ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

June 2015, Volume 24, Number 2 [DOI: 10.13164/re.2015-2]

Show all Hide all

L.Chua [references] [full-text] [DOI: 10.13164/re.2015.0319] [Download Citations]
Everything You Wish to Know About Memristors But Are Afraid to Ask

This paper classifies all memristors into three classes called Ideal, Generic, or Extended memristors. A subclass of Generic memristors is related to Ideal memristors via a one-to-one mathematical transformation, and is hence called Ideal Generic memristors. The concept of non-volatile memories is defined and clarified with illustrations. Several fundamental new concepts, including Continuum-memory memristor, POP (acronym for Power-Off Plot), DC V-I Plot, and Quasi DC V-I Plot, are rigorously defined and clarified with colorful illustrations. Among many colorful pictures the shoelace DC V-I Plot stands out as both stunning and illustrative. Even more impressive is that this bizarre shoelace plot has an exact analytical representation via 2 explicit functions of the state variable, derived by a novel parametric approach invented by the author.

  1. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., WILLIAMS, R. S. The missing memristor found. Nature, 2008, vol. 453, p. 80–83, DOI: 10.1038/nature06932.
  2. CHUA, L. O. Memristor: The missing circuit element. IEEE Transaction on Circuit Theory, 1971, vol. 18, no. 5, p. 507–519. DOI: 10.1109/TCT.1971.1083337
  3. SAH, M. P., KIM, H., CHUA, L. O. Brains are made of memristors. IEEE Circuits and Systems Magazine, 2014, vol. 14, no. 1, p. 12 - 36. DOI: 10.1109/MCAS.2013.2296414
  4. VANCE, A. With ‘The Machine’ HP may have invented a new kind of computer. [Online] Available at: http:// www.businessweek.com/printer/articles/206401.
  5. CHUA, L. O. If it’s pinched it’s a memristor. Semiconductor Science and Technology, 2014, vol. 29, no. 10, p. 104001 to 1040042. DOI:10.1088/0268-1242/29/10/104001
  6. CHUA, L. O., KANG, S. M. Memristive devices and systems. Proceedings of the IEEE, 1976, vol. 64, no. 2, p. 209–223. DOI: 10.1109/PROC.1976.10092
  7. CHUA, L. O. Nonlinear circuit foundations for nanodevices. Part I: The four-element tours. Proceedings of the IEEE, 2003, vol. 91, no. 11, p. 1830–1859. DOI: 10.1109/JPROC.2003.818319
  8. CHUA, L. O. Introduction to memristor. IEEE Expert Now Short Course, 2009. [Online] Available at: http: //ieeexplore.ieee.org/xpl/modulesabstract.jsp?mdnumber=EW1091
  9. CHUA, L. O. Resistance switching memories are memristors. Applied Physics A: Material Science and Processing, 2011, vol. 102, no. 4, p. 765–783. DOI: 10.1007/s00339-011-6264-9
  10. CHUA, L. O. The fourth element. Proceedings of the IEEE, 2012, vol. 100, no. 6, p. 1920–1927. DOI: 10.1109/JPROC.2012.2190814
  11. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be self-crossing. Electronics Letters, 2011, vol. 47, no. 25, p. 1385 to 1387. DOI: 10.1049/el.2011.2913
  12. GEORGIOU, P. S., BARAHONA, M., YALIRAKI, S. N., DRAKAKIS, E. M. Window function and sigmoidal behavior of memristive systems. Royal Society Open Science, 2015, (under review).
  13. ADHIKARI, S. P., SAH, M. P., KIM, H., CHUA, L. O. Three fingerprints of memristor. IEEE Transactions on Circuits and Systems-I, 2013, vol. 60, no. 11, p. 3008–3021. DOI: 10.1109/TCSI.2013.2256171
  14. CHUA, L., SBITNEV, V., KIM, H. Hodgkin-Huxley axon is made of memristors. International Journal of Bifurcation and Chaos, 2012, vol. 22, no. 3, p. 1230011-1–1230011-48. DOI: 10.1142/S021812741230011X
  15. SAH, M. P., MANNAN, Z. I., KIM, H., CHUA, L. Oscillator made of only one memristor and one battery. International Journal of Bifurcation and Chaos, 2015, vol. 25, no. 3, p. 1530010 to 1530038. DOI: 10.1142/S0218127415300104
  16. PUGH, C. C. Real Mathematical Analysis. (Chapter: Functions of a real variable, p. 139-200). Springer, 2002, ISBN: 0387952977.
  17. CHUA, L. O. Device modeling via basic nonlinear circuit elements. IEEE Transactions on Circuits and Systems, 1980, vol. 27, no. 11, p. 1014–1044. DOI: 10.1109/TCS.1980.1084742
  18. GALE, E., ADAMATSKY, A., COSTELLO, B. Personal communication.
  19. MACVITTIE, K., KATZ, E. Electrochemical system with memimpedance properties. Journal of Physical Chemistry. 2013, vol. 117, no. 47, p. 24943–24947. DOI: 10.1021/jp409257v
  20. VOLKOV, A., TUCKET, C., REEDUS, J., VOLKOVA, M., MARKIN, V. S., CHUA, L. O. Memristor in plants. Plant Signaling and Behavior, 2014, vol. 9, no. 2, p. e28152-1 – p. e28152-7. DOI: 10.4161/psb.28152
  21. SAH, M. P., YANG, C., KIM, H., MUTHUSWAMY, B., JEVTIC, J., CHUA, L. A generic model of memristor with parasitic components. IEEE Transactions on Circuits and Systems-I, 2015, vol. 62, no. 3, p. 891–898. DOI: 10.1109/TCSI.2014.2373674
  22. TETZLAFF, R. Memristor and Memristive Systems. New York: Springer, 2014. ISBN: 978-1-4614-9068-5 (Online)
  23. ADAMATZKY, A., CHUA, L. Memristor Networks. New York: Springer, 2014.
  24. CHUA, L. O. Introduction to Nonlinear Network Theory. McGraw-Hill, 1969.
  25. MARTINSEN, O. G., GRIMNES, S., LUTKEN, C. A., JOHNSEN, G. K. Memristance in human skin. Journal of Physics: Conference Series 224012071, 2010. DOI:10.1088/1742- 6596/224/1/012071.
  26. MUTHUSWAMY, B., CHUA, L. O. Simplest chaotic circuit. International Journal of Bifurcation and Chaos, 2010, vol. 20, no. 5, p. 1567–1580. DOI: 10.1142/S0218127410027076
  27. ALLIGOOD, K. T., SAUER, T. D., YORKE, J. A. Chaos: An Introduction in Dynamical Systems. New York: Springer, 1996.
  28. MAINZER, K., CHUA, L. Local Activity Principle. London: Imperial College Press, 2013.
  29. PARKER, T. S., CHUA, L. O. Practical Numerical Algorithms for Chaotic Systems. New York: Springer, 1989.
  30. CHUA, L. O. Nonlinear network analysis – the parametric approach. Phd Dissertation. University of Illinois, Urbana, 1964.
  31. CARLIN, H. J., YOULA, D. C. Network synthesis with negative resistors. Proceedings of IRE, 1961, vol. 49, no. 5, p. 907–920. DOI: 10.1109/JRPROC.1961.287934
  32. CHUA, L. Memristor, Hodgkin-Huxley, and edge of chaos. Nanotechnology, 2013, vol. 24, no. 38, p. 383001 – 3830014. DOI: 10.1088/0957-4484/24/38/383001
  33. WASER, R. (ed.) Nanoelectronics and Information Technology. 3rd ed. Wiley VCH, 2012. ISBN: 978-3-527-40927-3
  34. VALOV, I., LINN, E., TAPPERTZHOFEN, S., SCHMELZER, S., VAN DEN HURK, I., LENTZ, F., WASER, R. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nature Communications, 2013, vol. 4, article no. 1771. DOI: doi:10.1038/ncomms2784
  35. PREZIOSO, M., MERRIKH-BAYAT, F., HOSKINS, B. D., ADAM, G. C., LIKHAREV, K. K., STRUKOV, D. B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 2015, vol. 521, p. 61–64. DOI:10.1038/nature14441
  36. CORINTO, F., ASCOLI, A. Memristive diode bridge with LCR filter. Electronics Letters, 2012, vol. 48, no. 14, p. 824–825. DOI: 10.1049/el.2012.1480

Keywords: Memristor, discrete-memory memristors, continuum-memory memristor, POP, Power-Off Plot, DC V-I Plot, Quasi DC V-I Plot, Shoelace V-I Plot, paramet¬ric approach, graphical composition, piecewise-linear (PWL) function

Z. Biolek, D. Biolek, V. Biolkova [references] [full-text] [DOI: 10.13164/re.2015.0369] [Download Citations]
Differential Equations of Ideal Memristors

Ideal memristor is a resistor with a memory, which adds dynamics to its behavior. The most usual characteristics describing this dynamics are the constitutive relation (i.e. the relation between flux and charge), or Parameter-vs-state- map (PSM), mostly represented by the memristance-to-charge dependence. One of the so far unheeded tools for memristor description is its differential equation (DEM), composed exclusively of instantaneous values of voltage, current, and their derivatives. The article derives a general form of DEM that holds for any ideal memristor and shows that it is always a nonlinear equation of the first order; the PSM forms are found for memristors which are governed by DEMs of the Bernoulli and the Riccati types; a classification of memristors according to the type of their dynamics with respect to voltage and current is carried out.

  1. CHUA, L. O. Memristor – The missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. CT-18, no. 5, p. 507 to 519. DOI: 10.1109/TCT.1971.1083337
  2. CHUA, L. O., KANG, S-M. Memristive devices and systems. Proc. of the IEEE, 1976, vol. 64, no. 2, p. 209–223. DOI: 10.1109/PROC.1976.10092
  3. CHUA, L. O. If it’s pinched it’s a memristor. Semiconductor Science and Technology, 2014, vol. 29, p. 104001. DOI: 10.1088/0268-1242/29/10/104001
  4. VAN DER SCHAFT, A. J. Representing a nonlinear state space system as a set of higher-order differential equations in the inputs and outputs. Systems and Control Letters, 1989, vol. 12, no. 2, p. 151–160. ISSN: 0167-6911
  5. BIOLEK, D., DI VENTRA, M., PERSHIN, Y. V. Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering, 2013, vol. 22, no. 4, p. 945–968. ISSN: 1805- 9600
  6. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V., KOLKA, Z. Reliable modeling of ideal generic memristors using state variable transformation. Radioengineering, 2015, vol. 24, no. 2, p. 393–407. DOI: 10.13164/re.2015.00393
  7. DRAKAKIS, E. M., YALIRAKI, S. N., BARAHONA, M. Memristors and Bernoulli dynamics. In Proceedings of the 12th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA). Berkeley (CA, USA), 2010, p. 1–6. DOI: 10.1109/CNNA.2010.5430324
  8. GEORGIOU, P. S., BARAHONA, M., YALIRAKI, S. N., DRAKAKIS, E. M. On memristor ideality and reciprocity. Microelectronics Journal, 2014, vol. 45, no. 11, p. 1363–1371. DOI: 10.1016/j.mejo.2014.08.003
  9. MAZUMDER, P., KANG, S. M., WASER, R. Memristors: Devices, Models, and Applications [Scanning the Issue]. Proc. of the IEEE, 2012, vol. 100, no. 6, p. 1911–1919. DOI: 10.1109/JPROC.2012.2190812
  10. CAI, W., ELLINGER, F., TETZLAFF, R., SCHMIDT, T. Abel dynamics of titanium dioxide memristor based on nonlinear ionic drift model. Arxiv 1105:2668, 2011, p. 1–5.
  11. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. Analytical solution of circuits employing voltage- and current-excited memristors. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2012, vol. 59, no. 11, p. 2619–2628. DOI: 10.1109/TCSI.2012.2189058
  12. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., WILLIAMS, R. S. The missing memristor found. Nature, 2008, vol. 453, p. 80–83. DOI: 10.1038/nature06932
  13. JOGLEKAR, Y. N., WOLF, S. J. The elusive memristor: properties of basic electrical circuits. European Journal of Physics, 2009, vol. 30, no. 4, p. 661–675. DOI: 10.1088/0143- 0807/30/4/001
  14. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. Spice model of memristor with nonlinear dopant drift. Radioengineering, 2009, vol. 18, no. 2, p. 210–214. ISSN: 1805-9600
  15. POLYANIN, A. D., ZAITSEV, V. F. Handbook of Exact Solutions for Ordinary Differential Equations. 2nd ed. Chapman & Hall/CRC Press, 2002. ISBN: 9781584882978
  16. GOLUBEV, V. V. Lectures on Differential Equations in the Complex Domain (in German: Vorlesungen uber Differentialgleichungen in Komplexen). VEB Deutscher Verlag der Wissenschaften, 1958. ASIN: B0000BIOOA
  17. GEORGIOU, P. S. A mathematical framework for the analysis and modelling of memristor nanodevices. PhD Thesis, 2013, Imperial College London, p. 212.

Keywords: Memristor, differential equation, parameter-vs-state- map (PSM)

Z. Kolka, D. Biolek, V. Biolkova [references] [full-text] [DOI: 10.13164/re.2015.0378] [Download Citations]
Improved Model of TiO2 Memristor

Analysis of Pickett’s model of the HP TiO2 memristor presented in this paper reveals an ambiguity of its port equation, which may cause non-convergence, numerical errors, and non-physical solutions during time-domain simulation. As there is no easy fix of the original model a new behavioral approximation of static I-V characteristics has been proposed. The approximation matches well the original model and is unambiguous.

  1. YANG, J. J., STRUKOV, D. B., STEWART, D. R. Memristive devices for computing. Nature Nanotechnology, 2013, vol. 8, p. 13–24. ISSN: 1748-3387, DOI:10.1038/nnano.2012.240
  2. ADAMATZKY, A., CHUA, L. O. (eds.) Memristor Networks. New York (USA): Springer, 2014. ISBN 978-3-319-02630-5
  3. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., WILLIAMS, R. S. The missing memristor found. Nature, 2008, vol. 453, p. 80–83. ISSN: 0028-0836, DOI:10.1038/nature06932
  4. DI VENTRA, M., PERSHIN, Y. V., CHUA, L. O. Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proceedings of the IEEE, 2009, vol. 97, no. 10, p. 1717–1724. ISSN: 0018-9219, DOI: 10.1109/ JPROC.2009.2021077
  5. CHUA, L. O. Memristor—the missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. 18, no. 5, p. 507–519. ISSN: 0018-9324, DOI: 10.1109/TCT.1971.1083337
  6. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. SPICE Modeling of memristive, memcapacitative and meminductive systems. In Proc. of the European Conference on Circuit Theory and Design (ECCTD '09). Antalya (Turkey), 2009, p. 249–252. ISBN: 978-1- 4244-3896-9, DOI: 10.1109/ECCTD.2009.5274934
  7. JOGLEKAR, Y. N., WOLF, S. J. The elusive memristor: properties of basic electrical circuits. European Journal of Physics, 2009, vol. 30, no. 4, p. 661–675. DOI: 10.1088/0143- 0807/30/4/001
  8. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, vol. 18, no. 2, p. 210–214. ISSN: 1210-2512 (print)
  9. PRODROMAKIS, T., PEH, B. P., PAPAVASSILIOU, C., TOUMAZOU, C. A versatile memristor model with nonlinear dopant kinetics. IEEE Transactions on Electron Devices, 2011, vol. 58, no. 9, p. 3099–3105. ISSN: 0018-9383, DOI: 10.1109/TED.2011.2158004
  10. LINN, E., SIEMON, A., WASER, R., MENZEL, S. Applicability of well-established memristive models for simulations of resistive switching devices. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, vol. 61, no. 8, p. 2402–2410. ISSN: 1549- 8328, DOI: 10.1109/TCSI.2014.2332261
  11. PICKETT, M. D., STRUKOV, D. B., BORGHETTI, J. L., YANG, J. J., SNIDER, G. S., STEWART, D. R., WILLIAMS, R. S. Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics, 2009, vol. 106, p. 074508-1–6. ISSN: 0021-8979, DOI: 10.1063/1.3236506
  12. ABDALLA, H., PICKETT, M. D. SPICE modeling of memristors. In Proc. IEEE International Symposium on Circuits and Systems (ISCAS). Rio de Janeiro (Brazil), 2011, p. 1832–1835. ISBN: 978- 1-4244-9473-6, DOI: 10.1109/ISCAS.2011.5937942
  13. ASCOLI, A., CORINTO, F., SENGER, V., TETZLAFF, R. Memristor model comparison. IEEE Circuits and Systems Magazine, 2013, vol. 13, no. 2, p. 89–105. ISSN: 1531-636X, DOI: 10.1109/MCAS.2013.2256272
  14. LAIHO, M., LEHTONEN, E., RUSSEL, A., DUDEK, P. Memristive synapses are becoming a reality. The Neuromorhic Engineer, Nov. 2010, p. 1–3. DOI: 10.2417/1201011.003396
  15. CHANG, T., JO, S.-H., KIM, K.-H., SHERIDAN, P., GABA, S., LU, W. Synaptic behaviors and modeling of a metal oxide memristive device. Applied Physics A, 2011, vol. 102, no. 4, p. 857–863. ISSN: 0947-8396, DOI: 10.1007/s00339-011-6296-1
  16. YAKOPCIC, C., TAHA, T. M., SUBRAMANYAM, G., PINO, R. E. Generalized memristive device SPICE model and its application in circuit design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013, vol. 32, no. 8, p. 1201 to 1214. ISSN: 0278-0070, DOI: 10.1109/TCAD.2013.2252057
  17. SIMMONS, J. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. Journal of Applied Physics, 1963, vol. 34, no. 9, p. 2581–2590. ISSN: 0021-8979, DOI: 10.1063/1.1729774
  18. VLACH, J., SINGHAL, K. Computer Methods for Circuit Analysis and Design. 2nd edition. New York (USA): Springer, 1993. ISBN: 0897895967
  19. LEHTONEN, E., LAIHO, M. CNN using memristors for neighbourhood connections. In Proc. of 12th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA). Berkeley (USA), 2010, p. 1–4. ISBN: 978-1-4244-6679- 5, DOI: 10.1109/CNNA.2010.5430304
  20. YANG, J. J., PICKETT, M. D., LI, X., OHLBERG, D. A. A., STEWART, D. R., WILLIAMS, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 2008, vol. 3, p. 429–433. ISSN: 1748-3387, DOI: 10.1038/nnano.2008.160

Keywords: TiO2 memristor, Port Equation, State Equation, Pickett’s model, simulation

A. Ascoli, R. Tetzlaff, L. Chua [references] [full-text] [DOI: 10.13164/re.2015.0384] [Download Citations]
Robust Simulation of a TaO Memristor Model

This work presents a continuous and differentiable approximation of a Tantalum oxide memristor model which is suited for robust numerical simulations in software. The original model was recently developed at Hewlett Packard labs on the basis of experiments carried out on a memristor manufactured in house. The Hewlett Packard model of the nano-scale device is accurate and may be taken as reference for a deep investigation of the capabilities of the memristor based on Tantalum oxide. However, the model contains discontinuous and piecewise differentiable functions respectively in state equation and Ohm's based law. Numerical integration of the differential algebraic equation set may be significantly facilitated under substitution of these functions with appropriate continuous and differentiable approximations. A detailed investigation of classes of possible continuous and differentiable kernels for the approximation of the discontinuous and piecewise differentiable functions in the original model led to the choice of near optimal candidates. The resulting continuous and differentiable DAE set captures accurately the dynamics of the original model, delivers well-behaved numerical solutions in software, and may be integrated into a commercially-available circuit simulator.

  1. CHUA, L. O. Memristor: the missing circuit element. IEEE Transaction on Circuit Theory, 1971, vol. 18, no. 5, p. 507–519. DOI: 10.1109/TCT.1971.1083337
  2. CHUA, L. O. The fourth element. Proceedings of the IEEE, 2012, vol. 100, no. 6, p. 1920–1927. DOI: 10.1109/JPROC.2012.2190814
  3. CORINTO, F., CIVALLERI, P., CHUA, L. O. A theoretical approach to memristor devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2015, vol. 5, no. 2. DOI: 10.1109/JETCAS.2015.2426494
  4. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., WILLIAMS, R. S. The missing memristor found. Nature, 2008, vol. 453, p. 80–83. DOI: 10.1038/nature06932
  5. ADHIKARI, S. P., SAH, M. P., KIM, H., CHUA, L. O. Three fingerprints of memristor. IEEE Transactions on Circuits and Systems I, 2013, vol. 60, no. 11, p. 3008–3021. DOI: 10.1109/TCSI.2013.2256171
  6. CHUA, L. O., KANG, S.-M. Memristive devices and systems. Proceedings of the IEEE, 1976, vol. 64, no. 2, p. 209–223. DOI: 10.1109/PROC.1976.10092
  7. WILLIAMS, S. How we found the missing memristor. IEEE Spectrum, 2008, vol. 45, no. 12, p. 29–35. DOI: 10.1109/MSPEC.2008.4687366
  8. VONTOBEL, P., ROBINETT, W., STRAZNICKY, J., KUEKES, P. J., WILLIAMS, R. S. Writing to and reading from a nanoscale crossbar memory based on memristors. Nanotechnology, 2009, vol. 20, no. 42, p. 425204. DOI: 10.1088/0957-4484/20/42/425204
  9. MIKOLAJICK, T., SLESAZECK, S., MA¨HNE, H., WYLEZICH, H., SHUAI, Y., YOU, T., SCHMIDT, H. Resistive switching: From basic switching mechanisms to device application. In Workshop on Memristor Science & Technology, European Conf. on Design, Automation &Test in Europe (DATE). Dresden (Germany), 2014.
  10. BORGHETTI, J., SNIDER, G. S., KUEKES, P. J., YANG, J. J., STEWART, D. R., WILLIAMS, R. S. ’Memristive’ switches enable ’stateful’ logic operations via material implication. Nature, 2010, vol. 464, p. 873–876. DOI: 10.1038/nature08940
  11. KVATINSKY, S., NACSON, Y. H., ETSION, Y., KOLODNY, A., WEISER, U. C., PATEL, R., FRIEDMAN, E. G. Memristive multistate pipeline register. In International Conference on Cellular Nanoscale Networks and their Applications. Notre Dame (IN, USA) 2014. DOI: 10.1109/CNNA.2014.6888594
  12. CHUA, L. O. Memristor, Hodgkin-Huxley, and edge of chaos. Nanotechnology, 2013, vol. 24, no. 38, p. 383001. DOI: 10.1088/0957- 4484/24/38/383001
  13. ASCOLI, A., CORINTO, F., TETZLAFF, R. Generalized boundary condition memristor model International Journal of Circuit Theory and Applications, 2015. DOI: 10.1002/cta.2063
  14. SNIDER, G. S. Spike-timing-dependent learning in memristive nanodevices. In Proceedings of IEEE International Symposium on Nanoscale Architectures. Anaheim (CA, USA), 2008, p. 85–92. DOI: 10.1109/NANOARCH.2008.4585796
  15. SERRANO-GOTARREDONA, T., MASQUELIER, T. LINARES BARRANCO, B. Spike-timing-dependent-plasticity with memristors. In ADAMATZKY, A., CHUA, L. O. (Eds.) Memristor Networks. Springer, 2014. ISBN: 978-3-319-02629-9, ISBN: 978-3- 319-02630-5 (ebook), DOI: 10.1007/978-3-319-02630-5
  16. PICKETT, M. D., WILLIAMS, R. S. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology, 2012, vol. 23, no. 21, p. 215202. DOI: 10.1088/0957-4484/23/21/215202
  17. ASCOLI, A., SLESAZECK, S., MAHNE, H., TETZLAFF, R., MIKOLAJICK, T. , Nonlinear dynamics of a locally-active memristor. IEEE Transactions on Circuits and Systems I, 2015, vol. 62, no. 4, p. 1165–1174. DOI: 10.1109/TCSI.2015.2413152
  18. PICKETT, M. D., MEDEIROS-RIBEIRO, G., WILLIAMS, R. S. A scalable neuristor built with Mott memristors. Nature Materials, 2012, vol. 12, no. 2, p. 114–117. DOI: 10.1038/NMAT3510
  19. STRACHAN, J. P., TORREZAN, A. C., MIAO, F., PICKETT, M. D.,YANG, J. J., YI, W., MEDEIROS-RIBEIRO, G., WILLIAMS, R. S. State dynamics and modeling of tantalum oxide memristors IEEE Transactions on Electron Devices, 2013, vol. 60, no. 7, p. 2194– 2202. DOI: 10.1109/TED.2013.2264476
  20. TORREZAN, A. C., STRACHAN, J. P., MEDEIROS-RIBEIRO, G., WILLIAMS, R. S. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology, 2011, vol. 22, p. 485203. DOI: 10.1088/0957-4484/22/48/485203
  21. BIOLEK, D., DI VENTRA, M., PERSHIN, Y. V. Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering, 2013, vol. 22, no. 4, p. 945–968. DOI: 10.13164/re.2013.0945
  22. Linear Technology. LTspice [Online]. Available at: http://www.linear.com/designtools/software/#LTspice
  23. CHUA, L. O. Resistance switching memories are memristors. Applied Physics A, 2011, vol. 102, no. 4, p. 765–783. DOI: 10.1007/s00339-011-6264-9
  24. CHUA, L. O. If it’s pinched, it’s a memristor. Semiconductor Science and Technology, Special Issue on Memristive Devices, Semiconductor Science and Technology, 2014. vol. 29, no. 10, p. 104001. DOI: 10.1088/0268-1242/29/10/104001
  25. ASCOLI, A., CORINTO, F., TETZLAFF, R. A class of versatile circuits, made up of standard electrical components, are memristors. International Journal of Circuit Theory and Applications, 2015. DOI: 10.1002/cta.2067
  26. CHUA, L. O. Hodgkin-Huxley axon is made of memristors. International Journal on Bifurcation and Chaos, 2012, vol. 22, no. 3, p. 1230011. DOI: 10.1142/S021812741230011X
  27. Linear Technology. SwitcherCAD III/LTspice Getting Started Guide [Online]. Available at: http://ltspice.linear.com/software/ LTspiceGettingStartedGuide.pdf
  28. KOLKA, Z., BIOLEK, D., BIOLKOVA, V. Hybrid modelling and emulation of mem-systems. International Journal of Numerical Modellilng: Electronic Networks, Devices and Fields, 2011. vol. 25, no. 3, p. 216–225. DOI: 10.1002/jnm.825
  29. ASCOLI, A., TETZLAFF, R., BIOLEK, Z., KOLKA, Z., BIOLKOVA, V., BIOLEK, D. The art of finding accurate memristor model solutions. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2015, DOI: 10.1109/JETCAS.2015.2426493

Keywords: TaO memristor modeling, numerical techniques, circuit implementation

D. Biolek, Z. Biolek, V. Biolkova, Z. Kolka [references] [full-text] [DOI: 10.13164/re.2015.0393] [Download Citations]
Reliable Modeling of Ideal Generic Memristors via State-Space Transformation

The paper refers to problems of modeling and computer simulation of generic memristors caused by the so-called window functions, namely the stick effect, nonconvergence, and finding fundamentally incorrect solutions. A profoundly different modeling approach is proposed, which is mathematically equivalent to window-based modeling. However, due to its numerical stability, it definitely smoothes the above problems away.

  1. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., WILLIAMS, R. S. The missing memristor found. Nature, 2008, vol. 453, p. 80–83. DOI: 10.1038/nature06932
  2. CHUA, L. O. Memristor – The missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. CT-18, no. 5, p. 507 to 519. DOI: 10.1109/TCT.1971.1083337
  3. RAK, A., CSEREY, G. Macromodeling of the memristor in SPICE. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2010, vol. 29, no. 4, p. 632–636. DOI: 10.1109/TCAD.2010.2042900
  4. BENDERLI, S., WEY, T. A. On SPICE macromodelling of TiO2 memristors. Electronics Letters, 2009, vol. 45, no. 7, p. 377–379. DOI: 10.1049/el.2009.3511
  5. BATAS, D., FIEDLER, H. A memristor Spice implementation and a new approach for magnetic flux controlled memristor modeling. IEEE Transactions of Nanotechnology, 2011, vol. 10, no. 2, p. 250–255. DOI: 10.1109/TNANO.2009.2038051
  6. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. SPICE modeling of memristive, memcapacitative and meminductive systems. In Proceedings of the European Conf. on Circuits Theory and Design. Antalya (Turkey), 2009, p. 249–252. DOI: 10.1109/ ECCTD.2009.5274934
  7. BIOLKOVA, V., KOLKA, Z., BIOLEK, D., BIOLEK, Z. Memristor modeling based on its constitutive relation. In Proceedings of the European Conference of Circuits Technology and Devices. Tenerife (Spain), 2010, p. 261–264. ISBN: 978-960- 474-250-9
  8. RADWAN, A. G., ZIDAN, M. A., SALAMA, K. N. On the mathematical modeling of memristors. In Proceedings of the 22nd Int. Conference on Microelectronics (ICM 2010). Cairo (Egypt), 2010, p. 284–287. DOI: 10.1109/ICM.2010.5696139
  9. ASCOLI, A., CORINTO, F., SENGER, V., TETZLAFF, R. Memristor model comparison. IEEE Circuits and Systems Magazine, 2013, vol. 13, no. 2, p. 89–105. DOI: 10.1109/MCAS.2013.2256272
  10. MAHVASH, M., PARKER, A.C. A memristor SPICE model for designing memristor circuits. In Proceedings of the 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS). Seattle (USA), 2010, p. 989-992. DOI: 10.1109/ MWSCAS.2010.5548803
  11. ZHANG, Y., ZHANG, X., YU, J. Approximated SPICE model for memristor. In Proceedings of the International Conference on Communications, Circuits and Systems (ICCCAS 2009). Milpitas (USA), 2009, p. 928–931. DOI: 10.1109/ICCCAS.2009.5250371
  12. JOGLEKAR, Y. N., WOLF, S. J. The elusive memristor: properties of basic electrical circuits. European Journal of Physics, 2009, vol. 30, no. 4, p. 661–675. DOI: 10.1088/0143-0807/30/4/001
  13. SHIN, S., KIM, K., KANG, S-M. Compact models for memristors based on charge-flux constitutive relationships. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2010, vol. 29, no. 4, p. 590–598. DOI: 10.1109/ TCAD.2010.2042891
  14. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, vol. 18, no. 2, p. 210–214. ISSN: 1805-9600
  15. KAVEHEI, O., IQBAL, A., KIM, Y. S., ESHRAGHIAN, K., AlSARAWI, S. F., ABBOTT, D. The fourth element: Characteristics, modelling, and electromagnetic theory of the memristor. Proceedings of the Royal Society, 2010, p. 1–28. DOI: 10.1098/rspa.2009.0553 (Published online)
  16. ESHRAGHIAN, K., KAVEHEI, O., CHO, K-R., CHAPPELL, J. M., IQBAL, A., Al-SARAWI, S. F., ABBOTT, D. Memristive device fundamentals and modeling: Applications to circuits and systems simulation. Proc. of the IEEE, 2012, vol. 100, no. 6, p. 1991–2007. DOI: 10.1109/JPROC.2012.2188770
  17. PRODROMAKIS, T., PEH, B. P., PAPAVASSILIOU, C., TOUMAZOU, C. A versatile memristor model with nonlinear dopant kinetics. IEEE Transactions on Electron Devices, 2011, vol. 58, no. 9, p. 3099–3105. DOI: 10.1109/TED.2011.2158004
  18. KVATINSKY, S., FRIEDMAN, E. G., KOLODNY, A., WEISER, U. C. TEAM: ThrEshold Adaptive Memristor Model. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2013, vol. 60, no. 1, p. 211–221. DOI: 10.1109/TCSI.2012.2215714
  19. YU, J., MU, X., XI, X., WANG, S. A Memristor model with piecewise window function. Radioengineering, 2013, vol. 22, no. 4, p. 969–974. ISSN: 1805-9600
  20. TAKAHASHI, Y., SEKINE, T., YOKOYAMA, M. SPICE model of memristive device using Tukey window function. IEICE Electronics Express, 2015, vol. 12, no 5, p. 20150149. DOI: 10.1587/elex.12.20150149
  21. CHOWDHURY, J., DAS, J. K., ROUT, N. K. Trigonometric window functions for memristive device modeling. In Proceedings of the Fifth International Conference on Advanced Computing & Communication Technologies. Rohtak (India), 2015, p. 157–161. DOI: 10.1109/ACCT.2015.25
  22. CORINTO, F., ASCOLI, A. A boundary condition-based approach to the modeling of memristor nano-structures. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2012, vol. 59, no. 11, p. 2713–2726. DOI: 10.1109/TCSI.2012.2190563
  23. ASCOLI, A., CORINTO, F., TETZLAFF, R. Generalized boundary condition memristor model. International Journal of Circuit Theory and Applications, 2015, Early View. DOI: 10.1002/cta.2063
  24. YAKOPCIC, C., TAHA, T. M., SUBRAMANYAM, G., PINO, R. E. Memristor SPICE modeling. Advances in Neuromorphic Memristor Science and Applications. Springer Series in Cognitive and Neural Systems, 2012, p. 211–244. ISBN 978-94-007-4491-2
  25. YAKOPCIC, C., TAHA, T. M., SUBRAMANYAM, G., PINO, R. E. Generalized memristive device SPICE model and its application in circuit design. IEEE Transactions on ComputerAided Design of Integrated Circuits and Systems, 2013, vol. 32, no. 8, p. 1201–1214. DOI: 10.1109/TCAD.2013.2252057
  26. PINO, R. E., BOHL, J. W., McDONALD, N., WYSOCKI, B., ROZWOOD, P., CAMPBELL, K. A., OLBEA, A., TIMILSINA, A. Compact method for modeling and simulation of memristor devices: ion conductor chalcogenide-based memristor devices. In Proceedings of IEEE/ACM Int. Symp. on Nanoscale Architectures. Anaheim (USA), 2010, p. 1–4. ISBN: 978-1-4244-8020-3. DOI: 10.1109/NANOARCH.2010.5510936
  27. ABDALA, H., PICKETT, M. D. Spice modeling of memristors. In Proceedings of Int. Symposium on Circuits and Systems ISCAS 2011. Rio de Janeiro (Brazil), 2011, p. 1832–1835. DOI: 10.1109/ISCAS.2011.5937942
  28. LEHTONEN, E., LAIHO, M. CNN using memristors for neighborhood connections. In Proceedings of 12th Int. Workshop on Cellular Nanoscale Networks and their Applications (CNNA). Berkeley (USA), 2010, p. 1–4. ISBN: 978-1-4244-6679-5. DOI: 10.1109/CNNA.2010.5430304
  29. LAIHO, M., LEHTONEN, E., RUSSEL, A., DUDEK, P. Memristive synapses are becoming reality. Inst. of Neuromorphic Engineering, 2010. DOI: 10.2417/1201011.003396
  30. CHANG, T., JO, S-H., KIM, K-H., SHERIDAN, P., GABA, S., LU, W. D. Synaptic behaviors and modeling of a metal oxide memristor device. Applied Physics A, 2011, vol. 201, p. 857–863. DOI: 10.1007/s00339-011-6296-1
  31. LINN, E., SIEMON, A., WASER, R., MENZEL, S. Applicability of well-established memristive models for simulations of resistive switching devices. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2014, vol. 61, no. 8, p. 2402–2410. DOI: 10.1109/TCSI.2014.2332261
  32. SONODA, K., SAKAI, A., MONIWA, M., ISHIKAWA, K., TSUCHIYA, O., INOUE, Y. A compact model of phase-change memory based on rate equations of crystallization and amorphization. IEEE Transactions on Electron Devices, 2008, vol. 55, no. 7, p. 1672–1681. DOI: 10.1109/TED.2008.923740
  33. PICKETT, M. D., WILLIAMS, R. S. Sub-100 fJ and subnanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology, 2012, vol. 23, no. 21, p. 215202. DOI: 10.1088/0957-4484/23/21/215202
  34. STRACHAN, J. P., TORREZAN, A. C., MIAO, F., PICKETT, M. D., YANG, J. J., YI, W., RIBEIRO, G. M. State dynamics and modeling of tantalum oxide memristors. IEEE Transactions on Electron Devices, 2013, vol. 60, no. 7, p. 2194–2202. DOI: 10.1109/TED.2013.2264476
  35. PICKETT, M. D., STRUKOV, D. B., BORGHETTI, J. L., YANG, J. J., SNIDER, G. S., STEWART, D. R., WILLIAMS, R. S. Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics, 2009, vol. 106, p. 074508. DOI: 10.1063/1.3236506
  36. WANG, X., CHEN, Y., XI, H., LI, H., DIMITROV, D. Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Letters, 2009, vol. 30, no. 3, p. 294–297. DOI: 10.1109/LED.2008.2012270
  37. PERSHIN, Y. V., Di VENTRA, M. Memory effects in complex materials and nanoscale systems. Advances in Physics, 2011, vol. 60, p. 145–227. DOI: 10.1080/00018732.2010.544961
  38. CLAUSS, D. A., RALICH, R. M., RAMSIER, R. D. Hysteresis in a light bulb: connecting electricity and thermodynamics with simple experiments and simulations. European Journal of Physics, 2001, vol. 22, no. 4, p. 385–394. DOI: 10.1088/0143- 0807/22/4/313
  39. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. (Co)content in circuits with memristive elements. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2015, vol. 62, no. 2, p. 488–496. DOI: 10.1109/TCSI.2014.2364694
  40. FRANCIS, V. J. Fundamentals of Discharge Tube Circuits. London (UK): Methuen, 1948.
  41. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V., KOLKA, Z. Modeling of TiO2 memristor: from analytic to numerical analyses. Semiconductor Science Technology, 2014, vol. 29, p. 125008. DOI: 10.1088/0268-1242/29/12/125008
  42. CHUA, L. If it’s pinched it’s a memristor. Semiconductor Science Technology, 2014, vol. 29, p. 104001. DOI: 10.1088/0268- 1242/29/10/104001
  43. BIOLEK, D., BIOLEK, Z. Fourth fundamental circuit element: SPICE modeling and simulation. In Memristors and Memristive Systems (Tetzlaff, R. ed). New York: Springer, 2014, p. 105–162. DOI: 10.1007/978-1-4614-9068-5_4
  44. BIOLEK, D., Di VENTRA, M., PERSHIN, Y. V. Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering, 2013, vol. 22, no. 4, p. 945–968. ISSN: 1805- 9600
  45. GEORGIOU, P. S. A mathematical framework for the analysis and modelling of memristor nanodevices. PhD Thesis, 2013, Imperial College London, 212 p.
  46. CHUA, L. O., KANG, S-M. Memristive devices and systems. Proceedings of the IEEE, 1976, vol. 64, no. 2, p. 209–223. DOI: 10.1109/PROC.1976.10092
  47. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V., KOLKA, Z. Some fingerprints of ideal memristors. In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS). Beijing (China), 2013, p. 201–204. ISBN: 978-1-4673-5760-9. DOI: 10.1109/ISCAS.2013.6571817
  48. LI, Q., XU, H., LIU, H., TIAN, X. Variable-relation criterion for analysis of the memristor. International Science Index, 2011, vol. 5, no. 12, waset.org/Publication/10978.
  49. ADHIKARI, S. P., SAH, M. P., CHUA, L. O., KIM, H. Three fingerprints of memristor. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2013, vol. 60, no. 11, p. 3008–3021. DOI: 10.1109/TCSI.2013.2256171
  50. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be 'self-crossing'. Electronics Letters, 2011, vol. 47, no. 25, p. 1385–1387. DOI: 10.1049/el.2011.2913
  51. PERSHIN, Y. V., Di VENTRA, M. SPICE model of memristive devices with threshold. Radioengineering, 2013, vol. 22, no. 2, p. 485-489. ISSN: 1805-9600
  52. BIOLEK, D., KOLKA, Z., BIOLKOVA, V. Memristive systems for analog signal processing. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS). Melbourne (Australia), 2014, p. 2588–2591. DOI: 10.1109/ISCAS.2014.6865702
  53. CHUA, L., SBITNEV, V., KIM, H. Hodgkin-Huxley axon is made of memristors. International Journal of Bifurcation and Chaos, 2012, vol. 22, no. 3, p. 1230011-1-48. DOI: 10.1142/ S021812741230011X
  54. BIOLEK, D., BIOLKOVA, V., KOLKA, Z. Spice models of memristive devices forming a model of Hodgkin-Huxley axon. In Proceedings of the 18th International IEEE Conference on Digital Signal Processing (DSP). Santorini (Spain), 2013, p. 1-5. DOI: 10.1109/ICDSP.2013.6622743
  55. WEISSTEIN, E. W. Logistic Equation. From MathWorld-A Wolfram Web Resource http://mathworld.wolfram.com/LogisticEquation.html
  56. IELMINI, D., LARENTIS, S., BALATTI, S. Physical modeling of voltage-driven resistive switching in oxide RRAM. In Proceedings of the IEEE Int. Integrated Reliability Workshop Final Report (IRW). South Lake Tahoe (USA), 2012, p. 9–15. DOI: 10.1109/IIRW.2012.6468905
  57. IELMINI, D. Modeling the universal set/reset characteristics of bipolar RRAM by field- and temperature-driven filament growth. IEEE Transactions on Electron Devices, 2011, vol. 58, no. 12, p. 4309–4317. DOI: 10.1109/TED.2011.2167513
  58. MIRANDA, E., JIMENEZ, D., SUNE, J. The quantum pointcontact memristor. IEEE Electron Device Letters, 2012, vol. 33, no. 10, p. 1474–1476. DOI: 10.1109/LED.2012.2210185
  59. WANG, X., CHEN, Y., GU, Y., LI, H. Spintronic memristor temperature sensor. IEEE Electron Device Letters, 2010, vol. 31, no. 1, p. 20–22. DOI: 10.1109/LED.2009.2035643

Keywords: Constitutive relation, memductance, memristance, memristor

M.Potrebic, D. Tosic [references] [full-text] [DOI: 10.13164/re.2015.0408] [Download Citations]
Application of Memristors in Microwave Passive Circuits

The recent implementation of the fourth fundamental electric circuit element, the memristor, opened new vistas in many fields of engineering applications. In this paper, we explore several RF/microwave passive circuits that might benefit from the memristor salient characteristics. We consider a power divider, coupled resonator bandpass filters, and a low-reflection quasi-Gaussian lowpass filter with lossy elements. We utilize memristors as configurable linear resistors and we propose memristor-based bandpass filters that feature suppression of parasitic frequency pass bands and widening of the desired rejection band. The simulations are performed in the time domain, using LTspice, and the RF/microwave circuits under consideration are modeled by ideal elements available in LTspice.

  1. CHUA, L. O. Memristor – The missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. CT-18, no. 5, p. 507 to 519. DOI: 10.1109/TCT.1971.1083337
  2. CHUA, L. O. Resistance switching memories are memristors. Applied Physics A, 2011, vol. 102, p. 765–783. DOI: 10.1007/s00339-011-6264-9
  3. CHUA, L. O. The fourth element. Proceedings of the IEEE, 2012, vol. 100, no. 6, p. 1920–1927. DOI: 10.1109/JPROC.2012.2190814
  4. CHUA, L. O., KANG, S. M. Memristive devices and systems. Proceedings of the IEEE, 1976, vol. 64, no. 2, p. 209–223. DOI: 10.1109/PROC.1976.10092
  5. TETZLAFF, R. (Editor) Memristors and Memristive Systems. New York: Springer, 2014. ISBN: 978-1-4614-9067-8 (Print) 978-1- 4614-9068-5 (Online)
  6. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., WILLIAMS, R. S. The missing memristor found. Nature, 2008, vol. 453, no. 7191, p. 80 - 83. DOI: 10.1038/nature06932
  7. Memristors: Devices, Models & Applications. Proceedings of the IEEE, June 2012, vol. 100, no. 6, Special Issue. DOI: 10.1109/JPROC.2012.2197452
  8. Special Issue on Memristors: Theory and Applications. IEEE Circuits and Systems Magazine, April 2013, vol. 13, no. 2. DOI: 10.1109/MCAS.2013.2256252
  9. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, vol. 18, no. 2, p. 210–214.
  10. JOGLEKAR, Y. N., WOLF, S. J. The elusive memristor: Properties of basic electrical circuits. European Journal of Physics, 2009, vol. 30, no. 4, p. 661–675. DOI: 10.1088/0143- 0807/30/4/001
  11. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE modeling of memristive, memcapacitative and meminductive systems. In Proceedings of the European Conference on Circuit Theory and Design (ECCTD’09). Antalya (Turkey), 2009, p. 249–252. DOI: 10.1109/ECCTD.2009.5274934
  12. RAK, A., CSEREY, G. Macromodeling of the memristor in SPICE. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2010, vol. 29, no. 4, p. 632–636. DOI: 10.1109/TCAD.2010.2042900
  13. ABDALLA, H., PICKETT, M. D. SPICE modeling of memristors. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS). Rio de Janeiro (Brasil), 2011, p. 1832 to 1835. DOI: 10.1109/ISCAS.2011.5937942
  14. BATAS, D., FIEDLER, H. A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Transactions on Nanotechnology, 2011, vol. 10, no. 2, p. 250–255. DOI: 10.1109/TNANO.2009.2038051
  15. PRODROMAKIS, T., PEH, B. P., PAPAVASSILIOU, C., TOUMAZOU, C. A versatile memristor model with nonlinear dopant kinetics. IEEE Transactions on Electron Devices, 2011, vol. 58, no. 9, p. 3099–3105. DOI: 10.1109/TED.2011.2158004
  16. KOLKA, Z., BIOLEK, D., BIOLKOVA, V. Hybrid modelling and emulation of mem-systems. International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, 2012, vol. 25, no. 3, p. 216–225. DOI: 10.1002/jnm.825
  17. ESHRAGHIAN, K., KAVEHEI, O., CHO, K.-R., CHAPPELL, J. M., IQBAL, A., AL-SARAWI, S. F., ABBOTT, D. Memristive device fundamentals and modeling: Applications to circuits and systems simulation. Proceedings of the IEEE, 2012, vol. 100, no. 6, p. 1991–2007. DOI: 10.1109/JPROC.2012.2188770
  18. CORINTO, F., ASCOLI, A. A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Transactions on Circuits and Systems I, 2012, vol. 59, no. 11, p. 2713–2726. DOI: 10.1109/TCSI.2012.2190563
  19. ASCOLI, A., CORINTO, F., SENGER, V., TETZLAFF, R. Memristor model comparison. IEEE Circuits and Systems Magazine, 2013, vol. 13, no. 2, p. 89–105. DOI: 10.1109/MCAS.2013.2256272
  20. PERSHIN, Y. V., DI VENTRA, M. Spice model of memristive devices with threshold. Radioengineering, 2013, vol. 22, no. 2, p. 485–489.
  21. KVATINSKY, S., FRIEDMAN, E. G., KOLODNY, A., WEISER, U. C. TEAM: ThrEshold Adaptive Memristor model. IEEE Transactions on Circuits and Systems I, 2013, vol. 60, no. 1, p. 211–221. DOI: 10.1109/TCSI.2012.2215714
  22. YAKOPCIC, C., TAHA, T. M., SUBRAMANYAM, G., PINO, R. E. Generalized memristive device SPICE model and its application in circuit design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013, vol. 32, no. 8, p. 1201 to 1214. DOI: 10.1109/TCAD.2013.2252057
  23. ASCOLI, A., TETZLAFF, R., CORINTO, F., GILLI, M. PSpice switch-based versatile memristor model. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS). Beijing (China), 2013, p. 205–208. DOI: 10.1109/ISCAS.2013.6571818
  24. BIOLEK, D., DI VENTRA, M., PERSHIN, Y. V. Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering, 2013, vol. 22, no. 4, p. 945–968.
  25. PERSHIN, Y. V., DI VENTRA, M. Practical approach to programmable analog circuits with memristors. IEEE Transaction on Circuits and Systems I, 2010, vol. 57, no. 8, p. 1857–1864. DOI: 10.1109/TCSI.2009.2038539
  26. KVATINSKY, S., FRIEDMAN, E. G., KOLODNY, A., WEISER, U. C. The desired memristor for circuit designers. IEEE Circuits and Systems Magazine, 2013, vol. 13, no. 2, p. 17–22. DOI: 10.1109/MCAS.2013.2256257
  27. ASCOLI, A., TETZLAFF, R., CORINTO, F., MIRCHEV, M., GILLI, M. Memristor-based filtering applications. In Proceedings of the 14th Latin American Test Workshop (LATW). Cordoba (Argentina), 2013, p. 1–6. DOI: 10.1109/LATW.2013.6562672
  28. XU, K. D., ZHANG, Y. H., WANG, L., YUAN, M. Q., FAN, Y., JOINES, W. T., LIU, Q. H. Two memristor SPICE models and their applications in microwave devices. IEEE Transactions on Nanotechnology, 2014, vol. 13, no. 3, p. 607–616. DOI: 10.1109/TNANO.2014.2314126
  29. BRAY, M. G., WERNER, D. H. Passive switching of electromagnetic devices with memristors. Applied Physics Letters, 2010, vol. 96, no. 7, p. 073504-1–073504-3. DOI: 10.1063/1.3299020
  30. WERNER, D. H., GREGORY, M. D. The memristor in reconfigurable radio frequency devices. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (APSURSI). Chicago (USA), 2012, p. 1–2. DOI: 10.1109/APS.2012.6349274
  31. SOMBRIN, J., MICHEL, P., SOUBERCAZE-PUN, G., ALBERT, I. Memristors as non-linear behavioral models for passive intermodulation simulation. In Proceedings of the 9th European Microwave Integrated Circuit Conference (EuMIC). Rome (Italy), 2014, p. 385–388. DOI: 10.1109/EuMIC.2014.6997873
  32. GREGORY, M. D., WERNER, D. H. Reconfigurable electromagnetics devices enabled by a non-linear dopant drift memristor. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (APSURSI). Memphis (USA), 2014, p. 563–564. DOI: 10.1109/APS.2014.6904612
  33. XU, K., ZHANG, Y., SPIEGEL, R. J., JOINES, W. T., LIU, Q. H. Memristor-based UWB antenna with reconfigurable notched band. In Proceedings of Abstracts of the Progress In Electromagnetics Research Symposium. Guangzhou (China), 2014, p. 1656.
  34. WU, H., ZHOU, J., LAN, C., GUO, Y., BI, K. Microwave memristive-like nonlinearity in a dielectric metamaterial. Scientific Reports, 2014, vol. 4:5499, p. 1–6. DOI: 10.1038/srep05499
  35. ENGELHARDT, M. LTspice IV version 4.22s. Linear Technology Corporation. [Online] Cited Jan 30, 2015. Available at: http://www.linear.com
  36. POZAR, D. M. Microwave Engineering. 4th ed. Hoboken: John Wiley & Sons, 2012. ISBN: 978-0-470-63155-3
  37. HONG, J.-S. Microstrip Filters for RF/Microwave Applications. 2nd ed. Hoboken: John Wiley & Sons, 2011. ISBN: 978-0-470- 40877-3
  38. PETROVIĆ, V. V., TOSIĆ, D. V., DJORDJEVIĆ, A. R. Microwave Passive Circuits. Belgrade (Serbia): University of Belgrade – School of Electrical Engineering, 2010. (in Serbian) [Online] http://www.etf.rs/etf_files/udzbenici/MPK_2010.pdf, ISBN: 978-86-7225-041-1
  39. WANHAMMAR, L. Analog Filters Using MATLAB. New York: Springer, 2009. ISBN: 978-0-387-92766-4, DOI: 10.1007/978-0- 387-92767-1
  40. DJORDJEVIĆ, A. R., ZAJIĆ, A. G., STEKOVIĆ, A. S., NIKOLIĆ, M. M., MARIĆEVIĆ, Z. A., SCHEMMANN, M. F. C. On a class of low-reflection transmission-line quasi-Gaussian lowpass filters and their lumped-element approximations. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 7, p. 1871–1877. DOI: 10.1109/TMTT.2003.814310

Keywords: Memristor, Microwave passive circuit, Filter

R. Picos, J.B. Roldan, M.M. Al Chawa, P. Garcia-Fernandez, F. Jimenez-Molinos, E. Garcia-Moreno [references] [full-text] [DOI: 10.13164/re.2015.0420] [Download Citations]
Semiempirical Modeling of Reset Transitions in Unipolar Resistive-Switching based Memristors

We have measured the transition process from the high to low resistivity states, i.e., the reset process of resistive switching based memristors based on Ni/HfO2/Si-n+ structures, and have also developed an analytical model for their electrical characteristics. When the characteristic curves are plotted in the current-voltage (I-V) domain a high variability is observed. In spite of that, when the same curves are plotted in the charge-flux domain (Q-phi), they can be described by a simple model containing only three parameters: the charge (Qrst) and the flux (rst) at the reset point, and an exponent, n, relating the charge and the flux before the reset transition. The three parameters can be easily extracted from the Q-phi plots. There is a strong correlation between these three parameters, the origin of which is still under study.

  1. XIE, Y. Emerging Memory Technologies. Springer, 2014.
  2. WASER, R., AONO, M. Nanoionics-based resistive switching memories. Nature Materials, 2007, vol. 6, p. 833–840. DOI: 10.1038/nmat2023
  3. The International Technology Roadmap for Semiconductors. 2013 version. [Online] Available at: http://public.itrs.net.
  4. CHUA, L. O. Resistance switching memories are memristors. Applied Physics A, 2011, vol. 102, no. 4, p. 765–783. DOI: 10.1007/s00339-011-6264-9
  5. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., WILLIAMS, R. S. The missing memristor found. Nature, 2008, vol. 453, p. 80–83. DOI: 10.1038/nature06932
  6. CHUA, L. O. Memristor - the missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. 18, no. 5, p. 507–519. DOI: 10.1109/TCT.1971.1083337
  7. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, vol. 18, no. 2, p. 210–214.
  8. JIMENEZ-MOLINOS, F., VILLENA, M. A., ROLDAN, J. B., ROLDAN, A. M. A SPICE compact model for unipolar RRAM reset process analysis. IEEE Transactions on Electron Devices, 2015, in press.
  9. SHIN, S., KIM, K., KANG, S-M. Compact models for memristors based on charge–flux constitutive relationships. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 2010, vol. 29, no. 4, p. 590–598. DOI: 10.1109/TCAD.2010.2042891
  10. PICOS, R., AL CHAWA, M. M., ROCA, M., GARCIAMORENO, E. A charge-dependent mobility memristor model. In 10th Spanish Conf. on Electron Devices. Arajuez (Spain), 2015.
  11. VILLENA, M. A., GONZALEZ, M. B., JIMENEZ-MOLINOS, F., CAMPABADAL, F., ROLDAN, J. B., SUÑE, J., ROMERA, E., MIRANDA, E. Simulation of thermal reset transitions in RRAMs including quantum effects. Journal of Applied Physics, 2014, vol. 115, p. 214504. DOI: 10.1063/1.4881500
  12. DEGRAEVE, R., FANTINI, A., RAGHAVAN, N., GOUX, L., CLIMA, S., CHEN, Y. Y., BELMONTE, A., COSEMANS, S., GOVOREANU, B., WOUTERS, D. J., ROUSSEL, P. H., KAR, G. S., GROESENEKEN, G., JURCZAK, M. Hourglass concept for RRAM: a dynamic and statistical device model. In IEEE 21st International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). Singapore, 2014, p. 245–249. DOI: 10.1109/IPFA.2014.6898205
  13. YU, S., GUAN, X., WONG, P. On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, Monte Carlo simulation, and experimental characterization. In IEEE International Electron Devices Meeting (IEDM). Washington (USA), 2011, p. 413–416. DOI: 10.1109/IEDM.2011.6131572
  14. LARENTIS, S., NARDI, F., BALATTI, S., GILMER, D. C., IELMINI, D. Resistive switching by voltage-driven ion migration in bipolar RRAM—Part II: Modeling. IEEE Transactions on Electron Devices, 2012, vol. 59, no. 9, p. 2468–2475. DOI: 10.1109/TED.2012.2202320
  15. BOCQUET, M., DELERUYELLE, D., MULLER, C., PORTAL, J.-M. Self-consistent physical modeling of set/reset operations in unipolar resistive-switching memories. Applied Physics Letters, 2011, vol. 98, p. 263507. DOI: 10.1063/1.3605591
  16. VILLENA, M. A., JIMENEZ-MOLINOS, F., ROLDAN, J. B., SUÑE, J., LONG, S., LIAN, X., GAMIZ, F., LIU, M. An in-depth simulation study of thermal reset transitions in resistive switching memories. Journal of Applied Physics, 2013, vol. 114, p. 144505 to 144505-8. DOI: 10.1063/1.4824292
  17. GONZALEZ, M. B., RAFI, J. M., BELDARRAIN, O., ZABALA, M., CAMPABADAL, F. Analysis of the switching variability in Ni/HfO2-based RRAM devices. IEEE Transactions on Device and Material Reliability, 2014, vol. 14, no. 2, p. 769–771. DOI: 10.1109/TDMR.2014.2311231
  18. VILLENA, M. A., JIMENEZ-MOLINOS, F., ROLDAN, J. B., SUÑE, J., LONG, S., MIRANDA, E., LIU, M. A comprehensive analysis on progressive reset transitions in RRAMs. Journal of Physics D, Applied Physics, 2014, vol. 47, p. 205102. DOI: 10.1088/0022-3727/47/20/205102
  19. IÑIGUEZ, B., PICOS, R., VEKSLER, D., KOUDYMOV, A., SHUR, M. S., YTTERDAL, T., JACKSON, W. Universal compact model for long- and short-channel thin-film transistors. Solid-State Electronics, 2008, vol. 52, no. 3, p. 400–405. DOI: 10.1016/j.sse.2007.10.027

Keywords: RRAM, memristor modeling, reset voltage (Vrst) determination, variability.

O. Bass, A. Fish, D. Naveh [references] [full-text] [DOI: 10.13164/re.2015.0425] [Download Citations]
A Memristor as Multi-Bit Memory: Feasibility Analysis

The use of emerging memristor materials for advanced electrical devices such as multi-valued logic is expected to outperform today's binary logic digital technologies. We show here an example for such non-binary device with the design of a multi-bit memory. While conventional memory cells can store only 1 bit, memristors-based multi-bit cells can store more information within single device thus increasing the information storage density. Such devices can potentially utilize the non-linear resistance of memristor materials for efficient information storage. We analyze the performance of such memory devices based on their expected variations in order to determine the viability of memristor-based multi-bit memory. A design of read/write scheme and a simple model for this cell, lay grounds for full integration of memristor multi-bit memory cell.

  1. BERNSTEIN, K., CAVIN, R. K., POROD, W., SEABAUGH, A., WELSER, J. Device and architecture outlook for beyond CMOS switches. Proceedings of the IEEE, Dec. 2010, vol. 98, no. 12, p. 2169–2184. DOI: 10.1109/JPROC.2010.2066530
  2. STRUKOV, D. B., STEWART, D. R., BORGHETTI, J., LI, X., PICKETT, M., RIBEIRO, G. M., ROBINETT, W., SNIDER, G., STRACHAN, J. P., WU, W., XIA, Q., YANG, J. J., WILLIAMS, R. S. Hybrid CMOS/memristor circuits. In Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS). 2010, p. 1967–1970. DOI: 10.1109/ISCAS.2010.5537020
  3. CHUA, L. O. Memristor – the missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. 18, no. 5, p. 507–519. DOI: 10.1109/TCT.1971.1083337
  4. CHUA, L. O., KANG, S. M. Memristive devices and systems. Proceedings of the IEEE, Feb. 1976, vol. 64, no. 2, p. 209–223. DOI: 10.1109/PROC.1976.10092
  5. PICKETT, M. D., STRUKOV, D. B., BORGHETTI, J. L., YANG, J. J., SNIDER, G. S., STEWART, D. R., WILLIAMS, R. S. Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics, Oct. 2009, vol. 106, no. 7, p. 074508–1 to 074508–6. DOI: 10.1063/1.3236506
  6. KVATINSKY, S., FRIEDMAN, E. G., KOLODNY, A., WEISER, U. C. TEAM: ThrEshold Adaptive Memristor model. IEEE Transactions on Circuits and Systems I: Regular Papers, Jan. 2013, vol. 60, no. 1, p. 211–221. DOI: 10.1109/TCSI.2012.2215714
  7. LINN, E., ROSEZIN, R., KUGELER, C., WASER R. Complementary resistive switches for passive nanocrossbar memories. Nature Materials. 2010, vol. 9, no. 5, p. 403–406. DOI: 10.1038/nmat2748
  8. AKINAGA, H., SHIMA, H. Resistive Random Access Memory (ReRAM) based on metal oxides. Proceedings of the IEEE, Dec 2010, vol. 98, no. 12, p. 2237–2251. DOI: 10.1109/JPROC.2010.2070830
  9. HO, Y., HUANG, G. M., LI, P. Nonvolatile memristor memory: Device characteristics and design implications. In IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers, ICCAD. 2009, p. 485–490. ISSN: 1092-3152
  10. NIU, D., CHEN, Y., XU, C., XIE, Y. Impact of process variations on emerging memristor. In 47th ACM/IEEE Design Automation Conference (DAC). 2010, p. 877–882. ISSN: 0738-100X
  11. CHAE, D., HAN, J. Flash memory devices having multi-bit memory cells therein with improved read reliability. US Patent 20110197015, 11-Aug-2011. Available at: http://www.google.tl/patents/US20110197015
  12. PARK, J. W. Integrated circuit memory devices having reconfigurable nonvolatile multi-bit memory cells therein and methods of operating same. US Patent 5862074, 19-Jan-1999. Available at: http://www.google.com.ar/patents/US5862074
  13. KIM, M., KIM, M., LEE, J. W., TIWARI, S. Multi-bit functional NOR type SONOS memories. In Device Research Conference. 2008, p. 63–64. DOI: 10.1109/DRC.2008.4800735
  14. YANG, J. Y. M., WU, Y. Multi-bit silicon nitride charge-trapping non-volatile memory cell. US Patent 6897533, 24-May-2005. Available at: http://www.google.com/patents/US6897533
  15. SUGIZAKI, T., KOBAYASHI, M., ISHIDAO, M., MINAKATA, H., YAMAGUCHI, M., TAMURA, Y., SUGIYAMA, Y., NAKANISHI, T., TANAKA, H. Novel multi-bit SONOS type flash memory using a high-k charge trapping layer. In Symposium on VLSI Technology, Digest of Technical Papers. 2003, p. 27–28. DOI: 10.1109/VLSIT.2003.1221069
  16. SOHN, J. I., CHOI, S. S., MORRIS, S. M., BENDALL, J. S., COLES, H. J., HONG, W.K., JO, G., LEE, T., WELLAND, M. E. Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor. Nano Letters, Nov. 2010, vol. 10, no. 11, p. 4316–4320. DOI: 10.1021/nl1013713
  17. WU, C. Y. Scalable multi-bit flash memory cell and its memory array. US Patent 6605840, 12-Aug-2003. Available at: http://www.google.tl/patents/US6605840
  18. YANG, X., CHEN, A. B. K., CHOI, B. J., CHEN, I. W. Demonstration and modeling of multi-bit resistance random access memory. Applied Physics Letters, Jan. 2013, vol. 102, no. 4, p. 043502-1–043502-4. DOI: 10.1063/1.4790158
  19. DURAISAMY, N., MUHAMMAD, N. M., KIM, H. C., JO, J. D., CHOI, K. H. Fabrication of TiO2 thin film memristor device using electro-hydrodynamic inkjet printing. Thin Solid Films, May 2012, vol. 520, no. 15, p. 5070–5074. DOI: 10.1016/j.tsf.2012.03.003
  20. KAVEHEI, O., CHO, K., LEE, S., KIM, S. J., AL-SARAWI, S., ABBOTT, D., ESHRAGHIAN, K. Fabrication and modeling of Ag/TiO2/ITO memristor. In IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS). 2011, p. 1–4. DOI: 10.1109/MWSCAS.2011.6026575
  21. KUMAR, A., RAWAL, Y., BAGHINI, M. S. Fabrication and characterization of the ZnO-based memristor. In International Conference on Emerging Electronics (ICEE). 2012, p. 1–3. DOI: 10.1109/ICEmElec.2012.6636244
  22. PRODROMAKIS, T., MICHELAKIS, K., TOUMAZOU, C. Fabrication and electrical characteristics of memristors with TiO2/TiO2+x active layers. In Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS). 2010, p. 1520–1522. DOI: 10.1109/ISCAS.2010.5537379
  23. VERRELLI, E., TSOUKALAS, D., NORMAND, P., KEAN, A. H., BOUKOS, N. Forming-free resistive switching memories based on titanium-oxide nanoparticles fabricated at room temperature. Applied Physics Letters, Jan. 2013, vol. 102, no. 2, p. 022909. DOI: 10.1063/1.4775760
  24. RAJACHIDAMBARAM, J. S., MURALI, S., JR, J. F. C., GOLLEDGE, S. L., HERMAN, G. S. Bipolar resistive switching in an amorphous zinc tin oxide memristive device. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, Jan. 2013 vol. 31, no. 1, p. 01A104. DOI: 10.1116/1.4767124
  25. ABDALLA, H., PICKETT, M. D. SPICE modeling of memristors. In IEEE International Symposium on Circuits and Systems (ISCAS). Rio de Janeiro (Brazil), 2011, p. 1832–1835. DOI: 10.1109/ISCAS.2011.5937942
  26. ASCOLI, A., CORINTO, F., SENGER, V., TETZLAFF R. Memristor model comparison. IEEE Circuits, 2013, vol. 13, no. 2, p. 89–105, 2013. DOI: 10.1109/MCAS.2013.2256272
  27. WALCZYK, C., WALCZYK, D., SCHROEDER, T., BERTAUD, T., SOWINSKA, M., LUKOSIUS, M., FRASCHKE, M., WOLANSKY, D., TILLACK, B., MIRANDA, E., WENGER, C. Impact of temperature on the resistive switching behavior of embedded-based RRAM devices. IEEE Transactions on Electron Devices, Sep. 2011, vol. 58, no. 9, p. 3124–3131. DOI: 10.1109/TED.2011.2160265
  28. HA, S. D., RAMANATHAN, S. Adaptive oxide electronics: A review. Journal of Applied Physics, Oct. 2011, vol. 110, no. 7, p. 071101-1–071101-20. DOI: 10.1063/1.3640806
  29. KESTER, W., BRYANT, J. Voltage-to-frequency converters. MT-028 Tutorial, 2009. Available at: http://www. analog.com/media/cn/training-seminars/tutorials/MT-028.pdf
  30. TANIGUCHI, K., SAKAI, T. A new voltage to frequency converter. IEEE Transactions on Computers, Oct. 1975, vol. 24, no. 10, p. 1035–1036. DOI: 10.1109/T-C.1975.224122
  31. SHOR, J., LURIA, K., ZILBERMAN, D. Miniaturized BJT-based thermal sensor for microprocessors in 32- and 22-nm technologies. IEEE Journal on Solid-State Circuits, Nov. 2013, vol. 48, no. 11, p. 2860–2867. DOI: 10.1109/JSSC.2013.2280039
  32. FORNBERG, B. Generation of finite difference formulas on arbitrarily spaced grids. Mathematics Computation. 1988, vol. 51, p. 699-706. DOI: 10.1090/S0025-5718-1988-0935077-0
  33. NAVEH, D., KRONIK, L., TIAGO, M. L., CHELIKOWSKY, J. R. Real-space pseudopotential method for spin-orbit coupling within density functional theory. Physical Review B. October 2007, vol. 76, p. 153407. DOI: 10.1103/PhysRevB.76.153407

Keywords: Memristor, multi-bit memory, noise margin

S.S. Ali, D. Castanheira, A. Silva, A. Gameiro [references] [full-text] [DOI: 10.13164/re.2015.0431] [Download Citations]
Transmission Cooperative Strategies for MIMO-OFDM Heterogeneous Networks

Mobile traffic in cellular networks is increasing exponentially, mainly due to the use of data intensive services like video. One way to cope with these demands is to reduce the cell-size by deploying small-cells along the coverage area of the current macro-cell system. The deployment of small-cells significantly improves indoor coverage. Nevertheless, as additional spectrum licenses are difficult and expensive to acquire it is expected that the macro and small-cells will coexist under the same spectrum. The coexistence of the two systems results in cross-tier/inter-system interference. In this context, we design several interference alignment based techniques for the downlink of heterogeneous networks, in order to cancel the interference generated from macro-cell at small-cell user terminals. More specifically, in this contribution we design interference alignment methods under different levels of inter-system coordination and the constraint that the performance of macro-cell system is kept close to the case where small-cell system is switched-off. Numerical results demonstrate that the proposed methods achieve close to the optimal performance with low overhead.

  1. LI, Q., NIU, H., PAPATHANASSIOU, A., WU, G. 5G Network capacity- key elements and technologies. IEEE Vehicular Technology Magazine, 2014, vol. 9, no. 1, p. 71–78. DOI: 10.1109/MVT.2013.2295070
  2. DAMNJANOVIC, A. A survey on 3GPP heterogeneous networks. IEEE Wireless Communication Magazine, 2011, vol. 18, no. 3, p. 10–21. DOI: 10.1109/MWC.2011.5876496
  3. NAKAMURA, T., NAGATA, S., BENJEBBOUR, A., KISHIYAMA, Y., TANG HAI, SHEN XIAODONG, YANG NING, LI NAN. Trends in small cell enhancements in LTE advanced. IEEE Communication Magazine, 2013, vol. 51, no. 2, p. 98–105. DOI: 10.1109/MCOM.2013.6461192
  4. HOADLEY, J., MAVEDDAT, P. Enabling small cell deployment with HetNet. IEEE Wireless Communication Magazine, 2013, vol. 19, no. 2, p. 4–5. DOI: 10.1109/MWC.2012.6189405
  5. YONG, S. S., QUEK, T. Q. S., KOUNTOURIS, M., HYUNDONG, S. Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 2013, vol. 31, no. 5, p. 840–850. DOI: 10.1109/JSAC.2013.130503
  6. CHANDRASEKHAR, V., ANDREWS, J. 5G on the Horizon: Key challenges for the radio-access network. IEEE Vehicular Technology Magazine, 2014, vol. 8, no. 3, p. 47–53. DOI: 10.1109/MVT.2013.2269187
  7. VALENTA, V., MARSALEK, R., BAUDOIN, G., VILLEGAS, M., SUAREZ, M., ROBERT, F. Survey on spectrum utilization in Europe: measurements, analyses and observations. In Proceedings of the IEEE Cognitive Radio Oriented Wireless Networks Communications. Cannes (France), 2010, 5p.
  8. CHENG, S. M., LIEN, S. Y., CHIU, F. S, CHEN, K. C. On exploiting cognitive radio to mitigate interference in macro/femto heterogeneous networks. IEEE Wireless Communication Magazine, 2011, vol. 18, no. 3, p. 40–47. DOI: 10.1109/MWC.2011.5876499
  9. ZAHIR, T., ARSHAD, K., NAKATA, A., MOESSNER, K. Interference management in femtocells. IEEE Communications Surveys and Tutorials, 2013, vol. 15, no. 1, p. 293–311. DOI: 10.1109/SURV.2012.020212.00101
  10. SAQUIB, N., HOSSAIN, E., LONG BAO LE, DONG IN KIM. Interference management in OFDMA femtocell networks: issues and approaches. IEEE Wireless Communications, 2012, vol. 19, no. 3, p. 86–95. DOI: 10.1109/MWC.2012.6231163
  11. SRINIVASA, S., JAFAR, S. A. Cognitive radios for dynamic spectrum access - The throughput potential of cognitive radio: A theoretical perspective. IEEE Communication Magazine, 2007, vol. 45, no. 5, p. 73–79. DOI: 10.1109/MCOM.2007.358852
  12. LU LU, XINGWEI ZHOU, UZOMA ONUNKWO, GEOFFREY YE-LI. Ten years of research in spectrum sensing and sharing in cognitive radio. EURASIP Journal on Wireless Communications and Networking, 2012, vol. 28. DOI: 10.1186/1687-1499-2012-28
  13. MUSHTAQ, M. T., KHAN, I., KHAN, M. S., KOUDELKA, O. Signal detection for QPSK based cognitive radio systems using support vector machines. Radioengineering, April 2015, vol. 24, no. 1, p. 192–198. DOI: 10.13164/re.2015.0192
  14. GOLDSMITH, A., JAFAR, S., MARIC, I., SRINIVASA, S. Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. In Proceedings of the IEEE, 2009, vol. 97, no. 5, p. 894–914. DOI: 10.1109/JPROC.2009.2015717
  15. BHARUCHA, Z., HAAS, H., AUER, G., COSOVIC, I. Femto cell resource partitioning. In Proceedings of the IEEE GLOBECOM Workshops. Honolulu (USA), 2009, 6 p. DOI: 10.1109/GLOCOMW.2009.5360723
  16. GORA, J., PEDERSEN, K. I., SZUFARSKA, A., STRZYZ, S. Cell-specific uplink power control for heterogeneous networks in LTE. In Proceedings of the IEEE, Vehicular Technology Conference Fall (VTC). Ottawa (Canada), 2010, 5 p. DOI: 10.1109/VETECF.2010.5594439
  17. YUANYE, W., PEDERSEN, K. I. Performance analysis of enhanced inter-cell interference coordination in LTE-advanced heterogeneous networks. In Proceedings of the IEEE Vehicular Technology Conference Spring (VTC). Yokohama (Japan), 2012, 5 p. DOI: 10.1109/VETECS.2012.6240233
  18. MATINMIKKO, M., MUSTONEN, M., HOYHTYA, M., RAUMA, T., SARVANKO, H., MAMMELA, A. Distributed and directional spectrum occupancy measurements in the 2.4 GHz ISM band. In Proceedings of the IEEE 7th International Symposium on Wireless Communication Systems (ISWCS). York (UK), 2010, p. 676–980. DOI: 10.1109/ISWCS.2010.5624366
  19. ATTAR, A., KRISHAMURTHY, V., GHAREHSHIRAN, O. N. Interference management using cognitive base-stations for UMTS LTE. IEEE Communication Magazine, 2011, vol. 49, no. 8, p. 152 to 159. DOI: 10.1109/MCOM.2011.5978429
  20. YAACOUB, E., DAWY, Z. Enhancing the performance of OFDMA underlay cognitive radio networks via secondary pattern nulling and primary beam steering. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC). Cancun, Quintana Roo (Mexico), 2011, p. 1476–1481. DOI: 10.1109/WCNC.2011.5779348
  21. CADAMBE, V., JAFAR, S. Interference alignment and degrees of freedom of the k-user interference channel. IEEE Transactions on Information Theory, 2009, vol. 54, no. 8, p. 3425–3441. DOI: 10.1109/TIT.2009.2035244
  22. SUH, C., HO, M., TSE, D. Downlink interference alignment. IEEE Transactions on Communications, 2011, vol. 59, no. 9, p. 2616 to 2626. DOI: 10.1109/TCOMM.2011.070511.100313
  23. SHIN, W., LEE, N., NOH, W., CHOI, H-HO., CLERCKX, B., SHIN, C., JANG, K. Hierarchical interference alignment for heterogeneous networks with multiple antennas. In Proceedings of the IEEE International Communications Workshops (ICC). Kyoto (Japan), 2011, 6 p. DOI: 10.1109/iccw.2011.5963547
  24. MASO, M., CARDOSO, L. S., DEBBAH, M., VANGELISTA, L. Cognitive interference alignment for OFDM two-tired networks. In Proceedings of the IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Cesme (Turkey), 2012, p. 244–248. DOI: 10.1109/SPAWC.2012.6292902
  25. GULER, B., YENER, A. Selective interference alignment for MIMO cognitive femtocell networks. IEEE Journal on Selected Areas in Communications, 2014, vol. 32, no. 3, p. 439–450. DOI: 10.1109/JSAC.2014.140306
  26. SHARMA, S., CHATZINOTAS, S., OTTERSTEN, B. Interference alignment for spectral coexistence of heterogeneous networks. EURASIP Journal on Wireless Communications and Networking, 2013. DOI: 10.1186/1687-1499-2013-46.
  27. CASTANHEIRA, D., GAMEIRO, A., SILVA, A. One-bit nullspace cognitive interference alignment for heterogeneous networks. In Proceedings of the IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications. London (UK), 2013, p. 1431–1435. DOI: 10.1109/PIMRC.2013.6666366.
  28. ALI, S. S., CASTANHEIRA, D., SILVA, A., GAMEIRO, A. Downlink cognitive interference alignment for heterogeneous networks. In Proceedings of the IEEE 21st International. Conference on Telecommunications (ICT). Lisbon (Portugal), 2014, p. 236–240. DOI: 10.1109/ICT.2014.6845115
  29. ALAMOUTI, S. M. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 1989, vol. 16, no. 8, p. 1451–1458. DOI: 10.1109/49.730453
  30. BASTOS, J., GAMEIRO, A. Performance of extended space-time coding techniques for MIMO MC-CDMA systems. In Proceedings of the IEEE First European Conference on Antennas and Propagation. Nice (France), 2006, 5 p. DOI: 10.1109/EUCAP.2006.4584673

Keywords: Interference alignment, space-frequency block codes, heterogeneous networks, small-cells, MIMO-OFDM, downlink.

V. Prajzler, P. Nekvindova, P. Hyps, V. Jerabek [references] [full-text] [DOI: 10.13164/re.2015.0442] [Download Citations]
Properties of the Optical Planar Polymer Waveguides Deposited on Printed Circuit Boards

This paper reports on a technology for realization of an optical planar waveguide layer on duroid substrate and on FR4 fiber reinforced board material printed circuit boards. Waveguide core material was EpoCore polymer and for claddings we used EpoClad polymer. Design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 633 nm, 964 nm, 1310 nm and 1550 nm wavelength. Waveguiding properties were measured by dark mode spectroscopy while propagation optical loss measurement was done by the fiber probe technique at wavelegnth 633 nm (He-Ne laser). The samples had optical losses lower than 0.5 dB/cm. The best sample has optical losses around 0.25 dB/cm.

  1. BAMIEDAKIS., N., HASHIM, A., PENTY, R. V., WHITE, I. H. A 40 Gb/s optical bus for optical backplane interconnections. IEEE Journal of Quantum Electronics, 2009, vol. 32, no. 8, p. 1526–1537. DOI: 10.1109/JLT.2014.2306983
  2. SWATOWSKI, B. W., AMB, C. M., BREED, S. K., DESHAZER, D. J., WEIDNER, W. K., DANGEL, R.F., MEIER, N., OFFREIN, B. J. Flexible, stable, and easily processable optical silicones for low loss polymer waveguides. In Proceedings of SPIE, vol. 8622, 2013. DOI: 10.1117/12.2007419
  3. CHOI, C., LIN, L., LIU, Y., CHOI, J., WANG, L., HAAS, D., MAGERA, J., CHEN, R.T. Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects. Journal of Lightwave Technology, 2004, vol. 22, no. 9, p. 2168–2176. DOI: 10.1109/JLT.2004.833815
  4. BOSMAN, E., Van STEENBERGE, G., Van HOE, B., Van MISSINNE, J., Van FETEREN, J., Van DAELE, P. Highly reliable flexible active optical links. IEEE Photonics Technology Letters, 2010, vol. 22, no. 5, p. 287–289. DOI: 10.1109/LPT.2009.2038797
  5. DANGEL, R., HORST, F., JUBIN, D., MEIER, N., WEISS, J., OFFREIN, B. J., SWATOWSKI, B. W., AMB, C. M., De SHAZER, D. J., WEIDNER, W. K. Development of versatile polymer waveguide flex technology for use in optical interconnects. Journal of Lightwave Technology, 2013, vol. 31, no. 24, p. 3915–3926. DOI: 10.1109/JLT.2013.2282499
  6. ISHIDA, Y., HOSOKAWA, H. Optical link utilizing polymer optical waveguides application in multimedia device. In Proceedings SPIE,. Photonics in Multimedia II, 2008, vol. 7001, p. 70010J-1 – 70010J-9. DOI: 10.1117/12.780166
  7. PRAJZLER, V., KLAPUCH, J., LYUTAKOV, O., HUTTEL, I., SPIRKOVA, J., NEKVINDOVA, P., JERABEK, V. Design, fabrication and properties of rib poly (methylmethacrylimide) optical waveguides. Radioengineering, 2011, vol. 20, p. 479–485.
  8. Rogers corporation: Advanced Circuit Materials Division Data Sheet RT/duroid ®5870/5880 Laminates. [Online] Available at: www.rogerscorp.com
  9. PCB Fabrication Material. [Online] Available at: http://www.pcbfabrication.com/
  10. Micro Resist Technology GmbH, datasheet. [Online] Available at: http://www.microresist.de
  11. POLLOCK, C., LIPSON, M. Integrated Photonics. Kluwer Academic Publishers, 2003. ISBN: 1402076355
  12. PRAJZLER, V., NEKVINDOVA, P., HYPS, P., LYUTAKOV, O., JERABEK V. Flexible polymer planar optical waveguides, Radioengineering, 2014, vol. 23, no. 3, p. 776–782.
  13. web Metricon Corporation Available at: www.metricon.com
  14. ULRICH, R., TORGE, R. Measurement of thin film parameters with a prism coupler. Applied Optics, 1973, vol. 12, no. 12, p. 2901–2908. DOI: 10.1364/AO.12.002901
  15. PRAJZLER, V., VARGA, M., NEKVINDOVA, P., REMES, Z., KROMKA, A. Design and investigation of properties of nanocrystalline diamond optical planar waveguides. Optics Express, 2013, vol. 21, no. 7, p. 8417–8425. DOI: 10.1364/OE.21.008417
  16. NOURSHARGH, N., STARR, E. M., FOX, N. I., JONES, S. G. Simple technique for measuring attenuation of integrated optical waveguides. Electronics Letters, 1985, vol. 21, no. 18, p. 818–820. DOI: 10.1049/el:19850577

Keywords: Optical polymer waveguide, planar waveguides, printed circuit boards

X. L. Liu, X. L. Yang, F. L. Kong [references] [full-text] [DOI: 10.13164/re.2015.0449] [Download Citations]
A Frequency-Reconfigurable Monopole Antenna with Switchable Stubbed Ground Structure

A frequency-reconfigurable coplanar-waveguide (CPW) fed monopole antenna using switchable stubbed ground structure is presented. Four PIN diodes are employed in the stubs stretching from the ground to make the antenna reconfigurable in three operating modes: a single-band mode (2.4-2.9 GHz), a dual-band mode (2.4-2.9 GHz/5.09-5.47 GHz) and a triple-band mode (3.7-4.26 GHz/5.3-6.3 GHz/8.0-8.8 GHz). The monopole antenna is resonating at 2.4 GHz, while the stubs produce other operating frequency bands covering a number of wireless communication systems, including WLAN, WiMAX, C-band, and ITU. Furthermore, an optimized biasing network has been integrated into this antenna, which has little influence on the performance of the antenna. This paper presents, compares and discusses the simulated and measured results.

  1. TAWK, Y., CONSTANTINE, J., AVERY, K., CHRISTODOULOU, C. G. Implementation of a cognitive radio front-end using rotatable controlled reconfigurable antennas. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 5, p. 1773–1778. DOI: 10.1109/TAP.2011.212223
  2. CAI, Y., YANG, J G., BIRD, T S. A frequency reconfigurable printed Yagi-Uda dipole antenna for cognitive radio applications. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 6, p. 2905–2912. DOI: 10.1109/TAP.2012.219465
  3. RAYNO, J. T., SHARMA, S. Wideband frequency-reconfigurable spirograph planar monopole antenna (SPMA) operating in the UHF band. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 1537–1540. DOI: 10.1109/LAWP.2012.2234871
  4. QIN, P., WEILY, A., GUO, Y. J., BIRD, T., LIANG, C. H. A frequency reconfigurable quasi-Yagi folded dipole antenna. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 8, p. 2742–2747. DOI: 10.1109/TAP.2010.2050455
  5. YANG, F., RAHMAT-SAMII, Y. Patch antennas with switchable slots (PASS) in wireless communications: Concepts, designs, and applications. IEEE Antennas and Propagation Magazine, 2005, vol. 47, no. 2, p. 13-29. DOI: 10.1109/MAP.2005.1487774
  6. YANG, S., ZHANG, C., PAN, H. K., FATHY, A. E., NAIR, V. K. Frequency reconfigurable antennas for multiradio wireless platforms. IEEE Microwave Magazine, Feb 2009, vol. 10, no. 1, p. 66–83. DOI: 10.1109/MMM.2008.930677
  7. BOUDAGHI, H., AZARMANESH, M., MEHRANPOUR, M. A frequency-reconfigurable monopole antenna using switchable slotted ground structure. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 655–658. DOI: 10.1109/LAWP.2012.2204030
  8. MAJID, H., RAHIM, M., HAMID, M., ISMAIL, F. M. A compact frequency-reconfigurable narrowband microstrip slot antenna. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 616–619. DOI: 10.1109/LAWP.2012.2202869
  9. TARIQ, A., GHAFOURI-SHIRAZ, H. Frequency-reconfigurable monopole antennas. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 1, p. 44–50. DOI: 10.1109/TAP.2011.2167929
  10. CHEN, G., YANG, X., WANG, Y. Dual-band frequencyreconfigurable folded slot antenna for wireless communications. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 1386–1389. DOI: 10.1109/LAWP.2012.2227293
  11. MIRZAMOHAMMADI, F., NOURINIA, J., GHOBADI, C. A novel dual-wideband monopole-like microstrip antenna with controllable frequency response. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 289–292. DOI: 10.1109/LAWP.2012.2190130
  12. BEHDAD, N., SARABANDI, K. Dual-band reconfigurable antenna with a very wide tunability range. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 2, p. 409–416. DOI: 10.1109/TAP.2005.863412
  13. JEONG, G.-T., KIM, W.-S., KWAK, K.-S. Dual-band Wi-Fi antenna with a ground stub for bandwidth enhancement. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 1036–1039. DOI: 10.1109/LAWP.2012.2214755

Keywords: Reconfigurable antenna, stubbed ground structure, bias network

A. Chatterjee, S. K. Parui [references] [full-text] [DOI: 10.13164/re.2015.0455] [Download Citations]
Gain Enhancement of a Wide Slot Antenna Using a Second-Order Bandpass Frequency Selective Surface

Gain enhancement of a wide slot antenna over a wide frequency band using a low profile, second order bandpass frequency selective surface (FSS) as a superstrate is presented in this paper. The proposed multilayered FSS with non-resonant unit cells in each layer allows in-phase transmission of waves radiated from the antenna over a 3dB bandwidth of about 50%. The design allows an enhancement of upto 4dBi in the antenna gain over the entire frequency band (5-8GHz) of operation. The FSS provides a very low insertion loss between the two transmission poles along with a linearly decreasing transmission phase over the band. The composite structure shows an impedance bandwidth (-10dB) of 65% with an average gain between 6-8dBi over the frequency band with a peak gain of 9dBi. Measurement results of the fabricated prototype matches well with the predicted values.

  1. MANDAL, T., DAS, S. A coplanar waveguide fed hexagonal shape ultra wide band antenna with WiMAX and WLAN band rejection. Radioengineering, 2014, vol. 23, no. 4, p. 1077–1085.
  2. SHARMA, S., SHAFAI, L., JACOB, N. Investigation of wideband microstrip slot antenna. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 3, p. 865–872. DOI: 10.1109/TAP.2004.825191
  3. SUNG, Y. A printed wide-slot antenna with a modified L-shaped microstrip line for wideband applications. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 10, p. 3917–3922. DOI: 10.1109/TAP.2011.2163748
  4. BAYDERKHANI, R., HASSANI, H. Wideband and low sidelobe slot antenna fed by series-fed printed array. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 12, p. 3898–3904. DOI: 10.1109/TAP.2010.2078437
  5. CHEN, H-Y., TAO. Y. Performance improvement of a U-slot patch antenna using a dual-band frequency selective surface with modified Jerusalem Cross elements. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 9, p. 3482–3486. DOI: 10.1109/TAP.2011.2161440
  6. FOROOZESH, A., SHAFAI, L. Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 2, p. 258–270. DOI: 10.1109/TAP.2009.2037702
  7. PIRHADI, A., BAHRAMI, H., NASRI, J. Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 4, p. 2101–2106. DOI: 10.1109/TAP.2012.2186230
  8. ATTIA, H., YOUSEFI, L., RAMAHI, O. High-gain patch antennas loaded with high characteristic impedance superstrates. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 858–861. DOI: 10.1109/LAWP.2011.2165196
  9. HOSSEINI, A., CAPOLINO, F., FLAVIIS, F. D. Gain enhancement of a V-band antenna using a Fabry-Perot cavity with a selfsustained all-metal cap with FSS. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 3, p. 909–921. DOI: 10.1109/TAP.2014.2386358
  10. LEE, D. H., LEE, Y. J., YEO, J., MITTRA, R., PARK, W. S. Design of novel thin frequency selective surface superstrates for dual-band directivity enhancement. IET Microwaves Antennas and Propagation, 2007, vol. 1, no. 1, p. 248–254. DOI: 10.1049/ietmap:20050318
  11. VAIDYA, A. R., GUPTA, R. K., MISHRA, S. K., MUKHERJEE, J. Efficient, high gain with low side lobe level antenna structures using parasitic patches on multilayer superstrate. Microwave and Optical Technology Letters, 2012, vol. 54, no. 6, p. 1488–1493. DOI: 10.1002/mop.26818
  12. JAN, J-Y., SU, J-W. Bandwidth enhancement of a printed wideslot antenna with a rotated slot. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 6, p. 2111–2114. DOI: 0.1109/TAP.2005.848518
  13. AL-JOUMAYLY, M., BEHDAD, N. A new technique for design of low-profile, second-order, bandpass frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 2, p. 452–459. DOI: 10.1109/TAP.2008.2011382
  14. ZVEREV, A. I. Handbook of Filter Synthesis. New York: Wiley, 1967.
  15. BAYATPUR, F. Metamaterial Inspired Frequency Selective Surfaces. A dissertation submitted in the partial fulfillment of the requirements for the degree of Doctor of Philosophy, 2009, University of Michigan.

Keywords: Wide slot, Frequency Selective Surface, gain, bandpass, superstrate

J. W. Zang, X. T. Wang [references] [full-text] [DOI: 10.13164/re.2015.0462] [Download Citations]
A Compact Tri-band Printed Antenna for MIMO Applications

In this paper, a compact tri-band printed multi-input multi-output (MIMO) antenna with high isolation is presented to operate within WLAN and WiMAX frequency bands. By adopting a rectangular open-ended slot combined with a rectangular strip with an inverted L-shaped open-ended slot, three operating frequency bands can be obtained. The proposed compact MIMO antenna occupies an overall size of 19×33 mm2. Good port-to-port isolation is obtained. The simulated and measured results show that the presented antenna is suitable for multiband MIMO applications.

  1. MEHDIPOUR, A., SEBAK, A., TRUEMAN, C. W., DENIDNI, T. A. Compact multiband planar antenna for 2.4/3.5/5.8-GHz wireless applications. IEEE Antenna and Wireless Propagation Letters, 2012, vol. 11, p. 144–147. DOI: 10.1109/LAWP.2012.2185915
  2. CHANG, T.-H., KIANG, J.-F. Compact multi-band H-shaped slot antenna. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 8, p. 4345–4349. DOI: 10.1109/TAP.2013.2262666
  3. WEN, R. Compact planar triple-band monopole antenna based on a single-loop resonator. Electronics Letters, 2013, vol. 49, no. 15, p. 916–918. DOI: 10.1049/el.2013.1915
  4. JAW, J. L., CHEN, F.-S., CHEN, D.-F. Compact dual-band CPWfed slotted patch antenna for 2.4/5 GHz WLAN operation. Journal of Electromagnetic Waves and Applications, 2009, vol. 23, p. 1947 to 1955. DOI: 10.1163/156939309789932584
  5. BEIGI, P., NOURINIA, J., ZEHFOROOSH, Y., MOHAMMADI, B. A compact novel CPW-fed antenna with square spiral-patch for multiband applications. Microwave and Optical Technology Letters, 2015, vol. 57, no. 1, p. 111–115. DOI: 10.1002/mop.28783
  6. SU, C. M., CHEN, H. T., WONG, K. L. Printed dual-band dipole antenna with U-slotted arms for 2.4/5.2 GHz WLAN operation. Electronics Letters, 2002, vol. 38, no. 22, p.1308–1309. DOI: 10.1049/el.20020919
  7. ABDALLA, M. A., IBRAHIM, A. A. Compact and closely spaced metamaterial MIMO antenna with high isolation for wireless applications. IEEE Antenna and Wireless Propagation Letters, 2013, vol. 12, p. 1452–1455. DOI: 10.1109/LAWP.2013.2288338
  8. CUI, S., LIU, Y., JIANG, W., GONG, S. X. Compact dual-band monopole antennas with high port isolation. Electronics Letters, 2011, vol. 47, no. 10, p. 579–580. DOI: 10.1049/el.2010.3603
  9. CHIU, C. Y., YAN, J. B., MURCH, R. D. Compact three-port orthogonally polarized MIMO antennas. IEEE Antenna and Wireless Propagation Letters, 2007, vol. 6, p. 619–622. DOI: 10.1109/LAWP.2007.913272
  10. LIU, L., CHEUNG, S. W., YUK, T. I. Compact MIMO antenna for portable devices in UWB applications. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 8, p. 4257–4264. DOI: 10.1109/TAP.2013.2263277
  11. KARIMIAN, R., ORAIZI, H., FAKHTE, S., FARAHANI, M. Novel F-shaped quad-band printed slot antenna for WLAN and WiMAX MIMO systems. IEEE Antenna and Wireless Propagation Letters, 2013, vol. 12, p. 405–408. DOI: 10.1109/LAWP.2013.2252140
  12. ALI NEZHAD, S. M., HASSANI, H. R. A novel tri-band Eshaped printed monopole antenna for MIMO application. IEEE Antenna and Wireless Propagation Letters, 2010, vol. 9, p. 576 to 579. DOI: 10.1109/LAWP.2010.2051131
  13. LI, Y., ZHANG, Z., CHEN, W., FENG, Z., ISKANDER, M. F. A dual-polarization slot antenna using a compact CPW feeding structure. IEEE Antenna and Wireless Propagation Letters, 2010, vol. 9, p. 191–194. DOI: 10.1109/LAWP.2010.2044865

Keywords: Compact, MIMO antenna, printed antenna, tri-band antenna.

S. Ejaz, FengFan Yang, HongJun Xu [references] [full-text] [DOI: 10.13164/re.2015.0470] [Download Citations]
Labeling Diversity for 2x2 WLAN Coded-Cooperative Networks

Labelling diversity is an efficient technique recently proposed in the literature and aims to improve the bit error rate(BER) performance of wireless local area network (WLAN) systems with two transmit and two receive antennas without increasing the transmit power and bandwidth requirements. In this paper, we employ labelling diversity with different space-time channel codes such as convolutional, turbo and low density parity check (LDPC) for both point-to-point and coded-cooperative communication scenarios. Joint iterative decoding schemes for distributed turbo and LDPC codes are also presented. BER performance bounds at an error floor (EF) region are derived and verified with the help of numerical simulations for both cooperative and non-cooperative schemes. Numerical simulations show that the coded-cooperative schemes with labelling diversity achieve better BER performances and use of labelling diversity at the source node significantly lowers relay outage probability and hence the overall BER performance of the coded-cooperative scheme is improved manifolds.

  1. VAN DER MEULEN, E. C. Three-terminal communication channels. Advances in Applied Probability, 1971, vol. 3, no. 1, p. 120– 154.
  2. LANEMAN, J. N., TSE, D. N. C., WORNELL, G. W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 2004, vol. 50, no. 12, p. 3062–3080. DOI: 10.1109/TIT.2004.838089
  3. SENDONARIS, A., ERKIP, E., AAZHANG, B., User cooperation diversity. Part I. System description. IEEE Transactions on Communications, 2003, vol. 51, no. 11, p. 1927–1938. DOI: 10.1109/TCOMM.2003.818096
  4. ALAMOUTI, S. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 1998, vol. 16, no. 8, p. 1451-1458. DOI: 10.1109/49.730453
  5. HUNTER, T. E., NOSRATINIA, A. Cooperation diversity through coding. In Proceedings of IEEE International Symposium on Information Theory. Lausanne (Switzerland), 2002, p. 220. DOI: 10.1109/ISIT.2002.1023492
  6. HUNTER, T. E., NOSRATINIA, A. Diversity through coded cooperation. IEEE Transactions on Wireless Communications, 2006, vol. 5, no. 2, p. 283–289. DOI: 10.1109/TWC.2006.1611050
  7. ZHAO, B., VALENTI, M. C. Distributed turbo coded diversity for relay channel. Electronics Letters, 2003, vol. 39, no. 10, p. 786–787. DOI: 10.1049/el:20030526
  8. VALENTI, M. C., ZHAO, B. Distributed turbo codes: towards the capacity of the relay channel. In IEEE 58th Vehicular Technology Conference (VTC 2003-Fall). Orlando (FL, USA), 2003, vol. 1, p. 322–326. DOI: 10.1109/VETECF.2003.1285032
  9. EJAZ, S., YANG, F.-F. Turbo codes with modified code matched interleaver for coded-cooperation in half-duplex wireless relay networks. Frequenz, 2015, vol. 69, no. 3-4, p. 171–184. DOI: 10.1515/freq-2014-0072
  10. CHAKRABARTI, A., DE BAYNAST, A., SABHARWAL, A., AAZHANG, B. Low density parity check codes for the relay channel. IEEE Journal on Selected Areas in Communications, 2007, vol. 25, no. 2, p. 280–291. DOI: 10.1109/JSAC.2007.070205
  11. HU, J., DUMAN, T. M. Low density parity check codes over wireless relay channels. IEEE Transactions on Wireless Communications, 2007, vol. 6, no. 9, p. 3384–3394. DOI: 10.1109/TWC.2007.06083
  12. BRAVO-SANTOS, A. Polar codes for the Rayleigh fading channel. IEEE Communications Letters, 2013, vol. 17, no. 12, p. 2352–2355. DOI: 10.1109/LCOMM.2013.111113.132103
  13. ZHAN, Q., DU, M., WANG, Y., ZHOU, F. Half-duplex relay systems based on polar codes. IET Communications, 2014, vol. 8, no. 4, p. 433–440. DOI: 10.1049/iet-com.2013.0521
  14. GENC, F., RESAT, M. A., SAVASCIHABES, A., ERTUG, O. On the comparative performance analysis of turbo-coded non-ideal sigle-carrier and multi-carrier waveforms over wideband VoglerHoffmeyer HF channels. Radioengineering, 2014, vol. 23, no, 3, p. 872–879.
  15. CAIRE, G., TARICCO, G., BIGLIERI, E. Bit-interleaved coded modulation. IEEE Transactions on Information Theory, 1998, vol. 44, no. 3, p. 927–946. DOI: 10.1109/18.669123
  16. HUANG Y., RITCEY J. A. Optimal constellation labeling for iteratively decoded bit-interleaved space-time coded modulation. IEEE Transactions on Information Theory, 2005, vol. 51, no. 5, p. 1865– 1871. DOI: 10.1109/TIT.2005.846409
  17. CLEVORN, T., GODTMANN, S., VARY, P. Optimized mappings for iteratively decoded BICM on Rayleigh channels with interleaving. In IEEE 63rd Vehicular Technology Conference (VTC 2006-Spring). Melbourne (Australia), 2006, p. 2083–2087. DOI: 10.1109/VETECS.2006.1683223
  18. KRASICKI, M. Improved labelling diversity for iteratively-decoded multi-antenna systems. In IEEE 7th International Wireless Communications and Mobile Computing Conference (IWCMC). Istanbul (Turkey), 2011, p. 359–364. DOI: 10.1109/IWCMC.2011.5982560
  19. RUMANEK, J., SEBESTA, J. New channel coding methods for satellite communication. Radioengineering, 2010, vol. 19, no. 1, p. 155–161.
  20. KRASICKI, M. Labeling diversity for MIMO systems. 11th European Wireless Conference-Sustainable Wireless Technologies (European Wireless). Vienna (Austria), 2011, p. 1–7.
  21. KRASICKI, M., Essence of 16-QAM labelling diversity. Electronics Letters, 2013, vol. 49, no. 8, p. 567–569. DOI: 10.1049/el.2012.4275
  22. KRASICKI, M. Algorithm for generating all optimal 16-QAM BI-STCM-ID labelings. Wireless Personal Communications, 2015, p. 1–22. DOI: 10.1007/s11277-015-2431-1
  23. KRASICKI, M., SZULAKIEWICZ, P. Boosted space-time diversity scheme for wireless communications. Electronics Letters, 2009, vol. 45, no. 16, p. 843–845. DOI: 10.1049/el.2009.1052
  24. ABRAMOVICI, I., SHAMAI, S. On turbo encoded BICM. Annales Des Telecommunications, 1999, vol. 54, no. 3–4, p. 225–234. DOI: 10.1007/BF02998584.
  25. BURR, A., HIRST, S. FER bounds and estimates for bit-interleaved space-time turbo-codes. In 4 th International Symposium on Turbo Codes &Related Topics; 6th International ITG-Conference on Source and Channel Coding (TURBOCODING). Munich (Germany), 2006, p. 1-6.
  26. TAROKH, V., SESHADRI, N., CALDERBANK, A. R. Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 1998, vol. 44, no. 2, p. 744–765. DOI: 10.1109/18.661517
  27. WANG, Y., XIE, L., CHEN, H., WANG, K. Improved decoding algorithm of bit-interleaved coded modulation for LDPC code. IEEE Transactions on Broadcasting, 2010, vol. 56, no. 1, p. 103–109. DOI: 10.1109/TBC.2009.2036950
  28. ZHANG, R., BIE, Z. Optimality analysis of bit-interleaved LDPC coded modulation schemes. In Global Mobile Congress (GMC). Shanghai (China), 2010, p. 1–5. DOI: 10.1109/GMC.2010.5634560
  29. XIE, Q., PENG, K., SONG, J., YANG, Z. Bit-interleaved LDPC-coded modulation with iterative demapping and decoding. In IEEE 69th Vehicular Technology Conference (VTC 2009-Spring). Barcelona (Spain), 2009, p. 1–5. DOI: 10.1109/VETECS.2009.5073425
  30. LU, B., WANG, X., NARAYANAN, K. R. LDPC-based space-time coded OFDM systems over correlated fading channels: Performance analysis and receiver design. IEEE Transactions on Communications, 2002, vol. 50, no. 1, p. 74–88. DOI: 10.1109/26.975756
  31. ZHANG, S., YANG, FF., TANG, L., MAHARAJ, B. LDPC-coded cooperation with receive multi-antenna and unknown CSI in the destination. Wireless Personal Communications, 2013, vol. 72, no. 4, p. 2685–2703. DOI: 10.1007/s11277-013-1174-0
  32. RAZAGHI, P., YU, W. Bilayer low-density parity-check codes for decode-and-forward in relay channels. IEEE Transactions on Information Theory, 2007, vol. 53, no. 10, p. 3723–3739. DOI: 10.1109/TIT.2007.904983

Keywords: Coded-cooperative diversity, labelling diversity, MIMO, WLAN

Tamer H. M. Soliman, Fengfan Yang, S. Ejaz [references] [full-text] [DOI: 10.13164/re.2015.0481] [Download Citations]
Interleaving Gains for Receive Diversity Schemes of Distributed Turbo Codes in Wireless Half–Duplex Relay Channels

This paper proposes the interleaving gain in two different distributed turbo-coding schemes: Distributed Turbo Codes (DTC) and Distributed Multiple Turbo Codes (DMTC) for half-duplex relay system as an extension of our previous work on turbo coding interleaver design for direct communication channel. For these schemes with half-duplex constraint, the source node transmits its information with the parity bit sequence(s) to both the relay and the destination nodes during the first phase. The relay received the data from the source and process it by using decode and forward protocol. For the second transmission period, the decoded systematic data at relay is interleaved and re-encoded by a Recursive Systematic Convolutional (RSC) encoder and forwarded to the destination. At destination node, the signals received from the source and relay are processed by using turbo log-MAP iterative decoding for retrieving the original information bits. We demonstrate via simulations that the interleaving gain has a large effect with DTC scheme when we use only one RSC encoder at both the source and relay with best performance when using Modified Matched S-Random (MMSR) interleaver. Furthermore, by designing a Chaotic Pseudo Random Interleaver (CPRI) as an outer interleaver at the source node instead of classical interleavers, our scheme can add more secure channel conditions.

  1. PROAKIS, J. Digital Communication. 4th ed. New York: McGraw-Hill, 2001. ISBN: 0-07-232111-3.
  2. VAN DER MEULEN, E. C. Three-terminal communication channels. Advances in Applied Probability, 1971, vol. 3, no. 1, p. 120–154. DOI: 10.2307/1426331
  3. LANEMAN, J., WORNELL, G. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 2003, vol. 49, no. 10, p. 2415–2425. DOI: 10.1109/TIT.2003.817829
  4. COVER, T., El GAMAL, A. Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 1979, vol. 25, no. 5, p. 572–584. DOI: 10.1109/TIT.1979.1056084
  5. ZHAO, B., VALENTI, M. Distributed turbo coded diversity for relay channel. Electronics Letters, 2003, vol. 39, no. 10, p. 786 to 787. DOI: 10.1049/el:20030526
  6. KRAMER, G., GASTPAR, M., GUPTA, P. Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 2005, vol. 51, no. 9, p. 3037–3063. DOI: 10.1109/TIT.2005. 853304
  7. HOST-MADSEN, A., ZHANG, J. Capacity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory, 2005, vol. 51, no. 6, p. 2020–2040. DOI: 10.1109/TIT.2005. 847703
  8. SCHLEGEL, C., PEREZ, L. Trellis and Turbo Coding. 1st ed. Wiley-IEEE Press, 2003. DOI: 10.1002/0471667846.ch10
  9. VUCETIC, B., YUAN, J. Turbo Codes: Principles and Applications. 2nd ed. Springer, 2000. ISBN-10: 0792378687
  10. MERLIN, J., HAMOUDA, W., TAKAWIRA, F. Relay selection for coded cooperative networks with outdated CSI over Nakagamim fading channels. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 5, p. 2362–2373. DOI: 10.1109/TWC.2014.040214.132027
  11. ZHANG, Z., DUMAN, T. Capacity-approaching turbo coding for half-duplex relaying. IEEE Transactions on Wireless Communications, 2007, vol. 55, no. 10, p. 1895–1906. DOI: 10.1109/TCOMM.2007.906404
  12. SOLIMAN, T., YANG, F., EJAZ, S. The design of new modified block and matched S-random interleavers for turbo codes. International Journal of Modelling and Optimization, 2014, vol. 4, no. 5, p. 395–401. DOI: 10.7763/IJMO.2014.V4.407
  13. WANG, D., KOBAYASHI, H. On design of interleavers with practical size for turbo codes. In IEEE International Conference Communications ICC 2000. New Orleans (USA), vol. 2, p. 618 to 622. DOI: 10.1109/ICC.2000.853570
  14. BERROU, C., GLAVIEUX, A., THITIMAJSHIMA, P. Near Shannon limit error-correcting coding and decoding: turbo-codes. In Proceedings of International Conference on Communications ICC’93. Geneva (Switzerland), 1993, p. 1064–1070. DOI: 10.1109/ICC.1993.397441
  15. LIN, R., MARTIN, P., TAYLOR, D. Approximate Gaussian density evolution based analysis of distributed and adaptive turbo codes. IEEE Transactions on Wireless Communications, 2012, vol. 60, no. 8, p. 2156–2166. DOI: 10.1109/TCOMM. 2012.061212.110453
  16. DIVSALAR, D., POLLARA, F. Multiple turbo codes. In Military Communication Conference MILCOM. San Diego (CA, USA), 1995, p. 179–285. DOI: 10.1109/MILCOM.1995.483313
  17. ZHANG, B., CHEN, H., El-HAJJAR, M., MAUNDER, R., HANZO, L. Distributed multiple-component turbo codes for cooperative hybrid ARQ. IEEE Signal Processing Letters, 2013, vol. 20, no. 6, p. 599–602. DOI: 10.1109/LSP.2013.2259478
  18. MOUALEU, J., HAMOUDA, W., XU, H., TAKAWIRA, F. Multi-relay turbo-coded cooperative diversity networks over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 2013, vol. 62, no. 9, p. 4458–4470. DOI: 10.1109/TVT.2013.2265329
  19. ESCRIBANO, F., TARABLE, A. Interleaver design for parallel concatenated chaos-based coded modulations. IEEE Communications Letters, 2013, vol. 17, no. 5, p. 834–837. DOI: 10.1109/LCOMM.2013.031913.130102
  20. LEE, P., PEI, S., CHEN, Y. Generating chaotic stream ciphers using chaotic systems. Chinese Journal of Physics, 2003, vol. 41, no. 6, p. 559–581. Accession Number:INSPEC:8153715
  21. GOTTWALD, G., MELBOURNE, I. On the implementation of the 0-1 test for chaos. SIAM Journal on Applied Dynamical System, 2009. Accession Number: WOS:000265777800005

Keywords: Chaotic, interleaver, semi-random, turbo codes, relay channel

G. Khomami, P. Veeraraghava, F. P. Fontan [references] [full-text] [DOI: 10.13164/re.2015.0489] [Download Citations]
Node Density Estimation in VANETs Using Received Signal Power

Accurately estimating node density in Vehicular Ad hoc Networks, VANETs, is a challenging and crucial task. Various approaches exist, yet none takes advantage of physical layer parameters in a distributed fashion. This paper describes a framework that allows individual nodes to estimate the node density of their surrounding network independent of beacon messages and other infrastructure-based information. The proposal relies on three factors: 1) a discrete event simulator to estimate the average number of nodes transmitting simultaneously; 2) a realistic channel model for VANETs environment; and 3) a node density estimation technique. This work provides every vehicle on the road with two equations indicating the relation between 1) received signal strength versus simultaneously transmitting nodes, and 2) simultaneously transmitting nodes versus node density. Access to these equations enables individual nodes to estimate their real-time surrounding node density. The system is designed to work for the most complicated scenarios where nodes have no information about the topology of the network and, accordingly, the results indicate that the system is reasonably reliable and accurate. The outcome of this work has various applications and can be used for any protocol that is affected by node density.

  1. TSENG, Y., NI, S., CHEN, Y., SHEU, J.-P. The broadcast storm problem in a mobile ad hoc network. Wireless Networks, 2002, vol. 8, no. 2-3, p. 153–167.
  2. PANICHPAPIBOON, S., PATTARA-ATIKOM, W. Evaluation of a neighbor-based vehicle density estimation scheme. In 8th International Conference on ITS Telecommunications 2008, p. 294–298.
  3. JERBI, M., SENOUCI, S-M., RASHEED, T., GHAMRIDOUDANE, Y. An infrastructure-free traffic information system for vehicular networks. In IEEE 66th Vehicular Technology Conference (VTC 2007-Fall). Baltimore (MD, USA), 2007, p. 2086–2090. DOI: 10.1109/VETECF.2007.438
  4. WISCHOFF, L., EBNER, A., ROHLING, H., LOTT, M., HALFMANN, R. SOTIS-a self-organizing traffic information system. In The 57th IEEE Semiannual Vehicular Technology Conference (VTC 2003-Spring). 2003, vol. 4, p. 2442–2446. DOI: 10.1109/VETECS.2003.1208829
  5. BALON, N., GUO, J. Increasing broadcast reliability in vehicular ad-hoc networks. In Proceedings of the 3rd International Workshop on Vehicular Ad Hoc Networks (VANET). Los Angeles (CA, USA), 2006, p. 104–105. DOI: 10.1145/1161064.1161088
  6. ARTIMY, M. Local density estimation and dynamic transmissionrange assignment in vehicular ad-hoc networks. IEEE Transactions on Intelligent Transportation Systems, 2007, vol. 8, no. 3, p. 400– 412. DOI: 10.1109/TITS.2007.895290
  7. SHIRANI, R., HENDESSI, F., GULLIVER, T. A. Store-carryforward message dissemination in vehicular ad-hoc networks with local density estimation. In 2009 IEEE 70th Vehicular Technology Conference (VTC 2009-Fall). Anchorage (AK, USA), 2009, p. 1–6. DOI: 10.1109/VETECF.2009.5379108
  8. GAST, M. 802.11 Wireless Networks: The Definitive Guide. O’Reilly Media, Inc., 2005.
  9. ALEXANDER, P., HALEY, D., GRANT, A. Cooperative intelligent transport systems: 5.9-GHz field trials. Proceedings of the IEEE, 2011, vol. 99, no. 7, p. 1213–1235. DOI: 10.1109/JPROC.2011.2105230
  10. MOLISCH, A. F. Wireless Communications, vol. 15. John Wiley & Sons, 2010.
  11. GOZALVEZ, J., SEPULCRE, M., BAUZA, R., Impact of the Radio Channel Modelling on the Performance of VANET Communication Protocols. Telecommunication Systems, 2012, vol. 50, no. 3, p. 149– 167.
  12. MOLISH, A. F., TUFVESSON, F., KAREDAL, J., MECKLENBRAUKER, C. Propagation aspects of vehicle-to-vehicle communications – an overview. IEEE Radio and Wireless Symposium (RWS). San Diego (CA, USA), 2009, p. 179-182. DOI: 10.1109/RWS.2009.4957315
  13. FONTAN, F. P., ESPINEIRA, P. M. Modelling the Wireless Propagation Channel: A Simulation Approach with MATLAB, vol. 5. John Wiley & Sons, 2008.
  14. MOLISCH, A. F., TUFVESSON, F., KAREDAL, J., MECKLENBRAUKER, C. A survey on vehicle-to-vehicle propagation channels. IEEE Wireless Communications, 2009, vol. 16, no. 6, p. 12–22. DOI: 10.1109/MWC.2009.5361174
  15. ABBAS, T., SJOBERG, K., KAREDAL, J., TUFVESSON, F. A measurement based shadow fading model for vehicle-to-vehicle network simulations. Hindawi International Journal of Antennas and Propagation. Submitted. Preprint arXiv:1203.3370, 2012.
  16. LIN CHENG, HENTY, B. E., STANCIL, D. D., FAN BAI, MUDALIGE, P. Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 ghz dedicated short range communication (DSRC) frequency band. IEEE Journal on Selected Areas in Communications, 2007, vol. 25, no. 8, p. 1501–1516. DOI: 10.1109/JSAC.2007.071002.

Keywords: VANETs, node density, broadcast storm problem, safety messages, channel model, RSS

A. G. Markoc, G. Sisul [references] [full-text] [DOI: 10.13164/re.2015.0499] [Download Citations]
Self-optimizing Uplink Outer Loop Power Control for WCDMA Network

The increasing demands for high data rates, drives the efforts for more efficient usage of the finite natural radio spectrum resources. Existing wideband code division multiple access (WCDMA) uplink outer loop power control has difficulty to answer to the new load on air interface. The main reason is that the maximum allowed noise rise per single user is fixed value. In worst case uplink load can be so high that all services, including conversational service, could be blocked. In this paper investigation has been performed to present correlation of main system parameters, used by uplink outer loop power control, to uplink load. Simulation has been created and executed to present difference in current implementation of uplink outer loop power control against proposed changes. Proposed solution is self-optimizing uplink outer loop power control in a way that maximum allowed noise rise per single user would be dynamically changed based on current uplink load on cell.

  1. SONG, L., MANDAYAN, N. B., GAJIC, Z. Analysis of an up/down power control algorithm for the CDMA reverse link under fading. IEEE Journal on Selected Areas in Communications, 2001, vol. 19, no. 2, p. 277–286. DOI: 10.1109/49.914505
  2. KAUR KHANGURA, S., KAUR, K., UPPAL, R. S. Power control algorithms in wireless communication. International Journal of Computer Applications, 2010, vol. 1, no. 12, p. 82–87. DOI: 10.5120/253-410
  3. GOLDSMITH, A. Wireless Communication. Cambridge, 2005. ISBN: 0521837162, 9780521837163
  4. 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 25.401 V12.0.0 (2013-12). UTRAN Overall Description
  5. 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 25.427 V12.1.0 (2014-09). UTRAN Iub/Iur Interface User Plane Protocol for DCH Data Streams
  6. KAARANEN, H. UMTS Networks: Architecture, Mobility and Services. Wiley, 2005. ISBN: 0470011033, 9780470011034
  7. 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 25.214 V12.0.0 (2014-09). Physical Layer Procedures (FDD)
  8. CHEVALLIER, C., BRUNNER, C., GARAVAGLIA, A., MURRAY, K. P., BAKER, K. R. WCDMA (UMTS) Deployment Handbook: Planning and Optimization Aspects. Wiley, 2006. ISBN: 0470035730, 9780470035733
  9. KEJIK, P., HANUS, S. Enhanced receivers for interference cancellation in 3G systems. Radioengineering, 2009, vol. 18, no. 4, p. 477–484 DOI: 10.13164/re
  10. TOLLI, A., HOLMA, H. Simulated and measured performance of 4-branch uplink reception in WCDMA. In Proceedings of the 53rd Vehicular Technology Conference (VTC). Greece, 2001, p. 2640 to 2644. DOI: 10.1109/VETECS.2001.944079
  11. PUSNIK, T., SKOK, G., IVANDIC, I. High capacity event network planning - Poljud. In Proceedings of the 56th International Symposium ELMAR-2014. Zadar (Croatia), 2014, p. 63–67. DOI: 10.1109/ELMAR.2014.6923316
  12. HONG-NING, D., KAM-WING, N., MINGLU, L., MIN-YOU, W. An overview of using directional antennas in wireless networks. International Journal of Communication Systems, 2011, vol. 26, no. 4, p. 413–448. DOI: 10.1002/dac.1348
  13. LANER, M., SVOBODA, P., RUPP, M. Outer-loop power control in a live UMTS network: measurement, analysis and improvement. In Proceedings of the 4th International Symposium on Communications, Control and Signal Processing (ISCCSP-2010). Limassol (Cyprus), 2010, p. 1-5. DOI: 10.1109/ISCCSP.2010.5463465
  14. RANHEMA, M. UMTS Network Planning, Optimization, and Inter-Operation with GSM. Wiley, 2008. ISBN: 047082302X, 9780470823026
  15. ALAMI, F. T., AKNIN, N., EL MOUSSAOUI, A. Capacity estimation of multi-service cellular network. International Journal of Computer Science and Engineering (IJCSE), 2011, vol. 3, no. 3, p. 1363–1368. ISSN: 0975-3397.
  16. HOLMA, H., TOSKALA, A. WCDMA for UMTS: HSPA Evolution and LTE. Wiley, 2010. ISBN: 1119991900, 9781119991908
  17. 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 25.922 V7.1.0 (2007-03). Radio Resource Management Strategies
  18. 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 25.922 V12.1.0 (2014-09). Enhanced Uplink; Overall Description; Stage 2
  19. SHANMUGAM, R., PADMINI, R., NIVEDITA, S. Special Edition Using TCP/IP. Que Publishing, 2002. ISBN: 0789727099, 9780789727091
  20. KLOZAR, L., POLAK, L., KALLER, O., PROKOPEC, J. Effect of co-existence interferences on QoS of HSPA/WCDMA mobile networks. In 23rd International Conference on Radioelektronika 2013. Pardubice (Czech Republic), 2013, p. 312–315. DOI: 10.1109/RadioElek.2013.6530937
  21. TOLSTRUP, M. Indoor Radio Planning: A Practical Guide for GSM, DCS, UMTS, HSPA and LTE. Wiley, 2011. ISBN: 1119973686, 9781119973683
  22. Atoll RF planning and optimization software. Atoll 2.8.1 Measurements and Model Calibration Guide. Forsk, 2009
  23. 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 25.433 V12.2.0 (2014-09). UTRAN Iub Interface Node B Application Part (NBAP) Signaling
  24. 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 25.430 V12.0.0 (2014-09). UTRAN Iub Interface General Aspects and Principles

Keywords: WCDMA, outer loop power control, uplink received signal strength indicator (UL RSSI), maximum allowed signal to interference ratio (sirMax), transmission target error (TTE)

C. Du, H. Quan, P. Cui, W. Liang, P. Zhou, J. Dou [references] [full-text] [DOI: 10.13164/re.2015.0507] [Download Citations]
Carrier Sense Random Packet CDMA Protocol in Dual-Channel Networks

Code resource wastage is caused by the reason that many hopping frequency (FH) sequences are unused, which occurs under the condition that the number of the actual subnets needed for the tactical network is far smaller than the networking capacity of code division net¬working. Dual-channel network (DCN), consisting of one single control channel and multiple data channels, can solve the code resource wastage effectively. To improve the anti-jamming capability of the control channel of DCN, code division multiple access (CDMA) technology was introduced, and a carrier sense random packet (CSRP) CDMA protocol based on random packet CDMA (RP-CDMA) was proposed. In CSRP-CDMA, we provide a carrier sensing random packet mechanism and a packet-segment acknowledgement policy. Furthermore, an analytical model was developed to evaluate the performance of CSRP-CDMA networks. In this model, the impacts of multi-access interference from both inter-clusters and intra-clusters were analyzed, and the mathematical expressions of packet transmission success probability, normalized network throughput and signal interference to noise ratio, were also derived. Analytical and simulation results demonstrate that the normalized network throughput of CSRP-CDMA outperforms traditional RP-CDMA by 10%, which can guarantee the resource utilization efficiency of the control channel in DCNs.

  1. DU, C., QUAN, H., CUI, P., WANG, X. A routing protocol for utilizing code resources in tactical ad hoc networks with a single transceiver. WSEAS Transact. on Communications, 2014, vol. 13, no. 5, p. 298–308. Available at: http: //www.wseas.org /multimedia/journals/communications/2014/a225704-327.pdf
  2. CHNAG, G., TENG, W., CHEN, H., SHEU, J. Novel channel-hopping scheme for cognitive radio networks. IEEE Transactions on Mobile Computing, 2014, vol. 13, no. 2, p. 407–421. DOI:10.1109/TMC.2014.2356475
  3. SUN, S. D., NIE, J. N. Performance comparisons between slotted and un-slotted spread spectrum ad hoc networks. In Proc.of International Conference on Wireless Communications and Signal Processing. Nanjing (China), 2009, p. 8–15. DOI: 10.1109/WCSP.2009.5371705
  4. SUN, S. D., NIE, J. N. Performance of spread spectrum ad hoc networks based on Markov chain model. Journal of Applied Sciences - Electronics and Information Engineering, 2008, vol. 26, no. 6, p. 562–568. DOI: 10.3969/ j.issn.0255-8297.2008.06.003 [in Chinese]
  5. PNG, K. B., PENG, X. M. Mobility-based interference cancellation scheme for BS-IFDMA systems with optimum code assignment. IEEE Transactions on Vehicular Technology, 2013, vol. 62, no. 5, p. 2105–2117. DOI: 10.1109/TVT.2013.2238959
  6. TRAGOS, E. Z., ZEADALLY, S., FRAGKIADAKIS, A. G., SIRIS, V. A. Spectrum assignment in cognitive radio networks: a comprehensive survey. IEEE Communications Surveys & Tutorials, 2013, vol. 15, no. 3, p. 1108–1135. Available at: http:// mm.aueb.gr/publications/2013-spectrum_assignment-surveys.pdf
  7. FYHN, K., JENSEN, T. L., LARSEN, T. Compressive sensing for spread spectrum receivers. IEEE Transaction on Wireless Communications, 2013, vol. 12, no. 5, p. 2334–2343. DOI: 10.1109/TWC.2013.032113.120975
  8. ZHONG, Z., ZHANG, L., JIANG, P., WU, H. Blind dispreading of short-code DS-CDMA signals with Bayesian techniques. Journal of Communications, 2012, vol. 7, no. 12, p. 928–937. DOI: 10.4304/jcm.7.12.928-937
  9. D’AMOURS, C. Parity bit selected spreading sequences: a block coding approach to spread spectrum. IEEE Communications Letters, 2005, vol. 9, no. 1, p. 16–18. DOI: 10.1109/LCOMM.2005.01034
  10. SCHLEGEL, C., KEMPTER, R., KOTA, P. A novel random wireless packet multiple access method using CDMA. IEEE Transaction on Wireless Communication, 2006, vol. 5, no. 6, p. 1362–1370. DOI: 10.1109/TWC.2006.1638657
  11. KEMPTER, R. Modelling and evaluation of throughput, stability and coverage of RP-CDMA in wireless networks. Ph.D. Dissertation. Utah University, Alta, Canada, 2006. Available at: http://www.researchgate.net/profile/R_Kempter/publication/34688 298_Modeling_and_evaluation_of_throughput_stability_and_cove rage_of_RP-CDMA_in_wireless_networks_/links/542d7cac0cf29 bbc126d34c7.pdf?inViewer=true#pdfjs.action=download
  12. MORTIMER, T., HARMS, J. A mac protocol for multi-hop RP-CDMA ad hoc wireless networks. In IEEE ICC 2012: Proceedings of Ad Hoc and Sensor Networking Symposium. Ottawa (ON, Canada), 2012, p. 424–429. DOI: 10.1109/ICC.2012.6364359
  13. INALTEKIN, H. Gaussian approximation for the wireless multi-access interference distribution. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 11, p. 6114–6120. DOI: 10.1109/TSP.2012.2212014
  14. CHEN, X., CHEN H., ZHENG, L. Analysis of anti-MAI for CDMA-based ad hoc networks. Journal of Shanghai University (Natural Sciences), 2006, vol. 12, no. 5, p. 441–445. [in Chinese] DOI: 1007-2861(2006)05-0441-05
  15. TSE, K., TSE, D. Effective interference and effective bandwidth of linear multiuser receivers in asynchronisation CDMA systems. IEEE Transactions on Information Theory, 2000, vol. 46, p. 1426-1447. Available at: http://citeseerx.ist.psu.edu/viewdoc/ download;jsessionid=3667EF88EF1A3ED2FCD146A7F7BC00C2 ?doi=10.1.1.36.8697&rep=rep1&type=pdf
  16. TSE, D. N. C., HANLY, S. V. Linear multiuser receivers: effective interference, effective bandwidth and user capacity. IEEE Transactions on Information Theory, 1999, vol. 45, p. 641–657. DOI: 10.1109/18.749008
  17. BURNASHEV, M. V., SCHLEGEL, C. B., KRZYMIEN, W. A., SHI, Z. Analysis of the dynamics of interference cancellation in interactive decoding. Problems of Information Transmission, 2004, vol. 40, no. 4, p. 297–317. DOI: 10.1007/s11122-004-0001-3
  18. SCHLEGEL, C. CDMA with partitioned spreading. IEEE Communications Letters, 2007, vol. 11, no. 12, p. 913–915. DOI: 10.1109/LCOMM.2007.070349
  19. GHANBARINEJAD, M., SCLEGEL, C., GBURZYNSKI, P. Adaptive probabilistic medium access in MPR-capable ad-hoc wireless networks. In The IEEE Global Telecommunications Conf. Honolulu (Hi, USA), 2009, p. 212–220. Available at: http: //citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.3976&re p=rep1&type=pdf

Keywords: Spread-spectrum ad hoc network, full-connected cluster, random packet-code division multiple access, multi-access interference, multiuser detector, Poisson distribution

Wei Wang, Dong Liang, Zhihua Wang, Haiyang Yu, Qi Liu [references] [full-text] [DOI: 10.13164/re.2015.0518] [Download Citations]
Design and Implementation of a FPGA and DSP Based MIMO Radar Imaging System

The work presented in this paper is aimed at the implementation of a real-time multiple-input multiple-output (MIMO) imaging radar used for area surveillance. In this radar, the equivalent virtual array method and time-division technique are applied to make 16 virtual elements synthesized from the MIMO antenna array. The chirp signal generater is based on a combination of direct digital synthesizer (DDS) and phase locked loop (PLL). A signal conditioning circuit is used to deal with the coupling effect within the array. The signal processing platform is based on an efficient field programmable gates array (FPGA) and digital signal processor (DSP) pipeline where a robust beamforming imaging algorithm is running on. The radar system was evaluated through a real field experiment. Imaging capability and real-time performance shown in the results demonstrate the practical feasibility of the implementation.

  1. LI, J., STOICA, P. MIMO radar with colocated antennas. IEEE Signal Processing Magazine, 2007, vol. 24, no. 5, p. 106–114. DOI: 10.1109/MSP.2007.904812
  2. HACK, D. E., PATTON, L. K., HIMED, B., SAVILLE, M. A. Detection in passive MIMO radar networks. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 11, p. 2999–3012. DOI: 10.1109/TSP.2014.2319776
  3. VEERARALLI, V. V., LIANG, Y., SAYEED, A. M. Correlated MIMO wireless channels: capacity, optimal signaling, and asymptotics. IEEE Transactions on Information Theory, 2005, vol. 51, no. 6, p. 2058–2072. DOI: 10.1109/TIT.2005.847724
  4. BROOKNER, E. MIMO radar demystified and where it makes sense to use. In IEEE Radar Conference. Cincinnati (USA), 2014, p. 0411–0416. DOI: 10.1109/RADAR.2014.7060413
  5. LIU, Y., DENG, Y. K., WANG, R. Bistatic FMCW SAR signal model and imaging approach. IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, no. 3, p. 2017–2028. DOI: 10.1109/TAES.2013.6558035
  6. BELFIORI, F., MASS, N., HOOGEBOOM, P., VAN ROSSUM, W. TDMA X-band FMCW MIMO radar for short range surveillance applications. In Proceedings of the 5 th European Conference on Antennas and Propagation (EUCAP). Rome (Italy), 2011, p. 483–487.
  7. FEGER, R., WAGNER, C., SCHUSTER, S., SCHEIBLHOFER, S., JAGER, H., STELZER, A. A 77-GHz FMCW MIMO radar based on an SiGe single-chip transceiver. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 5, p. 1020–1035. DOI: 10.1109/TMTT.2009.2017254
  8. BELFIORI, F., VAN ROSSUM, W., HOOGEBOOM, P. 2D-MUSIC technique applied to a coherent FMCW MIMO radar. In IET International Conference on Radar Systems. Glasgow (UK), 2012, p. 1–6. DOI: 10.1049/cp.2012.1564
  9. CHARVAT, G. L., KEMPEL, L. C., ROTHWELL, E. J., COLEMAN, C. M., MOKOLE, E. L. A through-dielectric ultrawideband (UWB) switched-antenna-array radar imaging system. IEEE Transactions on Antennas and Propagation, 2010, vol. 60, no. 11, p. 5195– 5500. DOI: 10.1109/TAP.2012.2207663
  10. KLARE, J., SAALMANN, O., WILDEN, H., BRENNER, A. R. First experimental results with the imaging MIMO radar MIRA-CLE X. In 8th European Conference on Synthetic Aperture Radar (EUSAR). Aachen (Germany), 2010, p. 1–4.
  11. ENDER, J. H. G., KLARE, J. System architectures and algorithms for radar imaging by MIMO-SAR. In IEEE Radar Conference. Pasadena (USA), 2009, p. 1–6. DOI: 10.1109/RADAR.2009.4976997
  12. WANG, J., JIANG, S., HE, J., LIU, Z., BAKER, C. J. Adaptive subspace detector for multi-input multi-output radar in the presence of steering vector mismatch. IET Radar, Sonar & Navigation, 2009, vol. 5, no. 1, p. 23–31. DOI: 10.1049/iet-rsn.2009.0197
  13. CHEN, H., LI, X., JIANG, W., ZHUANG, Z. MIMO radar sensitivity analysis of antenna position for direction finding. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 10, p. 5201–5216. DOI: 10.1109/TSP.2012.2208108
  14. LI, H., HIMED, B. Transmit subaperturing for MIMO radars with co-located antennas. IEEE Journal of Selected Topics in Signal Processing, 2010, vol. 4, no. 1, p. 55–65. DOI: 10.1109/JSTSP.2009.2038967
  15. PFEFFER, C., FEGER, R., WAGNER, C., STELZER, A. FMCW MIMO radar system for frequency-division multiple TXbeamforming. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 12, p. 4262–4274. DOI: 10.1109/TMTT.2013.2287675
  16. MASON, A., PARKES, S. Using SpaceWire with LabVIEW. In International SpaceWire Conference. Athens (Greece), 2014, p. 22–26. DOI: 10.1109/SpaceWire.2014.6936275
  17. ZHAO, Z. Y., LI, X. Y., CHANG, W. G. LFM-CW signal generator based on hybrid DDS-PLL structure. Electronics Letters, 2013, vol. 49, no. 6, p. 391–393. DOI: 10.1049/el.2012.2852
  18. BONFANTI, A., AMOROSA, F., SOMORI, C., LACAITA, A. L. A DDS-based PLL for 2.4-GHz frequency synthesis. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal., 2003, vol. 50, no. 12, p. 1007–1010. DOI: 10.1109/TCSII.2003.820250
  19. GRILLO, G. J., PEREZ, M. A., FLORENCIAS, A. E. Synchronic filter based on switched capacitor filters for high stability phasefetectors systems. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference. Sorrento (Italy), 2006, p. 1977–1981. DOI: 10.1109/IMTC.2006.328390
  20. HENRIKSEN, S. W. Radar-range equation. Proceedings of the IEEE, 1975, vol. 63, no. 5, p. 813–814. DOI: 10.1109/PROC.1975.9829
  21. CUI, Y., CHEN, Q., ZHU, L., GUO, Y. Signal Tap-II based debugging approach for the data acquisition system of multi-joint coordinate measuring machine. In International Conference on Instrumentation, Measurement, Computer, Communication and Control. Harbin (China), 2012, p. 1182–1184. DOI: 10.1109/IMCCC.2012.277

Keywords: Radar imaging, MIMO radar, real-time system, FPGA, DSP

N. Seman, S. N. A. Mohamed Ghazali [references] [full-text] [DOI: 10.13164/re.2015.0527] [Download Citations]
Quadrature Phase Shift Keying (QPSK) Modulator Design using Multi-Port Network in Multilayer Microstrip-Slot Technology for Wireless Communication Applications

The design of the quadrature phase shift keying (QPSK) modulator by using a multi-port network is proposed in this article for the use in wireless communication applications. The multi-port network is in the form of multilayer microstrip-slot technology. This multi-port network is composed of three 3-dB rectangular-shaped directional couplers with virtual stubs and an equal power division divider with in-phase characteristic. The design is performed by applying a full-wave electromagnetic simulation software, CST Microwave Studio (CST MWS). Keysight’s Advanced Design System (ADS) is applied in analyzing and evaluating the QPSK constellation of the proposed modulator. This comparatively small size of proposed design has been fabricated, and its wideband performance of 2 to 6 GHz is verified.

  1. WANG, C. H., CHANG, H. Y., WU, P.S., et al. A 60 GHz lowpower six-port transceiver for gigabit software-defined transceiver applications. In Proceedings of the IEEE International Solid-State Circuits Conference. San Francisco (USA), 2007, p. 192–196. DOI: 10.1109/ISSCC.2007.373359
  2. LIM, H. S., KIM, W. K., YU, J. W., et al. Compact six-port transceiver for time duplex systems. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 5, p. 394–396. ISSN: 1531-1309. DOI: 10.1109/LMWC.2007.895731
  3. OSTH, J., KARLSSON, M., SERBAN, A., GONG, S. M-QAM six-port modulator using only binary baseband data, electrical or optical. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 6, p. 2506–2513. ISSN: 0018-9480. DOI: 10.1109/TMTT.2013.2259255
  4. OSTH, J., SERBAN, A., OWAIS, M. K., et al. Six-port gigabit demodulator. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59 no. 1, p. 125–131. ISSN: 0018-9480. DOI: 10.1109/TMTT.2010.2091198
  5. HAKANSSON, P., GONG, S. Ultra-wideband six-port transmitter and receiver pair 3.1-4.8 GHz. In Proceedings of the Asia Pacific Microwave Conference (APMC). Hong Kong (China), 2008, 4 p. DOI: 10.1109/APMC.2008.4958318
  6. ABIELMONA, S., NGUYEN, H. V., CALOZ, C., et al. Compact multilayer ultra-wideband six-port device for modulation/demodulation. Electronics Letters, 2007, vol. 43, no. 15, p. 813–814. ISSN: 0013-5194. DOI: 10.1049/el:20070678
  7. IBRAHIM, S. Z., ABBOSH, A. M., ANTONIADES, M. A. Direct quadrature phase shift keying modulation using compact wideband six-port networks. IET Microwaves, Antennas & Propagation, 2012, vol. 6, no. 8, p. 854–861. ISSN: 1751-8725. DOI: 10.1049/iet-map.2012.0010
  8. TATU, S. O., MOLDOVAN, E., WU, K., BOSISIO, R. G. A new direct millimeter-wave six-port receiver. IEEE Transactions on Microwave Theory and Techniques, 2001, vol. 49, no. 12, p. 2517 to 2522. ISSN: 0018-9480. DOI: 10.1109/22.971644
  9. TATU, S. O., MOLDOVAN, E., BREHM, G., et al. Ka band direct digital receiver. IEEE Transactions on Microwave Theory and Techniques, 2002, vol. 50, no. 11, p. 2436–2442. ISSN: 0018- 9480. DOI: 10.1109/TMTT.2002.804646
  10. XU, S., LIU, F. L. Multi-target detection in FMCW radar based on six-port technology. In Proceedings of the Joint 31st International Conference on Infrared Milimeter Waves and 14th International Conference on Teraherz Electronics. Shanghai (China), 2006. DOI: 10.1109/ICIMW.2006.368516
  11. GHAZALI, S. N. A. M., SEMAN, N., RAHIM, M. K. A., et al. Design of wideband rectangular-shaped coupler with virtual short stubs for wireless communication applications. Wireless Personal Communications, 2013, vol. 73, no. 3, p. 1331–1342. ISSN: 0929- 6212. DOI 10.1007/s11277-013-1280-z
  12. SEMAN, N., BIALKOWSKI, M. E. Design and analysis of an ultra wideband three-section microstrip-slot coupler. Microwave and Optical Technology Letters, 2009, vol. 51, no. 8, p. 1889 to 1892. DOI: 10.1002/mop.24484. ISSN: 0895-2477

Keywords: Coupler, modulator, multi-port, power divider, QPSK, wireless

Y. A. Li [references] [full-text] [DOI: 10.13164/re.2015.0535] [Download Citations]
Systematic Derivation for Quadrature Oscillators Using CCCCTAs

According to 16 nullor-mirror models of the current-controlled current conveyor transconductance amplifier (CCCCTA) and using nodal admittance matrix (NAM) expansion method, three different classes of the double-mode quadrature oscillators employed CCCCTAs and two grounded capacitors are synthesized. The class I oscillators have 32 different forms, the class II oscillators have 16 different forms, and the class III oscillators have four different forms. In all, 52 quadrature oscillators using CCCCTAs are obtained. Having used canonic number of components, the circuits are easy to be integrated and the condition for oscillation and the frequency of oscillation can be tuned by tuning bias currents of the CCCCTAs. The circuit analysis and simulation results have been included to support the generation method.

  1. HAIGH, D. G. A method of transformation from symbolic transfer function to active-RC circuit by admittance matrix expansion. IEEE Transactions on Circuits and Systems I, 2006, vol. 53, no. 12, p. 2715–2728. ISSN: 1549-8328. DOI: 10.1109/TCSI.2006.883879
  2. HAIGH, D. G., CLARKE, T. J. W., RADMORE, P. M. Symbolic framework for linear active circuits based on port equivalence using limit variables. IEEE Transactions on Circuits and Systems I, 2006, vol. 53, no. 9, p. 2011–2024. ISSN: 1549-8328. DOI: 10.1109/TCSI.2006.882815
  3. SANCHEZ-LOPEZ, C., CANTE-MICHCOL, B., MORALESLOPEZ, F. E., CARRASCO-AGUILAR, M. A. Pathological equivalents of CMs and VMs with multi-outputs. Analog Integrated Circuits and Signal Processing, 2013, vol. 75, no. 1, p. 75–83. ISSN: 0925-1030. DOI: 10.1007/s10470-012-0003-9
  4. SOLIMAN, A. M. Generation of generalized impedance converter circuits using NAM expansion. Circuits, Systems, and Signal Processing, 2011, vol. 30, no. 5, p. 1091–1114. ISSN: 0278-081X. DOI: 10.1007/s00034-010-9218-0
  5. SOLIMAN, A. M. Transformation of oscillators using op amps, unity gain cells and CFOA. Analog Integrated Circuits and Signal Processing, 2010, vol. 65, no. 1, p. 105–114. ISSN: 0925-1030. DOI: 10.1007/s10470-010-9458-8
  6. SOLIMAN, A. M. Generation of current conveyor based oscillators using nodal admittance matrix expansion. Analog Integrated Circuits and Signal Processing, 2010, vol. 65, no. 1, p. 43–59. ISSN: 0925-1030. DOI: 10.1007/s10470-009-9432-5
  7. SOLIMAN, A. M. Generation of CCIIand ICCIIbased Wien oscillators using nodal admittance matrix expansion. AEU– International Journal of Electronics and Communications, 2010, vol. 64, no. 10, p. 971–977. ISSN: 1434-8411. DOI: 10.1016/j.aeue.2009.08.003
  8. LI, Y. A. NAM expansion method for systematic synthesis of OTA-based floating gyrators. AEU-International Journal of Electronics and Communications, 2013, vol. 67, no. 4, p. 289–294. ISSN: 1434-8411. DOI: 10.1016/j.aeue.2012.08.012
  9. LI, Y. A. On the systematic synthesis of OTA-based KHN filters. Radioengineering, 2014, vol. 23, no. 1, p. 540–548. ISSN: 1210- 2512
  10. SOLIMAN, A. M. Pathological realizations of the DCVC (CDBA) and applications to oscillators and filters. AEU-International Journal of Electronics and Communications, 2013, vol. 75, no. 12, p. 985–992. ISSN: 1434-8411. DOI: 10.1016/j.aeue.2011.03.010
  11. TAN, L. L., LIU, K. H., BAI, Y., TENG, J. F. Construction of CDBA and CDTA behavioural models and the applications in symbolic circuits analysis. Analog Integrated Circuits and Signal Processing, 2013, vol. 75, no. 3, p. 517–523. ISSN: 0925-1030. DOI: 10.1007/s10470-013-0065-3
  12. LI, Y. A. Systematic synthesis of OTA-based T-T filters using NAME method. Journal of Circuits, Systems, and Computers, 2013, vol. 22, no. 3, p. 1–17. ISSN: 1793-6454. DOI: 10.1142/S0218126613500023.
  13. LI, Y. A. On the systematic synthesis of OTA-based Wien oscillators. AEU-International Journal of Electronics and Communications, 2013, vol. 67, no. 9, p. 754–760. ISSN: 1434- 8411. DOI: 10.1016/j.aeue.2013.03.001
  14. PETRZELA, J. Bilinear reconfigurable filters derived by using matrix method of unknown nodal voltages. In 37th International Conference on Telecommunications and Signal Processing (TSP), Berlin, 2014, p. 358–363. ISBN: 978-80-214-4983- 1.
  15. PETRZELA, J., VYSKOCIL, P., PROKOPEC, J. Fundamental oscillators based on diamond transistors. In Proceedings of 20th International Conference Radioelektronika. Brno (Czech Rep.), 2010, p. 217–220. ISBN: 978-1-4244-6318-3. DOI: 10.1109/RADIOELEK.2010.5478555
  16. LI, Y. A. NAM expansion method for systematic synthesis of floating gyrators using CCCCTAs. Analog Integrated Circuits and Signal Processing, 2015, vol. 82, no. 3, p. 733–743. ISSN: 0925- 1030. DOI: 10.1007/s10470-014-0468-9
  17. SOTNER, R., JERABEK, J., PROKOP, R., VRBA, K. Current gain controlled CCTA and its application in quadrature oscillator and direct frequency modulator. Radioengineering, 2011, vol. 20, no. 1, p. 317–326. ISSN: 1210-2512
  18. HERENCSAR, N., KOTON, J., VRBA, K. Single CCTA-based universal biquadratic filters employing minimum components. International Journal of Computer and Electrical Engineering, 2009, vol. 1, no. 3, p. 307–310. ISSN 1793-8163. DOI: 10.7763/IJCEE.2009.V1.48
  19. JAIKLA, W., SILAPAN, P., CHANAPROMMA, C., SIRIPRUCHYANUN, M. Practical implementation of CCTA based on commercial CCII and OTA. In International Symposium on Intelligent Signal Processing and Communication Systems. Thailand, 2008. p. 1–4. ISBN: 978-1-4244-2564-8. DOI: 10.1109/ISPACS.2009.4806670
  20. PROKOP, R., MUSIL, V. CCTA: a new modern circuit block and its internal realization. In Electronic Devices and Systems IMAPS CZ International Conference. Brno (Czech Republic), 2005, p. 89 to 93. ISBN: 80-214-2990-9
  21. SUMMART, S., SAETIAW, C., THONGSOPA, C., JAIKLA. W. CCTA based current mode first order filter and its application in quadrature oscillator. Przeglad Elektrotechniczny, 2013, vol. 89, no. 6, p. 104–108. ISSN: 0033-2097
  22. BUMRONGHOKE, T., JAIKLA, W., SIRIPRUCHYANUN, M. An electronic controllable, simple current-mode oscillator using single MO-CCCCTA and grounded capacitors. In Proceedings of the 1st International Conference on Technical Education (ICTE2009). Thailand, 2010. p. 217–220. Available at: http://www.te.kmutnb.ac.th/~msn/ 49_P009_217.pdf
  23. SIRIPRUCHYANUN, M., JAIKLA, W. Current controlled current conveyor transconductance amplifier (CCCCTA): a building block for analog signal processing. Electrical Engineering, 2008, vol. 90, no. 6, p. 443–453. ISSN: 0948-7921. DOI: 10.1007/s00202-007- 0095-x
  24. SA-NGIAMVIBOOL, W., JANTAKUN, A. Quadrature oscillator using CCCCTAs and grounded capacitors with amplitude controllability. International Journal of Electronics, 2014, vol. 101, no. 12, p. 1737–1758. ISSN: 0020-7217. DOI: 10.1080/00207217.2014.896038
  25. LINARES-BARRANCO, B., RODRIGUEZ-VAZQUEZ, SANCHEZ-SINENCIO, E., HUERTAS, J. L. 10MHz CMOS OTA-C voltage-controlled quadrature oscillator. Electronics Letters, 1989, vol. 25, no. 12, p. 765–767. ISSN: 0013-5194. DOI: 10.1049/el:19890517
  26. LAHIRI, A. New current-mode quadrature oscillators using CDTA. IEICE Electronics Express, 2009, vol. 6, no. 3, p. 135–140. ISSN: 1349-2543. Available at: http://doi.org/10.1587/elex.6.135
  27. LI, Y. A. Electronically tunable current-mode quadrature oscillator using single MCDTA. Radioengineeing, 2010, vol. 19, no. 4, p. 667–671. ISSN: 1210-2512
  28. DUANGMALAI, D, MANGKALAKEEREE, S., SIRIPRUCHYANUN, M. High output-impedance current-mode quadrature oscillator using single MO-CCCDTA. In The 7th PSU Engineering Conference. Songkla (Thailand), 2009, p. 287–290. Available at: http://www.te.kmutnb.ac.th/~msn/ cdtaoscpec7.pdf
  29. JAIKLA, W., LAHIRI, A. Resistor-less current-mode four-phase quadrature oscillator using CCCDTAs and grounded capacitors. AEU-International Journal of Electronics and Communications, 2012, vol. 66, no. 3, p. 214–218. ISSN: 1434-8411. DOI: 10.1016/j.aeue.2011.07.001
  30. UTTAPHUT, P. Realization of electronically tunable current-mode multiphase sinusoidal oscillators using-CFTAs. World Academy of Science, Engineering and Technology, 2012, vol. 6, no. 9, p. 643 to 646. Available at: http://waste.org/publications/6037/
  31. TANGSRIRAT, W., MONGKOLWAI, P., PUKKALANUN, T. Current-mode high-Q filter and mixed-mode quadrature oscillator using ZC-CFTAs and grounded capacitors. Indian Journal of Pure & Physics, 2012, vol. 50, no. 8, p. 600–607. ISSN: 0019-5596
  32. SOTNER, R., JERABEK, J., HERENCSAR, N., PETRZELA, J., VRBA, K., KINCL, Z. Linearly tunable quadrature oscillator derived from LC Colpitts structure using voltage differencing transconductance amplifier and adjustable current amplifier. Analog Integrated Circuits and Signal Processing, 2014, vol. 81, no. 1, p. 121–136. ISSN: 0925-1030. DOI: 10.1007/s10470-014- 0353-6
  33. SOTNER, R., HRUBOS, Z., HERENCSAR, N., JERABEK, J., DOSTAL, T., VRBA, K. Precise electronically adjustable oscillator suitable for quadrature signal generation employing active elements with current and voltage gain control. Circuits Systems and Signal Processing, 2014, vol. 33, no. 1, p. 1–35. ISSN: 0278-081X. DOI: 10.1007/s00034-013-9623-2

Keywords: Quadrature oscillator, CCCCTA, systematic synthesis, nodal admittance matrix expansion.

W. Zhao, Y. M. Wei, Y. H. Shen, Y. F. Cao, Z. G. Yuan, P. C. Xu and W. Jian [references] [full-text] [DOI: 10.13164/re.2015.0544] [Download Citations]
An Efficient Algorithm by Kurtosis Maximization in Reference-Based Framework

This paper deals with the optimization of kurtosis for complex-valued signals in the independent component analysis (ICA) framework, where source signals are linearly and instantaneously mixed. Inspired by the recently proposed reference-based contrast schemes, a similar contrast function is put forward, based on which a new fast fixed-point (FastICA) algorithm is proposed. The new optimization method is similar in spirit to the former classical kurtosis-based FastICA algorithm but differs in the fact that it is much more efficient than the latter in terms of computational speed, which is significantly striking with large number of samples. The performance of this new algorithm is confirmed through computer simulations.

  1. LAHAT, D., CARDOSO, J. F., MESSER, H. Second-order multidimensional ICA: Performance analysis. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 9, p. 4598–4610. DOI: 10.1109/TSP.2012.2199985
  2. COMON, P., JUTTEN, C. (Eds.) Handbook of Blind Source Separation, Independent Component Analysis and Applications. New York: Academic Press, 2010.
  3. SIMON, C., LOUBATON, P., JUTTEN, C. Separation of a class of convolutive mixtures: A contrast function approach. Signal Processing, 2001, vol. 81, no. 4, p. 883–887. DOI: 10.1016/S0165- 1684(00)00240-1
  4. TUGNAIT, J. K. Identification and deconvolution of multichannel linear non-Gaussian processes using higher order statistics and inverse filter criteria. IEEE Transactions on Signal Processing, 1997, vol. 45, no. 3, p. 658–672. DOI: 10.1109/78.558482
  5. GODARD, D. Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Transactions on Communication, 1980, vol. 28, no. 11, p. 1867–1875. DOI: 10.1109/TCOM.1980.1094608
  6. CASTELLA, M., RHIOUI, S., MOREAU, E., PESQUET, J. Quadratic higher-order criteria for iterative blind separation of a MIMO convolutive mixture of sources. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 1, p. 218–232. DOI: 10.1109/TSP.2006.882113
  7. CASTELLA, M., MOREAU, E. New kurtosis optimization schemes for MISO equalization, IEEE Transactions on Signal Processing, 2012, vol. 60, no. 3, p. 1319–1330. DOI: 10.1109/TSP.2011.2177828
  8. ADIB, A., MOREAU, E., ABOUTAJDINE, D. Source separation contrasts using a reference signal. IEEE Signal Processing Letters, 2004, vol. 11, no. 3, p. 312–315. DOI: 10.1109/LSP.2003.822894
  9. CASTELLA, M., RHIOUI, S., MOREAU, E., PESQUET, J. Source separation by quadratic contrast functions: A blind approach based on any higherorder statistics. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Philadelphia (USA), 2005, vol. 3, p. 569–572. DOI: 10.1109/ICASSP.2005.1415773
  10. KAWAMOTO, M., KOHNO, K., INOUYE, Y. Eigenvector algorithms incorporated with reference systems for solving blind deconvolution of MIMO-IIR linear systems. IEEE Signal Processing Letters, 2007, vol. 14, no. 12, p. 996–999. DOI: 10.1109/LSP.2007.906225
  11. CASTELLA, M., MOREAU, E. A new optimization method for reference-based quadratic contrast functions in a deflation scenario. In Proceedings of IEEE International Conference on Acoust., Speech Signal Processing. Taipei (Taiwan) 2009, p. 3161 - 3164.
  12. CASTELLA, M., MOREAU, E. A new method for kurtosis maximization and source separation. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Dallas (TX, USA), 2010, p. 2670–2673. DOI: 10.1109/ICASSP.2010.5496250
  13. ZHAO, W., WEI, Y. M., SHEN, Y. H., YUAN, Z. G., XU, P. C., JIAN, W. A novel FastICA method for the reference-based contrast functions. Radioengineering, 2014, vol. 23, no. 4, p. 1221–1225.
  14. ZHAO, W., SHEN, Y. H., WANG, J. G., YUAN, Z. G., JIAN, W. New methods for the efficient optimization of cumulant-based contrast functions. In Proceedings of the 5th IET International Conference on Wireless, Mobile and Multimedia Networks. Beijing (China), 2013, p. 345–349. DOI: 10.1049/cp.2013.2438
  15. ZHAO, W., SHEN, Y. H., WANG, J. G., YUAN, Z. G., JIAN, W. New kurtosis optimization algorithms for independent component analysis. In Proceedings of the 4th IEEE International Conference on Information Science and Technology. Shenzhen (China), 2014, p. 23–28. DOI: 10.1109/ICIST.2014.6920323
  16. BINGHAM, E., HYVARINEN, A. A fast fixed-point algorithm for independent component analysis of complex valued signals. International Journal of Neural Systems, 2000, vol. 10, no. 1, p. 1–8. DOI: 10.1142/S0129065700000028

Keywords: Blind source separation, independent component analysis, kurtosis, reference-based contrast functions, fastICA, complex-valued signals

Yujian Pan, Ning Tai, Naichang Yuan [references] [full-text] [DOI: 10.13164/re.2015.0552] [Download Citations]
Wideband DOA Estimation via Sparse Bayesian Learning over a Khatri-Rao Dictionary

This paper deals with the wideband direction-of-arrival (DOA) estimation by exploiting the multiple measurement vectors (MMV) based sparse Bayesian learning (SBL) framework. First, the array covariance matrices at different frequency bins are focused to the reference frequency by the conventional focusing technique and then transformed into the vector form. Then a matrix called the Khatri-Rao dictionary is constructed by using the Khatri-Rao product and the multiple focused array covariance vectors are set as the new observations. DOA estimation is to find the sparsest representations of the new observations over the Khatri-Rao dictionary via SBL. The performance of the proposed method is compared with other well-known focusing based wideband algorithms and the Cramer-Rao lower bound (CRLB). The results show that it achieves higher resolution and accuracy and can reach the CRLB under relative demanding conditions. Moreover, the method imposes no restriction on the pattern of signal power spectral density and due to the increased number of rows of the dictionary, it can resolve more sources than sensors.

  1. WAX, M., SHAN, T.-J., KAILATH, T. Spatio-temporal spectral analysis by eigenstructure methods. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, vol. 32, no. 4, p. 817–827. DOI: 10.1109/TASSP.1984.1164400
  2. WANG, H., KAVEH, M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, vol. 33, no. 4, p. 823–831. DOI: 10.1109/TASSP.1985.1164667
  3. HUNG H., KAVEH, M. Focussing matrices for coherent signalsubspace processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, vol. 36, no. 8, p. 1272–1281. DOI: 10.1109/29.1655
  4. VALAEE, S., KABAL, P. Wideband array processing using a twosided correlation transformation. IEEE Transactions on Signal Processing, 1995, vol. 43, no. 1, p. 160–172. DOI: 10.1109/78.365295
  5. FENG, D., BAO, M., YE, Z., GUAN, L., LI, X. A novel wideband DOA estimator based on khatri-rao subspace approach. Signal Processing, 2011, vol. 91, no. 10, p. 2415–2419. DOI: 10.1016/j.sigpro.2011.04.014
  6. YAMADA H., SHIRAI S., YAMAGUCHI, Y. DOA Estimation of wideband signals using extended virtual array. In Proceedings of 3 rd Asia-Pacific Conference on Antennas and Propagation. Harbin (China), 2014, p. 802–805. DOI: 10.1109/APCAP.2014.6992620
  7. MALIOUTOV, D., CETIN, M., WILLSKY, A. S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 8, p. 3010–3022. DOI: 10.1109/TSP.2005.850882
  8. LIU, Z. M., HUANG, Z. T., ZHOU, Y. Y. An efficient maximum likelihood method for direction-of-arrival estimation via sparse Bayesian learning. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 10, p. 3067–3617. DOI: 10.1109/TWC.2012.090312.111912
  9. LIU, Z. M., HUANG, Z. T., ZHOU, Y. Y. Sparsity-inducing direction finding for narrowband and wideband signals based on array covariance vector. IEEE Transactions on Wireless Communications, 2013, vol. 12, no. 8, p. 3896–3907. DOI: 10.1109/TWC.2013.071113.121305
  10. WIPF, D. P., RAO, B. D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 7, p. 3704–3716. DOI: 10.1109/TSP.2007.894265
  11. LIU, Z. M., HUANG, Z. T., ZHOU, Y. Y. Direction-of-Arrival estimation of wideband signals via covariance matrix sparse representation. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 9, p. 4256–4270. DOI: 10.1109/TSP.2011.2159214
  12. GAN, L., WANG, X. DOA estimation of wideband signals based on slice-sparse representation. EURASIP Journal on Advances in Signal Processing, 2013, vol. 2013, no. 18, p. 1–10. DOI: 10.1186/1687- 6180-2013-18
  13. YIN, J., CHEN, T. Direction-of-arrival estimation using a sparse representation of array covariance vectors. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 9, p. 4489–4493. DOI: 10.1109/TSP.2011.2158425
  14. OTTERSTEN, B., STOICA, P., ROY, R. Covariance matching estimation techniques for array signal processing applications. Digital Signal Processing, 1998, vol. 8, no. 3, p. 185–210. DOI: 10.1006/dspr.1998.0316
  15. MAGNUS, J. R., NEUDECKER, H. Matrix Differential Calculus with Applications in Statistics and Econometrics. 3 nd ed. Chichester: Wiley, 1988.
  16. ROBERT, C. P. Simulation of truncated normal variables. Statistics and Computing, 1995, vol. 5, no. 2, p. 121–125. DOI: 10.1007/BF00143942
  17. THEMELIS, K. E., RONTOGIANNIS, A. A., KOUTROUMBAS, K. D. A novel hierarchical Bayesian approach for sparse semisupervised hyperspectral unmixing. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 2, p. 585–599. DOI: 10.1109/TSP.2011.2174052
  18. TIPPING, M. E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, vol. 1, p. 211–244.
  19. ZHANG, Z., RAO, B. Clarify Some Issues on the Sparse Bayesian Learning for Sparse Signal Recovery, technical report. San Diego (CA, USA): University of California. [Online] Cited 2011. Available at: https://sites.google.com/site/researchbyzhang/.
  20. YOON, Y. S., KAPLAN, L. M., MCCLELLAN, J. H. Tops: new DOA estimator for wideband signals. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 6, p. 1977 - 1989. DOI: 10.1109/TSP.2006.872581
  21. FRIEDLANDER, B., WEISS, A. Direction finding for wide-band signals using an interpolated array. IEEE Transactions on Signal Processing, 1993, vol. 41, no. 4, p. 1618–1634. DOI: 10.1109/78.212735

Keywords: Array covariance vector, direction-of-arrival estimation, focusing technique, sparse Bayesian learning, wideband source

M.S.Shbat, V.P.Tuzlukov [references] [full-text] [DOI: 10.13164/re.2015.0558] [Download Citations]
Generalized detector as a spectrum sensor in cognitive radio networks

The implementation of the generalized detector (GD) in cognitive radio (CR) systems allows us to improve the spectrum sensing performance in comparison with employment of the conventional detectors. We analyze the spectrum sensing performance for the uncorrelated and spatially correlated receive antenna array elements. Addi¬tionally, we consider a practical case when the noise power at the output of GD linear systems (the preliminary and additional filters) is differed by value. The choice of the optimal GD threshold based on the minimum total error rate criterion is also discussed. Simulation results demonstrate superiority of GD implementation in CR sys¬tem as spectrum sensor in comparison with the energy detector (ED), weighted ED (WED), maximum-minimum eigenvalue (MME) detector, and generalized likelihood ratio test (GLRT) detector

  1. YUCEK, T., ARSLAN, H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 2009, vol. 11, no. 1, p. 116–130. DOI: 10.1109/SURV.2009.090109
  2. SONNENSCHEIN, A., FISHMAN, P.M. Radiometric detection of spread spectrum signals in noise of uncertainty power. IEEE Transactions on Aerospace and Electronic Systems, 1992, vol. 28, no. 3, p. 654–660. DOI: 10.1109/7.256287
  3. KAY, S. M. Fundamentals of Statistical Signal Processing: Detection Theory. Vol. 2. New Jersey, USA: Prentice Hall, 1998.
  4. CHEN, H.S., GAO, W., DAUT, D. G. Signature based spectrum sensing algorithms for IEEE 802.22 WRAN. In Proceedings of the IEEE International Conf. on Communications (ICC’07). Glasgow (Scotland), 2007, p. 6487–6492. DOI: 10.1109/ICC.2007.1073
  5. CARBIC, D., TKACHENKO, A., BRODERSEN, R. W. Spectrum sensing measurements of pilot, energy, and collaborative detection. In Proc. of the IEEE Military Communications Conf. Washington (USA), 2006, 7 p. DOI: 10.1109/MILCOM.2006.301994
  6. GARDNER, W. A. Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine, 1991, no. 8, p. 14–36. DOI: 10.1109/79.81007
  7. HAN, N., SHON, S. H., JOO, J. O., KIM, J. M. Spectral correlation based signal detection method for spectrum sensing in IEEE 802. 22 WRAN systems. In Proceedings of the 8th International Conference on Advanced Communications Technology. Gangwon-Do (South Korea), 2006, p. 1765–1770.
  8. YU, G., LONG, C., XIANG, M., XI, W. A. Novel energy detection scheme based on dynamic threshold in cognitive radio systems. Journal of Computational Information Systems, 2012, vol. 8, no. 6, p. 2245–2252.
  9. CHEN, H., LIU, J. Cooperative spectrum sensing based on double threshold detection and Dempster-Shafer theory. In Proceedings of the 12th IEEE International Conference on Communications Technology (ICCT’2010). Nanjing (China), 2010, p. 1212–1215. DOI: 10.1109/ICCT.2010.5689114
  10. LUO, L. P., ZHANG, P., ZHANG, G. C., QIN, J. Y. Spectrum sensing for cognitive radio networks with correlated multiple antennas. Electronics Letters, 2011, vol. 47, no. 23, p. 1297–1298. DOI: 10.1049/el.2011.2231
  11. XIAO, X., LIU, S., LU, K., WANG, J. MaxDiv: an optimal randomized spectrum access with maximum diversity scheme for cognitive radio networks. International Journal on Communication Systems, 2012, vol. 25, p.832–848. DOI: 10.1002/dac.1291.
  12. QUAN, Z., CUI, S., SAYED, A. H. Optimal linear cooperative for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2008, vol. 2, no. 1, p. 28–40. DOI: 10.1109/JSTSP.2007.914882
  13. LIM, T. J., ZGANG, R., LIANG, Y. C., ZENG, Y. GLRT-based spectrum sensing for cognitive radio. In Proc. of the IEEE Global Telecommunications Conf. (GLOBECOM’08). New Orleans (USA), 2008, p. 1–5. DOI: 10.1109/GLOCOM.2008.ECP.842
  14. ZENG, Y., LIANG, Y. C. Maximum-minimum eigenvalue detection for cognitive radio. In Proc. of the IEEE 18th Internat. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC’07). Athens (Greece), 2007, p. 1–5.
  15. MEHTA, M., DREW, N., VARDOULIAS, G., GRECO, N., NIEDERMEIER, C. Reconfigurable terminals: an overview of architectural solutions. IEEE Communications Magazine, 2001, vol. 39, no. 8, p. 82–89. DOI: 10.1109/35.940041
  16. GHAVAMI, S., ABOLHASSANI, B. Spectrum sensing and power/rate control in CDMA cognitive radio networks. International Journal on Communications Systems, 2011, vol. 24, p.121–145. DOI: 10. 1002/dac.1258
  17. TUZLUKOV, V. A new approach to signal detection theory. Digital Signal Processing: A Review Journal, 1998, vol. 8, no. 3, p. 166–184. DOI: 10.1006/dspr.1998.0315
  18. TUZLUKOV, V. Signal Detection Theory. Boston (USA): Springer-Verlag, 2001.
  19. TUZLUKOV, V. Generalized approach to signal processing in wireless communications: the main aspects and some examples. Chapter 11. Wireless Communications and Networks – Recent Advances. Rijeka, Croatia: InTech, 2012, p. 305–338.
  20. TUZLUKOV, V. DS-CDMA downlink systems with fading channel employing the generalized receiver. Digital Signal Processing, 2011, vol. 21, no. 6, p. 725–733. DOI: 10.1016/j.dsp.2011.07.005
  21. TUZLUKOV, V. Signal processing by generalized receiver in DSCDMA wireless communication systems with frequency-selective channels. Circuits, Systems Signal Processing, 2011, vol. 30, no. 6, p. 1197–1230. DOI: 10.1007/s00034-011-9273-1
  22. Communication Systems: New Research. Editor: Tuzlukov, V. New York (USA): NOVA Science Publishers, Inc., 2013, 423 p.
  23. TUZLUKOV, V. Wireless communications: Generalized approach to signal processing. Chapter 6. Communication Systems: New Research. Editor: Tuzlukov, V. New York (USA): NOVA Science Publishers, Inc., 2013, p.175–268.
  24. TUZLUKOV, V. Signal processing by generalized receiver in DSCDMA wireless communication systems. Chapter 4. Contemporary Issues in Wireless Communications. Rijeka, Croatia: InTech, 2014, p. 79–158.
  25. TUZLUKOV, V. Signal Processing in Radar Systems. Taylor & Francis Group: CRC Press, 2012.
  26. SHBAT, M., TUZLUKOV, V. Evaluation of detection performance under employment of the generalized detector in radar sensor systems. Radioengineering, 2014, vol. 23, no. 1, p. 50–65.
  27. SHBAT, M., TUZLUKOV, V. Definition of adaptive detection threshold under employment of the generalized detector in radar sensor systems. IET Signal Processing, 2014, vol. 8, no. 6, p. 622–632. DOI: 10.1049/iet-spr.2013.0235
  28. SHBAT, M., TUZLUKOV, V. Spectrum sensing under correlated antenna array using generalized detector in cognitive radio systems. International Journal of Antennas and Propagation. 2013. Article ID 853746, 8 pages, DOI: 10.1155/ 2013/853746
  29. KIM, S., LEE, J., WANG, H., HONG, D. Sensing performance of energy detector with correlated multiple antennas. IEEE Signal Processing Letters, 2009, vol. 16, no. 8, p. 671–674. DOI: 10.1109/LSP.2009.2021381
  30. JIN, M., LI, Y., ZHANG, R., WANG, R. A new spectrum sensing algorithm based on antenna correlation for cognitive radio systems. Wireless Personal Communications, 2012, vol. 66, p. 419–428, DOI: 10.1007/s11277-011-0349-9
  31. MOLISCH, A., GREENSTEIN, L., SHAFI, M. Propagation issues for cognitive radio. IEEE Proceedings. 2009, vol. 97, no. 5, p. 787–804. DOI: 0.1109/JPROC.2009.2015704
  32. LOYKA, S. Channel capacity of MIMO architecture using the exponential correlation matrix. IEEE Communications Letters, 2001, no. 5, p. 369–371. DOI: 10.1109/4234.951380
  33. SHBAT, M. S. Performance analysis of signal detection by GD in radar sensor and cognitive radio systems. PhD Thesis. Kyungpook National University, February 2014.
  34. MAXIMOV, M. Joint correlation of fluctuative noise at outputs of frequency filters. Radio Engineering, 1956, no. 9, p. 28–38.
  35. CHERNYAK, Yu. Joint correlation of noise voltage at outputs of amplifiers with nonoverlapping responses. Radio Physics and Electronics, 1960, no. 4, p. 551–561.
  36. TUZLUKOV, V. Signal Processing Noise. Boca Raton, London, New York, Washington D.C.: CRC Press, Taylor & Francis Group, 2002.
  37. TABOGA, M. Lectures on Probability Theory and Mathematical Statistics. 2nd Ed. Amazon Create Space, 2012.
  38. GRADSHTEYN, D.C., RYZHIK, I. Table of Integrals, Series, and Products. 7th ed. Academic Press: 2007.
  39. ALOUINI, M. S., ABDI, A., KAVEH, M. Sum of gamma variates and performance of wireless communications systems over Nakagami-fading channels. IEEE Transactions on Vehicular Technology, 2001, vol. 50, no. 6, p. 1471–1480. DOI: 10.1109/25.966578
  40. LIANG, Y. C., ZENG, Y., PEH, E, HOANG, A. T. Sensingthroughput trade off for cognitive radio networks. IEEE Transactions on Wireless Communications, 2008, vol. 7, no. 4, p. 1326–1337. DOI: 0.1109/TWC.2008.060869
  41. ZHANG, X., WU, Q., WANG, J. Optimization of sensing time in multichannel sequential sensing for cognitive radio. International Journal on Communication Systems, 2013, vol. 26, p. 222–235. DOI: 10.1002/dac.1341
  42. ATAPATTU, S., TELLAMBURA, C., JIANG, H. Spectrum sensing via energy detector in low SNR. In Proc. of the IEEE International Conf. on Communications (ICC’11). Kyoto (Japan), 2011, p. 1–5. DOI: 10.1109/icc.2011.5963316
  43. KATE, S. K., NAVARE, S. D., BANDEWAR, S. R., et al. Engineering Mathematics-II. India: Technical Publications Pune, 2007.

Keywords: Cognitive radio (CR), spectrum sensing, generalized detector (GD), energy detector (ED), probability of false alarm.

Xiansheng Guo, Lei Chu, Baocang Li [references] [full-text] [DOI: 10.13164/re.2015.0572] [Download Citations]
Robust Adaptive LCMV Beamformer Based On An Iterative Suboptimal Solution

The main drawback of closed-form solution of linearly constrained minimum variance (CF-LCMV) beamformer is the dilemma of acquiring long observation time for stable covariance matrix estimates and short observation time to track dynamic behavior of targets, leading to poor performance including low signal-noise-ratio (SNR), low jammer-to-noise ratios (JNRs) and small number of snapshots. Additionally, CF-LCMV suffers from heavy computational burden which mainly comes from two matrix inverse operations for computing the optimal weight vector. In this paper, we derive a low-complexity Robust Adaptive LCMV beamformer based on an Iterative Suboptimal solution (RAIS-LCMV) using conjugate gradient (CG) optimization method. The merit of our proposed method is threefold. Firstly, RAIS-LCMV beamformer can reduce the complexity of CF-LCMV remarkably. Secondly, RAIS-LCMV beamformer can adjust output adaptively based on measurement and its convergence speed is comparable. Finally, RAIS-LCMV algorithm has robust performance against low SNR, JNRs, and small number of snapshots. Simulation results demonstrate the superiority of our proposed algorithms.

  1. BREED, B., STRAUSS, J. A short proof of the equivalence of LCMV and GSC beamforming. IEEE Signal Processing Letters, 2002, vol. 9, no. 6, p. 168–169. DOI: 10.1109/LSP.2002.800506
  2. WERNER, S., APOLINARIO JR, J. A., DE CAMPOS, M. L. R. On the equivalence of RLS implementations of LCMV and GSC processors. IEEE Signal Processing Letters, 2003, vol. 10, no. 12, p. 356– 359. DOI: 10.1109/LSP.2003.818861
  3. DEMIRCIOGLU, E., SAZLI, M. Behavioral modeling of a C-band ring hybrid coupler using artificial neural networks. Radioengineering, 2010, vol. 19, no. 4, p. 645–652.
  4. BENESTY, J., CHEN, J., HUANG, Y., DMOCHOWSKI, J. On microphone-array beamforming from a MIMO acoustic signal processing perspective. IEEE Transactions on Audio, Speech, and Language Processing, 2007, vol. 15, no. 3, p. 1053–1065. DOI: 10.1109/TASL.2006.885251
  5. HAGER, W., ZHANG, H. The limited memory conjugate gradient method. SIAM Journal on Optimization, 2013, vol. 23, no. 4, p. 2150–2168. DOI: 10.1137/120898097
  6. RESENDE, L., ROMANO, J. M. T., BELLANGER, M. G. A fast least-squares algorithm for linearly constrained adaptive filtering. IEEE Transactions on Signal Processing, 1996, vol. 44, no. 5, p. 1168–1174. DOI: 10.1109/78.502329
  7. DAI, Y., KOU, C. A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. SIAM Journal on Optimization, 2013, vol. 23, no. 1, p. 296–320. DOI: 10.1137/100813026
  8. AL-BAYATI, A., AL-KAWAZ, R. A new hybrid WC-FR conjugate gradient-algorithm with modified secant condition for unconstrained optimization. Journal of Mathematical and Computational Science, 2012, vol. 2, no. 4, p. 937–966.
  9. WANG, L., DE LAMARE, R. C., Constrained adaptive filtering algorithms based on conjugate gradient techniques for beamforming. IET Signal Processing, 2010, vol. 4, no. 6, p. 686–697. DOI: 10.1049/iet-spr.2009.0243
  10. LANDAU, L., DE LAMARE, R. C., HAARD, M., Robust adaptive beamforming algorithms using the constrained constant modulus criterion. IET Signal Processing, 2014, vol. 8, no. 5, p. 447–457. DOI: 10.1049/iet-spr.2013.0166
  11. WANG, L., DE LAMARE, R. C., Set-membership constrained conjugate gradient adaptive algorithm for beamforming. IET Signal Processing, 2012, vol. 6, no. 8, p. 789–797. DOI: 10.1049/ietspr.2011.0324
  12. WERNER, S., APOLINARIO, J. A., DE CAMPOS, M. L. R., DINIZ, P. S. R. Low-complexity constrained affine-projection algorithms. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 12, p. 4545–4555. DOI: 10.1109/TSP.2005.859348
  13. FROST, O. L. III. An algorithm for linearly constrained adaptive array processing. Proceedings of the IEEE, 1972, vol. 60, no. 8, p. 926– 935. DOI: 10.1109/PROC.1972.8817
  14. MERAD, L., BENDIMERAD, F., MERIAH, S., DJENNAS, S. Neural networks for synthesis and optimization of antenna arrays. Radioengineering, 2007, vol. 16, no. 1, p. 23–30.
  15. GOLUB, G., VAN LOAN, C. Matrix Computations, 4th ed. Baltimore (USA), JHU Press, 2012, vol. 3.
  16. GUO, X., WAN, Q., CHANG, C., LAM, E. Source localization using a sparse representation framework to achieve superresolution. Multidimensional Systems and Signal Processing, 2012, vol. 21, no. 4, p. 391–402. DOI: 10.1007/s11045-010-0119-y
  17. NGIAM, J., COATES, A., LAHIRI, A., PROCHNOW, B., LE, Q., NG, A. On optimization methods for deep learning. In Proceedings of the 28th International Conference on Machine Learning (ICML- 11), 2011, p. 265–272.
  18. MEIER, J., KELLEY, R., ISOM, B., YEARY, M., PALMER, R. Leveraging software-defined radio techniques in multichannel digital weather radar receiver design. IEEE Transactions on Instrumentation and Measurement, 2012, vol. 61, no. 6, p. 1571–1582. DOI: 10.1109/TIM.2011.2178670
  19. SCOTT, I., MULGREW, B. Sparse LCMV beamformer design for suppression of ground clutter in airborne radar. IEEE Transactions on Signal Processing, 1995, vol. 43, no. 12, p. 2843–2851. DOI: 10.1109/78.476428
  20. MARKOVICH-GOLAN, S., GANNOT, S., COHEN, I. Lowcomplexity addition or removal of sensors/constraints in LCMV beamformers. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 3, p. 1205–1214.
  21. ZHANG, Y., ZHOU, Y., GUO, H. An iterative approach to MVDR beamforming with multi-cycle optimisation. International Journal of Electronics, 2013, vol. 100, no. 5, p. 616–625. DOI: 10.1080/00207217.2012.720940

Keywords: Robust adaptive beamformer, LCMV, iterative suboptimal solution, computational analysis

H. Khaddour, J. Schimmel, F. Rund [references] [full-text] [DOI: 10.13164/re.2015.0583] [Download Citations]
A Novel Combined System of Direction Estimation and Sound Zooming of Multiple Speakers

This article presents a new system for estimation the direction of multiple speakers and zooming the sound of one of them at a time. The proposed system is a combination of two levels; namely, sound source direction estimation, and acoustic zooming. The sound source direction estimation uses so-called the energetic analysis method for estimation the direction of multiple speakers, whereas the acoustic zooming is based on modifying the parameters of the directional audio coding (DirAC) in order to zoom the sound of a selected speaker among the others. Both listening tests and objective assessments are performed to evaluate this system using different time-frequency transforms.

  1. MOHAMMED, A., BALLAL, T., GRBIC, N. Blind source separation using time-frequency masking. Radioengineering, 2007, vol. 16, no. 4, p. 96–100.
  2. KHADDOUR, H., SCHIMMEL, J., TRZOS, M. Estimation of direction of arrival of multiple sound sources in 3D space using Bformat. International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems, 2013, vol. 2, no. 2, p. 63–67.
  3. PULKKI, V. Applications of directional audio coding in audio. In Proceedings of the 19th International Congress of Acoustics. Madrid (Spain), 2007.
  4. ITO, N., VINCENT, E., ONO, N., GRIBONVAL, R., SAGAYAMA, S. Crystal-MUSIC: Accurate localization of multiple sources in diffuse noise environments using crystal-shaped microphone arrays. In Proceedings of the 9th International Conference on Latent Variable Analysis and Signal Separation. Saint-Malo (France), 2010, p. 81–88. DOI: 10.1007/978-3-642-15995-4 11
  5. YILMAZ, O., RICKARD, S. Blind separation of speech mixtures via time-frequency masking. IEEE Transactions on Signal Processing, 2004, vol. 52, no. 7, p. 1830–1847. DOI: 10.1109/TSP.2004.828896
  6. HUANG,Y., BENESTY, J., ELKO, G. Passive acoustic source localization for video camera steering. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’00). Istanbul (Turkey), 2000, vol. 2, p. II909–II912. DOI: 10.1109/ICASSP.2000.859108
  7. HUANG, Y., BENESTY, J., ELKO, G., MERSEREATI, R. Realtime passive source localization: A practical linear-correction leastsquares approach. IEEE Transactions on Speech and Audio Processing, 2001, vol. 9, no. 8, p. 943–956. DOI: 10.1109/89.966097
  8. HILDIN, J. Voice-Following Video System. US Patent No. 5,844,599. December 1998.
  9. WANG, H., CHU, P. Voice source localization for automatic camera pointing system in videoconferencing. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-97). Munich (Germany), 1997, vol. 1, p. 187–190. DOI: 10.1109/ICASSP.1997.599595
  10. VAN WATERSCHOOT, T., TIRRY, W. J., MOONEN, M. Acoustic zooming by multi-microphone sound scene manipulation. Journal of the Audio Engineering Society, 2013, vol. 61, no. 7/8, p. 489–507.
  11. SCHULTYZ-AMLING, R., KUECH, F., THIERGART, O., KALLINGER, M. Acoustical zooming based on a parametric sound field representation. In Proceedings of 128th Audio Engineering Society Convention. London (UK), 2010.
  12. PULKKI,V. Spatial sound reproduction with directional audio coding. Journal of the Audio Engineering Society, 2007, vol. 55, no. 6, p. 503–516.
  13. BENJAMIN, E., HELLER, A., LEE, R. Localization in horizontalonly ambisonic systems. In Proceedings of 121th Audio Engineering Society Convention. San Francisco (USA), 2006.
  14. BENJAMIN, E., HELLER, A., LEE, R. Design of ambisonic decoders for irregular arrays of loudspeakers by non-linear optimization. In Proceedings of 129th Audio Engineering Society Convention. San Francisco (USA), 2010.
  15. VILKAMO, J., LOKKI, T., PULKKI, V. Directional audio coding: Virtual microphone-based synthesis and subjective evaluation. Journal of the Audio Engineering Society, 2009, vol. 57, no. 9, p. 709– 724.
  16. TURI NAGY, M., ROZINAJ, G. An analysis/synthesis system of audio signal with utilization of an SN model. Radioengineering, 2004, vol. 13, no. 4, p. 51–57.
  17. AMBEDE, A., SMITHA, K. G., VINOD, A. P. A new low complexity uniform filter bank based on the improved coefficient decimation method. Radioengineering, 2013, vol. 22, no. 1, p. 34–43.
  18. ANDRAS, L., CHMURNY, J. Image compression by Gabor expansion. Radioengineering, 2001, vol. 10, no. 2, p. 5–8.
  19. WILLIAMS, E. Fourier Acoustics: Sound Radiation and Near Field Acoustical Holography. Cambridge (UK): Academic Press, 1999.
  20. KHADDOUR, H., KURC, D. Impact of applied transform on accuracy of energetic analysis method. In Proceedings of 36th International Conference on Telecommunications and Signal Processing (TSP). Rome (Italy), 2013, p. 464–468.
  21. WITTENBERG, N. Understanding Voice over IP Technology. Cengage Learning, 2008.
  22. FURUI, S. Digital Speech Processing, Synthesis, and Recognition, vol. 7. CRC Press, 2001.
  23. TRZOS, M., KHADDOUR, H. Representation of sound field using ambisonic. Elektrorevue, 2010, vol. 41, p. 1–7.
  24. International Telecommunication Union. Recommendation BS.1116- 2: Methods for the Subjective Assessment of Small Impairments in Audio Systems. 2014.
  25. TSL Proffessional Produsts Ltd. SPS200 Software Controlled Microphone. [Online] Cited 2014-2-4. Available at: http://www.tslproducts.com/soundfield /soundfieldsps200-softwarecontrolled-microphone.
  26. RUMSEY, F., MCCORMICK, T. Sound and Recording. Elsevier& Focal, 2009.
  27. International Telecommunication Union. Recommendation P.800: Methods for Subjective Determination of Transmission Quality. 1996.
  28. VINCENT, E. Improved perceptual metrics for the evaluation of audio source separation. In Proceedings of Latent Variable Analysis and Signal Separation. 2012, p. 430–437. DOI: 10.1007/978-3-642- 28551-6 53
  29. HUBER, R., KOLLMEIER, B. PEMO-Q – A New Method for Objective Audio Quality Assessment Using a Model of Auditory Perception. IEEE Transactions on Audio, Speech, and Language Processing, 2006, vol. 14, no. 6, p. 1902–1911. DOI: 10.1109/TASL.2006.883259

Keywords: Acoustical zooming, spatial sound, vector base amplitude panning, sound source localization, energetic analysis method, directional audio coding

Y. Leng, C. L. Sun, C. F. Cheng, X. Y. Xu, S. Li, H. L. Wan, J. Fang, D. W. Li [references] [full-text] [DOI: 10.13164/re.2015.0593] [Download Citations]
Classification of Overlapped Audio Events Based on AT, PLSA, and the Combination of Them

Audio event classification, as an important part of Computational Auditory Scene Analysis, has attracted much attention. Currently, the classification technology is mature enough to classify isolated audio events accurately, but for overlapped audio events, it performs much worse. While in real life, most audio documents would have certain percentage of overlaps, and so the overlap classification problem is an important part of audio classification. Nowadays, the work on overlapped audio event classification is still scarce, and most existing overlap classification systems can only recognize one audio event for an overlap. In this paper, in order to deal with overlaps, we innovatively introduce the author-topic (AT) model which was first proposed for text analysis into audio classification, and innovatively combine it with PLSA (Probabilistic Latent Semantic Analysis). We propose 4 systems, i.e. AT, PLSA, AT-PLSA and PLSA-AT, to classify overlaps. The 4 proposed systems have the ability to recognize two or more audio events for an overlap. The experimental results show that the 4 systems perform well in classifying overlapped audio events, whether it is the overlap in training set or the overlap out of training set. Also they perform well in classifying isolated audio events.

  1. LENG, Y., QI, G. H., XU, X. Y. A BIC based initial training set selection algorithm for active learning and its application in audio detection. Radioengineering, 2013, vol. 22, no. 2, p. 638–649. ISSN:1210-2512
  2. SCHIMMEL, J. Audible aliasing distortion in digital audio synthesis. Radioengineering, 2012, vol. 21, no. 1, p. 56–62.
  3. GREZL, F., CERNOCKY, J. Audio surveillance through known event classification. Radioengineering, 2009, vol. 18, no. 4, p. 671 to 675. ISSN:1210-2512
  4. HU, P., LIU, W., JIANG, W., YANG, Z. Latent topic model for audio retrieval. Pattern Recognition, 2014, vol. 47, no. 3, p. 1138 to 1143. DOI: 10.1016/j.patcog.2013.06.010
  5. GHORAANI B., KRISHNAN, S. Time-frequency matrix feature extraction and classification of environmental audio signals. IEEE Transactions on Audio, Speech, and Language Processing, 2011, vol. 19, no. 7, p. 2197–2209. DOI: 10.1109/TASL.2011.2118753
  6. DUAN, S., ZHANG, J., ROE, P., ET AL. A survey of tagging techniques for music, speech and environmental sound. Artificial Intelligence Review, 2012, 25 p. DOI: 10.1007/s10462-012-9362-y
  7. YAMAKAWA, N., TAKAHASHI, T., KITAHARA, T., ET AL. Environmental sound recognition for robot audition using matching-pursuit. In Modern Approaches in Applied Intelligence. Springer, Berlin Heidelberg, 2011, p. 1-10. DOI: 10.1007/978-3- 642-21827-9_1
  8. VACHER, M., FLEURY, A. PORTET, F., ET AL. Complete sound and speech recognition system for health smart homes: Application to the recognition of activities of daily living. New Developments in Biomedical Engineering, 2010. p. 645–673.
  9. CLEAR, 2007. Classification of events, activities and relationships. Evaluation and Workshop. Available at: http://www.clearevaluation.org/. Acoustic event detection evaluation plan, Available at: http://isl.ira.uka.de/clear07/?download= CLEAR_2007_AED_EvaluationPlan.pdf.
  10. HEITTOLA, T., MESAROS, A., ERONEN, A., ET AL. Contextdependent sound event detection. EURASIP Journal on Audio, Speech, and Music Processing, 2013, no. 1, p. 1–13. DOI: 10.1186/1687-4722-2013-1
  11. ROSEN-ZVI, M., CHEMUDUGUNTA, C., GRIFFITHS, T., ET AL. Learning author-topic models from text corpora. ACM Transactions on Information Systems, 2010, vol. 28, no. 1, p. 1–38. DOI: 10.1145/1658377.1658381
  12. HOFMANN, T. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 2001, vol. 42, no. 1-2, p. 177–196. DOI: 10.1023/A:1007617005950
  13. BLEI, D. M., NG, A. Y., JORDAN, M. I. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003, vol. 3, p. 993–1022.
  14. KIM, S., NARAYANAN, S., SUNDARAM, S. Acoustic topic model for audio information retrieval. In Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA). 2009, p. 37–40. DOI: 10.1109/ASPAA.2009.5346483
  15. IMOTO, K., OHISHI, Y., UEMATSU, H., OHMURO, H. Acoustic scene analysis based on latent acoustic topic and event allocation. In Proceedings of IEEE Workshop on Machine Learning for Signal Processing (MLSP). 2013, p. 1–6. DOI: 10.1109/MLSP.2013.6661957
  16. PENG, Y. X., LU, Z. W., XIAO, J. G. Semantic concept annotation based on audio PLSA model. In Proceedings of ACM Multimedia Conf. 2009, p. 841–844. DOI: 10.1145/1631272.1631428
  17. LEE, K., ELLIS, D. P. W. Audio-based semantic concept classification for consumer video. IEEE Transactions on Audio, Speech and Language Processing, 2010, vol. 18, no. 6, p. 1406-1416. DOI: 10.1109/TASL.2009.2034776
  18. HAZEN, T. J. Latent topic modeling for audio corpus summarization. In Proceedings of INTERSPEECH. 2011, p. 913–916. ISBN:978-1-61839-270-1
  19. TEMKO, A., NADEU, C. Acoustic event detection in meetingroom environments. Pattern Recognition Letters, 2009, vol. 30, no. 14, p. 1281–1288. DOI: 10.1016/j.patrec.2009.06.009
  20. ESPI, M., FUJIMOTO, M., KUBO, Y., NAKATANI, T. Spectrogram patch based acoustic event detection and classification in speech overlapping conditions. In Proceedings of 4th Joint Workshop on Hands-free Speech Communication and Microphone Arrays (HSCMA). 2014, p. 117–121. DOI: 10.1109/ HSCMA. 2014.6843263
  21. GEMMEKE, J. F., VUEGEN, L., VANRUMSTE, B., VANHAMME, H. An exemplar-based NMF approach for audio event detection. In Proceedings of IEEE Workshop on Application of Signal Processing to Audio and Acoustics (WASPAA), 2013, p. 1–4. DOI: 10.1109/WASPAA.2013.6701847
  22. DIMENT, A., HEITTOLA, T., VIRTANEN, T. Sound event detection for office live and office synthetic AASP challenge. IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events, 2013.
  23. ZHUANG, X., ZHOU, X., HASEGAWA-JOHNSON, M. A., HUANG, T. S. Real-world acoustic event detection. Pattern Recognition Letters, 2010, vol. 31, no. 12, p. 1543–1551. DOI: 10.1016/j.patrec.2010.02.005
  24. VUEGEN, L., VAN DEN BROECK, B., KARSMAKERS, P., ET AL. An MFCC-GMM approach for event detection and classification. IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events, 2013.
  25. DIKMEN, O., MESAROS, A. Sound event detection using nonnegative dictionaries learned from annotated overlapping events, In Proceedings of IEEE Workshop on Application of Signal Processing to Audio and Acoustics (WASPAA), 2013, p. 1–4. DOI: 10.1109/WASPAA.2013.6701861

Keywords: Audio event classification, author-topic model, PLSA, overlapped audio event, isolated audio event

M. Stanek, M. Sigmund [references] [full-text] [DOI: 10.13164/re.2015.0604] [Download Citations]
Finding the Most Uniform Changes in Vowel Polygon Caused by Psychological Stress

Using vowel polygons, exactly their parameters, is chosen as the criterion for achievement of differences between normal state of speaker and relevant speech under real psychological stress. All results were experimentally obtained by created software for vowel polygon analysis applied on ExamStress database. Selected 6 methods based on cross-correlation of different features were classified by the coefficient of variation and for each individual vowel polygon, the efficiency coefficient marking the most significant and uniform differences between stressed and normal speech were calculated. As the best method for observing generated differences resulted method considered mean of cross correlation values received for difference area value with vector length and angle parameter couples. Generally, best results for stress detection are achieved by vowel triangles created by /i/-/o/-/u/ and /a/-/i/-/o/ vowel triangles in formant planes containing the fifth formant F5 combined with other formants.

  1. LE FEVRE, M., MATHENY, J., KOLT, G. S. Eustress, distress, and interpretation in occupational stress. Journal on Managerial Psychology, 2003, vol. 18, no. 7, p. 726–744. DOI: 10.1108/02683940310502412
  2. ALMEIDA, D. M., KESSLER, R. C. Everyday stressors and gender differences in daily distress. Journal of Personality and Social Psychology, 1998, vol. 75, no. 3, p. 670–680. DOI: 10.1037/0022-3514.75.3.670
  3. KURNIAWAN, H., MASLOV, A. V., PECHENIZKIY, M. Stress detection from speech and Galvanic Skin Response signals. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems. Porto (Portugal), 2013, p. 209 - 214. DOI: 10.1109/CBMS.2013.6627790
  4. Bt JOHARI, N. A. a., HARIHARAN, M., SAIDATUL, A., YAACOB, S. Assimilate the auditory scale with wavelet packet filters for multistyle classification of speech under stress. In Proceedings of International Conference on Biomedical Engineering. Penang (Malaysia), 2012, p. 537–542. DOI: 10.1109/ICoBE.2012.6179076
  5. HANSEN, J. H. L., BOU-GHAZALE, S. Getting started with SUSAS: A Speech Under Simulated and Actual Stress database. In Proceedings of EUROSPEECH 1997. Rhodes (Greece), 1997, p. 1743–1746.
  6. GALANIS, D., KARABETSOS, S., KOUTSOMBOGERA, M., PAPAGEORGIU, H. Classification of emotional speech units call in centre interactions. In Proceedings of the 4th IEEE International Conference on Cognitive Infocommunications. Budapest (Hungary), 2013, p. 403–406. DOI: 10.1109/CogInfoCom.2013. 6719279
  7. YAO, X., JITSUHIRO, T., MIYAJIMA, C., KITAOKA, N., TAKEDA, K. Psychical characteristics of vocal folds during speech under stress. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Kyoto (Japan), 2012, p. 4609–4612. DOI: 10.1109/ICASSP.2012.6288945
  8. HE, L., LECH, M., MADDAGE, M. C., ALLEN, N. Stress detection using spectrograms and sigma-pi neuron units. In Proceedings of the 5th International Conference on Natural Computation. Tianjin (China), 2009, p. 260–264. DOI: 10.1109/ICNC.2009.59
  9. LECH, M., HE, L. Stress and emotion recognition using acoustic speech analysis. Journal on Mental Health Informatics: Studies in Computational Intelligence, 2014, vol. 491, p. 163–184. DOI: 10.1007/978-3-642-38550-6_9
  10. PRIBIL, J., PRIBILOVA, A. Determination of formant features in Czech and Slovak for GMM emotional speech classifier. Radioengineering, 2013, vol. 22, no. 1, p. 52–59.
  11. HASRUL, M. N., HARIHARAN, M., YAACOB, S. Human affective (emotion) behavior analysis using speech signals: A review. In Proceedings of International Conference on Biomedical Engineering. Penang (Malaysia), 2012, p. 217–222. DOI: 10.1109/ICoBE.2012.6179008
  12. GIDDENS, C. L., BARRON, K. W., BYRD-CRAVEN, J., CLARK, K. F., WINTER, S. A. Vocal indices of stress: A review. Journal of Voice, 2013, vol. 27, no. 3, p. 390.e21–390.e29. DOI: 10.1016/j.jvoice.2012.12.010
  13. PETTA, P., PELACHAUD, C., COWIE, R. Emotion-Oriented Systems: The Humaine Handbook. Berlin: Springer, 2011. DOI: 10.1007/978-3-642-15184-2
  14. SIGMUND, M. Statistical analysis of fundamental frequency based features in speech under stress. Information Technology and Control, 2013, vol. 42, no. 3, p. 286–291. DOI: 10.5755/j01.itc.42.3.3895
  15. TSE, A. C. Y., WONG, A. W.-K., WHITEHILL, T. L., MA, E. P.- M., MASTERS, R. S. W. Analogy instruction and speech performance under psychological stress. Journal of Voice, 2014, vol. 28, no. 2, p. 196–202. DOI: 10.1016/j.jvoice.2013.03.014
  16. DOMBROWSKI, M., McCLEERY, A., STANFORD, G. W., DOCHERTY, N. M. Stress reactivity of emotional and verbal speech content in schizophrenia. Journal of Nervous & Mental Disease, 2014, vol. 202, no. 8, p. 608–612. DOI: 10.1097/NMD.0000000000000169
  17. BUCHANAN, T. W., LAURES-GORE, J. S., DUFF, M. C. Acute stress reduces speech fluency. Journal of Biological Psychology, 2014, vol. 97, p. 60–66. DOI: 10.1016/j.biopsycho.2014.02.005
  18. BUTTERWORTH, B. Evidence from pauses in speech. Journal of Language Production, 1980, vol. 1, p. 155–176.
  19. STANEK, M., SIGMUND, M. Speaker dependent changes in formants based on normalization of vowel triangle. In Proceedings of the 23th International Conference Radioelektronika. Pardubice (Czech Republic), 2013, p. 337–341. DOI: 10.1109/RadioElek.2013.6530941
  20. SIGMUND, M. Influence of psychological stress on formant structure of vowels. Elektronika ir Elektrotechnika, 2012, vol. 18, no. 10, p. 45–48. DOI: 10.5755/j01.eee.18.10.3059
  21. SIGMUND, M. Introducing the database ExamStress for speech under stress. In Proceedings of the 7th Nordic Signal Processing Symposium. Rejkjavik (Iceland), 2006, p. 290–293. DOI:10.1109/NORSIG.2006.275258
  22. STANEK, M. Software for generation and analysis of vowel polygons. In Proceedings of the 37th International Conference on Telecommunications and Signal Processing. Berlin (Germany), 2014, p. 424–427.
  23. STANEK, M., POLAK, L. Algorithms for vowel recognition in fluent speech based on formant positions. In Proceedings of the 36th International Conference on Telecommunications and Signal Processing. Rome (Italy), 2013, p. 521–525. DOI: 10.1109/TSP.2013.6613987
  24. STANEK, M., SIGMUND, M. Comparison of speaker individuality in triangle area of plane formants spaces. In Proceedings of the 24th International Conference Radioelektronika. Bratislava (Slovakia), 2014, p. 1–4. DOI: 10.1109/Radioelek.2014.6828439
  25. RVACHEW, S., MATTOCK, K., POLKA, L., MENARD, L. Development and cross-linguistic variation in the infant vowel space: The case of Canadian English and Canadian French. Journal of Acoustical Society of America, 2006, vol. 120, no. 4, p. 1–10. DOI: 10.1121/1.2266460
  26. SHARIFZADEH, H. R., McLOUGHLIN, I. V., RUSSELL, M. J. A comprehensive vowel space for whispered speech. Journal of Voice, 2012, vol. 26, p. e49–e56. DOI: 10.1016/j.jvoice.2010.12.002
  27. WHITFIELD, J. A., GOBERMAN, A. M. Articulatory-acoustic vowel space: Application to clear speech in individuals with Parkinson disease. Journal of Communication Disorders, 2014, vol. 51, p. 19–28. DOI: 10.1016/j.jcomdis.2014.06.005
  28. MILIVOJEVIC, Z. N., BRODIC, D., MILIVOJEVIC, M. Z. The effects of the active hypoxia to the speech signal inharmonicity. Radioengineering, 2014, vol. 23, no. 2, p. 665–670.
  29. DELLWO, V. Rhythm and speech rate: A variation coefficient for deltaC. In Proceedings of the 38th Linguistic Colloquium on Language and Language Processing. Piliscaba (Hungary), 2003, p. 231–241.
  30. CHANDAKA, S., CHATTERJEE, A., MUNSHI, S. Support Vector Machines employing cross-correlation for emotional speech recognition. Measurement, 2009, vol. 42, no. 4, p. 611–618. DOI: 10.1016/j.measurement.2008.10.005
  31. ADAMI, A. G., HERMANSKY, H. Segmentation of speech for speaker and language recognition. In EUROSPEECH 2003. Geneva (Switzerland), 2003, p. 1–4.
  32. WRIGLEY, S. N., BROWN, G. J., WAN, V., RENALS, S. Speech and crosstalk detection in multichannel audio. IEEE Transactions on Speech and Audio Processing, 2005, vol. 13, no. 1, p. 84–91. DOI: 10.1109/TSA.2004.838531
  33. DIETRICH, M., ABBOTT, K. V. Psychobiological stress reactivity and personality in persons with high and low stressorinduced extralaryngeal reactivity. Journal of Speech, Language and Hearing Research, 2014, vol. 57, no. 6, p. 2076–2089. DOI: 10.1044/2014_JSLHR-S-12-0386

Keywords: Speech processing, emotion recognition, psychological stress, vowel polygons

L. Bolecek, V. Ricny [references] [full-text] [DOI: 10.13164/re.2015.0610] [Download Citations]
Influence of Stereoscopic Camera System Alignment Error on the Accuracy of 3D Reconstruction

The article deals with the influence of inaccurate rotation of cameras in camera system alignment on 3D reconstruction accuracy. The accuracy of the all three spatial coordinates is analyzed for two alignments (setups) of 3D cameras. In the first setup, a 3D system with parallel optical axes of the cameras is analyzed. In this stereoscopic setup, the deterministic relations are derived by the trigonometry and basic stereoscopic formulas. The second alignment is a generalized setup with cameras in arbitrary positions. The analysis of the situation in the general setup is closely related with the influence of errors of the points' correspondences. Therefore the relation between errors of points' correspondences and reconstruction of the spatial position of the point was investigated. This issue is very complex. The worst case analysis was executed with the use of Monte Carlo method. The aim is to estimate a critical situation and the possible extent of these errors. Analysis of the generalized system and derived relations for normal system represent a significant improvement of the spatial coordinates accuracy analysis. A practical experiment was executed which confirmed the proposed relations.

  1. KYTO, M., NUUTINEN, M., OITTINEN, P. Method for measuring stereo camera depth accuracy based on stereoscopic vision. In Proceedings of SPIE/IS&T Electronic Imaging, ThreeDimensional Imaging, Interaction, and Measurement. San Francisco (California, USA), 2011, 9 p. ISBN: 9780819484017
  2. CHANG, W., CHO, K., RYU, W., LEE, S.-Y. Error cost function for mirror-based three-dimensional reconstruction. Electronics Letters, 2014, vol. 50, no. 16, p. 1134–1136. DOI: 10.1049/el.2014.0496
  3. SIN-YI JIANG, CHANG, N.Y.-C., CHIN-CHIA WU, et al. Error analysis and experiments of 3D reconstruction using a RGB-D sensor. In IEEE International Conference on Automation Science and Engineering (CASE 2014). Taipei (Taiwan), 2014, p. 1020 to 1025. DOI: 10.1109/CoASE.2014.6899451
  4. GREWL, P. K., VISWANATH, K. S., GOLNARAGHI, F. Minimization of position uncertainty using 3-D stereo imaging technique for the real-time positioning of a handheld breast tissue anomaly detection probe. In Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT 2013). Tiruchengode (India), 2013, 6 p. DOI: 10.1109/ICCCNT.2013.6726646
  5. LI, J., WANG, J., ZHOU, W., et al. Robot pose estimation and accuracy analysis based on stereo vision. In Proceedings of the IEEE Ninth International Conference on Mobile Ad-hoc and Sensor Networks (MSN, 2013). Dalian (China), 2013, p. 555–559. ISBN: 978-0-7695-5159-3. DOI: 10.1109/MSN.2013.107
  6. ZHANG, T., BOULT, T. Realistic stereo error models and finite optimal stereo baselines. In IEEE Workshop on Applications of Computer Vision (WACV 2011). SnowBird (USA), 2011, p. 426 to 433. ISBN: 978-1-4244-9496-5. DOI: 10.1109/WACV.2011.5711535
  7. ZHAO, W., NANDHAKUMAR, N. Effects of camera alignment errors on stereoscopic depth estimates. Pattern Recognition, 1996, vol. 29, no. 12, p. 2115–2126. ISSN 0031-3203. DOI: 10.1016/S0031-3203(96)00051-9.
  8. CHANG, C., CHATTERJEE, S. Quantization error analysis in stereo vision. In Conference Record of the 26th Asilomar Conference on Signals, Systems and Computers. Pacific Grove (USA), 1992, vol. 2, p. 1037–1041. ISBN: 0-8186-3160-0. DOI: 10.1109/ACSSC.1992.269140
  9. FOOLADGAR, F., SAMAVI, S., SOROUSHMEHR, S. M. R. Geometrical analysis of altitude estimation error caused by pixel quantization in stereo vision. In Proceedings of the 20th Iranian Conference on Electrical Engineering (ICEE 2012). Tehran (Iran), 2012, p. 701-705. ISBN: 978-1-4673-1149-6. DOI: 10.1109/IranianCEE.2012.6292444
  10. STANCIK, P. Optoelectronic and photogrammetric measuring systems. PhD Thesis (in Czech). Brno University of Technology, Faculty of Electrical Engineering and Communication, 2008, 89 p.
  11. GALLUP, D., FRAHM, J.-M., MORDOHAI, P., POLLEFEYS, M. Variable baseline/resolution stereo. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage (USA), 2008, 8 p. ISBN: 978-1-4244-2243-2. DOI: 10.1109/CVPR.2008.4587671
  12. BELHAOUA, A., KOHLER, S., HIRSH, E. Error evaluation in a stereovision-based 3D reconstruction system. EURASIP Journal on Image and Video Processing, 2010, vol. 2010, no. 2, p. 1–12. DOI: 10.1155/2010/539836
  13. BELHAOUA, A., KOHLER, S., HIRSH, E. Estimation of 3D reconstruction errors in a stereo-vision system. In Proceedings of Modeling Aspects in Optical Metrology II, June 2009, vol. 7390. p. 1–10. DOI: 10.1117/12.827346
  14. KAMENCAY, P., BREZNAN, M., JARINA, R., et al. Improved depth map estimation from stereo images based on hybrid method. Radioengineering, 2012, vol. 21, no. 1, p. 70–78, ISSN 1210- 2512.
  15. SCHARSTEIN, D., SZELISKI, R. A taxonomy and evaluation of dense two frame stereo correspondence algorithms. International Journal of Computer Vision, April 2002, vol. 47, no.1-3, p. 7–42. DOI: 10.1023/A:1014573219977.
  16. FOOLADGAR, F., SAMAVI, S., SOROUSHMEHR, S.M.R., SHIRANI, S. Geometrical analysis of localization error in stereo vision systems. IEEE Sensors Journal, Nov. 2013, vol. 13, no. 11, p. 4236–4246. DOI: 10.1109/JSEN.2013.2264480
  17. DWARAKANATH, D., GRIWODZ, C., HALVORSEN, P., LILDBALLE, J. Study the effects of camera misalignment on 3D measurements for efficient design of vision-based inspection systems. Artificial Intelligence: Methods and Applications, 2014, vol. 8445, p. 150–163. ISBN: 978-3-319-07063-6. DOI: 10.1007/978-3-319-07064-3_13
  18. DING, X., XU, L., WANG, H., et al. Stereo depth estimation under different camera calibration and alignment errors. Applied Optics, 2011, vol. 50, no. 10, p. 1289–1301. DOI: 10.1364/AO.50.001289.
  19. KNIGHT, J., REID, I. Active visual alignment of a mobile stereo camera platform. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA '00). San Francisco (USA), April 2000, vol. 4, p. 3203–3208. ISBN: 0-7803- 5886-4. DOI: 10.1109/ROBOT.2000.845156.
  20. RESKO, B., BARANYI, P. Stereo camera alignment based on disparity selective cells in the visual cortex. In Proceedings of IEEE 3rd International Conf. on Computational Cybernetics (ICCC 2005). 13-16 April 2005, p. 285–290. ISBN: 0-7803-9122-5. DOI: 10.1109/ICCCYB.2005.1511588.
  21. Autodesk. Autodesk 3DS MAX 8[software]. Software available http://www.autodesk.com/.
  22. CRAIG, J. Introduction to Robotics: Mechanics and Control. 3rd ed. Prentice Hall, 2004. ISBN 0201543613.

Keywords: Camera alignment, 3D reconstruction accuracy, corresponding points

G. Wilsenach, A. K. Mishra [references] [full-text] [DOI: 10.13164/re.2015.0621] [Download Citations]
Wavelet-Based Compressive Sensing for Point Scatterers

Compressive Sensing (CS) allows for the sam-pling of signals at well below the Nyquist rate but does so, usually, at the cost of the suppression of lower amplitude sig-nal components. Recent work suggests that important infor-mation essential for recognizing targets in the radar context is contained in the side-lobes as well, which are often sup-pressed by CS. In this paper we extend existing techniques and introduce new techniques both for improving the accu-racy of CS reconstructions and for improving the separa-bility of scenes reconstructed using CS. We investigate the Discrete Wavelet Transform (DWT), and show how the use of the DWT as a representation basis may improve the accu-racy of reconstruction generally. Moreover, we introduce the concept of using multiple wavelet-based reconstructions of a scene, given only a single physical observation, to derive re-constructions that surpass even the best wavelet-based CS reconstructions. Lastly, we specifically consider the effect of the wavelet-based reconstruction on classification. This is done indirectly by comparing outputs of different algo-rithms using a variety of separability measures. We show that various wavelet-based CS reconstructions are substan-tially better than conventional CS approaches at inducing (or preserving) separability, and hence may be more useful in classification applications.

  1. ENDER, J. On compressive sensing applied to radar. Signal Processing, 2010, vol. 90, no. 5, p. 1402–1414. DOI: 10.1016/j.sigpro.2009.11.009
  2. TELLO, M., LOPEZ-DEKKER, P., MALLORQUI, J. J. A novel strategy for radar imaging based on compressive sensing. IEEE Transactions on Geoscience and Remote Sensing, 2010, vol. 48, no. 12, p. 4285–4295. DOI: 10.1109/TGRS.2010.2051231
  3. MANN, S., PHOGAT, R., MISHRA, A. K. Dantzig selector based compressive sensing for radar image enhancement. In 2010 Annual IEEE India Conference (INDICON). Kolkata (India), 2010, p. 1–4. DOI: 10.1109/INDCON.2010.5712730
  4. MISHRA, A. K., WILSENACH, G., INGGS, M. Information sensing for radar target classification using compressive sensing. In 13th International Radar Symposium (IRS). Warsaw (Poland), 2012, p. 326–330. DOI: 10.1109/IRS.2012.6233371
  5. SI, X., JIAO, L., YU, H., et al. SAR images reconstruction based on compressive sensing. In 2nd Asian-Pacific Conference on Synthetic Aperture Radar (APSAR). Xian (China), 2009, p. 1056–1059. DOI: 10.1109/APSAR.2009.5374210
  6. CHEN, H., WAN, Q., FAN, R. Beampattern synthesis using reweighted l1-norm minimization and array orientation diversity. Radioengineering, 2011, vol. 22, no. 2, p. 602–609.
  7. HERMAN, M. A., STROHMER, T. High-resolution radar via compressed sensing. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 6, p. 2275–2284. DOI: 10.1109/TSP.2009.2014277
  8. BHATTACHARYA, S., BLUMENSATH, T., MULGREW, B., et al. Fast encoding of synthetic aperture radar raw data using compressed sensing. In Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing. Washington DC (USA), 2007, p. 448–452. DOI: 10.1109/SSP.2007.4301298
  9. YANG, S., ZHANG, Z., DU, H., et al. The compressive sensing based on biorthogonal wavelet basis. In Proceedings of the 2010 International Symposium on Intelligence Information Processing and Trusted Computing. Washington, DC (USA), 2010, p. 479-482. DOI: 10.1109/IPTC.2010.146
  10. BI, X., CHEN, X., ZHANG, Y., et al. Image compressed sensing based on wavelet transform in contourlet domain. Signal Processing, 2011, vol. 91, no. 5, p. 1085–1092. DOI: 10.1016/j.sigpro.2010.10.006
  11. XIAO, J., YANG, H., LUO, W. Compressed sensing by waveletbased contourlet transform. In Proceedings of the 2011 International Conference of Information Technology, Computer Engineering and Management Sciences. Washington, DC (USA), 2011, vol. 3, p. 75– 78. DOI: 10.1109/ICM.2011.165
  12. GERRY, M. J., POTTER, L. C., GUPTA, I. J., et al. A parametric model for synthetic aperture radar measurements. IEEE Transactions on Antennas and Propagation, 1999, vol. 47, no. 7, p. 1179–1188. DOI: 10.1109/8.785750
  13. BAKER, C., INGGS, M., MISHRA, A. Waveform processingdomain diversity and ATR. In 19th European Signal Processing Conference (EUSIPCO 2011). Barcelona (Spain), 2011, p. 431–435.
  14. CANDES, E. J., WALKIN, M. B. An introduction to compressive sampling. IEEE Singal Processing Magazine, 2008, vol. 25, no. 2, p. 21–30. DOI: 10.1109/MSP.2007.914731
  15. BARANIUK, R., STEEGHS, P. Compressive radar imaging. In IEEE Radar Conference. Boston (USA), 2007, p. 128–133. DOI: 10.1109/RADAR.2007.374203
  16. CANDES, E. J., TAO, T. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Transactions on Information Theory, 2006, vol. 52, no. 12, p. 5406–5425. DOI: 10.1109/TIT.2006.885507
  17. MALLAT, S. A Wavelet Tour of Signal Processing: The Sparse Way. 3rd ed. Burlington (USA): Academic Press, 2008. ISBN: 0123743702
  18. STANKWITZ, H. C., DALLAIRE, R. J., FIENUP, J. R. Nonlinear apodization for sidelobe control in SAR imagery. IEEE Transactions on Aerospace and Electronic Systems, 1995, vol. 31, no. 1, p. 267–279. DOI: 10.1109/7.366309
  19. PANIGRAHI, R. K., MISHRA, A. K. A novel algorithm for apodization and super-resolution in Fourier imaging. In 2011 International Conference on Devices and Communications (ICDeCom). Mesra (India), 2011, p. 1–5. DOI: 10.1109/ICDECOM.2011.5738468
  20. FUKUNAGA, K. Introduction to Statistical Pattern Recognition. 2nd ed. San Diego (USA): Academic Press, 1990. ISBN: 0122698517
  21. MISHRA, A. K. Separability indices and their use in radar signal based target recognition. IEICE Electronics Express, 2009, vol. 6, no. 14, p. 1000–1005. DOI: 10.1587/elex.6.1000

Keywords: Compressive sensing, wavelet, radar, reconstruction, sparse scenes, filtering, point scatterers

A. E. Almslmany, Q. S. Cao, C. Y. wang [references] [full-text] [DOI: 10.13164/re.2015.0632] [Download Citations]
High Speed Dim Air Target Detection Using Airborne Radar under Clutter and Jamming Effects

The challenging potential problems associated with using airborne radar in detection of high Speed Maneuvering Dim Target (HSMDT) are the highly noise, jamming and clutter effects. The problem is not only how to remove clutter and jamming as well as the range migration and Doppler ambiguity estimation problems due to high relative speed between the targets and airborne radar. Some of the recently published works ignored the range migration problems, while the others ignored the Doppler ambiguity estimation. In this paper a new hybrid technique using Optimum Space Time Adaptive Processing (OSTAP), Second Order Keystone Transform (SOKT), and the Improved Fractional Radon Transform (IFrRT) was proposed. The OSTAP was applied as anti-jamming and clutter rejection method, the SOKT corrects the range curvature and part of the range walk, then the IFrRT estimates the target’ radial acceleration and corrects the residual range walk. The simulation demonstrates the validity and effectiveness of the proposed technique, and its advantages over the previous researches by comparing its probability of detection with the traditional methods. The new approach increases the probability of detection, and also overcomes the limitation of Doppler frequency ambiguity.

  1. BRENNAN, L. E., REED, I. S. Theory of adaptive radar. IEEE Transaction on Aerospace Electronic Systems, 1973, vol. 9, no. 2, p. 237–251. DOI: 10.1109/TAES.1973.309792
  2. WEI, Z., ZISHU, H., JUN, L., HONGMIN, L. Multiple-input multiple-output radar multistage multiple-beam beam space reduced-dimension space-time adaptive processing. IET Radar, Sonar and Navigation, 2013, vol.7, no. 3, p. 295–303. DOI: 10.1049/iet-rsn.2012.0078
  3. WANG, Y.L., CHEN, J.W., BAO, Z., PENG, Y.N. Robust spacetime adaptive processing for airborne radar in non-homogeneous clutter environments. IEEE Transaction on Antenna and Propagation, 2003, vol. 39, no. 1, p. 70–81. DOI: 10.1109/TAES.2003.1188894
  4. KIRSTEINS, I. P., TUFTS, D. W. Adaptive detection using a low rank approximation to a data matrix. IEEE Transaction on Aerospace Electronic Systems, 1994, vol. 30, no. 1, p. 55–67. DOI: 10.1109/7.250406
  5. DIPIETO, R. C. Extended factored space-time processing technique for airborne radar. In Proc. 25th Asilomar Conference on Signals, Systems and Computers. Pacific Grove (CA, USA), October, 1992, vol. 1, p. 425–430. DOI: 10.1109/ACSSC.1992.269236
  6. WU, D., ZHU, D., SHEN, M., ZHU, Z. Time-varying space-time autoregressive filtering algorithm for space-time adaptive processing. IET Radar, Sonar & Navigation, 2012, vol. 6, no. 4, p. 213–221. DOI: 10.1049/iet-rsn.2011.0095
  7. GUOQING, L., JIAN, L. Moving target detection via airborne HRR phased array radar. IEEE Transactions on Aerospace and Electronic Systems, 2001, vol. 37, no. 3, p. 914–924. DOI: 10.1109/7.953246
  8. TIAN, J., CUI, W., WU, S. A novel method for parameter estimation of space moving targets. IEEE Geoscience and Remote Sensing Letters, February 2014, vol. 11, no. 2, p. 389–393. DOI: 10.1109/LGRS.2013.2263332
  9. XU, J., YU, J., PENG, Y. N., XIA, X. G. Radon-Fourier transform for radar target detection, (I): Generalized Doppler filter bank. IEEE Transactions on Aerospace Electronic Systems, 2011, vol. 47, no. 2, p. 1186–1200. DOI: 10.1109/TAES.2011.5751251
  10. XU, J., YU, J., PENG, Y. N., XIA, X. G. Radon-Fourier transform for radar target detection (III): Optimality and fast implementations. IEEE Transactions on Aerospace Electronic Systems, 2012, vol. 48, no. 2, p. 991–1004. DOI: 10.1109/TAES.2012.6178044
  11. QIONGQIONG JIA, RENBIAO WU., HAI LI. Impacts of keystone formatting on space-time adaptive processing in airborne radar. In IEEE 10th International Conference on Signal Processing (ICSP). Bejing (China), 2010, p. 2164–2167. DOI: 10.1109/ICOSP.2010.5655762
  12. ZHOU, F., WU, R., XING, M., BAO, Z. Approach for single channel SAR ground moving target imaging and motion parameter estimation. IET Radar Sonar and Navigation, 2007, vol. 1, no. 1, p. 59–66. DOI: 10.1049/iet-rsn:20060040
  13. JUNGANG, Y., XIAOTAO, H., THOMPSON, J., TIAN, J., ZHIMIN, Z. Low-frequency ultra-wideband synthetic aperture radar ground moving target imaging. IET Radar, Sonar and Navigation, 2011, vol. 5, no. 9, p. 994–1001. DOI: 10.1049/ietrsn.2010.0387
  14. GUANGCAI SUN, MENGDAO XING, XIANG-GEN XIA, YIRONG WU, ZHENG BAO. Robust ground moving-target imaging using deramp–keystone processing. IEEE Transactions on Geoscience and Remote Sensing. Feb. 2013, vol. 51, no. 2, p. 966 to 982. DOI: 10.1109/TGRS.2012.2204889
  15. ZHOU, Z., SU, Z., WU, R. Method for detecting ground moving target with range migration. In IET International Radar Conference. 2009, vol. 141, p. 1-4.
  16. RENBIAO WU, QIONGQIONG JIA, HAI LI. A novel STAP method for the detection of fast dim air moving targets. In IEEE International Radar Conference. 2010, p. 2160–2163. DOI: 10.1109/ICOSP.2010.5655763
  17. QIONGQIONG JIA., RENBIAO WU, HAI LI. Impacts of keystone formatting on space-time adaptive processing in airborne radar. In IEEE 10th International Conference on Signal Processing (ICSP). Bejing (China), 2010, p. 2164–2167. DOI: 10.1109/ICOSP.2010.5655762
  18. QIONGQIONG JIA, RENBIAO WU. Detection of fast air moving din targets via STAP with low computation burden. In IET International Radar Conference. Xian (China), 2013, p. 1-5. DOI: 10.1049/cp.2013.0326
  19. TIAN, J., CUI, W., WU, S. A novel method for parameter estimation of space moving targets. IEEE Geoscience and Remote Sensing Letters, Feb. 2014, vol. 11, no. 2, p. 389–393. DOI: 10.1109/LGRS.2013.2263332
  20. SUN, G., XING, M.-D., WANG, Y., ZHOU, F., WU, Y., BAO, Z. Improved ambiguity estimation using a modified fractional Radon transform. IET Radar, Sonar and Navigation, 2011, vol. 5, no. 4, p. 489–495. DOI: 10.1049/iet-rsn.2010.0246
  21. WANG, Y., PENG, Y. An effective method for clutter and jamming rejection in airborne phased array radar. In IEEE International Symposium on Phased Array Systems and Technology. Boston (MA, USA), 1996, p. 349–352. DOI: 10.1109/PAST.1996.566113
  22. SHENGQI ZHU, GUISHENG LIAO, DONG YANG, HAIHONG TAO. A new method for radar high-speed maneuvering weak target detection and imaging. IEEE Geoscience and Remote Sensing Letters, July 2014, vol. 11, no. 7, p. 1175–1179. DOI: 10.1109/LGRS.2013.2283887
  23. KLEMM, R. Applications of Space-Time Adaptive Processing. The Institution of Electrical Engineers, UK, 2004. ISBN 0 85296 924 4
  24. YANG LI, TAO ZENG, TENG LONG, ZHENG WANG. Range migration compensation and Doppler ambiguity resolution by keystone transform. In International Conference on Radar CIE 06. Shanghai, 2006, p. 1–4. DOI: 10.1109/ICR.2006.343404
  25. WANG, H., CAI, L. On adaptive spatial-temporal processing for airborne surveillance radar systems. IEEE Transactions on Aerospace and Electronic Systems, 1994, vol. 30, no. 3, p. 660–669. DOI: 10.1109/7.303737
  26. HAIMOVICH, A. M., BAR NESS, Y. An eigenanalysis interference canceler. IEEE Transactions on Signal Processing, 1991, vol. 39, no. 1, p. 76–84. DOI: 10.1109/78.80767
  27. HAIMOVICH, A. M. An eigencanceller: Adaptive radar by eigenanalysis methods. IEEE Transactions on Aerospace and Electronic Systems, 1996, vol. 32, no. 2, p. 532–542. DOI: 10.1109/7.489498
  28. GOLDSTEIN, J. S., REED, I. S. Theory of partially adaptive radar. IEEE Transactions on Aerospace and Electronic Systems, 1997, vol. 33, no. 4, p. 1309–1325. DOI: 10.1109/7.625132
  29. GOLDSTEIN, J. S., REED, I. S., SCHARF, L. L. A multistage representation of the Wiener filter based on orthogonal projections. IEEE Transactions on Information Theory, 1998, vol. 44, no. 7, p. 2943–2959. DOI: 10.1109/18.737524
  30. JIAN LI, GUOQING LIU, NANZHI JIANG, STOICA, P. Airborne phased array radar: clutter and jamming suppression and moving target detection and feature extraction. In Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. 2000, p. 240–244. DOI: 10.1109/SAM.2000.878006
  31. ALMSLMANY, A., CAO, Q., WANG, C. A new aiborne selfprotection jammer for countering ground radars based on subnyquist. IEICE Electronic Express, 2015, vol. 12. DOI: 10.1587/elex.12.20150291

Keywords: Airborne radar, dim target detection, space time adaptive processing, jamming

S. Jeon, J. Kim, H.-K. Mok, J.-S. Seo [references] [full-text] [DOI: 10.13164/re.2015.0643] [Download Citations]
Formulating the Net Gain of MISO-SFN in the Presence of Self-Interferences

In this study, an analytical formula for multiple-input single-output single frequency network gain (MISO-SFNG) is investigated. To formulate the net MISO-SFNG, we derived the average signal to interference plus noise ratio (SINR) where the gain achieved by the distributed MISO diversity as a function of power imbalance is curve-fitted. Further, we analyzed the losses owing to self-interferences resulting from the delay spread and imperfect channel estimation. We verified the accuracy and effectiveness of the derived formula by comparing the measurement results with the analytical results. The derived formula helps to understand how various system factors affect the gain under a given condition. The formula can be used to evaluate the MISO-SFNG and to predict the MISO-SFN coverage in various system configurations.

  1. MATTSSON, A. Single frequency networks in DTV. IEEE Transactions on Broadcasting, 2005, vol. 51, no. 4, p. 413–422. DOI: 10.1109/TBC.2010.2043897
  2. EBU BPN 066. Guide on SFN Frequency Planning and Network Implementation with Regard to T-DAB and DVB-T. European Broadcasting Union, 2005.
  3. GOLDSMITH, A. Wireless Communications. New York (USA): Cambridge University Press, 2005. DOI: http://dx.doi.org/10.1017/CBO9780511841224
  4. ITU-R Report BT. 2254. Frequency and Network Planning Aspects of DVB-T2. International Telecommunication Union, 2012.
  5. PLETS, V., JOSEPH, W., ANGUEIRA, P., ARENAS, J. A., VERLOOK, L., MARTENS, L. On the methodology for calculating SFN gain in digital broadcast systems. IEEE Transactions on Broadcasting, 2010, vol. 56, no. 3, p. 331–339. DOI: 10.1109/TBC.2010.2051176
  6. ITU-R Recommendation BT.1306-6. Error Correction, Data Framing, Modulation and Emission Methods for Digital Terrestrial Television Broadcasting. International Telecommunication Union, 2012.
  7. ITU-R Recommendation BT.1877-1. Error Correction, Data Framing, Modulation and Emission Methods for Second Generation of Digital Terrestrial Television Broadcasting Systems. International Telecommunication Union, 2012.
  8. ETSI EN 302 755 V1.3.1. Frame Structure, Channel Coding and Modulation for a Second Generation Digital Terrestrial Television Broadcasting System (DVB-T2), V1.3.1. European Telecommunications Standards Institute, 2012.
  9. JEON, S., BAEK, J.-S., KIM, J., SEO, J.-S. Analysis of the Network Gains of SISO and MISO Single Frequency Network Broadcast Systems. IEICE Transactions on Communications, 2014, vol. E97-B, no. 1, p. 182–189. DOI: http://dx.doi.org/10.1587/transcom.E97.B.182
  10. LANZA, M., GUTIERREZ, A. L., PEREZ, J. R., MORGADE, J., DOMINGO, M., VALLE, L., ANGUEIRA, P., BASTERRECHEA, J. Coverage optimization and power reduction in SFN using simulated annealing. IEEE Transactions on Broadcasting, 2014, vol. 60, no. 3, p. 474–485. http://dx.doi.org/10.1109/TBC.2014.2333131
  11. JEON, S., LEE, J., CHOI, J.-M., SEO, J.-S. Definition and properties of the erasure effect in single frequency network with two synchronized transmitters. IEEE Antenna and Wireless Propagation Letters, 2014, vol. 13, p. 439–442. DOI: 10.1109/LAWP.2014.2309699
  12. JEON, S., KIM, J., HAN, J.-S., SEO, J.-S. Formulating the net gain of an SISO-SFN in the presence of the erasure effect. IEEE Transactions on Broadcasting, 2015, vol. PP, no. 99. DOI: 10.1109/TBC.2015.2400812
  13. JEON, S., BAEK, J.-S., KIM, J., SEO, J.-S. Analysis on the network Gains of SISO and MISO single frequency network broadcast systems. IEICE Transactions on Communications, 2014, vol. E97-B, no. 1, p. 182–189. DOI: http://dx.doi.org/10.1587/transcom.E97.B.182
  14. TORMOS, M., TANOUGAST, C., DANDACHE, A., MASSE, D., KASSER, P. Modeling and performance evaluations of Alamouti technique in a single frequency network for DVB-T2. EURASIP Journal on Wireless Communications and Networking, 2013, vol. 78, no. 1. DOI: http://dx.doi.org/10.1186/1687-1499-2013-78
  15. MORGADE, J.ANGUEIRA, P. ARRINDA, A. ORDIALES, J. L. BRUGGER, R. FRANK, J. KUNERT, C. PFEFFER, R. DVB-T2 MISO/SISO receiver performance limits in single frequency networks: practical results. In The 8th IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Uxbridge (UK), 2013. DOI: http://dx.doi.org/10.1109/BMSB.2013.6621718
  16. QI, J., ROBERT, J. CHEE, K. L. SLIMANI, M., ZOELLNER, J. DVB-T2 MISO field measurements and a calibrated coverage gain predictor. In The 7th IEEE international Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). 2012. DOI: http://dx.doi.org/10.1109/BMSB.2012.6264296
  17. MORGADE, J., ANGUEIRA, P., ARRINDA, A., PFEFFER, R., STEINMANN, V., FRANK, J., BRUGGER, R. SFN-SISO and SFNMISO gain performance analysis for DVB-T2 network planning. IEEE Transactions on Broadcasting, 2014, vol. 60, no. 2, p. 272– 286. DOI: http://dx.doi.org/10.1109/TBC.2013.2293852
  18. ETSI EN 302 583 V1.1.1. Measurement Guidelines for DVB Systems. European Telecommunications Standards Institute, 2008.
  19. Terrestrial tuner and demodulator. Nordig Unified Requirements for Integrated Receiver Decoders for Use in Cable, Satellite, Terrestrial and IP-Based Networks v2.4, Chapter 3.4. [Online] 2013. Available at: http://www.nordig.org/pdf/NorDig-Unified ver 2.4.pdf.
  20. ETSI TS 102 831 V1.2.1 Implementation Guidelines for a Second Generation Digital Terrestrial Television Broadcasting System (DVB-T2). European Telecommunications Standards Institute, 2012.
  21. ALAMOUTI, S. M. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 1998, vol. 16, no. 8, p. 1451. DOI: http://dx.doi.org/10.1109/49.730453
  22. CHUANG, J. C.-I. The effects of time delay spread on portable radio communications channels with digital modulation. IEEE Journal on Selected Areas in Communications, 1987, vol. 5, no. 5, p. 879. DOI: http://dx.doi.org/10.1109/JSAC.1987.1146591
  23. SALMAN, F., COSMAS, J., ZHANG, Y. Modelling and performance of a DVB-T2 channel estimator and equaliser for different pilot patterns. In 7th IEEE international Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). 2012. DOI: http://dx.doi.org/10.1109/BMSB.2012.6264256

Keywords: Single frequency network (SFN), DVB-T2 MISO processing, power imbalance, calibrated coverage prediction

Kun Jiang, Pingbo Yan, Yuanqin Wang, Yiwen Jiao, Xin Lian, Ke Xu [references] [full-text] [DOI: 10.13164/re.2015.0650] [Download Citations]
Design and Evaluation of Digital Baseband Converter Sub-channel Delay Compensation Method on Bandwidth Synthesis

The effect of sub-channel delay on bandwidth synthesis is investigated to eliminate the “phase step” phenomenon in bandwidth synthesis during the test of CDBE (Chinese Digital Backend). Through formula derivation, we realize that sub-channel delay may cause phase discontinuity between different sub-channels. Theoretical analysis shows that sub-channel delay can induce bandwidth synthesis error in group delay measurement of the linear system. Furthermore, in the differential delay measurement between two stations, bandwidth synthesis error may occur when the LO (Local Oscillator) frequency differences of corresponding sub-channels are not identical. Error-free conditions are discussed under different applications. The phase errors among different sub-channels can be removed manually. However, the most effective way is the compensation of sub-channel delay. A sub-channel delay calculation method based on Modelsim is proposed. The compensation method is detailed. Simulation and field experiments are presented to verify our approach.

  1. PETRACHENKO, B., NIELL, A., BEHREND, D., et al. Design aspects of the VLBI2010 system. Progress Report of the IVS VLBI2010 Committee. NASA/TM-2009-214180, 2009, p. 1-56.
  2. PETRACHENKO, B. VLBI2010 digital back end (DBE) requirements. IVS memorandum 2008-014v0, 2008, p. 1-7.
  3. COREY, B. Flexible down-converter. In VLBI2010 Workshop on Technical Specifications. Wettzell (Germany), 2012, p. 1–14.
  4. TUCCARI, G. Digital backends VLBI2010. In VLBI2010 Workshop on Technical Specifications. Wettzell (Germany), 2012, p. 1–25.
  5. DURAND, S., HINTON, A. ET AL. Haystack/NRAO VLBI digital backend on the ROACH platform. In CASPR Workshop 2010. CASPR (USA), 2010, p. 1–14.
  6. TUCCARI, G., BUTTACCIO, S. DBBC3: VLBI at 32 Gbits per second. In 11th EVN Symp.& Users Meeting. Bordeaux (France), 2012, p. 1–6.
  7. TAKEFUJI, K., TAKEUCHI, H., TSUTSUMI, M. Nextgeneration A/D sampler ADS3000+ for VLBI. In 2010 IVS General Meeting Proc. California (USA). NASA, 2010, p. 378 to 382.
  8. ZHU REN-JIE, ZHANG XIU-ZHONG, WEI WEN-REN, ET AL. The progress of modern Chinese data acquisition system. Progress in Astronomy, 2011, vol. 29, no. 2, p. 207–217.
  9. JIAO YIWEN, JIANG KUN, HOU XIAOMIN, ET AL. Design of the deep space interferometry digital backend. In SpaceOps 2012. Stockholm (Sweden), 2012, p. 1–6. DOI: 10.2514/6.2012-1342990
  10. ROGERS, A. E. E. Very long baseline interferometry with large effective bandwidth for phase-delay measurements. Radio Science, 1970, vol. 5, no. 10, p. 1239–1247.
  11. MOLINDER, J. I. A tutorial introduction to very long baseline interferometry (VLBI) using bandwidth synthesis. DSN Progress Report 42-46. California (USA). Jet Propulsion Laboratory, 1978, p. 16–28.
  12. GORHAM, P.W. Designing optimal bandwidth synthesis arrays for VLBI. TMO Progress Report 42-133. California (USA). Jet Propulsion Laboratory, 1998, p. 1–27.
  13. BAGRI, D.S. A proposed frequency synthesis approach to accurately measure the angular position. IPN Progress Report 42- 163. California (USA). Jet Propulsion Laboratory, 2005, p. 1–7.
  14. KONDO, T. Bandwidth synthesis of VLBI data with clock-offsets different every channel. In Japan Geoscience Union Meeting. Chiba (Japan), 2007, p. 1–3.
  15. XIANG-WEI ZHU, YUAN-LING LI, SHAO-WEI YONG, ET AL. A novel definition and measurement method of group delay and its application. IEEE Transactions on Instrumentation and Measurement, 2009, vol. 58, no. 1, p. 229–233. DOI: 10.1109/TIM.2008.927197
  16. Alan R. Whitney. VLBI digital-backend intercomparison testing (Draft). MIT Haystack Observatory. Westford (USA), 2009, p. 1-5.
  17. WHITNEY, AL., BEAUDOIN, CH., CAPPALLO, R., ET al. VLBI digital-backend intercomparison test report. MIT Haystack Observatory. Westford (USA), 2012, p. 1-18.
  18. JIANG KUN, HOU XIAO-MIN, XU KE, ET AL. High efficiency parallel extraction of multi-tone PCAL signals. Journal of Spacecraft TT&C Technology, 2012, vol. 31, no. 6, p. 32–36.
  19. JIANG KUN, JIAO YIWEN, HOU XIAOMIN, ET AL. Design and implementation of the deep space interferometry DBBC subsystem. In International Conference on Signal Processing ICSP2012. Beijing (China), 2012, p. 448-451. DOI: 10.1109/ICoSP.2012.6491521

Keywords: VLBI, bandwidth synthesis, digital baseband converter, phase step, delay compensation, sub-channel delay