact HSPICE model for IMOS device. Electronics Letters, 2008, vol. 44, no. 2, p. 91–92. ISSN: 0013-5194. DOI: 10.1049/el:20083116
  10. WONG, O. Y., WONG, H., TAM, W. S., et al. Dynamic analysis of two-phase switched-capacitor DC-DC converters. IEEE Transactions on Power Electronics, 2014, vol. 29, no. 1, p. 302–317. ISSN: 0885-8993. DOI: 10.1109/TPEL.2013.2249594
  11. KE, H., HUBING, T., MARADEI, F. Using the LU recombination method to extend the application of circuit-oriented finite element methods to arbitrarily low frequencies. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 5, p. 1189–1195. ISSN: 0018-9480. DOI: 10.1109/TMTT.2010.2045533
  12. ACARY, V., BONNEFON, O., BROGLIATO, B. Time-stepping numerical simulation of switched circuits within the nonsmooth dynamical systems approach. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2010, vol. 29, no. 7, p. 1042–1055. ISSN: 0278-0070. DOI: 10.1109/TCAD.2010.2049134
  13. FERREIRA, D., OLIVEIRA, J., PEDRO, J. A novel time-domain CAD technique based on automatic time-slot division for the numerical simulation of highly nonlinear RF circuits. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 1, p. 18–27. ISSN: 0018-9480. DOI: 10.1109/TMTT.2013.2293481
  14. ZHANG, X., CHEN, W. H., FENG, Z. Novel SPICE compatible partial-element equivalent-circuit model for 3-D structures. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 11, p. 2808–2815. ISSN: 0018-9480. DOI: 10.1109/TMTT.2009.2032462
  15. SAFAVI, S., EKMAN J. A hybrid PEEC-SPICE method for time-domain simulation of mixed nonlinear circuits and electromagnetic problems. IEEE Transactions on Electromagnetic Compatibility, 2014, vol. 56, no. 4, p. 912–922. ISSN: 0018-9375. DOI: 10.1109/TEMC.2014.2300372
  16. FRANCO, F., PALOMAR, C., IZQUIERDO, J., et al. SPICE simulations of single event transients in bipolar analog integrated circuits using public information and free open source tools. IEEE Transactions on Nuclear Science, 2015, vol. 62, no. 4, p. 1625–1633. ISSN: 0018-9499. DOI: 10.1109/TNS.2015.2416000
  17. TLELO CUAUTLE, E., RODRIGUEZ CHAVEZ, S. Graph-based symbolic technique for improving sensitivity analysis in analog integrated circuits. IEEE Latin America Transactions, 2014, vol. 12, no. 5, p. 871–876. ISSN: 1548-0992. DOI: 10.1109/TLA.2014.6872898
  18. KAPRE, N., DEHON, A. SPICE2 : Spatial processors interconnected for concurrent execution for accelerating the SPICE circuit simulator using an FPGA. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012, vol. 31, no. 1, p. 9–22. ISSN: 0278-0070. DOI: 10.1109/TCAD.2011.2173199
  19. CHEN, X., REN, L., WANG, Y., et al. GPU-Accelerated sparse LU factorization for circuit simulation with performance modeling. IEEE Transactions on Parallel and Distributed Systems, 2015, vol. 26, no. 3, p. 786–795. ISSN: 1045-9219. DOI: 10.1109/TPDS.2014.2312199
  20. ZHOU, T., LIU, H., ZHOU, D., et al. A fast analog circuit analysis algorithm for design modification and verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2011, vol. 30, no. 2, p. 308–313. ISSN: 0278-0070. DOI: 10.1109/TCAD.2010.2081750
  21. FAKHFAKH, M., TLELO-CUAUTLE, E., FERNANDEZ, F. V. Design of Analog Circuits through Symbolic Analysis. Bentham Science Publishers, 2012. ISBN: 9781608054251
  22. FAKHFAKH, M., TLELO-CUAUTLE, E., CASTRO-LOPEZ, R. Analog/RF and Mixed-Signal Circuit Systematic Design. Berlin Heidelberg: Springer-Verlag, 2013. ISBN: 9783642363283
  23. DOBES, J., MICHAL, J., BIOLKOVA, V. Multiobjective optimization for electronic circuit design in time and frequency domains. Radioengineering, 2013, vol. 22, no. 1, p. 136–152. ISSN: 1210-2512
  24. STEFAŃSKI, T. P. Electromagnetic problems requiring highprecision computation. IEEE Antennas and Propagation Magazine, 2013, vol. 55, no. 2, p. 344–353. ISSN: 1045-9243. DOI: 10.1109/MAP.2013.6529388
  25. DOBES, J., CERNY, D., VEJRAZKA, F., et al. Comparing the steady-state procedures based on epsilon-algorithm and sensitivity analysis. In Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems (ICECS). Cairo (Egypt), 2015, p. 1–4. DOI: 10.1109/ICECS.2015.7440388
  26. FAKHFAKH, M., TLELO-CUAUTLE, E., SIARRY, P. Computational Intelligence in Analog and Mixed-Signal (AMS) and Radio-Frequency (RF) Circuit Design. Cham: Springer, 2015. ISBN: 9783319198712
  27. CERNY, D., DOBES, J. An efficient procedure for transient analysis of electronic circuits with increased precision. MATEC Web of Conferences, EDP Sciences, 2016, vol. 76. DOI: 10.1051/matecconf/20167601007
  28. ELRAD, T., FILMAN, R. E., BADER, A. Aspect-oriented programming: Introduction. Communications of the ACM, 2001, vol. 44, no. 10, p. 29–32. DOI: 10.1145/383845.383853
  29. CHEN, Y., ACAR, U. A., TANGWONGSAN, K. Functional programming for dynamic and large data with self-adjusting computation. ACM SIGPLAN Notices, 2014, vol. 49, no. 9, p. 227–240. DOI: 10.1145/2692915.2628150
  30. ZAHARIA, M., CHOWDHURY, N. M. M., FRANKLIN, M. J., et al. Spark: Cluster Computing with Working Sets. Tech. Rep. UCB/EECS-2010-53. Electrical Engineering and Computer Sciences, University of California at Berkeley, 2010.
  31. ACAR, U. A., BLELLOCH, G. E., HARPER, R. Adaptive functional programming. ACM Transactions on Programming Languages and Systems (TOPLAS), 2006, vol. 28, no. 6, p. 990–1034. DOI: 10.1145/1186632.1186634
  32. MAWBY, P., IGIC, P., TOWERS, M. Physically based compact device models for circuit modelling applications. Microelectronics Journal, 2001, vol. 32, no. 5, p. 433–447. DOI: 10.1016/S0026- 2692(01)00013-1
  33. ANTOGNETTI, P., MASSOBRIO, G. Semiconductor Device Modeling with Spice. New York: McGraw-Hill, Inc., 1993. ISBN: 0070021538
  34. VLADIMIRESCU A. The Spice Book. New York: J. Wiley & Sons, 1994. ISBN: 0471609269
  35. CERNY, D., DOBES, J., NAVRATIL, V. Functional chaining mechanism allowing definable models of electronic devices. In Proceedings of the European Conference on Circuit Theory and Design (ECCTD). Catania (Italy), 2017. DOI: 10.1109/ECCTD.2017.8093250
  36. JIAN, S. L., LU, K., WANG X. P. A survey on concepts and the state of the art of functional programming languages. In Systems and Computer Technology: Proceedings of the International Symposium on Systems and Computer technology (ISSCT). Shanghai (China), 2014, p. 71–77. ISBN: 9781138028722
  37. CERNY, D., DOBES, J. Common LISP as simulation program (CLASP) of electronic circuits. Radioengineering, 2011, vol. 20, no. 4, p. 880–889. ISSN: 1210-2512
  38. CERNY, D., DOBES, J. Functional programming languages in computer simulation of electronics circuits. In Proceedings of the International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas (USA), 2014, vol. 1, p. 229–234. DOI: 10.1109/CSCI.2014.46
  39. QUARLES, T. L. Analysis of Performance and Convergence Issues for Circuit Simulation, Doctoral Dissertation, University of California, Electronics Research Lab, Berkeley, 1989.
  40. DAVIS, T. A., YEW, P. C. A nondeterministic parallel algorithm for general unsymmetric sparse LU factorization. SIAM Journal on Matrix Analysis and Applications, 1990, vol. 11, no. 3, p. 383–402. DOI: 10.1137/0611028
  41. CHEN, X., WANG, Y., YANG, H. An adaptive LU factorization algorithm for parallel circuit simulation. In Proceedings of the 17th Asia and South Pacific Design Automation Conference (ASP-DAC). Sydney (Australia), 2012, p. 359–364. ISSN: 2153-6961. DOI: 10.1109/ASPDAC.2012.6164974
  42. KAPRE, N., DEHON, A. Parallelizing sparse matrix solve for SPICE circuit simulation using FPGAs. In Proceedings of the International Conference on Field-Programmable Technology (FPT). Sydney (Australia), 2009, p. 190–198. DOI: 10.1109/FPT.2009.5377665
  43. BEN-ISRAEL, A., GREVILLE, T. N. Generalized Inverses: Theory and Applications. Springer Science & Business Media, 2003. ISBN: 0387002936
  44. BEN-ISRAEL, A. An iterative method for computing the generalized inverse of an arbitrary matrix. Mathematics of Computation, 1965, vol. 19, no. 91, p. 452–455. DOI: 10.2307/2003676
  45. BEN-ISRAEL, A., COHEN, D. On iterative computation of generalized inverses and associated projections. SIAM Journal on Numerical Analysis, 1966, vol. 3, no. 3, p. 410–419. DOI: 10.1137/0703035
  46. HAGEMAN, L. A., YOUNG, D. M. Applied Iterative Methods. Courier Corporation, 2012. ISBN: 048643477X
  47. KOROVKIN, N. V., CHECHURIN, V. L., HAYAKAWA, M. Inverse Problems in Electric Circuits and Electromagnetics. New York: Springer Science+Business Media, 2007. ISBN: 9780387335247
  48. WOLFF, F. G. Spice Amplifier Tutorial. In Spice3/Bandwidth/Slew Notes. VLSI CAD Group, EECS department, Case Western Reserve University. [Online]. Available at: http://www2.eng.cam.ac.uk/~ dmh/ptialcd/jfet/tut_spice3_jfet_bias.html. Cited 2018-06-21.
  49. SCHWEBER, B. Understanding the Advantages and Disadvantages of Linear Regulators. Digi-Key’s North American Editors, Sep. 2017. [Online] Cited 2018-06-21. Available at: https://www.digikey.com/ en/articles/techzone/2017/sep/understanding-the-advantages-and-dis advantages-of-linear-regulators.

Keywords: SPICE simulator, functional programming, Lisp, iterative methods, factorization procedures, conditionality of linear systems, simulation precision

G. Perenic, N. Stamenkovic, N. Stojanovic, N. Denic [references] [full-text] [DOI: 10.13164/re.2018.1112] [Download Citations]
Chained-Function Filter Synthesis Based on the Modified Jacobi Polynomials

A new class of filter functions with pass-band ripple which derives its origin from a method of determining the chained function lowpass filters described by Guglielmi and Connor is introduced. The closed form expressions of the characteristic functions of these filters are derived by using orthogonal Jacobi polynomial. Since the Jacobi polynomials can not be used directly as filtering function, these polynomials have been adapted by using the parity relation for Jacobi polynomials in order to be used as a filter approximating function. The obtained magnitude response of these filters is more general than the magnitude response of published Chebyshev and Legendre chained function filter, because two additional parameters of modified Jacobi polynomials as two additional degrees of freedom are available. It is shown that proposed modified Jacobi chained function filters approximation also includes the Chebyshev chained function filters, the Legendre chained function filter, and many other types of filter approximations, as its special cases.

  1. GUGLIELMI, M., CONNOR, G. Chained function filters. IEEE Microwave and Guided Wave Letters, 1997, vol. 7, no. 12, p. 390–392. DOI: 10.1109/75.645181
  2. STOJANOVIĆ, N., STAMENKOVIĆ, N., KRSTIĆ, I. Chainedfunction filter synthesis based on the Legendre polynomials. Circuits, Systems, and Signal Processing, 2017, vol. 37, no. 5, p. 2001–2020. DOI: 10.1007/s00034-017-0651-1
  3. STOJANOVIĆ, N., STAMENKOVIĆ, N., KRSTIĆ, I. Discretetime filter synthesis using product of Gegenbauer polynomials. Radioengineering, 2016, vol. 25, no. 3, p. 500–505. DOI: 10.13164/re.2016.0500
  4. KUBAK, J., SOVKA, P., VLCEK, M. Evaluation of computing symmetrical Zolotarev polynomials of the first kind. Radioengineering, 2017, vol. 26, no. 3, p. 903–913. DOI: 10.13164/re.2017.0903
  5. CHRISOSTOMIDIS, C. E., LUCYSZYN, S. On the theory of chained-function filters. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 10, p. 3142–3151. DOI: 10.1109/TMTT.2005.855358
  6. JOHNSON, D., JOHNSON, J. Low-pass filters using ultraspherical polynomials. IEEE Transactions on Circuits Theory, 1966, vol. 13, no. 4, p. 364–369. DOI: 10.1109/TCT.1966.1082637
  7. STOJANOVIĆ, N., STAMENKOVIĆ, N., ZIVALJEVIĆ, D. Monotonic, critical monotonic, and nearly monotonic low-pass filters designed by using the parity relation for Jacobi polynomials. International Journal of Circuit Theory and Applications, 2017, vol. 45, no. 12, p. 1978–1992. DOI: 10.1002/cta.2375
  8. ABRAMOWITZ, M., STEGUN, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 9th ed. New York (USA): Dover Publications, 1972. ISBN: 9780486612720
  9. WANHAMMAR, L. Analog Filters Using MATLAB. New York (USA): Springer, 2009. ISBN 978-0-387-92766-4
  10. GONG, Y. Y., WANG, L. WEI, K., ZHANG, Z. L. Novel fractal dDGSs for band-gap filter with improved Q-factor. Radioengineering, 2017, vol. 26, no. 4, p. 992–998. DOI: 10.13164/re.2017.0992
  11. HAYATI, M., ABBASI, H., FATHABADI, O. S. A novel microstrip lowpass filter with sharp roll-off and ultra-wide stopband using SICMRC. International Journal of Electronics, 2015, vol. 102, no. 9, p. 1475–1485. DOI: 10.1080/00207217.2014.982214
  12. DARLINGTON, S. Synthesis of reactance 4-poles which produce prescribed insertion loss characteristics: Including special applications to filter design. Journal of Mathematics and Physics, 1939, vol. 18, no. 1-4, p. 257–353. DOI: 10.1002/sapm1939181257

Keywords: Chained functions, lowpass filters, modified Jacobi polynomials, return loss, LC ladder network

K. Meka, A. V. Giridhar, D. V. S. S. Siva Sarma [references] [full-text] [DOI: 10.13164/re.2018.1119] [Download Citations]
PD Source Location Utilizing Acoustic TDOA Signals in Power Transformer by Fuzzy Adaptive Particle Swarm Optimization

Partial discharge (PD) source location using acoustic emission (AE) is widely utilized by many transformer manufacturers and power utility engineers in routine and critical situation for optimal operation of the electrical power system as well as further risk management and repair planning. The PD detection is not enough to take solution, so identification of PD source is essential to restore apparatus condition. This work aim is to localize the defect geometrically by means of TDOA (time difference of arrival) signals from the sensors fixed on the power transformer. The solution for PD source location is acquired by making these nonlinear equations as optimization problem. In this technique, the inertia weight is effectively regulated by using 49 and 9 simple IF-THEN fuzzy rules to improve the global optimal solution and impairs the local convergence problem and improves the accuracy in estimating the PD source location. The simulation results reveal that PD location accuracy with minimum of maximum deviation error, absolute error and relative error is better when compared to other constant parameter intelligent methods which were reported in the literature.

  1. HOWELLS, E., NORTON, E. T. Location of partial discharge sites in on-line transformers. IEEE Transactions on Power Apparatus and Systems, 1981, vol. 100, no. 1, p. 158–161. DOI: 10.1109/TPAS.1981.316872
  2. LUNDGAARD, L. E. Partial discharge XIII. Acoustic partial discharge detection fundamental considerations. IEEE Electric Insulation Magazine, 1992, vol. 8, no. 4, p. 25–31. DOI: 10.1109/57.145095
  3. LUNDGAARD, L. E. Partial discharge XIV: Acoustic partial discharge detection – practical application. IEEE Electrical Insulation Magazine, 1995, vol. 8, no. 5, p. 34–43. DOI: 10.1109/57.156943
  4. ELEFTHERION, P. M. Partial discharge XXI: Acoustic emissionbased PD source location in transformer. IEEE Electrical Insulation Magazine, 1995, vol. 11, no. 6, p. 22–26. DOI: 10.1109/57.475905
  5. LU, Y., TAN, X., HU, X. PD detection and localization by acoustic measurement in an oil-filled transformer. IEE Proc Science Measurement Technology, 2000, vol. 147, no. 2, p. 81–85. DOI: 10.1049/ip-smt: 20000223
  6. IEEE STD. C57.127-2007. IEEE guide for the detection and location of acoustic emissions from partial discharges in oil-immersed power transformers and reactors. DOI: 10.1109/IEEESTD.2007.4293265
  7. MARKALOUS, S. M., TENBOHLEN, S., FESER, K. New robust non-iterative algorithms for acoustic PD-localization in oil/paperinsulated transformers. In 14th International Symposium on High Voltage Engineering. Beijing (China), 2005, p. 1–6.
  8. MARKALOUS, S. M., TENBOHLEN, S., FESER, K. Detection and location of partial discharges in power transformers using acoustic and electromagnetic signal. IEEE Transaction on Dielectrics and Electrical Insulation, 2008, vol. 15, no. 6, p. 1576–1583. DOI: 10.1109/TDEI.2008.4712660
  9. VELOSO, G. F. C., BORGES DA SILVA, L. E., LAMBERTTORRES, G., et al. Localization of partial discharges in transformers by the analysis of the acoustic emission. In IEEE International Symposium on Industrial Electronics. Montreal (Quebec, Canada), 2006. p. 537–541. DOI: 10.1109/ISIE.2006.295515
  10. VELOSO, G. F. C., BORGES DA SILVA, L. E., LAMBERTTORRES, G., et al. A strategy to locate partial discharges in power transformers using acoustic emission. In International Conference on Renewable Energies and Power Quality (ICREPQ 2007). Seville (Spain), 2007. DOI: 10.13140/RG.2.1.2181.4001
  11. TANG, L., LUO, R., DENG, M., SU, J. Study of partial discharge localization using ultrasonic in power transformer based on particle swarm optimization. IEEE Transaction on Dielectrics and Electrical Insulation, 2008, vol. 15, no. 2, p. 492–495. DOI: 10.1109/TDEI.2008.4483469
  12. KUNDU, P., KISHORE, N. K., SINHA, A. K. A non-iterative partial discharge source location method for transformers employing acoustic emission technique. Applied Acoustics, 2009, vol. 70, no. 11–12, p. 1378–1383. DOI: 10.1016/j.apacoust.2009.07.001
  13. KIL, G. S., KIM, I. K., PARK, D. W., et al. Measurements and analysis of the acoustic signals produced by partial discharges in insulation oil. Current Applied Physics, 2009, vol. 9, no. 2, p. 296–300. DOI: 10.1016/j.cap.2008.01.018
  14. KUO, C. C. Artificial recognition system for defective types of transformers by acoustic emission. Expert Systems Applications, 2009, vol. 36, no. 7, p. 10304–10311. DOI: 10.1016/j.eswa.2009.01.046
  15. BOCZAR, T., BORUCKI, S., CICHOD, A., et al. Application possibilities of artificial neural networks for recognizing partial discharges measured by the acoustic emission method. IEEE Transaction on Dielectrics and Electrical Insulation, 2009, vol. 16, no. 1, p. 214–223. DOI: 10.1109/TDEI.2009.4784570
  16. LIU, H. L., LIU, H. D. Partial discharge localization in power transformers based on the sequential quadratic programminggenetic algorithm adopting acoustic emission techniques. European Physics Journal Applied Physics, 2014, vol. 68, no. 1, p. 1–16. DOI: 10.1051/epjap /2014140318
  17. LIU, H. L. Acoustic partial discharge localization methodology in power transformers employing the quantum genetic algorithm. Applied Acoustics, 2016, vol. 102, p. 71–78. DOI: 10.1016/j.apacoust.2015.08.011
  18. HASIRCI, Z., CAVDAR, I. H., OZTURK, M. Modelling and link performance analysis of bus bar distribution systems for narrowband PLC. Radioengineering, 2017, vol. 26, no. 2, p. 611–620. DOI: 10.13164/re.2017.0611
  19. HAN, C., WANG, L. Array pattern synthesis using a digital position shift method. Radioengineering, 2016, vol. 25, no. 3, p. 573–580. DOI: 10.13164/re.2016.0573
  20. TAGCU, E, KAYA, I., YAZCAN, A. CMF-DFE based adaptive blind equalization using particle swarm optimization. Radioengineering, 2016, vol. 25, no. 1, p. 124–131. DOI: 10.13164/re.2016.0124
  21. SONG, L., LIANG, M., JI, H. Box-particle implementation and comparison of cardinalized probability hypothesis density filter. Radioengineering, 2016, vol. 25, no. 1, p. 177–186. DOI: 10.13164/re.2016.0177
  22. GUNES, F., DEMIREL, S., MAHOUTI, P. Design of a front–end amplifier for the maximum power delivery and required noise by HBMO with support vector micro strip model. Radioengineering, 2014, vol. 23, no. 1, p. 134–143. ISSN: 1210-2512
  23. CAKIR, O., KAYA, H., YAZGAN, A., et al. Emitter location finding using particle swarm optimization. Radioengineering, 2014, vol. 23, no. 1, p. 252–258. ISSN: 1210-2512
  24. ABDUL RANI, K. N., ABD MALEK, M. F., SIEW CHIN, N. Nature-inspired cuckoo search algorithm for side lobe suppression in a symmetric linear antenna array. Radioengineering, 2012, vol. 21, no. 3, p. 865–874. ISSN: 1210-2512
  25. ADIGUZEL, T., AKBULET, A., YILMAZ, A. E. Estimation of time-varying channel state transition probabilities for cognitive radio systems by means of particle swarm optimization. Radioengineering, 2012, vol. 21, no. 1, p. 104–109. ISSN: 1210-2512
  26. ZHONGKUN MA, VAN DEN BOSCH, G. A. E. Comparison of weighted sum fitness functions for PSO optimization of wideband medium-gain antennas. Radioengineering, 2012, vol. 21, no. 1, p. 504–511. ISSN: 1210-2512
  27. SEDENKA, V., RAIDA, Z. Critical comparison of multi-objective optimization methods: Genetic algorithms versus swarm intelligence. Radioengineering, 2010, vol. 19, no. 3, p. 369–377. ISSN: 1210-2512
  28. LACIK, J., LAGER, I. E., Z., RAIDA, Z. Multi criteria optimization of antennas in time domain. Radioengineering, 2010, vol. 19, no. 1, p. 105–110. ISSN: 1210-2512
  29. RAPTIS, V., TATIS, G., CHRONOPOULOS, S. K., et al. Development and experimental measurements of a tunable antenna. Communications and Network, 2013, vol. 5, no. 3, p. 220–224. DOI: 10.4236/cn.2013.53026
  30. KRACEK, J., MAZANEK, M. Wireless power transmission for power supply: State of art. Radioengineering, 2011, vol. 20, no. 2, p. 457–463. ISSN: 1210-2512
  31. KADLEC, P., KEJIK, P., RAIDA, Z. Comparison of pilot symbol embedded channel estimation algorithms. Radioengineering, 2009, vol. 18, no. 4, p. 485–490. ISSN: 1210-2512
  32. CHRONOPOULOS, S. K., CHRISTOFILAKIS, V., TATSIS, G., et al. Performance of turbo coded OFDM under the presence of various noise types. Wireless Personal Communication, 2016, vol. 87, p. 1319–-1336. DOI: 10.1007/s 11277-015-3055-1
  33. YANG XIN-SHE. Nature-Inspired Metaheuristic Algorithms. 2nd ed. United Kingdom, L University Press, 2010. ISBN: 9781905986286
  34. BAJPAI, P., SINGH, S. N. Fuzzy adaptive particle swarm optimization for bidding strategy in uniform price spot market. IEEE Transactions on Power Systems, 2007, vol. 22, no. 4, p. 2152–2160. DOI: 10.1109/TPWRS.2007.907445

Keywords: Acoustic emission, partial discharge, fuzzy adaptive particle swarm optimization, fuzzy rules, source localization

Hailin Li, Jialing Liu, Jie Sun, Aihua Cao, Can Jin, Jianjiang Zhou [references] [full-text] [DOI: 10.13164/re.2018.1128] [Download Citations]
Robust Hybrid Algorithm of PSO and SOCP for Grating Lobe Suppression and against Array Manifold Mismatch

Based on Particle Swarm Optimization (PSO) and Second-Order Cone Programming (SOCP) algorithm, this paper proposes a hybrid optimization method to suppress the grating lobes of sparse arrays and improve the robustness of array layout. With the peak side-lobe level (PSLL) as the objective function, the paper adopts the particle swarm optimization as a global optimization algorithm to optimize the elements’ positions, the convex optimization as a local optimization algorithm to optimize the elements’ weights. The effectiveness of the grating lobes suppression (as low as -32.13 dB) by this method is illustrated through its application to the sparse linear array when the actual steering vector is known. To enhance the robustness of the optimized array, a rebuilt robust convex optimization model is adopted in the optimization of both array excitations and layout. When the array manifold mismatch error is 1cm, the PSLL by the robust algorithm can be compressed to -27dB, compared to that of -24dB by the ordinary optimization. Results of a set of representative numerical experiments show that the algorithm proposed in this paper can obtain a more robust array layout and matched elements’ weight coefficients to avoid the huge degradation of the array pattern performance in the presence of array manifold mismatch errors. The good performance of pattern synthesis demonstrates the effectiveness of the proposed robust algorithm.

  1. HAWES, M. B., LIU, W. Robust sparse antenna array design via compressive sensing. In Proceedings of the 18th International Conference on Digital Signal Processing (DSP). Fira (Greece), 2013, p. 1–5. DOI: 10.1109/ICDSP.2013.6622797
  2. PAPPULA, L., GHOSH, D. Sparse antenna array synthesis using multi-objective optimization. In Proceedings of the 4th IEEE Applied Electromagnetics Conference (AEMC). Bhubaneswar (India), 2013, p. 1–2. DOI: 10.1109/AEMC.2013.7045039
  3. HA, B. V., ZICH, R. E., MUSSETTA, M., et al. Synthesis of sparse planar array using modified Bayesian Optimization Algorithm. In Proceedings of the 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA). Torino (Italy), 2013, p. 1541–1543. DOI: 10.1109/ICEAA.2013.6632509
  4. HA, B. V., ZICH, R. E., MUSSETTA, M., et al. Thinned array optimization by means of M-cGA. In Proceedings of the IEEE Antennas and Propagation Society International Symposium APSURSI). Memphis (TN, USA), 2014. p. 1956–1957. DOI: 10.1109/APS.2014.6905305
  5. EPCACAN, E., CILOGLU, T., CANDAN, C., et al. Removing grating lobes in sparse sensor arrays with a nonlinear approach. In Proceedings of the 23rd Signal Processing and Communications Applications Conference (SIU). Malatya (Turkey), 2015, p. 1950–1953. DOI: 10.1109/SIU.2015.7130244
  6. DAM, H. H., RIMANTHO, D., NORDHOLM, S. E. Frequency invariant beamformer robust against array element mismatch. In Proceedings of the 9th International Conference on Information, Communications and Signal Processing (ICICS). Tainan (Taiwan), 2013, p. 1–4. DOI: 10.1109/ICICS.2013.6782891
  7. ZHAO, Y., LIU, W. Robust fixed frequency invariant beamformer design subject to norm-bounded errors. IEEE Signal Processing Letters, 2013, vol. 20, no. 2, p. 169–172. DOI: 10.1109/LSP.2012.2237028
  8. CHEN, K., ZHU, Y., NI, X., et al. Low sidelobe sparse concentric ring arrays optimization using modified GA. International Journal of Antennas and Propagation, 2015, p. 1–5. DOI: 10.1155/2015/147247
  9. HAUPT, R. L. Optimized element spacing for low sidelobe concentric ring arrays. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 1, p. 266–268. DOI: 10.1109/TAP.2007.913176
  10. JIANG, Y., ZHANG, S., GUO, Q., et al. Synthesis of uniformly excited concentric ring arrays using the Improved Integer GA. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 1124–1127. DOI: 10.1109/LAWP.2015.2496173
  11. JIANG, Y., ZHANG, S. An innovative strategy for synthesis of uniformly weighted circular aperture antenna array based on the weighting density method. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 725–728. DOI: 10.1109/LAWP.2013.2264833
  12. LI, S. Grate lobes/side lobes suppression for sparse array design by using genetic algorithms. In Proceedings of the 2nd International Conference on Innovations in Bio-Inspired Computing and Applications (IBICA). Shenzhen (China), 2011, p. 371–373. DOI: 10.1109/IBICA.2011.97
  13. HAWES, M. B., LIU, W. Pattern synthesis of linear antenna arrays using a genetic algorithm with physical size constraint. In Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP). Prague (Czech Republic), 2012, p. 3046–3049. DOI: 10.1109/EuCAP.2012.6206259
  14. ROCCA, P., MAILLOUX, R. J., TOSO, G. GA-based optimization of irregular subarray layouts for wideband phased arrays design. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 131–134. DOI: 10.1109/LAWP.2014.2356855
  15. DONG, W., ZENG, S., WU, Y., et al. Linear sparse arrays designed by dynamic constrained multi-objective evolutionary algorithm. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC). Beijing (China), 2014, p. 3067–3072. DOI: 10.1109/CEC.2014.6900448
  16. CAO, H., JIANG, T., CHEN, X. Array optimization for MIMO radar by particle swarm algorithm. In Proceedings of the IEEE CIE International Conference on Radar (Radar). Chengdu (China), 2011, p. 99–103. DOI: 10.1109/CIERadar.2011.6159485
  17. LI, J., XU, J., ZHANG, X. Circular sparse array beam synthesis based on particle swarm optimization with consideration of polarization. In Proceedings of the IET International Radar Conference 2013. Xi’an (China), 2013, p. 0564–0564. DOI: 10.1049/cp.2013.0450
  18. BERA, R., ROY, J. S. Thinning of elliptical and concentric elliptical antenna arrays using particle swarm optimization. Microwave Review, 2013, vol. 19, no. 1, p. 2–7. ISSN 1450-5835
  19. YU, D., ZHANG, Z. H., LIU, W. L. Synthesis of a plane-wave via linear array with unequal interval. In Proceedings of the 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE). Xi’an (China), 2012, p. 827–829. DOI: 10.1109/ISAPE.2012.6408899
  20. HSU, C. H., CHEN, C. H., SHYR, W. J., et al. Optimizing beam pattern of linear adaptive phase array antenna based on particle swarm optimization. In Proceedings of the Fourth International Conference on Genetic and Evolutionary Computing (ICGEC 2010). Shenzhen Univ. (China), 2010, p. 586–589. DOI: 10.1109/ICGEC.2010.150
  21. LIU, X. Z, YANG, W. L, GAO, Z. Z., et al. A new method for the synthesis of sparse linear array. In Proceedings of the 2011 IEEE CIE International Conference on Radar (Radar). Chengdu (China), 2011, p. 1139–1142. DOI: 10.1109/CIERadar.2011.6159754
  22. CHONG, E. P., ZAK, S. H. An Iintroduction to Optimization. 4th ed. John Wiley & Sons, 2013. ISBN: 9787121267154
  23. BOYD, S., VANDENBERGHE, L. Convex Optimization. Cambridge University Press, 2003. ISBN: 9780521833783
  24. SEDUMI. [Online]. Available at: http://sedumi.ie.lehigh.edu.
  25. GRANT, M., BOYD, S. CVX: MATLAB Software for Disciplined Convex Programming. [Online] Cited 2012-09. Available at: http://cvxr.com/cvx.
  26. FUCHS, B. Synthesis of sparse arrays with focused or shaped beampattern via sequential convex optimizations. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 7, p. 3499–3503. DOI: 10.1109/TAP.2012.2196951
  27. FUCHS, B., SKRIVERVIK, A. K., MOSIG, J. R. Sparse array synthesis via sequential convex optimizations. In Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP). Prague (Czech Republic), 2012, p. 2216–2219. DOI: 10.1109/EuCAP.2012.6206583
  28. TU, G., CHEN, E. Sparse array synthesis based on iterative weighted L1 norm. In Proceedings of the International Conference on Computational Problem-solving (ICCP). Jiuzhai (China), 2013, p. 238–240. DOI: 10.1109/ICCPS.2013.6893581
  29. PRISCO, G., D'URSO, M. Maximally sparse arrays via sequential convex optimizations. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 192–195. DOI: 10.1109/LAWP.2012.2186626
  30. LIU, X., HU, F., XIONG, W., et al. Cuboid sparse array synthesis for sensor selection by convex optimization with constrained beam pattern based on WBAN. In Proceedings of the Wireless Communications & Signal Processing (WCSP). Nanjing (China), 2015, p. 1–5. DOI: 10.1109/WCSP.2015.7341153
  31. CHEN, H., WAN, Q. Non-uniform array pattern synthesis using reweighted ℓ 1-norm minimization. AEU-International Journal of Electronics and Communications, 2013, vol. 67, no. 9, p. 795–798. DOI: 10.1016/j.aeue.2013.03.010
  32. ZHAO, Y., HUANG, J., ZHANG, Z. Synthesis of unequally spaced array by genetic algorithm and convex optimization. In Proceedings of the IET International Radar Conference. Guilin (China), 2009, p. 1–4. DOI: 10.1049/cp.2009.0479
  33. YUAN FEI, YANG BO, HUANG, Z. Joint optimization about pattern synthesis of circular arrays based on convex optimization and modified genetic algorithm. Fire Control and Command Control, 2015, vol. 40, no. 1, p. 58–61.
  34. ANSELMI, N., ROCCA, P., MASSA, A., et al. Synthesis of robust beamforming weights in linear antenna arrays. In Proceedings of the Antenna Measurements & Applications (CAMA). Antibes (France), 2014, p. 1–3. DOI: 10.1109/CAMA.2014.7003325
  35. ANSELMI, N., ROCCA, P., SALUCCI, M., et al. Optimization of excitation tolerances for robust beamforming in linear arrays. IET Microwaves, Antennas & Propagation, 2016, vol. 10, no. 2, p. 208–214. DOI: 10.1049/iet-map.2015.0508
  36. ROCCA, P., MANICA, L., ANSELMI, N., et al. Analysis of the pattern tolerances in linear arrays with arbitrary amplitude errors. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, no. 6, p. 639–642. DOI: 10.1109/LAWP.2013.2261912
  37. MANICA, L., ANSELMI, N., ROCCA, P., et al. Robust maskconstrained linear array synthesis through an interval-based particle SWARM optimization. IET Microwaves, Antennas and Propagation, 2013, vol. 7, no. 12, p. 976–984. DOI: 10.1049/ietmap.2013.0203
  38. ANSELMI, N., MANICA, L., ROCCA, P., et al. Synthesis of robust linear antenna arrays exploiting an interval-based particle swarm optimizer. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP). The Hague (Netherlands), 2014, p. 2255–2258. DOI: 10.1109/EuCAP.2014.6902262
  39. HASSANIEN, A., VOROBYOV, S. A., WONG, K. M. Robust adaptive beamforming using sequential quadratic programming: An iterative solution to the mismatch problem. IEEE Signal Processing Letters, 2008, vol. 15, p. 733–736. DOI: 10.1109/LSP.2008.2001115
  40. YANG, K., ZHAO, Z., OUYANG, J., et al. Optimization method on conformal array element positions for low sidelobe pattern synthesis. IET Microwaves, Antennas and Propagation, 2012, vol. 6, no. 6, p. 646–652. DOI: 10.1049/iet-map.2011.0330
  41. KHABBAZIBASMENJ, A., VOROBYOV, S. A., HASSANIEN, A. Robust adaptive beamforming based on steering vector estimation with as little as possible prior information. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 6, p. 2974–2987. DOI: 10.1109/TSP.2012.2189389
  42. YAN, S., HOVEM, J. M. Array pattern synthesis with robustness against manifold vectors uncertainty. IEEE Journal of Oceanic Engineering, 2008, vol. 33, no. 4, p. 405–413. DOI: 10.1109/JOE.2008.2002583
  43. YAN, S. Robust array pattern synthesis with uncertain manifold vector. Journal of the Acoustical Society of America, 2008, vol. 123, no. 5. DOI: 10.1121/1.2933859
  44. LIU, J., ZHAO, Z., WANG, J., et al. A robust sparse optimization for pattern synthesis with unknown manifold error. In Proceedings of the IEEE Radar Conference. Cincinnati (OH, USA), 2014, p. 99–103. DOI: 10.1109/RADAR.2014.6875563

Keywords: Particle Swarm Optimization(PSO), Second-Order Cone Programming (SOCP), array manifold mismatch, grating lobes suppression, hybrid algorithm

V. Abromavicius, A. Serackis, A. Katkevicius, D. Plonis [references] [full-text] [DOI: 10.13164/re.2018.1138] [Download Citations]
Evaluation of EEG-based Complementary Features for Assessment of Visual Discomfort based on Stable Depth Perception Time

The investigation aimed at the evaluation of EEG activity during stereoscopic perception of images with different levels of visual comfort. Different levels of disparity and the number of details in stereoscopic views in some cases make it difficult to find the focus point for comfortable depth perception quickly. During our investigation, we found a tendency for differences in single sensor-based EEG signal activity at specific frequencies. A dataset of EEG signal records from 19 control subjects was collected and used for further evaluation. To support the reproducible research this dataset of EEG activity with associated subjective scores was made publicly available. During the experimental investigation, we found differences in EEG signal activity at different levels of visual comfort. In addition, the dynamics of EEG signal activity correlated to the moment of depth perception indication registered by the control subjects. The results of our investigation show that the ratio of alpha estimated from a single EEG sensor placed over the frontal lobe can serve as a complementary feature for the automatic detection of visually uncomfortable stereoscopic views.

  1. LAMBOOIJ, M., FORTUIN, M., HEYNDERICKX, I., et al. Visual discomfort and visual fatigue of stereoscopic displays: A review. Journal of Imaging Science and Technology, 2009, vol. 53, no. 3, p. 30201–1. DOI: 10.2352/J.ImagingSci.Technol.2009.53.3.030201
  2. CUMMING, B. G., PARKER, A. J. Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature, 1997, vol. 389, no. 6648, p. 280. DOI: 10.1038/38487
  3. SHAO, F., JIANG, Q., FU, R., et al. Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals. Optics Express, 2016, vol. 24, no. 11, p. 11640–11653. DOI: 10.1364/OE.24.011640
  4. JONES, G.R., LEE, D., HOLLIMAN, N.S., et al. Controlling perceived depth in stereoscopic images. Stereoscopic Displays and Virtual Reality Systems VIII, 2001. vol. 4297, p. 42–54. DOI: 10.1117/12.430855
  5. FORNALCZYK, K., NAPIERALSKI, P., SZAJERMAN, D., et al. Stereoscopic image perception quality factors. In Proceedings of the 22nd International Conference on Mixed Design of Integrated Circuits & Systems (MIXDES). Torun (Poland), 2015, p. 129–133. ISBN: 978-8-3635-7807-7. DOI: 10.1109/MIXDES.2015.7208495
  6. FREY, J., POMMEREAU, L., LOTTE, F., et al. Assessing the zone of comfort in stereoscopic displays using EEG. In Conference on Human Factors in Computing Systems (CHI). Toronto (Canada), 2014, p. 2041–2046. ISBN: 978-1-4503-2474-8. DOI: 10.1145/2559206.2581191
  7. FISCHMEISTER, F. P. S., BAUER, H. Neural correlates of monocular and binocular depth cues based on natural images: A LORETA analysis. Vision Research, 2006, vol. 46, no. 20, p. 3373–3380. DOI: 10.1016/j.visres.2006.04.026
  8. FAZLYYYAKHMATOV, M., ZWEZDOCHKINA, N., ANTIPOV, V. The EEG activity during binocular depth perception of 2D images. Computational Intelligence and Neuroscience, 2018, vol. 2018. DOI: 10.1155/2018/5623165
  9. KIM, Y. J., LEE, E. C. EEG based comparative measurement of visual fatigue caused by 2D and 3D displays. In International Conference on Human-Computer Interaction. Heidelberg (Berlin), 2011. p. 289–292. DOI: 10.1007/978-3-642-22095-1_59
  10. CHEN, C., LI, K., WU, Q., et al. EEG-based detection and evaluation of fatigue caused by watching 3DTV. Displays, 2013, vol. 34, no. 2, p. 81–88. DOI: 10.1016/j.displa.2013.01.002
  11. AMIN, H. U., MALIK, A. S., BADRUDDIN, N., et al. Effects of stereoscopic 3D display technology on event-related potentials (ERPs). In Proceedings of the IEEE/EMBS International Conference on Neural Engineering (NER). Montpellier (France), 2015. p. 1084–1087. DOI: 10.1109/NER.2015.7146816
  12. MUN, S., PARK, M. C., PARK, S., et al. SSVEP and ERP measurement of cognitive fatigue caused by stereoscopic 3D. Neuroscience Letters, 2012, vol. 525, no. 2, p. 89–94. DOI: 10.1016/j.neulet.2012.07.049
  13. CHO, H., KANG, M. K., YOON, K. J., et al. Feasibility study for visual discomfort assessment on stereo images using EEG. In 3D Imaging (IC3D), 2012 International Conference on. Liege (Belgium), 2012. p. 1–6. ISBN: 978-1-4799-1580-4. DOI: 10.1109/IC3D.2012.6615139
  14. JUNG, Y. J., SOHN, H., LEE, S. I., et al. Predicting visual discomfort of stereoscopic images using human attention model. IEEE Transactions on Circuits and Systems for Video Technology, 2013, vol. 23, no. 12, p. 2077–2082. DOI: 10.1109/TCSVT.2013.2270394
  15. ITU-R BT.500-11 2002 Methodology for the Subjective Assessment of the Quality of Television Pictures.
  16. TERZIC, K., HANSARD, M. Methods for reducing visual discomfort in stereoscopic 3D: A review. Signal Processing: Image Communication, 2016, vol. 47, p. 402–416. DOI: 10.1016/j.image.2016.08.002
  17. YUN, J.D., KWAK, Y., YANG, S. Evaluation of perceptual resolution and crosstalk in stereoscopic displays. Journal of Display Technology, 2013, vol. 9, no. 2, p. 106–111. DOI: 10.1109/JDT.2012.2228252
  18. WANG, L., TEUNISSEN, K., TU, Y., et al. Crosstalk evaluation in stereoscopic displays. Journal of Display Technology, 2011 vol. 7, no. 4, p. 208–214. DOI: 10.1109/JDT.2011.2106760
  19. SOHN, H., JUNG, Y. J., LEE, S. I., et al. Predicting visual discomfort using object size and disparity information in stereoscopic images. IEEE Transactions on Broadcasting, 2013, vol. 59, no. 1, p. 28–37. DOI: 10.1109/TBC.2013.2238413
  20. XU, H., JIANG, G., YU, M., et al. 3D visual discomfort predictor based on subjective perceived-constraint sparse representation in 3D display system. Future Generation Computer Systems, 2018, vol. 83, p. 85–94. DOI: 10.1016/j.future.2018.01.021
  21. ITU-R BT.2021-1 Subjective Methods for the Assessment of Stereoscopic 3DTV Systems. 31 pages. [Online] Cited 2018-03-01.
  22. PELLI, D. G. The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 1997, vol. 10, no. 4, p. 437–442. DOI: 10.1163/156856897X00366
  23. MASKELIUNAS, R., DAMASEVICIUS, R., MARTISIUS, I., et al. Consumer-grade EEG devices: Are they usable for control tasks? PeerJ, 2016, vol. 4. DOI: 10.7717/peerj.1746
  24. CARNEGIE, K., RHEE, T. Reducing visual discomfort with HMDs using dynamic depth of field. IEEE Computer Graphics and Applications, 2015, vol. 35, no. 5, p. 34–41. DOI: 10.1109/MCG.2015.98
  25. CASTELLANOS, N. P., MAKAROV, V. A. Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis. Journal of Neuroscience Methods, 2006, vol. 158, no. 2, p. 300–312. DOI: 10.1016/j.jneumeth.2006.05.033
  26. OOSTENVELD, R., FRIES, P., MARIS, E., et al. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, vol. 2011, 9 pages. DOI: 10.1155/2011/156869
  27. CHENG, S., LEE, H., SHU, C., et al. Electroencephalographic study of mental fatigue in visual display terminal tasks. Journal of Medical and Biological Engineering, 2007, vol. 27, no. 3, p. 124–131. DOI: 10.2466/2F29.15.24.PMS.116.1.235-252
  28. ZOU, B., LIU, Y., GUO, M., WANG, Y. EEG-based assessment of stereoscopic 3D visual fatigue caused by vergence-accommodation conflict. Journal of Display Technology, 2015, vol. 11, no. 12, p. 1076–1083. DOI: 10.1109/JDT.2015.2451087
  29. DUNBAR, G., BOEIJINGA, P. H., DEMAZIERES, A., et al. Effects of TC-1734 (AZD3480), a selective neuronal nicotinic receptor agonist, on cognitive performance and the EEG of young healthy male volunteers. Psychopharmacology, 2007, vol. 191, no. 4, p. 919–929. DOI: 10.1007/s00213-006-0675-x
  30. HSU, B.W., WANG, M.J.J. Evaluating the effectiveness of using electroencephalogram power indices to measure visual fatigue. Perceptual and Motor Skills, 2013, vol. 116, no. 1, p. 235–252. DOI: 10.2466/29.15.24.PMS.116.1.235-252
  31. NeuroSky, Inc. Enhancing AR/VR with EEG and ECG Biosensors. [Online] Cited 2018-06-22. Available at: http://neurosky.com/2018/01/enhancing-arvr-devices-with-eegand-ecg-biosensors
  32. Emotiv. FMCG Packaging A-B Testing Using VR and Emotiv Mobile EEG Headsets. [Online] Cited 2018-06-22. Available at: https://www.emotiv.com/blog/fmcg-packaging-a-b-testingusing-vr-and-emotiv-mobile-eeg-headsets

Keywords: Binocular cues, quality of stereoscopic perception, EEG, depth perception, visual comfort

Z. Kollar, H. Al-Amaireh [references] [full-text] [DOI: 10.13164/re.2018.1147] [Download Citations]
FBMC Transmitters with Reduced Complexity

Filter Bank MultiCarrier (FBMC) modulation is currently considered as one of the key enablers for future 5G technologies. In the literature, two approaches are applied for the modulation of FBMC signals: Frequency Spreading (FS) and PolyPhase (PP) implementation. The complexity requirements of FBMC transmitters is considered to be one of the key research fields. In this paper various FBMC implementations are compared in terms of complexity and quantization error. An alternative design approach is suggested: the two full size Inverse Fourier Transforms (IFFTs) in the standard PP can be replaced by two half size IFFTs taking advantage of real valued data processing. It is shown that the complexity of the design will be almost reduced by half. Furthermore, the proposed alternative method has the lowest quantization error among the investigated transmitter architectures, which is a key issue in hardware with low precision arithmetics.

  1. FARHANG-BOROUJENY, B. OFDM versus filter bank multicarrier. IEEE Signal Processing Magazine, 2011, vol. 28, no. 3, p. 92–112. DOI: 10.1109/MSP.2011.940267
  2. PHYDAS PROJECT. FBMC Physical Layer: A Primer. June 2010. Available at: www.ict-phydyas.org
  3. PHYDAS PROJECT. Prototype Filter and Structure Optimization, Documents D5.1. January 2009. Available at: www.ict-phydyas.org
  4. VARGA, L., KOLLAR, Z. Low complexity FBMC transceiver for FPGA implementation. In Proceedings of the 23rd International Conference Radioelektronika (MAREW). Pardubice (Czech Republic), 2013, p. 219–223. DOI: 10.1109/RadioElek.2013.6530920
  5. DANDACH, Y., SIOHAN, P. FBMC/OQAM modulators with half complexity. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM). Kathmandu (Nepal), 2011, p. 1–5. DOI: 10.1109/GLOCOM.2011.6133591
  6. CUI, Y., ZHAO, Z., ZHANG, H. An efficient filter banks based multicarrier system in cognitive radio networks. Radioengineering, 2010, vol. 19, no. 4, p. 479–487. ISSN: 1210-2512
  7. CARIOLARO, G., VAGLIANI, F. An OFDM Scheme with a half complexity. IEEE Journal on Selected Areas in Communications, 1995, vol. 13, no. 9, p. 1586–1599. DOI: 10.1109/49.475
  8. VANGELISTA, L., LAURENTI, N. Efficient implementations and alternative architectures for OFDM-OQAM systems. IEEE Transactions on Communications, 2001, vol. 49, no. 4, p. 664–675. DOI: 10.1109/26.917773
  9. BRIGHAM, E. O. The Fast Fourier Transform. Prentice-Hall Inc., 1974. ISBN: 0-1330-7496-X
  10. BELLANGER, M. FS-FBMC: An alternative scheme for filter bank based multicarrier transmission. In Proceedings of the 5th International Symposium on Communications Control and Signal Processing (ISCCSP). Rome (Italy), 2012, 4 pages. DOI: 10.1109/ISCCSP.2012.6217776
  11. BARTZOUDIS, N., BERG, V., BALTAR, J., et al. Complexity and implementation aspects of filter bank multicarrier a potential technology enabler of next generation radio systems. In Proceedings of the Workshop on Future Radio Technologies: Air Interfaces. Sophia Antipolis (France), 2016, 9 pages.

Keywords: FBMC, transmitter, low complexity, polyphase, IFFT

R. Karasek, F. Vejrazka [references] [full-text] [DOI: 10.13164/re.2018.1155] [Download Citations]
The DVB-T-Based Positioning System and Single Frequency Network Offset Estimation

As position information becomes more and more important in many fields of technology it is advantageous to recognize it in scenarios where satellite-based systems fail. Such a case is the scenario inside buildings where attenuation of a signal is too high making it impossible to receive despite the availability of terrestrial services. A positioning system based on terrestrial broadcasting is presented in this paper. The aim is to create an automatic receiver enabling a multi--sensor positioning system to be built and resulting in increased availability and reliability of position information. This paper introduces a method that demonstrates how to design a signal detector capable of operating in a multipath scenario. Finally, the most restrictive problem of the positioning system is the unknown time offset setting of individual emitters that render this system useless. A solution to this problem is proposed and tested in a real scenario. The innovative methods and algorithms presented in this paper show, for the first time, how to automatically evaluate position using digital video broadcasting. The result of an experiment with a real digital video broadcasting network is presented.

  1. KAPLAN, E., HEGARTY, C. Understanding GPS: Principles and Applications. 2nd ed., rev. Norwood (US): Artech House, 2005. ISBN: 9781580538947
  2. Digital Video Broadcasting (DVB); Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television DVB-T. ETSI EN 300 744 1.6.2, Oct. 2015
  3. Digital Video Broadcasting (DVB); Frame Structure Channel Coding and Modulation for a second Generation Digital Terrestrial Television Broadcasting System (DVB-T2). ETSI EN 302 755 1.1.1, 2009
  4. Digital Video Broadcasting (DVB); DVB Mega-Frame for Single Frequency Network (SFN) Synchronization. ETSI TS 101 191 1.4.1, 2004
  5. RICNY, V. Single frequency networks (SFN) in digital terrestrial broadcasting. Radioengineering, 2007, vol. 16, no. 4, p. 2–6. ISSN: 1210-2512.
  6. CHEN, L., YANG, L.L., YAN, J., et al. Joint wireless positioning and emitter identification in DVB-T single frequency networks. IEEE Transactions on Broadcasting, 2017, vol. 63, no. 3, p. 577–582. ISSN: 0018-9316. DOI: 10.1109/TBC.2017.2704422
  7. CHEN, L., JULIEN, O., THEVENON, P., et al. TOA estimation for positioning with DVB-T signals in outdoor static tests. IEEE Transactions on Broadcasting, 2015, vol. 61, no. 4, p. 625–638. ISSN: 0018-9316. DOI: 10.1109/TBC.2015.2465155
  8. NAVRATIL, V., KARASEK, R., VEJRAZKA, F. Position estimate using radio signals from terrestrial sources. In IEEE/ION Position, Location and Navigation Symposium (PLANS). Savannah (Georgia), 2016, p. 799–806. DOI: 10.1109/PLANS.2016.7479775
  9. KARASEK, R. Amendment of GNSS Systems in Hard Conditions by ’Opportunity signals’. M.S. thesis, Faculty of Electrical Engineering, Czech Technical University in Prague, 2017. [Online] Available at: https://dspace.cvut.cz/handle/10467/68453?locale-attribute=en
  10. CHEN, L., THEVENON, P., SECO-GRANADOS, G., et al. Analysis on the TOA tracking with DVB-T signals for positioning. IEEE Transactions on Broadcasting, 2016, vol. 62, no. 4, p. 957–961. ISSN: 0018-9316. DOI: 10.1109/TBC.2016.2606939
  11. SKOLNIK, M. I. Radar Handbook. 3rd ed., rev. New York (US): McGraw Hill, 2008. ISBN: 9780071485470
  12. VAN DE BEEK,J. J., SANDELL, M., BORJESSON, P. O. ML estimation of time and frequency offset in OFDM systems. IEEE Transactions on Signal Processing, 1997, vol. 42, no. 7, p. 1800–1805. ISSN: 1053-587X. DOI: 10.1109/78.599949
  13. CHEN, C. Y., WANG, Y. T., HUNG, Y. H. Time-Frequency Correlation-Based Synchronization for Coherent OFDM Receiver. U.S. Patent 11/153,105. 2006
  14. PRABHU, K. M. M. Window Functions and Their Applications in Signal Processing. 1st ed., rev. Boca Raton (US): CRC Press, 2013. ISBN: 9781466515840
  15. KAY, S. M. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory. 1st ed., rev. Upper Saddle River (US): PrenticeHall PTR, 1998. ISBN: 9780135041352
  16. MISRA, P., ENGE, P. Global Positioning System: Signals, Measurements, and Performance. 1st ed., rev. Lincoln (US): Ganga-Jamuna Press, 2001. ISBN: 9780970954404
  17. FU, L., SUN, S., JING, X., et al. Analysis of pilot patterns and channel estimation for DVB-T2. In Proceedings of 2nd IEEE International Conference on Network Infrastructure and Digital Content. Beijing (China), 2010, p. 609-613. DOI: 10.1109/ICNIDC.2010.5657853

Keywords: Signals of Opportunity, positioning, digital video broadcasting, DVB-T, OFDM, TDoA, mismatched filtration, CA-CFAR

I. Andrijauskas, M. Vaitkunas, R. Adaskevicius [references] [full-text] [DOI: 10.13164/re.2018.1166] [Download Citations]
Generalized Roughness Bearing Faults Diagnosis Based on Induction Motor Stator Current

Despite their reliability, induction motors tend to fail. Around 41% of faults in motors are bearing related and that is the most common fault in motor field. Due to the lack of research on generalized roughness bearing fault diagnostics by use of a stator current spectrum, the presented study analyses both single-point and generalized roughness bearing faults and their classification possibilities. In this paper, a new method for generalized roughness ball bearing fault identification by use of a stator current signal analysis is presented. The algorithm relies on Discrete Wavelet Transform and Welch's spectral density analysis. The composition of both methods is used for building a feature vector for the classifier. In order to achieve classification, support vector machine classifier with linear kernel function has been applied. The validation experiment and results are presented.

  1. THOMSON, W., FENGER, M. Current signature analysis to detect induction motor faults. IEEE Industry Applications Magazine, 2001, vol. 7, no. 4, p. 26–34, ISSN: 1077-2618. DOI: 10.1109/2943.930988
  2. ROMERO-TRONCOSO, R., J., SAUCEDO-GALLAGA, R., CABAL-YAPEZ, E., et al. FPGA-Based online detection of multiple combined faults in induction motors through information entropy and fuzzy inference. IEEE Transactions on Industrial Electronics, 2011, vol. 58, no. 11, p. 5263–5270. ISSN: 0278-0046. DOI: 10.1109/TIE.2011.2123858
  3. STACK, J., R., HABERTLER, T., G., HARLEY, R., G. Fault classification and fault signature production for rolling element bearings in electric machines. IEEE Transactions on Industry Applications, 2004, vol. 40, no. 3, p. 735–739. ISSN: 0093-9994. DOI: 10.1109/TIA.2004.827454
  4. LI, B., CHOW, M., Y., TIPSUWAN, Y., et al. Neural-network-based motor rolling bearing fault diagnosis.IEEE Transactions on Industrial Electronics, 2000, vol. 47, no. 5, p. 1060–1069. ISSN: 0278-0046. DOI: 10.1109/41.873214
  5. ISO 10816-8:2014. Mechanical Vibration - Evaluation of Machine Vibration by Measurements on Non-Rotating Parts - Part 1: General Guidelines.
  6. HAWMAN, M., W., GALINAITIS, W., S. Acoustic emission monitoring of rolling element bearings. In Proceedings of the IEEE Ultrasonics Symposium (IUS). Chicago (USA), 1988, p. 885-889. DOI: 10.1109/ULTSYM.1988.49503
  7. SUN, D., XU, Z., YUAN, Y., J. Detection of abnormal noises from tapered roller bearings by a sound sensing system. In Proceedings of the 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). Auckland (New Zealand), 2017, p. 1–4. ISBN: 978-1-5090-6546-2. DOI: 10.1109/M2VIP.2017.8211504
  8. SHAO, Y., NEZU, F. Bearing fault detection using laser displacement sensor. In Proceedings of the 35th SICE Annual Conference. Tottori (Japan), 1996, p. 1069–1072. ISBN: 0-7803-3751-4. DOI: 10.1109/SICE.1996.865411
  9. JOSHI, A., BLENNOW, J. Electrical characterization of bearing lubricants. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). Des Moines (USA), 2014, p. 586–589. ISSN: 0084-9162. DOI: 10.1109/CEIDP2014.6995856
  10. MARU, B., ZOTOS, P., A. Anti-friction bearing temperature rise for NEMA frame motors. In Proceedings of the Petroleum and Chemical Industry Conference (PCIC). Dallas (USA), 1989, p. 883–888. DOI: 10.1109/PCICON.1988.22438
  11. LU, S., GUO, J., HE, Q., et al. A novel contactless angular resampling method for motor bearing fault diagnosis under variable speed. IEEE Transactions on Instrumentation and Measurement, 2016, vol. 65, no. 11, p. 2538–2550. ISSN: 0018-9456. DOI: 10.1109/TIM.2016.2588541
  12. SINGH, S. KUMAR, N. Detection of bearing faults in mechanical systems using stator current monitoring. IEEE Transactions on Industrial Informatics, 2017, vol. 13, no. 3, p. 1341–1349. ISSN: 1551-3203. DOI: 10.1109/TII.2016.2641470
  13. ZHOU, W., HABETLER, T., G., HARLEY, R., G. Stator current-based bearing fault detection techniques: A general review. In Proceedings of the IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED). Cracow (Poland), 2007, p. 7–8. ISBN: 978-1-4244-1061-3. DOI: 10.1109/DEMPED.2007.4393063
  14. SCHOEN, R., R., LIN, B., K., HABETLER, T., G., et al. An unsupervised, on-line system for induction motor fault detection using stator current monitoring. IEEE Transactions on Industry Applications, 1994, vol. 31, no. 6, p. 1280–1286. ISSN: 0093-9994. DOI: 10.1109/28.475698
  15. YAZICI, B., KLIMAN, G., B. An adaptive statistical time-frequency method for detection of broken bars and bearing faults in motors using stator current. IEEE Transactions on Industry Applications, 1999, vol. 35, no. 2, p. 442–452. ISSN: 0093-9994. DOI: 10.1109/28.753640
  16. EREN, L., DEVANEY, M., J. Bearing damage detection via wavelet packet decomposition of the stator current. IEEE Transactions on Instrumentation and Measurement, 2004, vol. 53, no. 2, p. 431–436. ISSN: 0018-9456. DOI: 10.1109/TIM.2004.823323
  17. EREN, L., KARAHOCA, A., DEVANEY, M., J. Neural network based motor bearing fault detection. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference (I2MTC). Como (Italy), 2004, p. 1637–1657. ISSN: 1091-5281. DOI: 10.1109/IMTC.2004.1351399
  18. ILONEN, J., KAMARAINEN, J., K., LINDH, T., et al. Diagnosis tool for motor condition monitoring. IEEE Transactions on Industry Applications, 2005, vol. 41, no. 4, p. 963–971. ISSN: 0093-9994. DOI: 10.1109/TIA.2005.851001
  19. SILVA, J., L., H., CARDOSO, A., J., M. Bearing failures diagnosis in three-phase induction motors by extended Park’s vector approach. In Proceedings of the 31st Conference of IEEE Industrial Electronics Society (IECON). Raleigh (USA), 2005, p. 2591–2596. ISSN: 1553-572X. DOI: 10.1109/IECON.2005.1569315
  20. NAHA, A., SAMANTA, A. K., ROUTRAY, A., et al. Low complexity motor current signature analysis using sub-Nyquist strategy with reduced data length IEEE Transactions on Instrumentation and Measurement, 2017, vol. 66, no. 12, p. 3249–3259. ISSN: 0018-9456. DOI: 10.1109/TIM.2017.2737879
  21. DALVAND, F., DALVAND, S., SHARAFI, F., et al. Current noise cancellation for bearing fault diagnosis using time shifting. IEEE Transactions on Industrial Electronics, 2017, vol. 64, no. 10, p. 8138–8147. ISSN: 0278-0046. DOI: 10.1109/TIE.2017.2694397
  22. STACK, J., R., HABETLER, T., G., HARLEY, R., G. Bearing fault detection via autoregressive stator current modeling. IEEE Transactions on Industry Applications, 2004, vol. 40, no. 3, p. 740–747. ISSN: 0093-9994. DOI: 10.1109/TIA.2004.827797
  23. GRAPS, A. An introduction to wavelets. IEEE Computational Science and Engineering, 1995, vol. 2, no. 2, p. 50–61. ISSN: 1070-9924. DOI: 10.1109/99.388960
  24. WELCH, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 1967, vol. 15, no. 2, p. 70–73. ISSN: 0018-9278. DOI: 10.1109/TAU.1967.1161901
  25. SMITH, J., O. Spectral Audio Signal Processing. [Online] Cited 2018-04-27. Available at: https://www.dsprelated.com/freebooks/sasp/
  26. STOICA, P. MOSES, R., L. Spectral Analysis of Signals. New Jersey (USA): Prentice Hall, 2005. ISBN: 0131139568
  27. CORTES, C., VAPNIK, V. Support-vector networks. Machine Learning, 1995, vol. 20, no. 3, p. 273–297. ISSN: 0885-6125. DOI: 10.1007/BF00994018

Keywords: Induction motor, stator current spectrum, wavelet decomposition, Welch’s spectral density, bearing fault diagnosis

A. Lebl, D. Mitic, B. Trenkic, Z. Markov [references] [full-text] [DOI: 10.13164/re.2018.1174] [Download Citations]
Determination of Base Station Emission Power Change in a Mobile Network Cell with Movable Users

This paper considers base transceiver station (BTS) emission power change in the cell-organized mobile network with dynamic power control, due to users’ moving. Such power adjustment contributes to energy saving and environment pollution reduction. We analyzed mutual influence of user’s moving speed, users’ surface distribution and propagation coefficient γ on BTS power variations. It is proved that users’ concentration near BTS, greater γ (in urban areas), faster user’s moving and greater connection duration contribute to BTS power increase of several tens of percent in real conditions. We present two examples when mean user’s moving distance is 30% of mobile cell radius: 1) power of one movable user is increased more than 50% when distance between user and BTS is uniformly distributed (decreasing users’ surface density); 2) emission power is decreased 2.5% when users are uniformly distributed (there are more users near a cell rim). BTS power has nearly constant value in the second example, because in our model users, crossing the cell rim, are replaced by users from adjacent cells, who are moving towards BTS. The analysis results are verified by Monte Carlo simulation, where user’s starting position, displacement and angle of moving are determined based on randomly generated numbers.

  1. MITIĆ, D., LEBL, A., MARKOV, Z. Influence of traffic model on the calculation of BTS output power in GSM network. AEU - International Journal of Electronics and Communications, 2015, vol. 69, no. 5, p. 836–840. DOI: 10.1016/j.aeue.2015.02.003
  2. COLOMBI, D., THORS, B., PERSSON, T., et al. Downlink power distributions for 2G and 3G mobile communication networks. Radiation Protection Dosimetry, 2013, vol. 157, no. 4, p. 477–487. DOI: 10.1093/rpd/nct169
  3. JOSHI, P., AGRAWAL, M., THORS, B., et al. Power level distributions of radio base station equipment and user devices in a 3G mobile communication network in India and the impact on assessments of realistic RF EMF exposure. IEEE Access, 2015, vol. 3, p.1051–1059. DOI: 10.1109/ACCESS.2015.2453056
  4. JOSHI, P., COLOMBI, D., THORS, B., et al. Output power levels of 4G user equipment and implications on realistic RF EMF exposure assessment. IEEE Access, 2017, vol. 5, p. 4545–4550. DOI: 10.1109/ACCESS.2017.2682422
  5. JOVANOVIĆ, P., MILEUSNIĆ, M., LEBL, A., et al. Calculation of the mean output power of base transceiver station in GSM. Automatika, 2014, vol. 55, no. 2, p. 182–187. DOI: 10.7305/automatika.2014.06.373
  6. MILEUSNIĆ, М., POPOVIĆ, M., LEBL, A., et al. Influence of users’ density on the mean base station output power. Elektronika ir Elektrotechnika, 2014, vol. 20, no. 9, p. 74–79. DOI: 10.5755/j01.eee.20.9.5418
  7. MITSCHE, D., RESTA, G., SANTI, P. The random waypoint mobility model with uniform node spatial distribution. Wireless Networks, 2014, vol. 20, no. 5, p. 1053–1066. DOI: 10.1007/s11276-013-0661-2
  8. AKYLDIZ, I. F., LIN, Y.-B., LAI, W.-R., et al. A new random walk model for PCS networks. IEEE Journal on Selected Areas in Communications, 2000, vol. 18, no. 7, p. 1254–1260. DOI: 10.1109/49.857925
  9. GLOSS, B., SCHARF, M., NEUBAUER, D. A more realistic random direction mobility model. In 4th Management Committee Meeting. Wurzburg (Germany), October 2005, p. 1–11.
  10. OLMOS, K., PIERRE, S., BOUDREAULT, Y. Traffic simulation in urban cellular networks of Manhattan type. Computer and Electrical Engineering, 2003, vol. 29, no. 3, p. 435–461. DOI: 10.1016/S0045-7906(01)00032-5
  11. BAI, F., HELMY, A. A survey of mobility models in wireless adhoc networks. Chapter 1 in Wireless Ad Hoc Networks. Kluwer Academic, 2006, p. 1–30.
  12. MILEUSNIĆ, M., JOVANOVIĆ, P., POPOVIĆ, M., et al. Influence of intra-cell traffic on the output power of base station in GSM. Radioengineering, 2014, vol. 23, no. 2, p. 601–608. ISSN: 1805-9600 (online)
  13. LEBL, A., MITIĆ, D., POPOVIĆ, M., et al. Influence of mobile users’ density distribution on the CDMA base station power. Journal of Electrical Engineering, 2016, vol. 67, no. 6, p. 390–398. DOI: 10.1515/jee-2016-005
  14. EBERSPRACHER, J., VOGEL, H. J., BETTSTETTER, CH. GSM, Switching, Services and Protocols. (Chapter 5) 2nd ed. John Wiley & Sons, 2001. ISBN: 9780471499039. DOI: 10.1002/0470841745.ch5
  15. HONG, D., S. RAPPAPORT, S. Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures. IEEE Transactions on Vehicular Technology, 1986, vol. 35, no. 3, p. 77–92. DOI: 10.1109/T-VT.1986.24076
  16. PAPOULIS, A. Probability, Random Variables and Stochastic Processes. (Chapter 5) 3rd ed. McGraw Hill, 1991. ISBN: 0-07- 048477-5
  17. MILEUSNIĆ, M., SUH, T., LEBL, A., et al. Use of computer simulation in estimation of GSM base station output power. Acta Polytechnica Hungarica, 2014, vol. 11, no. 6, p. 129–142. DOI: 10.12700/APH.11.06.2014.06.8
  18. NAIN, P., TOWSLEY, D., LIU, B., et al. Properties of random direction models. In Proceedings of the 24th International Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2005). Miami (USA), 2005, p. 1897–1907. DOI: 10.1109/INFCOM.2005.1498468
  19. ISMAIL, M. S., RAHMAN, T. A. Forward-link performance of CDMA cellular system. IEEE Transactions on Vehicular Technology, 2000, vol. 49, no. 5, p. 1692–1696. DOI: 10.1109/25.892574
  20. AKIMARU, H., KAWASHIMA, K. Teletraffic, Theory and Applications. 2nd ed. Springer, 1999. DOI: 10.1007/978-1-4471- 0871-9
  21. KOSTEN, L. Simulation in teletraffic theory. In The 6th International Teletraffic Congress ITC. Munich (Germany), 1970, p. 411-1–8.

Keywords: Base station, emission power, user’s moving, handover.

H. S. Silva, M. S. de Alencar, W. J. L. de Queiroz, R. de A. Coelho, F. Madeiro [references] [full-text] [DOI: 10.13164/re.2018.1183] [Download Citations]
Bit Error Probability of M-QAM under Impulsive Noise and Fading Modeled by Markov Chains

This article presents new exact expressions, written in terms of elementary transcendental functions, for calculating the bit error probability of M-ary Quadrature Amplitude Modulation (M-QAM) scheme considering the wireless communication channel modeled by a Markov chain with N states. For the numerical evaluation of the expressions obtained, a particular case of a Markov chain with two states is considered, with each state representing distinct scenarios. In the first scenario it is considered the presence of Gated Additive White Gaussian Noise (GAWGN) and fading eta-mu or kappa-mu, while the second scenario considers the presence of the Double Gated Additive White Gaussian Noise (G2AWGN) and fading eta-mu or kappa-mu. Bit error probability curves as a function of the signal-to-permanent-noise ratio for different values of the signal-to-impulsive-noise ratio, fading parameters and modulation order M are also presented.

  1. TANGHE, E., JOSEPH, W., VERLOOCK, L., MARTENS, L., et al. The industrial indoor channel: Large-scale and temporal fading at 900, 2400, and 5200 MHz. IEEE Transactions on Wireless Communications, 2008, vol. 7, no. 7, p. 2740–2751. ISSN: 1536-1276. DOI: 10.1109/TWC.2008.070143.
  2. CHEFFENA, M. Propagation channel characteristics of industrial wireless sensor networks. IEEE Antennas and Propagation Magazine, 2016, vol. 58, no. 1, p. 66–73. ISSN: 1045-9243. DOI: 10.1109/MAP.2015.2501227
  3. TANG, L., WANG, K. C., HUANG, Y., GU, F. Channel characterization and link quality assessment of IEEE 802.15.4-compliant radio for factory environments. IEEE Transactions on Industrial Informatics, 2007, vol. 3, no. 2, p. 99–110. DOI: 10.1109/TII.2007.898414.
  4. HAYKIN, S. Communication Systems. 4th ed., John Wiley and Sons, 2002. ISBN: 9780471178699
  5. ZHANG, Q., KASSAM, S. Finite-state Markov model for Rayleigh fading channels. IEEE Transactions on Communications, 1999, vol. 47, no. 11, p. 1688–1692. ISSN: 0090-6778. DOI: 10.1109/26.803503
  6. BABICH, F., LOMBARDI, G. A Markov model for the mobile propagation channel. IEEE Transactions on Vehicular Technology, 2000, vol. 49, no. 1, p. 63–73. DOI: 10.1109/25.820699
  7. PIMENTEL, C., FALK, T. H., LISBOA, L. Finite-State Markov modeling of correlated Rician-fading channels. IEEE Transactions on Vehicular Technology, 2004, vol. 53, no. 5, p. 1491–1501. DOI: 10.1109/TVT.2004.832413
  8. SANCHEZ-SALAS, D. A., CUEVAS-RUIZ, J. L. N-states channel model using Markov chains. In Proceedings of the Conference on Electronics, Robotics and Automotive Mechanics (CERMA). Cuernavaca (Mexico), 2007, p. 342–347. DOI: 10.1109/CERMA.2007.41
  9. OUYANG, W., ERYILMAZ, A., SHROFF, N. B. Downlink scheduling over Markovian fading channels. IEEE Transactions on Networking, 2016, vol. 24, no. 3, p. 1801–1812. DOI: 10.1109/TNET.2015.2438009.
  10. LIU, X., LIU, C., LIU, W., ZENG, X. Wireless channel modeling and performance analysis based on Markov chain. In Proceedings of the Chinese Control and Decision Conference (CCDC). Chongqing (China), 2017, p. 2256–2260. ISSN: 1948-9447. DOI: 10.1109/CCDC.2017.7978890
  11. ALTINEL, D., KURT, G. K. Finite-state Markov channel based modeling of RF energy harvesting systems. IEEE Transactions on Vehicular Technology, 2018, vol. 67, no. 2, p. 1713–1725. DOI: 10.1109/TVT.2017.2757141
  12. LUTZ, E., CYGAN, D., DIPPOLD, M., et al. The land mobile satellite communication channel-recording, statistics, and channel model. IEEE Transactions on Vehicular Technology, 1991, vol. 40, no. 2, p. 375–386. DOI: 10.1109/25.289418
  13. VUCETIC, B., DU, J. Channel modeling and simulation in satellite mobile communication systems. IEEE Transactions on Vehicular Technology, 1992, vol. 10, no. 8, p. 1209–1218. ISSN: 0733-8716. DOI: 10.1109/49.166746
  14. YACOUB, M. D. The η-µ and the κ-µ distribution. IEEE Antennas and Propagation Magazine, 2007, vol. 49, no. 1, p. 68–81. ISSN: 1045-9243. DOI: 10.1109/MAP.2007.370983
  15. CRAIG, J. W. A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations. In Proceedings of the Military Communication Conference (MILCOM). McLean (USA), 1991, p. 571–575. DOI: 10.1109/MILCOM.1991.258319
  16. ARAUJO, E. R., QUEIROZ, W. J. L., MADEIRO, F., et al. On gated Gaussian impulsive noise in M-QAM with optimum receivers. Journal of Communications and Information Systems, 2015, vol. 30, no. 1, p. 10–20. DOI: https://doi.org/10.14209/jcis.2015.2
  17. QUEIROZ, W. J. L., MADEIRO, F., LOPES, W. T. A., et al. On the performance of M-QAM for Nakagami channels subject to gated noise. Telecommunication Systems, 2018, vol 68, no. 1, p. 1–10. ISSN: 1572-9451. DOI: https://doi.org/10.1007/s11235-017-0371-7
  18. CHUNG, W., YAO, K. Modified hidden semi-Markov model for modelling the flat fading channel. IEEE Transactions on Communications, 2009, vol. 57, no. 6, p. 1806–1814. DOI: 10.1109/TCOMM.2009.06.070417
  19. LEON-GARCIA, A. Probability, Statistics, and Random Process for Electrical Engineering. 3rd ed., Pearson Prentice Hall, 2008. ISBN: 9780133002577
  20. ERMOLOVA, N. Y. Moment generating functions of the generalized η-µ and κ-µ distributions and their applications to performance evaluations of communication systems. IEEE Communications Letters, 2008, vol. 12, no. 7, p. 502–504. DOI: 10.1109/LCOMM.2008.080365.
  21. LAGO-FERNANDEZ, J., SALTER, J. Modelling Impulsive Interference in DVB-T: Statistical Analysis, Test Waveform & Receiver Performance. 15 pages. [Online] Cited 2018-02-09. Available at: https://pdfs.semanticscholar.org/2a9d.pdf
  22. YACOUB, M. D. The α-µ distribution: a physical fading model for the Stacy distribution. IEEE Transactions on Vehicular Technology, 2007, vol. 56, no. 1, p. 27–34. DOI: 10.1109/TVT.2006.883753

Keywords: Markov chains, eta-mu fading, kappa-mu fading, bit error probability, impulsive noise

T. Li, Z. Tang, J. Wei, Z. Zhou, B. Wang [references] [full-text] [DOI: 10.13164/re.2018.1191] [Download Citations]
An Unambiguous Tracking Technique for Cosine-Phased BOC Signals with Low Complexity

A low-complexity unambiguous tracking method for cosine-phased binary offset carrier (BOCc) signals is proposed in this paper. The proposed method directly constructs a code discriminator function by multiplying two correlation functions. One local reference signal is a specifically designed auxiliary signal whose cross-correlation function with the BOCc signal is an unambiguous S-curve. The other reference signal is a replica BOCc signal whose correlation function with the BOCc signal is used as a "cover" to maintain the slope of the discriminant function as much as possible and to make the final discriminant function non-coherent.The proposed discriminator function has only a single main lock point and can make tracking reliable and unambiguous. In contrast to the traditional unambiguous early-minus-late methods, the proposed method needs only the prompt branch correlator outputs, and the correlation process of the BOCc signal with input signals is the same as that of the carrier loop process. As a result, the proposed method reduces the number of correlators by at least three-quarters. The theoretical analysis and simulation results show that the proposed method has higher code tracking accuracy, lower tracking threshold and better anti-multipath performance than those of PUDLL, SF and SPAR. In conclusion, the proposed method completely eliminates tracking ambiguity, significantly improves tracking performance and reduces implementation complexity.

  1. LI, T., WEI, J., TANG, Z., et al. An optimizing combined unambiguous correlation functions for boc signals tracking. In Proceedings of the International Technical Meeting of the Institute of Navigation. Monterey (USA), 2017, p. 388–400. ISSN: 2330-3646
  2. AVILA, J., HEIN, G., WALLNER, S., et al. The MBOC modulation: the final touch to the Galileo frequency and signal plan. Navigation, 2008, vol. 55, no. 1, p. 15–28. DOI: 10.1002/j.2161-4296.2008.tb00415.x
  3. YAO, Z., GAO, Y., GAO, Y., et al. Generalized theory of BOC signal unambiguous tracking with two-dimensional loops. IEEE Transactions on Aerospace Electronic Systems, 2017, vol. 53, no. 6, p. 3056–3069. ISSN: 0018-9251. DOI: 10.1109/TAES.2017.2726878
  4. CHAE, K., LEE, S.R., LIU, H. An unambiguous correlation function for generic sine-phased binary offset carrier signal tracking. Computers & Electrical Engineering, 2016, vol. 49, no. C, p. 161–172. DOI: 10.1016/j.compeleceng.2015.06.023
  5. LI, T., WEI, J., TANG, Z., et al. An unambiguous acquisition technique for sine BOC(m,n) signals. In Proceedings of the International Technical Meeting of the Institute of Navigation. Reston (USA), 2018, p. 13–20.
  6. QI, J., CHEN, J., LI, Z., ZHANG, D. Unambiguous BOC modulated signals synchronization technique. IEEE Communications Letters, 2012, vol. 16, no. 7, p. 986–989. ISSN: 1089-7798. DOI: 10.1109/LCOMM.2012.050112.112521
  7. SHEN, F., XU, G., CHEONG, J., FENG, H. Unambiguous acquisition and tracking technique for general BOC signals. Radioengineering, 2015, vol. 24, no. 3, p. 840–849. ISSN: 1210-2512, DOI: 10.13164/re.2015.0840
  8. YAO, Z., et al. Pseudo-correlation function-based unambiguous tracking technique for sine-BOC signals. IEEE Transactions on Aerospace and Electronic Systems, 2010, vol. 46, no. 4, p. 1782–1796. DOI: 10.1109/TAES.2010.5595594¨
  9. YAN, T., WEI, J., TANG, Z., et al. Unambiguous combined correlation functions for sine-BOC signal tracking. GPS Solutions, 2015, vol. 19, no. 4, p. 623–638. ISSN: 1080-5370. DOI: 10.1007/s10291-014-0420-6
  10. YAN, T., WEI, J., TANG, Z., et al. Unambiguous acquisition/tracking technique for high-order sine-phased binary offset carrier modulated signal. Wireless personal communications, 2015, vol. 84, no. 4, p. 2835–2857. DOI: 10.1007/s11277-015-2769-4
  11. LI, T., WEI, J., TANG, Z., et al. Unambiguous tracking technique based on combined correlation functions for sine boc signals. Journal of Navigation, 2018. DOI: 10.1017/S0373463318000498
  12. JULIEN, O., MACABIAU, C., CANNON, M., et al. ASPeCT: Unambiguous Sine-BOC(n,n) acquisition/tracking technique for navigation applications. IEEE Transactions on Aerospace and Electronic Systems, 2007, vol. 43, no. 1, p. 150–162. ISSN: 0018-9251. DOI: 10.1109/taes.2007.357123
  13. YAN, K., ZIEDAN, N. I., ZHANG, H., et al. Weak GPS signal tracking using fft discriminator in open loop receiver. GPS Solutions, 2016, vol. 20, no. 2, p. 225–237. ISSN: 0018-9251. DOI: 10.1007/s10291-014-0431-3
  14. YAO, K., LU, M. Side-peaks cancellation analytic design framework with applications in BOC signals unambiguous processing. In Proceedings of the International Technical Meeting of the Institute of Navigation. San Diego (USA), 2011, p. 775–785.
  15. ZHANG, H., BA, X., CHEN, J., ZHOU, H. Unambiguous acquisition technique for BOC(m, n) modulated signals. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2017, vol. 38, no. 4, DOI: 10.7527/S1000-6893.2016.0194
  16. YAO, Z., LU, M., FENG, Z. Unambiguous sine-phased binary offset carrier modulated signal acquisition technique. IEEE Transactions on Wireless Communications, 2010, vol. 9, no. 2, p. 577–580. ISSN: 1536-1276. DOI: 10.1109/TWC.2010.02.091066
  17. KAO, T.L., JUANG, J.C. Weighted discriminators for GNSS BOC signal tracking. GPS Solutions, 2012, vol. 16, no. 3, p. 339–351. ISSN: 1080-5370. DOI: 10.1007/s10291-011-0235-7
  18. LOHAN, E.S., DIEGO, D.A.D., LOPEZ, J.A. Unambiguous techniques modernized GNSS signals: Surveying the solutions. IEEE Signal Processing Magazine, 2017, vol. 34, no. 5, p. 38–52. ISSN: 1053-5888. DOI: 10.1109/MSP.2017.2711778
  19. MARTIN, N., LEBLOND, V., GUILLOTEL, G., HEIRIES, V. BOC(x,y) signal acquisition technique and performances. In Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS). Portland (USA), 2003, p. 188–198.
  20. FINE, P., WILSON, W. Tracking algorithm for GPS offset carrier signals. In Proceedings of the National Technical Meeting of The Institute of Navigation. San Diego (USA), 1999, p. 671–676.

Keywords: BOC, unambiguous tracking, local auxiliary signal, low complexity, GNSS