ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

June 2013, Volume 22, Number 2

Show all Hide all

F. Khateb, S. Bay Abo Dabbous, S. Vlassis [references] [full-text]
A Survey of Non-conventional Techniques for Low-voltage Low-power Analog Circuit Design

Designing integrated circuits able to work under low-voltage (LV) low-power (LP) condition is currently undergoing a very considerable boom. Reducing voltage supply and power consumption of integrated circuits is crucial factor since in general it ensures the device reliability, prevents overheating of the circuits and in particular prolongs the operation period for battery powered devices. Recently, non-conventional techniques i.e. bulk-driven (BD), floating-gate (FG) and quasi-floating-gate (QFG) techniques have been proposed as powerful ways to reduce the design complexity and push the voltage supply towards threshold voltage of the MOS transistors (MOST). Therefore, this paper presents the operation principle, the advantages and disadvantages of each of these techniques, enabling circuit designers to choose the proper design technique based on application requirements. As an example of application three operational transconductance amplifiers (OTA) base on these non-conventional techniques are presented, the voltage supply is only ±0.4 V and the power consumption is 23.5 µW. PSpice simulation results using the 0.18 µm CMOS technology from TSMC are included to verify the design functionality and correspondence with theory.

  1. ISMAIL, M., SAKURAI, S. Low-voltage CMOS Operational Amplifiers Theory, Design and Implementation. Kluwer Academic Publishers, 2001.
  2. SAKURAI, T., MATSUZAWA, A., DOUSEKI, T. Fully-depleted SOI CMOS Circuits and Technology for Ultralow-power Applications. Japan: Springer, 2006.
  3. URBAN, C. S., MOON, J. E., MUKUND, P. R. Designing bulkdriven MOSFETs for ultra-low-voltage analogue applications. Semiconductor Science and Technology 2010, vol. 25, p. 1 - 8.
  4. RODRIGUEZ-VILLEGAS, E. Low Power and Low Voltage Circuit Design with the FGMOS Transistor. London: Institution of Engineering and Technology, 2006.
  5. KHATEB, F., BIOLEK, D., KHATIB, N., VAVRA, J. Utilizing the bulk-driven technique in analog circuit design. In IEEE 13th International Symposium on Design and Diagnostics of Electronic Circuits and Systems. Vienna (Austria), 2010, p. 16 - 19.
  6. MALOBERTI, F. Analog Design for CMOS VLSI Systems. Dordrecht: Kluwer Academic Publishers, 2001.
  7. RAJPUT, S. S., JAMUAR, S. S. Low voltage analog circuit design techniques. IEEE Circuits and Systems Magazine, 2002, vol. 2, no. 1, p. 24 - 42.
  8. URBAN, C. S., MOON, J. E., MUKUND, P. R. Scaling the bulkdriven MOSFET into deca-nanometer bulk CMOS processes. Microelectronics Reliability, 2011, vol. 51, no. 4, p. 727 - 732.
  9. DALY, J. C., GALIPEAU, D. P. Analog BICMOS Design Practices and Pitfalls. USA: CRC press LLC, 2000.
  10. GUZINSKI, A., BIALKO, M., MATHEAU, J. C. Body-driven differential amplifier for application in continuous-time active Cfilter. In Proc. ECCD. Paris (France), 1987, p. 315 - 319.
  11. KHATEB, F., KACAR, F., KHATIB, N., KUBANEK, D. Highprecision differential-input buffered and external transconductance amplifier for low-voltage low-power applications. Circuits, Systems, and Signal Processing, 2012, vol. 31, p. 453 - 476.
  12. YAN, S., SANCHEZ-SINENCIO, E. Low voltage analog circuit design techniques: A tutorial. IEICE Trans. Analog Integrated Circuits and Systems, 2000, vol. E00–A, no. 2
  13. NAVARRO, I., LOPEZ-MARTIN, A. J., DE LA CRUZ, C. A., CARLOSENA, A. A compact four-quadrant floating-gate MOS multiplier. Analog Integrated Circuits and Signal Processing, 2004, p. 159 - 166.
  14. KHATEB, F., KHATIB, N., KOTON, J. Novel low-voltage ultralow- power DVCC based on floating- gate folded cascode OTA. Microelectronics Journal, 2011, p. 1010 - 1017.
  15. YIN, L., EMBAI, S. H. K., SANCHEZ-SINENCIO, E. A floatinggate MOSFET D/A converter. In Proceedings of the IEEE International Symposium on Circuits and Systems, 1997, p. 409 - 412.
  16. REN, L., ZHU, Z., YANG, Y. Design of ultra-low voltage op amp based on quasi-floating gate transistors. In Proceedings of the 7th International Solid –State and Integrated Circuits and Technology Conference. 2004, vol. 2, p. 1465 - 1468.
  17. RAMIREZ-ANGULO, J., URQUIDI, C., GONZALEZ-CORVAJAL, R., TORRALBA, A. Sub-volt supply analog circuits based on quasi-floating gate transistors. In Proceedings of the International Symposium on Circuits and Systems ISCAS '03. Bangkok (Thailand), 2003, vol. 1, p. 781 - 784.
  18. RAMIREZ-ANGULO, J., LOPEZ-MARTIN, A. J., CARVAJAL, R. G., CHAVERO, F. M. Very low-voltage analog signal processing based on quasi-floating gate transistors. IEEE Journal of Solid-State Circuits, 2004, vol. 39, no. 3, p. 434 - 442.
  19. KHATEB, F., KHATIB, N., KUBANEK, D. Low-voltage ultralow- power current conveyor based on quasi-floating gate transistors. Radioengineering, 2012, vol. 21, no. 2, p. 725 - 735.
  20. GUPTA, R., SHARMA, S., JAMUAR, S. S. A low voltage current mirror based on quasi-floating gate MOSFETs. In IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). 2010, p. 580 - 583.
  21. CARRILLO, J. M., TORELLI, G., PEREZ-ALOE, R., DUQUECARRILLO, F. 1-V rail-to-rail bulk-driven CMOS OTA with enhanced gain and gain-bandwidth product. In Proceedings of the European Circuit Theory and Design Conf.e. 2005, p. 261 to 264.
  22. MIGUEZ, M. R., ARNAUD, A. Gm-C Chopper Amplifiers for Implantable Medical Devices, Montevideo, March 2008.
  23. VLASSIS, S., RAIKOS, G. Bulk-driven differential voltage follower. Electronics Letters, 2009, vol. 45, p. 1276 - 1277.
  24. CARRILLO, J. M., TORELLI, G., PEREZ-ALOE, R., VALVERDE, J. M., DUQUE-CARRILLO, J. F. Single-pair bulkdriven CMOS input stage: A compact low-voltage analog cell for scaled technologies. Integration, the VLSI Journal, 2010, vol. 43, p. 251 - 257.
  25. RAIKOS, G., VLASSIS, S., PSYCHALINOS, C. 0.5 V bulkdriven analog building blocks. International Journal of Electronics and Communication (AEU), 2012, vol. 66, p. 920 - 927.
  26. VITTOZ, E. A. Weak inversion for ultra low-power and very lowvoltage circuits. In Proceedings of Solid State Circuits Conference A-SSCC. 2009, p. 129 - 132.
  27. KHATIB, N., KHATEB, F. New bulk-driven DVCC based on folded cascode structure. In Proceeding of Electronic Devices and Systems IMAPS CS International Conference, 2011, p. 211 - 216.
  28. RAIKOS, G., VLASSIS, S. 0.8V bulk-driven operational amplifier. Analog Integrated Circuits and Signal Processing, 2009, p. 425 - 432.
  29. RAISANEN-RUOTSALAINEN, E., LASANEN, K., KOSTAMOVAARA, J. A 1.2 V micropower CMOS op amp with floatinggate input transistors. In Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems. 2000, vol. 2, p. 794 - 797.
  30. FERREIRA, L. H. An ultra low-voltage ultra low power rail-torail CMOS OTA Miller. In Proceedings IEEE Asia-Pacific Conference on Circuits and Systems. 2004, p. 953 - 956.
  31. PAN, S-W., CHUANG, C-C., YANG, C-H., LAI, Y-S. A novel OTA with dual bulk-driven input stage. In Proc. IEEE Internat. Symp. on Circuits and Systems ISCAS. 2009, p. 2721 - 2724.
  32. ROSENFELD, J., KOZAK, M., FRIEDMAN, E. G. A bulk-driven CMOS OTA with 68 dB DC gain. In Proceedings of the 11th IEEE International Conference on Electronics, Circuits and Systems ICECS. 2004, p. 5 - 8.
  33. CHAWLA, R., SERRANO, G., ALLEN, D., HASLER, P. Programmable floating-gate second-order sections for Gm-C filter applications. In Proceedings of the 48th Midwest Symposium on Circuits and Systems. 2005, vol. 2, p. 1649 - 1652.
  34. CHAWLA, R., ADIL, F., HASLER, P. E., SERRANO, G. Programmable Gm–C filters using floating-gate operational transconductance amplifiers. IEEE Transactions on Circuits and Systems, 2007, p. 481 - 491.
  35. BABU, V. S., SEKHAR, A., DEVI, R. S., BAIJU, M. R. Floating gate MOSFET based operational transconductance amplifier and study of mismatch. In Proceedings of the 4th IEEE Conference on Industrial Electronics and Applications. 2009, p. 127 - 132.
  36. KHATEB, F., KHATIB, N., KUBANEK, D. Novel low-voltage low-power high-precision CCII± based on bulk-driven folded cascode OTA. Microelectronics Journal, 2011, vol. 42, no. 5, p. 622 - 631.
  37. KHATEB, F., KHATIB, N., KUBANEK, D. Novel ultra-lowpower class AB CCII+ based on floating-gate folded cascode OTA. Circuits, Systems, and Signal Processing Journal, 2012, vol. 31, no. 2, p. 447 - 464.
  38. LOPEZ_MARTIN, A. J., ACOSTA, L., ALGUETA MIGUEL, J. M., RAMIREZ-ANGULO, J., CARVAJAL, R. G. Micropower class AB CMOS current conveyor based on quasi-floating gate techniques. In Proceedings of the 52nd IEEE International Midwest Symposium on Circuits and Systems. 2009, p. 140 - 143.
  39. CARVAJAL, R. G., TORRALBA, A., TOMBS, J., MUNOZ, F., RAMIREZ-ANGULO, J. Low voltage class AB output stage for CMOS op-amps using multiple input floating gate transistors. Analog Integrated Circuits and Signal Processing, 2003, vol. 36, no. 3, p. 245 - 249.
  40. KHATEB, F., BIOLEK, D. Bulk-driven current differencing transconductance amplifier. Circuits, Systems, and Signal Processing, 2011, p. 1071 - 1089.
  41. GARCIA-ALBERDI, C., LOPEZ-MARTN, A.J., ACOSTA, L., CARVAJAL, R. G., RAMIREZ-ANGULO, J. Class AB CMOS tunable transconductor. In Proc. of the 53rd IEEE Internat. Midwest Symp. on Circuits and Systems MWSCAS. 2010, p. 596 - 599.
  42. ALGUETA MIGUEL, J. M., DE LA CRUZ BLAS, C.A., LOPEZMARTN, A. J. CMOS triode transconductor based on quasifloating- gate transistors. Electronics Letters, 2010, vol. 46, no. 17, p. 1190 - 1191.
  43. ALGUETA MIGUEL, J. M., LOPEZ-MARTIN, A. J., ACOSTA, L., RAMIREZ-ANGULO, J., CARVAJAL, R. G. Using floating gate and quasi-floating gate techniques for rail-to-rail tunable CMOS transconductor design. IEEE Transactions on Circuits and Systems, 2011, vol. 58, no. 7, p. 1604 - 1614.
  44. LOPEZ-MARTN, A. J., RAMIREZ-ANGULO, J., CARVAJAL, R. G., ACOSTA, L. CMOS transconductors with continuous tuning using FGMOS balanced output current scaling. IEEE Journal of Solid-State Circuits, 2008, vol. 43, no. 5, p. 1313 - 1323.
  45. EFTHIVOULIDIS, G., TOTH, L., TSIVIDIS, Y. P. Further results for noise in active RC and MOSFET-C filters. IEEE Transactions on Circuits Systems II: Analog and Digital Signal Processing, 1998, vol. 45, no. 9, p. 1311 - 1315.
  46. ARNAUD, A., BARU, M., PICUN, G., SILVEIRA, F. Design of a micropower signal conditioning circuit for a piezoresistive acceleration sensor. In Proceedings of IEEE International Symposium on Circuits and Systems, 1998, vol. 1, p. 269 - 272.
  47. GRAY, P. R., HURST, P. J., LEWIS, S. H., MEYER, R. G. Analysis and Design of Analog Integrated Circuits. 4th ed. John Wiley & sons, Inc, 2011.
  48. REZAEI, F., AZHARI, S. J. Ultra low voltage high performance operational transconductance amplifier and its application in a tunable Gm-C filter. Microelectronics Journal, 2011, vol. 42, no. 6, p. 827 - 836.
  49. DUQUE-CARRILLO, F., CARRILLO, J. M., AUSIN, J. L., TORELLI, G. Input/output rail-to-rail CMOS operational amplifier with shaped common-mode response. Analog Integrated Circuits and Signal Processing, 2003, vol. 34, no. 3, p. 221 - 232.
  50. DUQUE-CARRILLO, J. F., CARRILLO, J. M., TORELLI, G., AUSIN, J. L. Common-mode response overlapping vs. shaping in rail-to-rail op-amp input stages. Analog Integrated Circuits and Signal Processing, 2004, vol. 40, no. 1, p. 21 - 29.
  51. SILVEIRA, F., FLANDRE, D. Low power analog CMOS for cardiac pacemakers. Design and Optimization in Bulk and SOI Technologies. Kluwer Academic Publishers, 2004.
  52. RAMIREZ-ANGULO, J., GONZALEZ-ALTAMIRANO, G., CHOI, S. C. Modeling multiple-input floating-gate transistors for analog signal processing. In Proceedings of the IEEE International Symposium on Circuits and Systems, 1997, vol. 3, p. 2020 - 2023.
  53. YIN, L., EMBABI, S. H. K., SANCHEZ-SINENCIO, E. A floating- gate MOSFET D/A converter. In Proceedings of the IEEE International Symposium on Circuits and Systems. 1997, vol. 1, p. 409 - 412.
  54. TOMBS, J., RAMIREZ-ANGULO, J., CARVAJAL, R. G., TORRALBA, A. Integration of multiple-input floating-gate transistors into a top-down CAD design flow. Conference on Design of Circuits and Integrated Systems (DCIS). Palma de Mallorca, 1999, p. 767 - 771.
  55. RODRIGUEZ, E., HUERTAS, G., AVEDILLO, M. J., QUINTANA, J. M., RUEDA, A. Practical digital circuit implementations using νMOS threshold gates. IEEE Transactions on Circuits and Systems II, 2001, p. 102 - 106.
  56. RODRIGUEZ-VILLEGAS, E., BARNES, H. Solution to trapped charge in FGMOS transistors. Electronics Letters, 2003, vol. 39, no. 19, p. 1416 - 1417.

Keywords: Low-voltage Low-power analog circuit design, bulk-driven, floating-gate, quasi-floating-gate, OTA.

S. A. Tekin, H. Ercan, M. Alçı [references] [full-text]
Novel Low Voltage CMOS Current Controlled Floating Resistor Using Differential Pair

In this paper, a low voltage CMOS current controlled floating resistor which is convenient for integrated circuit implementation is designed by using differential pair. The proposed resistor has a simple circuit structure and low power dissipation. This circuit is required ± 0.75 V as a power supply. The basic advantages of this circuit are wide tuning range of the resistance value, satisfied frequency performance and worthwhile dynamic range. As well as the proposed circuit has floating structure, it is able to be used both positive and negative resistor. The performances of the proposed circuit are simulated with SPICE to justify the presented theory.

  1. SENANI, R., SINGH, A., SINGH, V. K. A new floating currentcontrolled positive resistance using mixed translinear cells. IEEE Transactions on Circuits and Systems II, 2004, no. 51, p. 374–377.
  2. KHAN, A., AHMED, M. T. Realisation of tunable floating resistors. Electronics Letters, 17th July 1986, vol. 22, no. 15, p. 799-800.
  3. BARTHELEMY, M., FABRE, A. A new floating controlled resistance operating in class AB. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, no. 47, p. 67–72.
  4. MANOLESCU, A., POPA, C. Low-voltage low-power improved linearity CMOS active resistor circuits. Analog Integrated Circuits and Signal Processing, 2010, vol. 62, no. 3, p. 373–387.
  5. ERCAN, H., TEKIN, S. A., ALÇI, M. Voltage- and currentcontrolled high CMRR instrumentation amplifier using CMOS current conveyors. Turkish Journal of Electrical Engineering & Computer Sciences, 2012, vol. 20, no. 4, p. 547–556.
  6. TAJALLI, A., LEBLEBICI, Y., BRAUER, E. J. Implementing ultra-high-value floating tunable CMOS resistors. Electronics Letters, 2008, vol. 44, no. 5, p. 349–350.
  7. MAUNDY, B., GIFT, S., ARONHIME P. Practical voltage/current- controlled grounded resistor with dynamic range extension. IET Circuits Devices Syst., 2008, vol. 2, no. 2, p. 201–206.
  8. LANGLOIS, P., TAYLOR, J., DEMOSTHENOUS, A. Realization of a simple high-value grounded linear resistance in CMOS technology. In Proceedings of ESSCIRC. Grenoble (France), 2005, p. 383–386.
  9. KUSHIMA, M., INABA, M., TANNO, K., ISHIZUKA, O. Design of a floating node voltage-controlled linear variable resistor circuit. In The 47th IEEE International Midwest Symposium on Circuits and Systems. 2004, p. 1–5.
  10. GUPTA, M., PANDEY, R. FGMOS based voltage-controlled grounded resistor. Radioengineering, 2010, vol. 19, no. 3, p. 455 to 459.
  11. MAHMOUD, S. A. A low voltage CMOS floating resistor. In ICEEC’04, International Conference on Electrical, Electronic and Computer Engineering, 2004, p. 453–456.
  12. GUPTA, M., PANDEY, R. FGMOS based voltage-controlled resistor and its applications. Microelectronics Journal, 2010, vol. 41, no. 6, p. 25–32.
  13. ZOUAOUI-ABOUDA, H., FABRE, A. New high-value floating controlled resistor in CMOS technology. IEEE Transactions on Instrumentation and Measurement, 2006, vol. 55, no. 3, p. 1017 to 1020.
  14. RIEWRUJA, V., PETCHMANEELUMKA, W. Floating current controlled resistance converters using OTAs. International Journal of Electronics and Communications, 2008, vol. 62, p. 725–731.
  15. SAKURAI, S., ISMAIL, M. A CMOS square-law programmable floating resistor independent on the threshold voltage. IEEE Transact. on Circuits and Systems II, 1992, vol. 39, p. 565 to 574.
  16. ELWAN, H. O., MAHMOUD, S. A., SOLIMAN, A. M. CMOS voltage controlled floating resistor. International Journal of Electronics, 1996, vol. 81, no. 5, p. 571 – 576.
  17. WANG, S., CHAWLA, V., HA, D. S., KIM, B. Low-voltage lowpower 1.6 GHz quadrature signal generation through stacking a transformer-based VCO and a divide-by-two. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, vol. 59, no. 12, p. 2901-2910.
  18. VALERO BERNAL, M. R., CELMA, S., MEDRANO, N., CALVO, B. An ultralow-power low-voltage class-AB fully differential opamp for long-life autonomous portable equipment. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, vol. 59, no. 10, p. 643 - 647.
  19. PAPANANOS, Y. E. Radio-Frequency Microelectronic Circuits for Telecommunication Applications. London, (UK): Kluwer Academic Publishers, 1999.
  20. LAHIRI, A. New CMOS-based resistorless current-mode firstorder all-pass filter using only ten transistors and one external capacitor. Radioengineering, 2011, vol. 20, no. 3, p. 638 – 643.
  21. MINAEI, S., YUCE, E., ÇIÇEKOĞLU, O. ICCII based voltagemode filter with single input and six outputs employing grounded capacitors. Circuits Systems and Signal Processing, 2006, vol. 25, no. 4, p. 559 – 566.
  22. MAHMOUD, S. A., SOLIMAN, A. M. CMOS balanced output transconductor and applications for analog VLSI. Microelectronics Journal, 1999, vol. 30, no.1, p. 29 – 39.

Keywords: CMOS active resistor, differential pair, low voltage circuits.

V. Stornelli, G. Ferri [references] [full-text]
A 0.18µm CMOS DDCCII for Portable LV-LP Filters

In this paper a current mode very low voltage (LV) (1V) and low power (LP) (21 µW) differential difference second generation current conveyor (CCII) is presented. The circuit is developed by applying the current sensing technique to a fully balanced version of a differential difference amplifier (DDA) so to design a suitable LV LP integrated version of the so-called differential difference CCII (DDCCII). Post-layout results, using a 0.18µm SMIC CMOS technology, have shown good general circuit performances making the proposed circuit suitable for fully integration in battery portable systems as, for examples, fully differential Sallen-Key bandpass filter.

  1. VITTOZ, E. A. Low power circuit design: fundamentals and limits. In IEEE International Symposium on Circuits and Systems. May 1993, vol. 2, p. 1439 – 1442.
  2. STORNELLI, V. Low voltage low power fully differential buffer. Journal of Circuits, Systems, and Computers (JCSC), 2009, vol. 18, no.3, p. 497-502.
  3. FERRI, G., STORNELLI, V., DI SIMONE, A. A CCII-based high impedance input stage for biomedical applications. Journal of Circuits, Systems, and Computers (JCSC), Dec. 2011, vol. 20, no. 8, p. 1441-1447.
  4. FERRI, G., STORNELLI, V., FRAGNOLI, M. An integrated improved CCII topology for resistive sensor application. Analog Integr. Circuits Signal Process., 2006, vol. 48, p. 247-250.
  5. FALCONI, C., FERRI, G., STORNELLI, V., DE MARCELLIS, A., D’AMICO, A., MAZZIERI, D. Current mode, high accuracy, high precision CMOS amplifiers. IEEE Transactions on Circuits and Systems II, May 2008, vol. 55 no. 5.
  6. MINAEI, S., CICEKOGLU, O. A resistorless realization of the first-order all-pass filter. International Journal of Electronics, 2006, vol. 93, no. 3, p. 177-183.
  7. KESKIN, D., BIOLEK, D., HANCIOGLU, E., BIOLKOVA, V. Current-mode KHN filter employing current differencing transconductance amplifiers. International Journal of Electronics and Communications (AEU), 2006, vol. 60, no. 6, p. 443-446.
  8. HERENCSAR, N., KOTON, J., JERABEK, J., VRBA, K., CICEKOGLU, O. Voltage-mode all-pass filters using universal voltage conveyor and MOSFET-based electronic resistors. Radioengineering, 2011, vol. 20, no. 1, p. 10-18.
  9. KOTON, J., HERENCSAR, N., VRBA, K. KHN-equivalent voltage-mode filters using universal voltage conveyors. AEU International Journal of Electronics and Communications, 2011, vol. 65, no. 2, p. 154-160.
  10. MINAEI, S. Electronically tunable current-mode universal biquad filter using dual-X current conveyors. Journal of Circuits, Systems, and Computers, 2009, vol. 18, no. 4, p. 665-680.
  11. YUCE, E., MINAEI, S. On the realization of high-order currentmode filter employing current controlled conveyors. Computers & Electrical Engineering, 2008, vol. 34, no. 3, p. 165-172.
  12. HORNG, J. W., HOU, C. L., CHANG, C.M., CHUNG, W.Y., LIN, C.T., SHIU, I.C., CHIU, W. Y. First-order all pass filter and sinusoidal oscillators using DDCCs., International Journal of Electronics, 2006, vol. 93, no. 7, p. 457-466.
  13. ALZAHER, H., ELWAN, H., ISMAIL, M. A CMOS fully balanced second-generation current conveyor. IEEE Trans. Circuits Syst. II, 2003, vol. 50, p. 278–287.
  14. MAHMOUD, S. A., HASHIESH, M. A., SOLIMAN, A. M. Digitally controlled fully differential current conveyor. IEEE Trans. Circuits Syst. I, 2005, vol. 52, no. 10, p. 2055–2064.
  15. ALZAHER, H., ELWAN, H., ISMAIL, M. CMOS fully differential second-generation current conveyor. Electronics Letters, June 2000, vol. 36, no. 13, p. 1095-1096.
  16. CHANG, C.M., AL-HASHIMI, B.M., WANG, C.L., HUNG, C.W. Single fully differential current conveyor biquad filters. IEE Proceedings of Circuits Devices and Systems, 2003, vol. 50, no. 5.
  17. MAHMOUD, S. A., HASHIESH, M. A., SOLIMAN, A. M. Lowvoltage digitally controlled fully differential current conveyor. IEEE Transactions on Circuits and Systems I, 2005, vol. 52, p. 2055–2064.
  18. SOLIMAN, E. A., MAHMOUD, S. A. New CMOS fully differential current conveyor and its application in realizing sixth order complex filter. In IEEE International Symposium on Circuits and Systems, 2009, vol. 1, p. 57–60.
  19. MAHMOUD, S. A. New fully-differential CMOS second-generation current conveyor. ETRI Journal, Aug. 2006, vol. 28, no. 4, p. 495- 501.
  20. CHEN, H. P. Voltage-mode DDCC-based multifunction filters. Journal of Circuits, Systems, and Computers (JCSC), 2007, vol. 16, no. 1, p. 93-104.

Keywords: Current mode filters, low voltage, low power, CCII

S. A. Mahmoud, E. A.Soliman [references] [full-text]
Novel CCII-based Field Programmable Analog Array and its Application to a Sixth-Order Butterworth LPF

In this paper, a field programmable analog array (FPAA) is proposed. The proposed FPAA consists of seven configurable analog blocks (CABs) arranged in a hexagonal lattice such that the CABs are directly connected to each other. This structure improves the overall frequency response of the chip by decreasing the parasitic capacitances in the signal path. The CABS of the FPAA is based on a novel fully differential digitally programmable current conveyor (DPCCII). The programmability of the DPCCII is achieved using digitally controlled three-bit MOS ladder current division network. No extra biasing circuit is required to generate specific analog control voltage signals. The DPCCII has constant standby power consumption, offset voltage, bandwidth and harmonic distortions over all its programming range. A sixth-order Butterworth tunable LPF suitable for WLAN/WiMAX receivers is realized on the proposed FPAA. The filter power consumption is 5.4mW from 1V supply; it’s cutoff frequency is tuned from 5.2 MHz to 16.9 MHz. All the circuits are realized using 90nm CMOS technology from TSMC. All simulations are carried out using Cadence.

  1. MAHMOUD, S. A. Digitally controlled CMOS balanced output transconductor and application to variable gain amplifier and gm-C filter on field programmable analog array. Journal of Circuits, Systems and Computers, 2005, vol. 14, p. 667-684.
  2. LOOBY, C. A., LYDEN, C. Op-amp based CMOS fieldprogrammable analogue array. Proc. of IEE Circuits, Devices and Systems, 2000, p. 93-95.
  3. GAUDET, V. C., GULAK, P. G. CMOS implementation of a current conveyor-based field-programmable analog array. In Conference of Signals, Systems and Computers. 1997, p. 1156.
  4. MAHMOUD, S. A., SOLIMAN, E. A. Low voltage current conveyor based field programmable analog arrays. Journal of Circuits, Systems, and Computers, 2011, vol. 20, p. 1677-1701.
  5. SMITH, K. C., SEDRA, A. The current conveyor-A new circuit building block. Proc. of the IEEE, 1968, vol. 56, p. 1368-1369.
  6. SEDRA, A., SMITH, K. C. A Second-generation Current Conveyor and its Applications, IEEE Trans. on Circuit Theory 1970, vol. 17, p. 132-134
  7. MAHMOUD, S. A., HASHIESH, M. A., SOLIMAN, A. M. Lowvoltage digitally controlled fully differential current conveyor. IEEE Trans. on Circuits and Systems I, 2005, vol. 52, p. 2055- 2064.
  8. HASSAN, T. M., MAHMOUD, S. A. Fully programmable universal filter with independent gain-ωo-Q control based on new digitally programmable CMOS CCII. Journal of Circuits, Systems and Computers, 2009, vol. 18, p. 875-897.
  9. BECKER, J., HENRICI, F., TRENDELENBURG, S., ORTMANNS, M., MANLOI, Y. A field-programmable analog array of 55 digitally tunable OTAs in a hexagonal lattice. IEEE J. Solid- State Circuits, 2008, vol. 43, p. 2759-2768.
  10. BULT, K., GEELEN, G. J. An inherently linear and compact MOST-only current division technique. IEEE J. Solid-State Circuits, 1992, vol. 27, p. 1730-1735.
  11. MAHMOUD, S. A., AWAD, I. A. Fully differential CMOS current feedback operational amplifier. Analog Integrated Circuits and Signal Processing, 2005, vol. 43, p. 61–69.
  12. OSKOOEI, M. S., MASOUMI, N., KAMAREI, M., SJOLAND, H. A. CMOS 4.35-mW +22-dBm IIP3 continuously tunable channel select filter for WLAN/WiMAX receivers. IEEE J. Solid-State Circuits, 2011, vol. 46, p. 1382-1391.

Keywords: Current division network, digitally programmable current conveyor, field programmable analog array, tunable WLAN/WiMAX receivers

M. Kumngern, F. Khateb, K. Dejhan, P. Phasukkit, S. Tungjitkusolmun [references] [full-text]
Voltage-Mode Multifunction Biquadratic Filters Using New Ultra-Low-Power Differential Difference Current Conveyors

This paper presents two low-power voltage-mode multifunction biquadratic filters using differential difference current conveyors. Each proposed circuit employs three differential difference current conveyors, two grounded capacitors and two grounded resistors. The low-voltage ultra-low-power differential difference current conveyor is used to provide low-power consumption of the proposed filters. By appropriately connecting the input and output terminals, the proposed filters can provide low-pass, band-pass, high-pass, band-stop and all-pass voltage responses at high-input terminals, which is a desirable feature for voltage-mode operations. The natural frequency and the quality factor can be orthogonally set by adjusting the circuit components. For realizing all the filter responses, no inverting-type input signal requirements as well as no component-matching conditional requirements are imposed. The incremental parameter sensitivities are also low. The characteristics of the proposed circuits are simulated by using PSPICE simulators to confirm the presented theory.

  1. SERDIJN, W. A., BROEST, M., MULDER, J., VAN DER WOERD, A. C., VAN ROERMUND, A. H. M. A low-voltage ultra-low-power translinear integrator for audio filter applications. IEEE Journal of Solid-State Circuits, 1997, vol. 32, p. 577–581.
  2. FERRI, G., GUERRINI, N. High-valued passive element simulation using low-voltage low-power current conveyors for fully integrated applications. IEEE Transactions on Circuits and Systems-II, 2001, vol. 48, p. 405–407.
  3. LAOUDIAS, C., PSYCHALINOS, C. Universal biquad filters using low-voltage current mirrors. Analog Integrated Circuits and Signal Processing, 2010, vol. 65, p. 77–88.
  4. GALAN, J., CARVAJAL, R. G., TORRALBA, A., MUNOZ, F., RAMIREZ-ANGULO, J. A low-power low-voltage OTA-C sinusoidal oscillator with a large tuning range. IEEE Transactions on Circuits and Systems-I, 2005, vol. 52, p. 283–291.
  5. KAO, C.-H., LIN, W.-P., HSIEH, C.-S. Low-voltage low-power current mode exponential circuit. IEE Proceedings-Circuits, Devices and Systems, 2005, vol. 152, p. 633–635.
  6. ELWAN, H. O., SOLIMAN, A. M. Low-voltage low-power CMOS current conveyors. IEEE Transactions on Circuits and Systems-I, 1997, vol. 44, p. 828–835.
  7. BLALOCK, B. J., ALLEN, P. E., RINCON-MORA, G. A. Designing 1V op amps using standard digital CMOS technology. IEEE Transactions on Circuits and Systems-II, 1998, vol. 45, p. 769 to 780.
  8. RAJPUT, S. S., JAMUAR, S. S. Low voltage, low power, high performance current mirror for portable analogue and mixed mode applications. IEEE Proceedings-Circuits, Devices and Systems, 2001, vol. 148, p. 273–278.
  9. MORADZADEH, H., AZHARI, S. J. Low-voltage low-power railto- rail low-Rx wideband second generation current conveyor and a single resistance-controlled oscillator based on it. IET Circuits, Devices & Systems, 2011, vol. 5, p. 66-72.
  10. KHATEB, F., BIOLEK, D. Bulk-driven current differencing transconductance amplifier. Circuits, Systems, and Signal Processing, 2011, vol. 30, p. 1071–1089.
  11. KHATEB, F., KHATIB, N., KUBANEK, D. Novel low-voltage low-power high-precision CCII± based on bulk-driven folded cascode OTA. Microelectronics Journal, 2011, vol. 42, p. 622–631.
  12. KHATEB, F., KHATIB, N., KOTON, J. Novel low-voltage ultralow- power DVCC based on floating-gate folded cascade OTA. Microelectronics Journal, 2011, vol. 42, p. 1010–1017.
  13. VALERO BERNAL, M. R., CELMA, S., MEDRANO, N., CALVO, B. An ultralow-power low-voltage class-AB fully differential op amp for long-life autonomous portable equipment. IEEE Transactions on Circuits and Systems-II, 2012, vol. 59, p. 643–647.
  14. KHATEB, F., KHATIB, N., KUBANEK, D. Novel ultra-lowpower class AB CCII+ based on floating-gate folded cascade OTA. Circuits, Systems, and Signal Processing, 2012, vol. 31, p. 447–464.
  15. KHATEB, F., KHATIB, N., KUBANEK, D. Low-voltage ultralow- power current conveyor based on quasi-floating gate transistors. Radioengineering, 2012, vol. 21, p. 725–735.
  16. FABRE, A., SAAID, O., WIEST, F., BOUCHERON, C. High frequency applications based on a new current controlled conveyor. IEEE Transactions on Circuits and Systems-I, 1996, vol. 43, p. 82–91.
  17. ALEXANDER, C. K., SADIKU, M. N. O. Fundamental of Electric Circuits, New York: McGraw-Hill, 2004.
  18. IBRAHIM, M. A., MINAEI, S., KUNTMAN, H. A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements. International Journal of Electronics and Communications, 2005, vol. 59, p. 311–318.
  19. SALTHOUSE, C. D., SARPESHKAR, R. A practical micropower programmable bandpass filter for use in bionic ears. IEEE Journal of Solid-State Circuits, 2003, vol. 38, p. 63–70.
  20. CORBISHLEY, P., RODRIGUEZ-VILLEGAS, E. A nanopower bandpass filter for detection of an acoustic signal in a wearable breathing detector. IEEE Transactions on Biomedical Circuits and Systems, 2007, vol. 1, p. 163–171.
  21. LEE, S.-Y., CHENG, C.-J. Systematic design and modeling of an OTA-C filter for portable ECG detection. IEEE Transactions on Biomedical Circuits and Systems, 2009, vol. 3, p. 53–64.
  22. YANG, M., LUI, J., XIAO, Y., LIAO, H. 14.4 nW fourth-order bandpass filter for biomedical applications. Electronics Letters, 2010, vol. 46, p. 973–974.
  23. RODRIGUEZ-VILLEGAS, E., CASSON, A. C., CORBISHLEY, P. A subthertz nanopower low-pass filter. IEEE Transactions on Circuits and Systems-II, 2011, vol. 58, p. 351–355.
  24. HUNG, C.-C., HALONEN, K. A. I., ISMAIL, M., PORRA, V., HYOGO, A. A low-voltage, low-power CMOS fifth-order elliptic GM-C filter for baseband mobile, wireless communication. IEEE Transactions on Circuits and Systems for Video Technology, 1997, vol. 7, p. 584–593.
  25. D’AMICO, S. GIANNINI, V., BASCHIROTTO, A. A low-power reconfigurable analog filter for UMTS/WLAN receivers. Analog Integrated Circuits and Signal Processing, 2006, vol. 46, p. 65 to 72.
  26. MAHESHWARI, S. High input impedance VM-APSs with grounded passive elements. IET Circuits, Devices & Systems, 2007, vol. 1, p. 72–78.
  27. BHUSAN, M., NEWCOMB, R. W. Grounding of capacitors in integrated circuits. Electronics Letters, 1967, vol. 3, p. 148–149.
  28. OZOGUZ, S., GUNES, E. O. Universal filter with three inputs using CCII+s. Electronics Letters, 1996, vol. 32, p. 2134–2135.
  29. LIU, S. I., LEE, J. L. Voltage-mode universal filters using two current conveyors. International Journal of Electronics, 1997, vol. 82, p. 145–149.
  30. CHANG, C. M. Universal voltage-mode filter with four inputs and one output using two CCII+s. International Journal of Electronics, 1999, vol. 86, p. 305–309.
  31. HORNG, J. W. High input impedance voltage-mode universal biquadratic filter using two OTAs and one CCII. International Journal of Electronics, 2003, vol. 90, p. 183–191.
  32. TSUKUTANI, T., SUMI, Y., KINUGASA, Y., HIGASHIMURA, M., FUKUI, Y. Versatile voltage-mode active-only biquad circuits with loss-less and lossy integrators. International Journal of Electronics, 2004, vol. 91, p. 525–536.
  33. ABUELMA'ATTI, M. T., BENTRCIA, A. A novel mixed-mode OTA-C universal filter. International Journal of Electronics, 2006, vol. 92, p. 357–383.
  34. SHAH, N. A., IQBAL, S. Z. Versatile voltage-mode universal biquad filter using the operational amplifier pole. International Journal of Electronics, 2007, vol. 94, p. 75-79.
  35. NIKOLOUDIS, S., PSYCHALINOS, C. Multiple input single output universal biquad filter with current feedback operational amplifiers. Circuits, Systems, and Signal Processing, 2010, vol. 29, p. 1167–1180.
  36. CHIU, W. LIU, S. I., TSAO, H. W., CHEN, J. J. CMOS differential difference current conveyors and their applications. IEE Proceeding of Circuits, Devices and System, 1996, vol. 143, p. 91–96.
  37. CHANG, C.-M., CHEN, H.-P. Universal capacitor-grounded voltage- mode filter with three inputs and a single output. International Journal of Electronics, 2003, vol. 90, p. 401–406.
  38. HORNG, J.-W., CHIU, W.-Y., WEI, H.-Y. Voltage-mode highpass, bandpass and lowpass filters using two DDCCs. International Journal of Electronics, 2004, vol. 87, p. 461–464.
  39. IBRAHIM, M. A., KUNTMAN, H., CICEKOGLU, O. Single DDCC biquads with high input impedance and minimum number of passive elements. Analog Integrated Circuits and Signal Processing, 2005, vol. 43, p. 71–79.
  40. CHEN, H.-P., WU, K.-H. Voltage-mode DDCC-based multifunction filters. Journal of Circuits, System and Components, 2007, vol. 16, p. 93–104.
  41. CHEN, H.-P. Single DDCC-based voltage-mode multifunction filter. IEICE Transactions on Fundamentals, 2007, vol. E90-A, p. 2029–2031.
  42. CHEN, H.-P. Universal voltage-mode filter using only plus-type DDCCs. Analog Integrated Circuit and Signal Processing, 2007, vol. 50, p. 137–139.
  43. CHIU, W.-Y., HORNG, J.-W. High-input and low-output impedance voltage-mode universal biquadratic filter using DDCCs. IEEE Transactions on Circuits and Systems-II, 2007, vol. 54, p.649–652.
  44. CHEN, H.-P., SHEN, S.-S., WANG, J.-P. Electronically tunable versatile voltage-mode universal filter. International Journal Electronics and Communications, 2008, vol. 62, p. 316–319.
  45. LEE, W.-T. LIAO, Y.-Z. New voltage-mode high-pass, band-pass and low-pass filter using DDCC and OTAs. International Journal of Electronics and Communications, 2008, vol. 62, p. 701–704.
  46. HORNG, J.-W. High input impedance voltage-mode universal biquadratic filter with three inputs using DDCCs. Circuits System and Signal Processing, 2008, vol. 27, p. 553–562.
  47. CHEN, H.-P. Versatile universal voltage-mode filter employing DDCCs. International Journal Electronics and Communications, 2009, vol. 63, p. 78–82.
  48. CHEN, H.-P. Versatile multifunction universal voltage-mode biquadratic filter. International Journal Electronics and Communications, 2010, vol. 64, p. 983–987.
  49. CHIU, W.-Y., HORNG, J.-W. Voltage-mode biquadratic filters with one input and five outputs using two DDCCs. Indian Journal of Engineering & Materials Sciences, 2011, vol. 18, p. 97–101.
  50. HORNG, J.-W., CHIU, W.-Y. High input impedance DDCC-based voltage-mode universal biquadratic filter with three inputs and five outputs. Indian Journal of Engineering & Materials Sciences, 2011, vol. 18, p. 183–190.
  51. HORNG, J.-W., HSU, C.-H, TSENG, C.-Y. High input impedance voltage-mode universal biquadratic filter with three inputs using three CCs and grounded capacitors. Radioengineering, 2012, vol. 21, p. 290–296.
  52. CHIU, W.-Y., HORNG, J.-W. Voltage-mode highpass, bandpass, lowpass and notch biquadratic filters using single DDCC. Radioengineering, 2012, vol. 21, p. 297–303.
  53. CHIU, W.-Y., HORNG, J.-W. High input impedance voltagemode universal biquadratic filter with three inputs and six outputs using three DDCCs. Circuits, Systems, and Signal Processing, 2012, vol. 31, p. 19–30.
  54. IBRAHIM, M. A., KUNTMAN, H., CICEKOGLU, O. First-order all-pass filter canonical in the number of resistors and capacitors employing a single DDCC. Circuits, Systems, Signal Processing, 2003, vol. 22, p. 525-536.
  55. HORNG, J.-W., HOU, C.-L., CHANG, C.-M., CHUNG, W.-Y., LIN, Y.-T., SHIU, I.-C., CHIU, W.-Y. First-order allpass filter and sinusoidal oscillators using DDCCs. International Journal of Electronics, 2006, vol. 93, p. 457-466.
  56. METIN, B., PAL, K., CICEKOGLU, O. All-pass filters using DDCC- and MOSFET-based electronic resistor. International Journal of Circuit Theory and Applications, 2011, vol. 39, p. 881 to 891.
  57. SENANI, R., SINGH, V. K. Novel single-resistance-controlledoscillator configuration using current feedback amplifiers. IEEE Transactions on Circuits and Systems-I, 1996, vol. 43, p. 698–700.
  58. LIU, S.-I., TSAY, J.-H. Single-resistance-controlled sinusoidal oscillator using current-feedback amplifier. International Journal of Electronics, 1996, vol. 80, p. 661–664.
  59. SOTNER, R., SLEZAK, J., DOSTAL, T., PETRZELA, J. Universal tunable current-mode biquad employing distributed feedback structure with MO-CCCII. Journal of Electrical Engineering, 2010, vol. 61, p. 52-56.
  60. SOTNER, R., JERABEK, J., DOSTAL, T., VRBA, K. Multifunctional adjustable CM biquads based on distributed feedback VM prototype with OTAs. International Journal of Electronics, 2010, vol. 97, p. 797-809.
  61. SOTNER, R., PETRZELA, J., SLEZAK, J. Current-controlled current-mode universal biquad employing multi-output transconductors. Radioengineering, 2009, vol. 18, p. 285-294.

Keywords: Biquadratic filter, voltage-mode circuit, low-power circuit, differential difference current conveyor

A. Uygur, H. Kuntman [references] [full-text]
DTMOS-Based 0.4V Ultra Low-Voltage Low-Power VDTA Design and Its Application to EEG Data Processing

In this paper, an ultra low-voltage, ultra low-power voltage differencing transconductance amplifier (VDTA) is proposed. DTMOS (Dynamic Threshold Voltage MOS) transistors are employed in the design to effectively use the ultra low supply voltage. The proposed VDTA is composed of two operational transconductance amplifiers operating in the subthreshold region. Using TSMC 0.18µm process technology parameters with symmetric ±0.2V sup¬ply voltage, the total power consumption of the VDTA block is found as just 5.96 nW when the transconductances have 3.3 kHz, 3 dB bandwidth. The proposed VDTA circuit is then used in a fourth-order double-tuned band-pass filter for processing real EEG data measurements. The filter achieves close to 64 dB dynamic range at 2% THD with a total power consumption of 12.7 nW.

  1. ASSADERAGHI, F., SINITSKY, D., PARKE, S.A., BOKOR, J., KO, P.K., HU, C. Dynamic threshold-voltage MOSFET for ultralow voltage VLSI. IEEE Transactions on Electron Devices, 1997, vol. 44, no. 3, p. 414-22.
  2. BERG, Y. Ultra low-voltage CMOS transconductance amplifiers. Analog Integrated Circuits and Signal Processing, 2012, vol. 73, no. 3, p. 683-692.
  3. BERG, Y., MIRMORTAHARI, O. Ultra low-voltage CMOS current mirrors. Analog Integrated Circuits and Signal Processing, 2011, vol. 68, no. 2, p. 219-232.
  4. LEE, S.-C., LEE, S.-Y., CHIANG, C.-H. 0.9V low-power switched opamp switched-capacitor bandpass filter for electroneurography acquisition systems’. IET Circuits Devices Syst., 2008, vol. 2, no. 2, p. 257–263.
  5. SALTHOUSE, C. D., SARPESHKAR, R. A practical micropower programmable bandpass filter for use in bionic ears. IEEE J. Solid- State Circuits, 2003, vol. 38, no. 1, p. 63–70.
  6. YANG, M., LIU, J., XIAO, Y., LIAO, H. 14.4 nW fourth-order bandpass filter for biomedical applications. IET Electronics Letters, 2010, vol. 46, no. 14, p. 973-974.
  7. PARKE, S. A., BOKOR, J., KO, P. K., HU, C. Bipolar-FET hybrid- mode operation of quarter-micrometer SOI MOSFET’s. IEEE Electronic Device Letters, 1993, vol. 14, p. 236-238.
  8. VERDONCKT-VANDERBROEK, S., WONG, S., WOO, J., KO, P. High gain lateral bipolar action in a MOSFET structure. IEEE Trans. on Electron Devices, 1991, vol. 38, no. 11, p. 2487-2496.
  9. ZHANG, C, SRIVASTAVA, A., AJMERA, P.K. A 0.8V CMOS amplifier design. Analog Integrated Circuits and Signal Processing, 2006, vol. 47, no. 3, p. 315-321.
  10. CHATTERJEE, S., TSIVIDIS, Y., KINGET, P. 0.5-V Analog circuit techniques and their application in OTA and filter design. IEEE Journal of Solid-state Circuits, 2005, vol. 40, no. 12, p. 2373-2387.
  11. JIMENEZ-P, A., DE LA HİDALGA-W, F. J., DEEN, M. J. Modelling the dynamic threshold MOSFET. IEE Proceeding of Circuits, Devices and Systems, 2005, vol. 152, no. 5, p. 502-508.
  12. DE LA HİDALGA-W, F.J., DEEN, M. J. GUTIERREZ-D, E. A., BALESTRA, F. Effect of the forward biasing the source-substrate junction in n-metal–oxide–semiconductor transistors for possible low power complementary metal–oxide–semiconductor integrated circuits’ applications. Journal of Vacuum Science Technology B, 1998, vol. 16, no. 4, p. 1812-1817.
  13. COLINGE, J. P., PARK, J. T. Application of the EKV model to the DTMOS SOI transistor. Journal of Semiconductor Technology and Science, 2003, vol. 3, no. 4, p. 223-226.
  14. BIOLEK, D. CDTA – Building block for current-mode analog signal processing. In Proceedings of the ECCTD03. Krakow (Poland), 2003, p. 397-400.
  15. BIOLEK, D., SENANI, R., BIOLKOVA, V., KOLKA, Z. Active elements for analog signal processing: Classification, review, and new proposals. Radioengineering, 2008, vol. 17, no. 4, p. 15 – 32.
  16. YEŞİL, A., KAÇAR, F., KUNTMAN, H. New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application. Radioengineering, 2011, vol. 20, no. 3, p. 632-637.
  17. FERREIRA, H.C.L., PIMENTA, C. T., MORENO, R. L. An ultralow- voltage ultra-low-power CMOS miller OTA with rail to rail input/output swing. IEEE Transactions on Circuits and Systems-II Express Briefs, 2007, vol. 54, no. 10, p. 843-847.
  18. YATES, D. C., RODRIGEZ-VILLEGAS, E. An ultra low power low noise chopper amplifier for wireless EEG. In Proceedings of IEEE 49th International Midwest Symposium on Circuits and Systems, MWSCAS '06. San Juan (Puerto Rico), 2006, p. 449-452.
  19. YAZICIOGLU, R.F., MERKEN, P., PUERS, R., VAN HOOF, C. 60μV 60nV√Hz readout front-end for portable biopotential acquisition systems. IEEE Journal of Solid-state Circuits, 2007, vol. 42, no. 5, p. 1100-1110.
  20. OZCAN, S., KUNTMAN, H., CICEKOGLU, O. Realization of inductorless RF bandpass amplifiers using immittance simulators employing CCIIs. In Proceedings of the 10th International Conference on Microelectronics ICM'98. Monastir (Tunisia), 1998, p. 141 – 144.
  21. CHOO, K., LEE, W., CHO, S. H. A PVT tolerant BPF using turnoff MOSFET for bio applications in 0.13μm CMOS. In International SoC Design Conference, ISOCC. Incheon (Korea), 2010, p. 420-423.
  22. İŞCAN, Z., OZKAYA, O., DOKUR, Z. Classification of EEG in a steady state visual evoked potential based brain computer interface experiment. Lecture Notes on Computer Science, 2011, vol. 6594, p. 81-88.

Keywords: Ultra low-power, ultra low-voltage, DTMOS, VDTA, analog building blocks, EEG data processing.

C. Muñiz-Montero, L. A. Sanchez-Gaspariano, J. M. Rocha-Perez, J. E. Molinar-Solis, C. Sanchez-Lopez [references] [full-text]
1.5V fully programmable CMOS Membership Function Generator Circuit with proportional DC-voltage control

A Membership Function Generator Circuit (MFGC) with bias supply of 1.5 Volts and independent DC-voltage programmable functionalities is presented. The realization is based on a programmable differential current mirror and three compact voltage-to-current converters, allowing continuous and quasi-linear adjustment of the center position, height, width and slopes of the triangular/trapezoidal output waveforms. HSPICE simulation results of the proposed circuit using the parameters of a double-poly, three metal layers, 0.5 μm CMOS technology validate the functionality of the proposed architecture, which exhibits a maximum deviation of the linearity in the programmability of 7 %.

  1. YAN, S., SANCHEZ-SINENCIO, E. Low voltage analog circuit design techniques: A tutorial. IEICE Transactions on Analog Integrated Circuits and Systems, 2000, vol. E83-A, no. 2, p. 179 - 196.
  2. RAMIREZ-ANGULO, J., LO´ PEZ-MARTI´N, A. J., CARVAJAL, R. G., CHAVERO, F. M. Very low voltage analog signal processing based on quasi-floating gate transistors. IEEE Journal of Solid-State Circuits, 2004, vol. 39, no. 3, p. 434 - 442.
  3. SEO, I., FOX, R. M. Comparison of quasi-/pseudo-floating gate techniques. In Proceedings of the 2004 International Symposium on Circuits and Systems (ISCAS). Vancouver (Canada), 2004, p. I365 - I368.
  4. VIDAL-VERDU , F., RODRIGUEZ-VAZQUEZ, A. Using building blocks to design analog neuro-fuzzy controllers. IEEE Micro, 1995, vol. 15, no. 4, p. 49 - 57.
  5. TOKMAKCI, M., ALKCI, M., KILIC R. Simple CMOS-based membership function circuit. Analog Integrated Circuits and Signal Processing, 2002, vol. 32, p. 83 - 88.
  6. SHAN, W., LU, Y., SUN, H., LIU J. A novel analog circuit design and test of a triangular membership function. Lecture Notes in Electrical Engineering, 2011, vol. 97, p. 727 - 733.
  7. BARUTONE, I., BARRIGA, A., SA´ NCHEZ-SOLANO, S., JIMENEZ-FERNANDEZ, C. J., LOPEZ, D. R. Microelectronic Design of Fuzzy Logic-Based Systems. CRC press, 2000.
  8. HUERTAS, J. L., SANCHEZ-SOLANO, S., BATURONE, I., BARRIGA A. Integrated circuit implementation of fuzzy controllers. IEEE Journal of Solid-State Circuits, 1996, vol. 31, no. 7, p. 1051 - 1058.
  9. DUALIBE, C., VERLEYSEN, M., JESPERS, P. G. A. Design of Analog Fuzzy Logic Controllers in CMOS Technologies. Boston (USA): Kluwer Academic Publishers, 2003.
  10. FATHI R., et al. Production of membership functions for the high precision applications in fuzzy systems and neural networks. Electrical and Electronic Engineering, 2012, vol. 2 no. 2, p. 60 - 63.
  11. GHANAVATI, B. A 1.5 V CMOS fuzzifier. International Journal of Multidisciplinary Sciences and Engineering, 2012, vol. 3, no. 6, p. 52 - 55.
  12. NAKAJIMA, Y., SAKAGUCHI, A., OHKIDO, T., KATO, N., MATSUMOTO, T., YOTSUYANAGI, M. A background self-calibrated 6b 2.7 GS/s ADC with cascade-calibrated folding-interpolating architecture. IEEE Journal of Solid-State Circuits, 2010, vol. 45, no. 4, p. 707 - 718.
  13. RAMIREZ-ANGULO, J., LINARES-BARRANCO, B., SA´ NCHEZ- SINENCIO, E., RODRIGUEZ-VAZQUEZ, A. Programmable piecewise linear function synthesizers using operational transconductance amplifiers. European Conference on Circuit Theory and Design. Brighton (UK), 1989, p. 452 - 456.
  14. SERRANO-GOTARREDONA, T., LINARES-BARRANCO, B. Log-domain implementation of complex dynamics reactiondiffusion neural networks. IEEE Transactions on Neural Networks, 2003, vol. 14, no. 5, p. 1337 - 1355.
  15. MOSHFE, S., et al. Design of a programmable analog CMOS rational-powered membership function generator in current mode approach. 18th IEEE International Conference on Electronics, Circuits and Systems (ICECS). Beirut (Lebanon), 2011, p. 29 - 32.
  16. CARVAJAL, R. G., et al. Mixed-signal CMOS fuzzifier with emphasis in power consumption. IEEE 42nd Midwest Symposium on Circuits and Systems. Las Cruces (USA), 2000, p. 929 - 933.
  17. LOPEZ-MARTIN, A. J. et al. A CMOS transconductor with multidecade tuning using balanced current scaling in moderate inversion. IEEE Journal of Solid-State Circuits, 2005, vol. 40, no. 5, p. 1078 - 1083.
  18. KACHARE, M., RAMIREZ-ANGULO, J., CARVAJAL, R. G., LO´ PEZ-MARTIN, C. New low-voltage fully programmable CMOS triangular/trapezoidal function generator circuit. IEEE Transactions on Circuits and Systems-I, 2005, vol. 52, no. 10, p. 2033 - 2042.
  19. DUALIBE, C., JESPERS, P., VERLEYSEN, M. A 5.26 Mflips programmable analogue fuzzy logic controller in a standard CMOS 2.4 μm technology. In Proceedngs of IEEE International Symposium on Circuits and Systems. Geneva (Switzerland), 2000, p. 377 - 380.
  20. KHALILZADEGAN, A., KHOEI, A., HADIDI, K. A fully programmable MFG with a new analog programmable current mirror for slop tuning of membership functions. In 19th Iranian Conference on Electrical Engineering (ICEE). Tehran (Iran), 2011, p. 1 - 6.
  21. BOURAS, S., KOTRONAKIS, M., SUYAMA, K., TSIVIDIS, Y. Mixed analog - digital fuzzy logic controller with continuous - amplitude fuzzy inferences and defuzzification. IEEE Transactions on Fuzzy Systems, 1998, vol. 6, no. 2, p. 205 - 215.

Keywords: CMOS, membership function generator, programmable current mirrors, nonlinear circuits

P. Prommee, K. Dejhan [references] [full-text]
Single-input Multiple-output Tunable Log-domain Current-mode Universal Filter

This paper describes the design of a current-mode single-input multiple-output (SIMO) universal filter based on the log-domain filtering concept. The circuit is a direct realization of a first-order differential equation for obtaining the lossy integrator circuit. Lossless integrators are realized by log-domain lossy integrators. The proposed filter comprises only two grounded capacitors and twenty-four transistors. This filter suits to operate in very high frequency (VHF) applications. The pole-frequency of the proposed filter can be controlled over five decade frequency range through bias currents. The pole-Q can be independently controlled with the pole-frequency. Non-ideal effects on the filter are studied in detail. A validated BJT model is used in the simulations operated by a single power supply, as low as 2.5 V. The simulation results using PSpice are included to confirm the good performances and are in agreement with the theory.

  1. ADAMS, R. W. Filtering in the log domain. In 63rd AES Conv. Los Angeles (CA), May 1979, preprint 1470.
  2. FREY, D. R. Log-domain filtering: An approach to current-mode filtering. Proc. IEE, part G, 1993, vol. 140, no. 6, p. 406–416.
  3. FREY, D. R. Exponential state-space filters: a generic current mode design strategy. IEEE Trans Circuits Systems-I, 1996, vol. 43, p. 34–42.
  4. SEEVINCK, E. Companding current-mode integrator: A new circuit principle for continuous-time monolithic filters. Electron. Lett., 1990, vol. 26, no. 24, p. 2046–2047.
  5. TSIVIDIS, Y. On linear integrators and differentiators using instantaneous companding. IEEE Trans. Circuits Syst. II, Aug. 1995, vol. 42, p. 561–564.
  6. TSIVIDIS, Y. General approach to signal processors employing companding. Electron. Lett., 1995, vol. 31, no. 18, p. 1549–1550.
  7. TSIVIDIS, Y. Instantaneously companding integrators. In Proc. IEEE Int. Symp. Circuits Syst. (ISCAS’97). Hong-Kong, 1997, vol. 1, p.477–480.
  8. FREY, D. R. A 3.3 V electronically tunable active filter usable to beyond 1 GHz. In Proc. IEEE Int. Symp. Circuits Syst. (ISCAS’94). London (U.K.), 1994, vol. 5, p. 493–496.
  9. FREY, D. R. On log-domain filtering for RF applications. IEEE J. Solid-State Circuits, Oct. 1996, vol. 31, p. 1468–1475.
  10. FREY, D. R. An adaptive analog notch filter using log-filtering. In Proc. IEEE Int. Symp. Circuits Syst. (ISCAS’96). Atlanta (GA), 1996, vol. 1, p. 297–300.
  11. KIRCAY, A., CAM, U. A novel log-domain first-order multifunction filter. ETRI Journal, June 2006, vol. 28, no. 3.
  12. DRAKAKIS, E. M., PAYNE, A. J., TOUMAZOU, C. Log-domain filtering and the Bernoulli cell. IEEE Trans. Circuits Syst. I, May 1999, vol. 46, no. 5, p. 559–571.
  13. PSYCHALINOS, C. On the transposition of Gm-C filters to DC stabilized log-domain filters. Int. J. Circ. Theor. Appl., 2006, no. 34, p. 217–236.
  14. PSYCHALINOS, C. Realization of log-domain high-order transfer functions using first-order building blocks and complementary operators. Int. J. Circ. Theor. Appl., 2007, vol. 35, p. 17–32.
  15. PSYCHALINOS, C. Log-domain linear transformation filters revised- improved building blocks and comparison results. Int. J. Circ. Theor. Appl., 2008, vol. 36, p. 119–133.
  16. TOLA, A. T., ARSLANALP, R., YILMAZ, S. S. Current mode high-frequency KHN filter employing differential class AB log domain integrator. International Journal of Electronics and Communications (AEU), 2009, vol. 63, no. 7, p. 600-608.
  17. PSYCHALINOS, C. Log-domain SIMO and MISO low-voltage universal biquads. Analog Integrated Circuits and Signal Processing, 2011, vol. 67, no. 2, p. 201–211.
  18. PROMMEE, P., SRA-IUM, N., DEJHAN, K. High-frequency logdomain current-mode multiphase sinusoidal oscillator. IET Circuits Devices Syst., 2010, vol. 4, no. 5, p. 440–448.
  19. PROMMEE, P., PRAPAKORN, N., SWAMY, M.N.S. Log-domain current-mode quadrature sinusoidal oscillator. Radioengineering, 2011, vol. 20, no.3, p. 600-607.
  20. PROMMEE, P., SOMDUNYAKANOK, M., ANGKEAW, K., DEJHAN, K. Tunable current-mode log-domain universal filter. In Proc. of IEEE ISCAS 2010. Paris (France), May 29-June 2, 2010.
  21. KERWIN, W. J., HUELSMAN, L. P., NEWCOMB, R. W. Statevariable synthesis for insensitive integrated circuit transfer function. IEEE Trans. Solid-state Circuits, 1967, vol. SC-2, p. 87-92.
  22. SANCHEZ-SINENCIO, E., GEIGER, R. L., NEVAREZ-LOZANO, H. Generation of continuous-time two integrator loop OTA filter structures. IEEE Trans. Circuits and Syst., 1988, vol. 35, p. 936-946.
  23. WU, J., XIE, C. New multifunction active filter. Int. J. Electron., 1993, vol. 74, p. 235-239.
  24. CHANG, C. New multifunction OTA-C biquads. IEEE Trans. Circuits and Syst., 1999, vol. 46, p. 820-824.
  25. CHANG, C., PAI, S. Universal current-mode OTA-C biquad with the minimum components. IEEE Trans. Circuits and Syst, 2000, vol. 47, p. 1235-1238.
  26. CHANG, C., AL-HASHIMI, B. M., ROSS, J. N. Unified active filter biquad structure. IEE Proc., part G, 2004, vol. 151, p. 273-277.
  27. PROMMEE, P., PATTANATADAPONG, T. Realization of tunable pole-Q current-mode OTA-C universal filter. Circuits, Systems, and Signal Processing, Oct. 2010, vol. 29, no. 5.
  28. SUN, Y., FIDLER, J. K. Structure generation of current-mode two integrator loop dual output-OTA grounded capacitor filters. IEEE Trans. Circuits and Syst., 1996, vol. 43, p. 659-663.
  29. CHANG, C., AL-HASHIMI, B. M. Analytical synthesis of current-mode high-order OTA-C filters. IEEE Trans. Circuits and Syst., 2003, vol. 50, p. 1188-1192.
  30. TU, S. H., CHANG, C., ROSS, J. N., SWAMY, M. N. S. Analytical synthesis of current-mode high-order single-endedinput OTA and equal-capacitor elliptic filter structures with the minimum number of components. IEEE Trans. Circuits and Syst. I, 2007, vol. 54, p. 2195-2210.
  31. AL-HASHIMI, B. M., DUDEK, F., MONIRI, M., LIVING, J. Integrated universal biquad based on triple-output OTAs and using digitally programmable zeros. IEE Proc., part G, 1998, vol. 145, p. 192-196.
  32. WANG, H. Y., LEE, C. T. Versatile insensitive current-mode universal biquad implementation using current conveyors. IEEE Trans. Circuits and Syst. II, 2001, vol. 48, p. 409-413.
  33. YUCE, E., MINAEI, S. Signal limitations of the current-mode filters employing current conveyors. Internat. Journal of Electronics and Communications (AEU), 2008, vol. 62, p. 193-198.
  34. HORNG, J. W., HOU, C. L., CHANG, C. M.,·CHIU, W-Y., LIU, C-C. Current-mode universal biquadratic filter with five inputs and two outputs using two multi-output CCIIs. Circuits Systems and Signal Processing, 2009, vol. 28, p. 781–792.
  35. IBRAHIM, M. A., MINAEI, S., KUNTMAN, H. A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements. Internat. Journal of Electronics and Communications (AEU), 2005, vol. 59, p. 311-318.
  36. HORNG, J. W. High input impedance voltage-mode universal biquadratic filter with three inputs using DDCCs. Circuits Systems and Signal Processing, 2008, vol. 27, p. 553–562.
  37. FABRE, A., SAAID, O., WIEST, F., BOUCHERON, C. Low power current-mode second-order bandpass IF filter. IEEE Trans. Circuits and Syst. II, 1997, vol. 44, p. 436-446.
  38. YUCE, E., MINAEI, S., CICEKOGLU, O. Universal current-mode active-C filter employing minimum number of passive elements. Analog Integrated Circuits and Signal Processing, 2006, vol. 46, no. 2, p. 169-171.
  39. YUCE, E., TOKAT, S., MINAEI, S., CICEKOGLU, O. Stability problems in universal current-mode filters. Int. Journal of Electronics and Communications (AEU), 2007, vol. 61, p. 580 - 588.
  40. YUCE, E., MINAEI, S. On the realization of high-order currentmode filter employing current controlled conveyors. Computer and Electrical Engineering Journal, 2008, vol. 34, p. 165-172.
  41. MINAEI, S. Electronically tunable current-mode universal biquad filter using dual-X current conveyors. Journal of Circuits, Systems, and Computers, 2009, vol. 18, no. 4, p. 665-680.
  42. TSUKUTANI, T., HIGASHIMURA, M., SUMI, Y., FUKUI, Y. Electronically tunable current-mode active-only biquadratic filter. International Journal of Electronics, 2000, vol. 87, p. 307–314.
  43. MINAEI, S., CICEKOGLU, O., KUNTMAN, H., DUNDAR, G., CERID, O. New realizations of current-mode and voltage-mode multifunction filters without external passive elements. International Journal of Electronics and Communications (AEU), 2003, vol. 57, p. 63-69.
  44. KHORRAMABADI, H., GRAY, P. R. High frequency CMOS continuous-time filters. IEEE J. Solid-State Circuits, Dec. 1984, vol. SC-19, no. 6, p. 939-948.
  45. GOPINATHAN, V., TSIVIDIS, Y.P., TAN, K.S ., HESTER, R. K. Design considerations for high-frequency continuous-time filters and implementation of an antialiasing filter for digital video. IEEE J. Solid-State Circuits, Dec. 1990, vol. 25, no. 6, p. 1368-1378.
  46. SNELGROVE, W. M., SHOVAL, A. A balanced 0.9-pm CMOS transconductance-C filter tunable over the VHF range. IEEE J. Solid-State Circuits, Mar. 1992, vol. 27, no. 3, p. 314-323.
  47. NAUTA, B. A CMOS transconductance-C filter technique for very high frequencies. IEEE J. Solid-State Circuits, Feb. 1992, vol. 27, no. 2, p. 142-153.
  48. KHOURY, J. M. Design of a 15-MHz CMOS continuous-time filter with on-chip tuning. IEEE J. Solid-State Circuits, Dec. 1991, vol. 25, no. 12, p. 1988-1997.
  49. TOUMAZOU, C., LIDGEY, F. J., HAIGH, D. G. Analog IC Design: The Current-mode Approach. London (UK): Peter Peregrinus Ltd., 1990.
  50. GILBERT, B. Translinear circuits: a historical overview. Analog Integrated Circuits and Signal Processing, Mar. 1996, vol. 9, no. 2, p. 95-118.
  51. LEUNG, V. W., ROBERTS, G. W. Effects of transistor nonidealities on high-order log-domain ladder filter pole-frequencies. IEEE Trans. Circuits Syst. II, May 2000, vol. 47, no. 5, p. 373-387.
  52. ALIOTO, M., PALUMBO, C. Model and Design of Bipolar and MOS Current-mode Logic: CML, ECL and SCL Digital Circuits. Dordrecht (Netherlands): Springer, 2005.

Keywords: Log-domain filtering, very high frequency, low-voltage, electronically-controlled, universal filter

Y. V. Pershin, M. Di Ventra [references] [full-text]
SPICE model of memristive devices with threshold

Although memristive devices with threshold voltages are the norm rather than the exception in experimentally realizable systems, their SPICE programming is not yet common. Here, we show how to implement such systems in the SPICE environment. Specifically, we present SPICE models of a popular voltage-controlled memristive system specified by five different parameters for PSPICE and NGSPICE circuit simulators. We expect this implementation to find widespread use in circuits design and testing.

  1. CHUA, L. O., KANG, S. M. Memristive devices and systems. Proceedings of the IEEE, 1976, vol. 64, no. 2, p. 209 - 223.
  2. DI VENTRA, M., PERSHIN, Y. V., CHUA, L. O. Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proceedings of the IEEE, 2009, vol. 97, no. 10, p. 1717 - 1724.
  3. PERSHIN, Y. V., DI VENTRA, M. Memory effects in complex materials and nanoscale systems. Advances in Physics, 2011, vol. 60, p. 145 - 227.
  4. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, vol. 18, no. 2, p. 210 - 214.
  5. BENDERLI, S., WEY, T. A. On SPICE macromodelling of TiO2 memristors. Electronics Letters, 2009, vol. 45, no. 7, p. 377 - 378.
  6. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE modeling of memristive, memcapacitative and meminductive systems. In Proceedings of European Conference on Circuit Theory and Design (ECCTD). Antalya (Turkey), 2009, p. 249 - 252.
  7. SHIN, S., KIM, K., KANG, S.-M. Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 2010, vol. 29, p. 590.
  8. RAK, A., CSEREY, G. Macromodeling of the memristor in SPICE. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2010, vol. 29, no. 4, p. 632 - 636.
  9. YAKOPCIC, C., TAHA, T. M., SUBRAMANYAM, G., PINO, R. E., ROGERS, S. A memristor device model. IEEE Electron Device Letters, 2011, vol. 32, no. 10, p. 1436 - 1438.
  10. KVATINSKY, S., FRIEDMAN, E. G., KOLODNY, A., WEISER, U. C. TEAM: Threshold adaptive memristor model. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, vol. 60, no. 1, p. 211 - 221.
  11. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. SPICE modelling of memcapacitor. Electronics Letters, 2010, vol. 46, no. 7, p. 520 - 522.
  12. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. PSPICE modeling of meminductor. Analog Integrated Circuits and Signal Processing, 2011, vol. 66, no. 1, p. 129 - 137.
  13. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., WILLIAMS, R. S. The missing memristor found. Nature, 2008, vol. 453, p. 80 - 83.
  14. JOGLEKAR, Y. N., WOLF, S. J. The elusive memristor: properties of basic electrical circuits. European Journal of Physics, 2009, vol. 30, p. 661.
  15. DI VENTRA, M., PERSHIN, Y. V. On the physical properties of memristive, memcapacitive, and meminductive systems. Nanotechnology (in press), 2013; arXiv:1302.7063.
  16. BORGHETTI, J., SNIDER, G. S., KUEKES, P. J., YANG, J. J., STEWART, D. R., WILLIAMS,R. S. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature, 2010, vol. 464, p. 873 - 876.
  17. PERSHIN, Y. V., DI VENTRA, M. Neuromorphic, digital and quantum computation with memory circuit elements. Proceedings of the IEEE, 2012, vol. 100, no. 6, p. 2071 - 2080.
  18. LINN, E., ROSEZIN, R., WASER, R. Complementary resistive switches for passive nanocrossbar memories. Nature Materials, 2010, vol. 9, p. 403 - 406.
  19. PERSHIN, Y. V., LA FONTAINE, S., DI VENTRA, M. Memristive model of amoeba learning. Physical Review E, 2009, vol. 80, no. 2, p. 021926.
  20. PERSHIN, Y. V., DI VENTRA, M. Experimental demonstration of associative memory with memristive neural networks. Neural Networks, 2010, vol. 23, no. 7, p. 881 - 886.
  21. PERSHIN, Y. V., DI VENTRA, M. Practical approach to programmable analog circuits with memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, vol. 57, no. 8, p. 1857 - 1864.
  22. PERSHIN, Y. V., DI VENTRA, M. Memristive circuits simulate memcapacitors and meminductors. Electronics Letters, 2010, vol. 46, no. 7, p. 517 - 518.
  23. NENZI, P., VOGT, H. Ngspice Users Manual, version 25plus. 2013. [Online] Available at: http://ngspice.sourceforge.net/docs/ngspicemanual. pdf
  24. BASSO, C. SPICE analog behavioral modeling of variable passives. Power Electronics Technology, 2005, vol. 31, no. 3, p. 57 - 59.

Keywords: Memristive devices, memristor, memristor model, threshold dynamics

R. Sotner, J. Jerabek, N. Herencsar [references] [full-text]
Voltage Differencing Buffered/Inverted Amplifiers and Their Applications for Signal Generation

This paper presents some interesting new applications in the field of analog signal processing focused on signal generation. A novel modifications of recently developed and studied family of active elements, called voltage differencing buffered amplifier (VDBA) and voltage differencing inverted buffered amplifier (VDIBA) are discussed. Our attention is focused on simple application of active elements like dual output VDBAs (DO-VDBAs) and fully balanced VDBAs (FB-VDBAs), where one or two z terminals and always voltage outputs of both polarities are present. The last modification of VDBA allows additional electronic control of voltage gain in frame of active element except standard transconductance control. Discussed active elements were used to build very simple multiphase oscillators with minimal complexity as a simple non-tunable alternative to classical conceptions utilizing lossy integrators in phase-shifted loop. Linearly tunable quadrature differential mode (balanced) oscillator or balanced simple triangle and square wave generator were chosen as other useful examples. Features of proposed circuits are discussed and selected examples verified and evaluated by computer simulations with appropriate low-voltage TSMC 0.18 um CMOS technology models.

  1. BIOLEK, D., SENANI, R., BIOLKOVA, V., KOLKA, Z. Active elements for analog signal processing: Classification, review, and new proposal. Radioengineering, 2008, vol. 17, no. 4, p. 15-32.
  2. BIOLKOVA, V., KOLKA, Z., BIOLEK, D. Fully balanced voltage differencing buffered amplifier and its applications. In Proc. of 52nd MWSCAS. Cancun (Mexico), 2009, p. 45-48.
  3. BIOLEK, D., BIOLKOVA, V., KOLKA, Z. All-pass filter employing fully balanced voltage differencing buffered amplifier. In Proc. of the IEEE Latin American Symposium on Circuits and Systems (LASCAS 2010). Iguacu (Brazil), 2010. p. 232-235.
  4. KACAR, F., YESIL, A., NOORI, A. New CMOS realization of voltage differencing buffered amplifier and its biquad filter applications. Radioengineering, 2012, vol. 21, no. 1, p. 333-339.
  5. HERENCSAR, N., MINAEI, S., KOTON, J., YUCE, E., VRBA, K. New resistorless and electronically tunable realization of dualoutput VM all-pass filter using VDIBA. Analog Integrated Circuits and Signal Processing, 2013, vol. 74, no. 1, p. 141-154.
  6. ABUELMAATTI, M. T., AL-QAHTANI, M. A. A new currentcontrolled multiphase sinusoidal oscillator using translinear current conveyors. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1998, vol. 45, no. 7, p. 881-885.
  7. SOULIOTIS, G., PSYCHALINOS, C. Electronically controlled multiphase sinusoidal oscillators using current amplifiers. International Journal of Circuit Theory and Applications, 2009, vol. 37, no. 1, p. 43-52.
  8. KUMNGERN, M., CHANWUTIUM, J., DEJHAN, K. Electronically tunable multiphase sinusoidal oscillator using translinear current conveyors. Analog Integrated Circuits and Signal Processing, 2010, vol. 65, no. 2, p. 327–334.
  9. GIFT, S. J. G. The application of all-pass filters in the design of multiphase sinusoidal systems. Microelectronics Journal, 2000, vol. 31, no. 1, p. 9-13.
  10. KESKIN, A. U., BIOLEK, D. Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proc. Circuits Devices and Systems, 2006, vol. 153, no. 3, p. 214-218.
  11. SONGSUWANKIT, K., PETCHMANEELUMKA, W., RIEWRUJA, V. Electronically adjustable phase shifter using OTAs. In Proc. of the International Conference on Control, Automation and Systems (ICCAS2010). Gyeongii-do (Korea), 2010, p. 1622-1625.
  12. KEAWON, R., JAIKLA, W. A resistor-less current-mode quadrature sinusoidal oscillator employing single CCCDTA and grounded capacitors. Przeglad Elektrotechniczny, 2011, vol. 87, no. 8, p. 138-141.
  13. JAIKLA, W., SIRIPRUCHYANUN, M., BAJER, J., BIOLEK, D. A simple current-mode quadrature oscillator using single CDTA. Radioengineering, 2008, vol. 17, no. 4, p. 33-40.
  14. PANDEY, N., PAUL, S. K. Single CDTA-based current mode allpass filter and its applications. Journal of Electrical and Computer Engineering, 2011, vol. 2011, p. 1-5.
  15. KESKIN, A. U., AYDIN, C., HANCIOGLU, E., ACAR, C. Quadrature oscillator using current differencing buffered amplifiers (CDBA). Frequenz, 2006, vol. 60, no. 3, p. 21-23.
  16. SONGKLA, S. N., JAIKLA, W. Realization of electronically tunable current-mode first-order allpass filter and its application. International Journal of Electronics and Electrical Engineering, 2012, vol. 2012, no. 6, p. 40-43.
  17. MINAEI, S., YUCE, E. Novel voltage-mode all-pass filter based on using DVCCs. Circuits, Systems and Signal Processing, 2010, vol. 29, no. 3, p. 391-402.
  18. SOLIMAN, A. M. Synthesis of grounded capacitor and grounded resistor oscillators. Journal of the Franklin Institute, 1999, vol. 336, no. 4, p. 735-746.
  19. HERENCSAR, N., VRBA, K., KOTON, J., LAHIRI, A. Realizations of single-resistance-controlled quadrature oscillators using a generalized current follower transconductance amplifier and a unity gain voltage-follower. Int. Journal of Electronics, 2010, vol. 97, no. 8, p. 879-906.
  20. GUPTA, S. S., SENANI, R. New single-resistance-controlled oscillator configurations using unity-gain cells. Analog Integrated Circuits and Signal Processing, 2006, vol. 46, no. 2, p. 111-119.
  21. BIOLKOVA, V., BAJER, J., BIOLEK, D. Four-phase oscillators employing two active elements. Radioengineering, 2011, vol. 20, no. 1, p. 334-339.
  22. LAHIRI, A., GUPTA, M. Realizations of grounded negative capacitance using CFOAs. Circuits, Systems and Signal Processing, 2011, vol. 30, no. 1, p. 134-155.
  23. LAHIRI, A. Explicit-current-output quadrature oscillator using second-generation current conveyor transconductance amplifier. Radioengineering, 2009, vol. 18, no. 4, p. 522-526.
  24. LAHIRI, A. Novel voltage/current-mode quadrature oscillator using current differencing transconductance amplifier. Analog Integrated Circuits and Signal Processing, 2009, vol. 61, no. 2, p. 199-203.
  25. RODRIGUEZ-VAZQUEZ, A., LINAREZ-BARRANCO, B., HUERTAS, L., SANCHEZ-SINENCIO, E. On the design of voltage-controlled sinusoidal oscillators using OTA´s. IEEE Transaction on Circuits and Systems, 1990, vol. 37, no. 2, p. 198-211.
  26. SOTNER, R., HERENCSAR, N., JERABEK, J., KOTON, J., DOSTAL, T., VRBA, K. Quadrature oscillator based on modified double current controlled current feedback amplifier. In Proc. of 22nd Int. Conf. Radioelektronika. Brno (Czech Republic), 2012, p. 275-278.
  27. ALZAHER, H. CMOS digitally programmable quadrature oscillators. International Journal of Circuit Theory and Applications, 2008, vol. 36, no. 8, p. 953-966.
  28. BIOLEK, D., LAHIRI, A., JAIKLA, W., SIRIPRUCHYANUN, M., BAJER, J. Realization of electronically tunable voltagemode/ current-mode quadrature sinusoidal oscillator using ZC-CGCDBA. Microelectronics Journal, 2011, vol. 42, no. 10, p. 1116- 1123.
  29. SOTNER, R., JERABEK, J., HERENCSAR, N., HRUBOS, Z., DOSTAL, T., VRBA, K. Study of adjustable gains for control of oscillation frequency and oscillation condition in 3R-2C oscillator. Radioengineering, 2012, vol. 21, no. 1, p. 392-402.
  30. GALAN, J., CARVALAJ, R. G., TORRALBA, A., MUNOZ, F., RAMIREZ-ANGULO, J. A low-power low-voltage OTA-C sinusoidal oscillator with large tuning range. IEEE Transaction on Circuits and Systems I: Fundamental Theory and Applications, 2005, vol. 52, no. 2, p. 283-291.
  31. BAJER, J., BIOLEK, D., BIOLKOVA, V., KOLKA, Z. Voltagemode balanced-outputs quadrature oscillator using FB-VDBAs. In Proc. of Int. Conf. on Microelectronics (ICM), 2010, p. 491-494.
  32. BIOLEK, D., BIOLKOVA, V. Current-mode CDTA-based comparators. In Proc. of the 13th International Conference on Electronic Devices and Systems EDS IMAPS. Brno (Czech Republic), 2006, p. 6-10.
  33. DE-MARCELLIS, A., DI-CARLO, C., FERRI, G., STORNELLI, V. A CCII-based wide frequency range square waveform generator. International Journal of Circuit Theory and Applications, 2013, vol. 41, no. 1, p. 1-13.
  34. CHIEN, H-CH. Voltage-controlled dual slope operation square/triangular wave generator and its application as a dual mode operation pulse width modulator employing differential voltage current conveyors. Microelectronics Journal, 2012, vol. 43, no. 12, p. 962-974.
  35. ALMASHARY, B., ALHOKAIL, H. Current-mode triangular wave generator using CCIIs. Microelectronics Journal, 2000, vol. 31, no. 4, p. 239-243.
  36. PAL, D., SRINIVASULU, B. B., PAL, A., DEMOSTHENOUS, B., DAS, N. Current conveyor-based square/triangular waveform generators with improved linearity. IEEE Transaction on Instrumentation and Measurement, 2009, vol. 58, no. 7, p. 2174-2180.
  37. SAQUE, A. S., HOSSAIN, M. M., DAVIS, W. A., RUSSELL, H. T., CARTER, R. L. Design of sinusoidal, triangular, and square wave generator using current feedback amplifier (CFOA). In Proc. of IEEE Region 5 Conference. Kansas City (USA), 2008, p. 1–5.
  38. MINAEI, S., YUCE, E. A simple Schmitt trigger circuit with grounded passive elements and its application to square/triangular wave generator. Circuits, Systems, and Signal Processing, 2012, vol. 31, no. 3, p. 877-888.
  39. LO, Y. K., CHIEN, H. C. Switch-controllable OTRA-based square/triangular waveform generator. IEEE Transaction on Circuits, Systems and Signal Processing II, 2007, vol. 54, no. 12, p. 1110-1114.
  40. KIM, K., CHA, H. W., CHUNG, W. S. OTA-R Schmitt trigger with independently controllable threshold and output voltage levels. Electronics Letters, 1997, vol. 33, no. 13, p. 1103-1105.
  41. CHUNG, W. S., KIM, H., CHA, H. W., KIM, H. J. Triangular/ square-wave generator with independently controllable frequency and amplitude. IEEE Transactions on Instrumentation and Measurement, 2005, vol. 54, no. 1, p. 105-109.
  42. CHUNG, W. S., CHA, H. W., KIM, H. J. Current-controllable monostable multivibrator using OTAs. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, vol. 49, no. 5, p. 703-705.
  43. SIRIPRUCHYANUN, M., WARDKEIN, P. A full independently adjustable, integrable simple current controlled oscillator and derivative PWM signal generator. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2003, vol. E86-A, no. 12, p. 3119-3126.
  44. KUMBUN, J., SIRIPRUCHYANUN, M. MO-CTTA-based electronically controlled current-mode square/triangular wave generator. In Proc. of the 1st International Conf. on Technical Education (ICTE2009), 2010, p. 158–162.
  45. SILAPAN, P., SIRIPRUCHYANUN, M. Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications. Analog Integrated Circuits and Signal Processing, 2011, vol. 68, no. 11, p. 111-128.
  46. SRISAKUL, T., SILAPAN, P., SIRIPRUCHYANUN, M. An electronically controlled current-mode triangular/square wave generator employing MO-CCCCTAs. In Proc. of the 8th Int. Conf. on Electrical Engineering/ Electronics, Computer, Telecommunications, and Information Technology. 2011, p. 82-85.
  47. MOSIS parametric test results of TSMC LO EPI SCN018 technology. [Online] Cited 2012-05-24. Available at: ftp: //ftp.isi.edu/pub/mosis/vendors/tsmc-018/t44e lo epi-params.txt.
  48. BAKER, J. CMOS Circuit Design, Layout and Simulation. IEEE Press Series on Microelectronic Systems, 2005.

Keywords: Analog signal processing, low-voltage circuit, voltage differencing inverted buffered amplifier, VDIBA, voltage differencing buffered amplifier, VDBA, multiphase oscillators, quadrature oscillator, triangle and square wave generator, differential output responses, electronic control.

Y. Wang, J. Liu, L. Xie, G. Wen [references] [full-text]
An Ultra-Low-Power Oscillator with Temperature and Process Compensation for UHF RFID Transponder

This paper presents a 1.28MHz ultra-low-power oscillator with temperature and process compensation. It is very suitable for clock generation circuits used in ultra-high-frequency (UHF) radio-frequency identification (RFID) transponders. Detailed analysis of the oscillator design, including process and temperature compensation techniques are discussed. The circuit is designed using TSMC 0.18μm standard CMOS process and simulated with Spectre. Simulation results show that, without post-fabrication calibration or off-chip components, less than ±3% frequency variation is obtained from –40 to 85°C in three different process corners. Monte Carlo simulations have also been performed, and demonstrate a 3σ deviation of about 6%. The power for the proposed circuitry is only 1.18µW at 27°C.

  1. EPCTM Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz - 960 MHz Version 1.2.0., 2008.
  2. WANG, Z., MAO, L. CHEN, L., LI, L., TIAN, J., WANG, Z. Design of a passive UHF RFID transponder featuring a variationtolerant baseband processor. In Proc. 4th IEEE Int. Conf. on RFID. Orlando (FL, USA), Apr. 2010, p. 61-68.
  3. VITA, G. D., MARRACCINI, F., IANNACCONE, G. Low-voltage low-power CMOS oscillator with low temperature and process sensitivity. In Proc. IEEE International Symposium on Circuits and Systems. New Orleans (USA), May 2007, p. 2152-2155.
  4. CILEK, F., SEEMANN, K., BRENK, D., ESSEL, J., HEIDRICH, J., WEIGEL, R., HOLWEG, G. Ultra low power oscillator for UHF RFID transponder. In Proc. 2008 IEEE International Frequency Control Symposium, May 2008, p. 418-421.
  5. BARNETT, R., LIU, J. A 0.8V 1.52MHz MSVC relaxation oscillator with inverted mirror feedback reference for UHF RFID. In Proc. 2006 IEEE Custom Integrated Circuits Conference. Sept. 2006, p. 769-772.
  6. SUNDARESAN, K., ALLEN, P. E., AYAZI, F. Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J. Solid-State Circuits, Feb. 2006, vol. 41, no. 2, p. 433-441.
  7. ZHANG, X., APSEL, A. B. A low-power, process-and-temperature- compensated ring oscillator with addition-based current source. IEEE Trans. Circuits Syst. I, Reg. Papers, May 2011, vol. 58, p. 868-878.
  8. LAKSHMIKUMAR, K. R., MUKUNDAGIRI, V., GIERKINK, S. L. J. A process and temperature compensated two-stage ring oscillator. In Proc. IEEE Custom Integrated Circuits Conference (CICC). Sept. 2007, p. 691-694.
  9. CHAN, C. F., PUN, K. P., LEUNG, K. N., GUO, J., LEUNG, L. K. L., CHOY, C. S. A low-power continuously-calibrated clock recovery circuit for UHF RFID EPC class-1 generation-2 transponders. IEEE J. Solid-State Circuits, March 2010, vol. 45, no. 3, p. 587-599.
  10. RAZAVI, B. Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2000.
  11. UENO, K., HIROSE, T., ASAI, T., AMEMIYA, Y. A 300 nW, 15 ppm/°C, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs. IEEE J. Solid-State Circuits, July 2009, vol. 44, no. 7, p. 2047-2054.
  12. PIERRET, R. F. Semiconductor Device Fundamentals. Massachusetts: Addison-Wesley, 1996.
  13. TANG, J., FANG, T. Temperature and process independent ringoscillator using compact compensation technique. In Int. Conf. on ASID. Guiyang (China), Aug. 2008, p. 49-52.

Keywords: Ultra-low-power, oscillator, temperature, process, compensation, RFID.

Y. S. Hwang, A. Liu, S. F. Wang, S. C. Yang, J. J. Chen [references] [full-text]
A tunable Butterworth low-pass filter with digitally controlled DDCC

This paper presents a 6th-order tunable Butterworth low-pass active filter with Digitally Controlled Differential Difference Current Conveyor (DDCC). This active filter is synthesized using the systematic method of voltage-mode linear transformation (VMLT) which enables the filter use fewer active components, grounded capacitors and grounded resistors to avoid the parasitical effects. The bandwidth of the filter can be tuned by digital switches to adjust the output current of the DDCC. The specifications of the filter are based on 3G standard, and the filter is controlled by 8-bits digital signals. The tunable bandwidth of the filter is from 12 KHz to 2.6 MHz. The filter chip layout is realized by TSMC 0.18 um CMOS 1P6M mixed-mode technology. The supply voltage is 1.8V and the power consumption is 3.6 mW.

  1. ALZAHER, H. A., ELWAN, H. O., ISMAIL, M. A CMOS highly linear channel-select filter for 3G multistandard integrated wireless receivers. IEEE Transactions on Solid-State Circuits, 2002, vol. 37, no. 1, p. 27 - 37.
  2. STEHR, U., HENKEL, F., DALLUGE, L., WALDOW, P. A fully differential CMOS integrated 4th order reconfigurable GM-C lowpass filter for mobile communication. In Proceedings of the 10th IEEE International Conference on Electronics, Circuits and Systems. Sharjak (UAE), 2003, p. 144 - 147.
  3. HWANG, Y. S., CHEN, J. J., LAI, J. H., SHEU, P. W. Fully differential current-mode third-order Butterworth VHF Gm-C filter in 0.18 m CMOS. IEE Proceedings Circuits, Devices and Systems, 2006, vol. 153, no. 6, p. 552 - 558.
  4. AL-HASHIMI, B. M., XIE, Y., ZWOLINSKI, M. Analysis of mirror mismatch and clock-feedthrough in Bruton transformation switched current wave filters. IEE Proceedings Circuits, Devices and Systems, 2003, vol. 150, no. 1, p. 6 - 15.
  5. ASRI, N. D. M., SOIN, N. Development of active inductor in CMOS tunable RF bandpass filter. In Proceedings of the 2011 IEEE Regional Symposium on Micro and Nanoelectronics. Sabah (Malaysia), 2011, p. 315 - 318.
  6. MAHMOUD, S. A., HASHIESH, M. A., SOLIMAN, A. M. Lowvoltage digitally controlled fully differential current conveyor. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, vol. 52, no. 10, p. 2055 - 2064.
  7. IBRAHIM, M. A., MINAEI, S., YUCE, E., HERENCSAR, N., KOTON, J. Lossy/lossless floating/grounded inductance simulation using one DDCC. Radioengineering, 2012, vol. 21, no. 1, p. 3 - 10.
  8. KUMNGERN, M., TORTEANCHAI, U, DEJHAN, K. Voltagecontrolled floating resistor using DDCC. Radioengineering, 2011, vol. 20, no. 1, p. 327 - 333.
  9. IBRAHIM, M. A., KUNTMAN, H. High linearity CMOS differential difference current conveyor (DDCC). In Proceedings of the 14th International Conference on Microelectronics. Beirut (Lebanon), 2002, p. 6 - 9.
  10. EL-ADAWY, A. A. A., SOLIMAN, A. M., ELWAN, H. O. Low voltage digitally controlled CMOS current conveyor. AEUInternational Journal of Electronics and Communications, 2002, vol. 56, no. 3, p. 137 - 144.
  11. TANGSRIRAT, W., PRASERTSOM, D., SURAKAMPONTORN, W. Low-voltage digitally controlled current differencing buffered amplifier and its application. AEU - International Journal of Electronics and Communications, 2009, vol. 63, no. 4, p. 249 - 258.
  12. TANGSRIRAT, W., PUKKALANUN, T. Digitally programmable current follower and its applications. AEU - International Journal of Electronics and Communications, 2009, vol. 63, no. 5, p. 416 - 422.
  13. BIOLEK, D., LAHIRI, A., JAIKLA, W., SIRIPRUCHYANUN, M., BAJER, J. Realization of electronically tunable voltagemode/ current-mode quadrature sinusoidal oscillator using ZC-CGCDBA. Microelectronics Journal, 2011, vol. 42, no. 10, p. 1116 - 1123.
  14. TARIM, T., ISMAIL, M. Statistical design of a 10 bit current division network. Analog Integrated Circuits and Signal Processing, 2001, vol. 29, no. 3, p. 221 - 229.
  15. SCHAUMANN, R., XIAO, H., MAC, V. V. Design of Analog Filters. 2nd ed. New York (USA): Oxford University Press, 2009.
  16. CHANG, C. M., LEE, C. N., HOU, C. L., HORNG, J. W., TU, C. K. High-order DDCC-based general mixed-mode universal filter. IEE Proceedings Circuits, Devices and Systems, 2006, vol. 153, no. 5, p. 511 - 516.

Keywords: Differential difference current conveyor (DDCC), voltage-mode linear transformation(VMLT), current division network (CDN), active filter

C. Sanchez-Lopez, A. Ruiz-Pastor, R. Ochoa-Montiel, M. A. Carrasco-Aguilar [references] [full-text]
Symbolic Nodal Analysis of Analog Circuits with Modern Multiport Functional Blocks

This paper proposes admittance matrix models to approach the behavior of six modern multiport functional blocks called: differential difference amplifier, differential difference operational floating amplifier, differential difference operational mirror amplifier, differential difference current conveyor, current backward transconductance amplifier and current differencing transconductance amplifier. The novelty is that the behavior of any active device mentioned before can immediately be introduced in the nodal admittance matrix by using the proposed admittance matrix models and without requiring the use of extra variables. Therefore, a standard nodal analysis is applied to compute fully-symbolic small-signal performance parameters of analog circuits containing any active device mentioned above. This means that not only the size of the admittance matrix is smaller than those generated by applying modified nodal analysis method, for instance, but also, the number of nonzero elements and the generations of cancellation-terms are both reduced. An analysis example for each amplifier is provided in order to show the useful of the proposed stamps.

  1. BIOLEK, D., SENANI, R., BIOLKOVA, V., KOLKA, Z. Active elements for analog signal processing: classification, review, and new proposals. Radioengineering, 2008, vol. 17, no. 4, p. 15 - 32.
  2. SACKINGER, E., GUGGENBUHL, W. A versatile building block: The CMOS differential difference amplifier. IEEE Journal of Solid-State Circuits, 1987, vol. SC-22, no. 2, p. 287 - 294.
  3. MAHMOUD, S. A., SOLIMAN, A. M. The differential difference operational floating amplifier: A new block for analog signal processing in MOS technology. IEEE Transactions on Circuits and Systems II, Analog and Digital Signal Processing, 1998, vol. 45, no. 1, p. 148 - 158.
  4. SOLTAN, A., SOLIMAN, A. M. A CMOS differential difference operational mirrored amplifier. International Journal of Electronics and Communications (AEU), 2009, vol. 63, no. 9, p. 793 - 800.
  5. CHIU, W., LIU, S.-L., TSAO, H.-W., CHEN, J.-J. CMOS differential difference current conveyors and their applications. IEE Proceedings – Circuits, Devices and Systems, 1996, vol. 143, no. 2, p. 91 - 96.
  6. AYTEN, U. E., SAGBAS, M., SEDEF, H. Current mode leapfrog ladder filters using a new active block. International Journal of Electronics and Communications (AEU), 2010, vol. 64, no. 6, p. 503 - 511.
  7. BIOLEK D. CDTA- building block for current-mode analog signal processing. In Proc. IEEE European Conference on Circuit Theory and Design. Krakow (Poland), 2003, vol. III, p. 397 - 400.
  8. SANCHEZ-LOPEZ, C., FERNANDEZ, F. V., TLELOCUAUTLE, E., TAN, S. X.-D. Pathological element-based active devices models and their application to symbolic analysis. IEEE Transactions on Circuits and Systems I, Reg. papers, 2011, vol. 58, no. 6, p. 1382 - 1395.
  9. SANCHEZ-LOPEZ, C. Pathological equivalents of fully-differential active devices for symbolic nodal analysis. IEEE Transactions on Circuits and Systems I, Reg. papers, 2013, vol. 60, no. 3, p. 603 - 615.
  10. LIN, P. M. Symbolic Network Analysis. Amsterdam (The Netherlands): Elsevier Science Publishers, 1991.
  11. GIELEN, G., SANSEN, W. Symbolic Analysis for Automated Design of Analog Integrated Circuits. USA: Kluwer Academic Publishers, 1991.
  12. KOLKA, Z., BIOLEK, D., BIOLKOVA, V. Symbolic analysis of linear circuits with modern active elements. WSEAS Transactions on Electronics, 2008, vol. 5, no. 6, p. 282 - 290.
  13. VLACH, J., SINGHAL, K. Computer Methods for Circuit Analysis and Design. Norwell (MA, USA): Kluwer, 1993.
  14. FERNANDEZ, F. V., RODRIGUEZ-VAZQUEZ, A., HUERTAS, J. L. GIELEN, G. Symbolic Analysis Techniques: Applications to Analog Design Automation. Piscataway (NJ, USA): IEEE Press, 1998.
  15. FAKHFAKH, M. TLELO-CUAUTLE, E. FERNANDEZ, F. V. Design of Analog Circuits Through Symbolic Analysis. Bentham Sciences Publishers Ltd., 2012.
  16. FAKHFAKH, M. TLELO-CUAUTLE, E. CASTRO-LOPEZ R. Analog/RF and Mixed–Signal Circuit Systematic Design. Springer 2013.
  17. HAIGH, D. G., RADMORE, P. Systematic synthesis method for analogue circuits – Part I: Notation and synthesis toolbox. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS). Vancouver (Canada), 2004, vol. 1, p. 701 - 704.
  18. HAIGH, D. G., TAN, F. Q., PAPAVASSILIOU, C. Systematic synthesis method for analogue circuits – Part II: Active-RC circuit synthesis. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), 2004, vol. 1, p. 705 - 708.
  19. HAIGH, D. G., TAN, F. Q., PAPAVASSILIOU, C. Systematic synthesis method for analogue circuits – Part III: All-transistor circuit synthesis. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), 2004, vol. 1, p. 709 - 712.
  20. HAIGH, D. G., TAN, F. Q., PAPAVASSILIOU, C. Systematic synthesis of active-RC circuit building-blocks. Analog Integrated Circuits and Signal Processing, 2005, vol. 43, p. 297 - 315.
  21. SANCHEZ-LOPEZ, C., FERNANDEZ, F. V., TLELOCUAUTLE, E. Generalized admittance matrix models of OTRAs and COAs. Microelectronics Journal, 2010, vol. 41, no. 8, p. 502 - 505.
  22. SANCHEZ-LOPEZ, C., CANTE-MICHOL, B., MORALESLOPEZ, F. E., CARRASCO-AGUILAR M. A. Pathological equivalents of CMs and VMs with multi-outputs. Analog Integrated Circuits and Signal Processing, 2013, vol. 75, no. 1, p. 75 - 83.
  23. SANCHEZ-LOPEZ, C. Generalized admittance matrix model of fully-differential VCVS. In Proc. IEEE Int. Symp. Circuits Syst. 2013, In press.
  24. SANCHEZ-LOPEZ, C., OCHOA-MONTIEL, R., RUIZ-PASTOR, A., GONZALEZ-CONTRERAS, B. M. Symbolic nodal analysis of fully-differential analog circuits. In Proceedings of IEEE International Latin American Symposium on Circuits and Systems, 2013, vol. 1, no. 1, p. 1 - 4.
  25. HERENCSAR, N., KOTON, J., VRBA, K., LAHIRI, A., AYTEN, U. E., SAGBAS, M. A new compact CMOS realization of sinusoidal oscillator using a single modified CBTA. In Proceedings of International Conference Radioelektronika. Brno (Czech Republic), 2011, vol. 1, p. 41 - 44.
  26. KESKIN, A. U., BIOLEK, D., HANCIOGLU, E. BIOLKOVA, V. Current-mode KHN filter employing current differencing transconductance amplifiers. International Journal of Electronics and Communications (AEU), 2006, vol. 60, no. 1, p. 443 - 446.
  27. SOLIMAN, A. M. Nodal admittance matrix and pathological realization of BOOA, DDA, DDOFA and DDOMA. Singapore Journal of Scientific Research, 2011, vol. 1, no. 2, p. 149 - 163.
  28. SAAD, R. A., SOLIMAN, A. M. Use of mirror elements in the active device synthesis by admittance matrix expansion. IEEE Transactions on Circuits and Systems I: Regular papers, 2008, vol. 55, no. 9, p. 2726 - 2735.
  29. SAAD, R. A., SOLIMAN, A. M. A new approach for using the pathological mirror elements in the ideal representation of active devices. Int. J. Circuit Theory Appl., 2010, vol. 38, no. 2, p. 148 - 178.
  30. TLELO-CUAUTLE, E., SANCHEZ-LOPEZ C., MORO-FRIAS, D. Symbolic analysis of (MO)(I)CCI(II)(III)-based analog circuits International Journal of Circuit Theory and Applications, 2010, vol. 38, no. 6, p. 649 - 659.
  31. TLELO-CUAUTLE, E., SANCHEZ-LOPEZ, C., MARTINEZROMERO, E. Symbolic analysis of analog circuits containing voltage mirrors and current mirrors. Analog Integrated Circuits and Signal Processing, 2010, vol. 65, no. 1, p. 89 - 95.

Keywords: Nodal admittance matrix, symbolic analysis, stamps controlled sources, operational amplifiers

J. Afshar Jahanashahi, M. Eslami, S. A. Ghorashi [references] [full-text]
Compressed Sensing based Dynamic PSD Map Construction in Cognitive Radio Networks

In the context of spectrum sensing in cognitive radio networks, collaborative spectrum sensing has been proposed as a way to overcome multipath and shadowing, and hence increasing the reliability of the sensing. Due to the high amount of information to be transmitted, a dynamic compressive sensing approach is proposed to map the PSD estimate to a sparse domain which is then transmitted to the fusion center. In this regard, CRs send a compressed version of their estimated PSD to the fusion center, whose job is to reconstruct the PSD estimates of the CRs, fuse them, and make a global decision on the availability of the spectrum in space and frequency domains at a given time. The proposed compressive sensing based method considers the dynamic nature of the PSD map, and uses this dynamicity in order to decrease the amount of data needed to be transmitted between CR sensors’ and the fusion center. By using the proposed method, an acceptable PSD map for cognitive radio purposes can be achieved by only 20 % of full data transmission between sensors and master node. Also, simulation results show the robustness of the proposed method against the channel variations, diverse compression ratios and processing times in comparison with static methods.

  1. LONG, J., ZHANG, X., WU, Q. State transition probability based sensing duration optimization algorithm in cognitive radio. IEICE Transaction on Communications, 2010, vol. E93-B, no. 12, p. 2099 - 2106.
  2. TAFAGHODI KHAJAVI, N., SADEGHI IVRIGH, S., SADOUGH, S. M. S. A novel framework for spectrum sensing in cognitive radio networks. IEICE Transactions on Communications, 2011, vol. E94- B, no. 9, p. 2600 - 2609.
  3. TAFAGHODI KHAJAVI, N., SADEGHI IVRIGH, S., SADOUGH, S. M. S. Achievable outage rates in cognitive radio networks under imperfect spectrum sensing. Radioengineering, 2012, vol. 21, no. 2, p. 683 - 693.
  4. YUCEK, T., ARSLAN, H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 2009, vol. 11, no. 1, p. 567 - 575.
  5. SAAD, W., HAN, Z., DEBBAH, M., HJØRUNGNES, A., BASAR, T. Coalitional games for distributed collaborative spectrum sensing in cognitive radio networks. In Proceedings of the IEEE Conference on Computer Communications. Rio de Janeiro (Brazil), 2009, p. 176 - 181.
  6. ZHANG, H., WANG, X., KUO, G., BOHNERT, T. M. Optimum detection location-based cooperative spectrum sensing in cognitive radio. Radioengineering, 2010, vol. 19, no. 4, p. 552 - 560.
  7. CARDOSO, L. S., DEBBAH, M., BIANCHI, P., NAJIM, J. Cooperative spectrum sensing using random matrix theory. In Proceedings of the International Symposium on Wireless Pervasive Computing. Santorini (Greece), 2008, p. 234 - 239.
  8. SUN, C., ZHANG, W., LETAIEF, K. B. Cluster-based cooperative spectrum sensing in cognitive radio systems. In Proceedings of the IEEE International Conference on Communications. Glasgow (Scotland), 2007, p. 254 - 259.
  9. CAO, L., ZHENG, H. Distributed rule-regulated spectrum sharing. IEEE Journal on Selected Areas in Communications: Special Issue on Cognitive Radio: Theory and Applications, 2008, vol. 26, no. 1, p. 130 - 145.
  10. ZHAO, Q., SADLER, B. A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 2007, vol. 24, no. 3, p. 79 - 89.
  11. BAZERQUE, J. A., GIANNAKIS, G. B. Distributed spectrum sensing for cognitive radio networks by exploiting sparsity. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 3, p. 1376 - 1387.
  12. LI, H. Reconstructing geographical-spectral pattern in cognitive radio networks. In Proceedings of the IEEE 5th International Conference on Cognitive Radio Oriented Wireless Networks & Communications (CrownCom). Cannes (France), 2010, p. 1 - 5.
  13. SHIH, S. Y., CHEN, K. C. Compressed sensing construction of spectrum map for routing in cognitive radio networks. In Proceedings of the IEEE 73rd VTC. Budapest (Hungary), 2011, p. 1 - 5.
  14. CANDES, E., ROMBERG, J., TAO, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, vol. 52, no. 2, p. 489 - 509.
  15. DONOHO, D. L. Compressed sensing. IEEE Transactions on Information Theory, 2006, vol. 52, no. 4, p. 1289 - 1306.
  16. TIAN, Z., GIANNAKIS, G. B. Compressed sensing for wide-band cognitive radios. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. Honolulu (USA), 2007, p. IV/1357 - IV/1360.
  17. POLO, Y. L., WANG, Y., PANDHARIPANDE, A., LEUS, G. Compressive wide-band spectrum sensing. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. Taipei (Taiwan), 2009, p 1 - 4.
  18. WANG, Y., TIAN, Z., FENG, C. A two-step compressed spectrum sensing scheme for wideband cognitive radios. In Proceedings of IEEE Global Telecommunications Conference. Florida (USA), 2010, p. 1 - 5.
  19. HONG, S. Multi-resolution Bayesian compressive sensing for cognitive radio primary user detection. In Proceeding of IEEE Global Telecommunications Conference. Florida (USA), 2010, p. 37 - 42.
  20. ZENG, F., LI, C., TIAN, Z. Distributed compressive spectrum sensing in cooperative multi-hop cognitive networks. IEEE Journal of Selected Topics in Signal Processing, 2011, vol. 5, no. 1, p. 37 - 48.
  21. TIAN, Z., BLASCH, E., LI, W., CHEN, G., LI, X. Performance evaluation of distributed compressed wideband sensing for cognitive radio networks. In Proceeding of 11th International Conference on Information Fusion. Cologne (Germany), 2008, p. 1 - 5.
  22. MENG, J., YIN, W., LI, H. HOSSAIN, E., HAN, Z. Collaborative spectrum sensing from sparse observations in cognitive radio networks. IEEE Journal of Selected Areas in Communications, 2011, vol. 29, no. 2, p. 327 - 337.
  23. MENG, J., YIN, W., LI, H. HOSSAIN, E., HAN, Z. Collaborative spectrum sensing from sparse observations using matrix completion for cognitive radio networks. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. Florida (USA), 2010, p. 3114 - 3117.
  24. YIN, W., WEN, Z., LI, S., MENG, J., HAN, Z. Dynamic compressive spectrum sensing for cognitive radio networks. In Proceeding of 45th Annual Conference on Information Sciences and Systems (CISS). Baltimore (USA), 2011, p. 1 - 6.
  25. AFSHAR JAHANSHAHI, J., ESLAMI, M., GHORASHI, S. A. PSD map construction scheme based on compressive sensing in cognitive radio networks. IEICE Transactions on Communications (Special Issue on Cognitive Radio Networks), 2012, vol. E95-B, no. 4, p. 1056 - 1065.
  26. LA, C., DO, M. N. Signal reconstruction using sparse tree representation. In Proceedings of the SPIE Conference on Wavelet Applications in Signal and Image Processing. San Diego (USA), 2005, p. 1 - 5.
  27. DONOHO, D. L., ELAD, M., TEMLYAKOV, V. Stable recovery of sparse over complete representations in the presence of noise. IEEE Transactions on Information Theory, 2006, vol. 52, no. 1, p. 6 - 18.
  28. TIBSHIRANI, R. Regression shrinkage and selection via the Lasso. Journal of Royal Statistics Society, Series B, 1996, vol. 58, no. 1, p. 267 - 288.
  29. ESLAMI, M., SADOUGH, S. M. S. Wideband spectrum sensing for cognitive radio via Phase-Field segmentation. In Proceedings of the Conference on Wireless Advanced. London (UK), 2010, p. 1 - 4.
  30. TIAN, Z., GIANNAKIS, G. B. A wavelet approach to wideband spectrum sensing for cognitive radios. In Proceeding of International Conference on Cognitive Radio Oriented Wireless Networks and Communications. Florida (USA), 2006, p. 1 - 4.
  31. AFSHAR JAHANSHAHI, J., ESLAMI, M., GHORASHI, S. A. Dynamic PSD map construction based on compressed sensing in cognitive radio networks. In Proceeding of IEEE International Symposium on Telecommunications (IST). Tehran (IRAN), 2012, p. 363 - 366.

Keywords: Power Spectral Density Map (PSD-Map), Cognitive Radio Sensors (CRS), Dynamic Compressive Sensing

J. Yao, Q. Wu, S. Feng, J. Wang [references] [full-text]
Online Malicious Behavior Detection in Collaborative Spectrum Sensing: A Change Detection Approach

Intelligent attackers in collaborative spectrum sensing system could act as honest users to conceal themselves and start malicious behavior abruptly since an unpredictable time slot. Affected by honest behavior before attacking time, traditional malicious behavior detection (MBD) algorithms are not agile enough to identify the abrupt change of behavior. To alleviate this challenge, in this paper, we propose the Rao test-based malicious behavior detection (RT-MBD) algorithm, which could detect the malicious behavior with unknown parameter and unknown starting time. The proposed RT-MBD is not affected by honest behavior before attacking time and has a shorter detection delay with constraint of a certain false alarm rate than conventional algorithms. Performance of RT-MBD is validated by both mathematical proof and numerical experiments.

  1. HAYKIN, S. Cogniteive radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 2005, vol. 23, no. 2, p. 201 - 220.
  2. MITOLA, J. Software radio architecture. John Wiley & Sons, 2000.
  3. MA, J., ZHAO, G., LI, Y. Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 2008, vol. 7, no. 11, p. 4502 - 4507.
  4. GHASEMI, A., SOUSA, E. Collaborative spectrum sensing for opportunistic access in fading environments. In First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN). Baltimore (USA), 2005, p. 131 - 136.
  5. MISHRA, S. M., SAHAI, A., BRODERSEN, R. W. Cooperative sensing among cognitive radios. In IEEE International Conference on Communications. Istanbul (Turkey), 2006, p. 1658 - 1663.
  6. BALDINI, G., STURMAN, T., BISWAS, A., R., LESCHHORN, R., GO´ DOR, G., STREET, M. Security aspects in software defined radio and cognitive radio networks: a survey and a way ahead. IEEE Communications Surveys & Tutorials, 2012, vol. 14, no. 2, p. 355 - 379.
  7. JEONG, S. S., JEON, W. S., JEONG, D. G. Collaborative spectrum sensing for multiuser cognitive radio systems. IEEE Transactions on Vehicular Technology, 2009, vol. 58, no. 5, p. 2564 - 2569.
  8. LI, H., HAN, Z. Catch me if you can: an abnormality detection approach for collaborative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 2010, vol. 9, no. 11, p. 3554 - 3565.
  9. VEMPATY, A., AGRAWAL, K., CHEN, H., VARSHNEY, P. Adaptive learning of Byzantines’ behavior in cooperative spectrum sensing. In IEEE Wireless Communications and Networking Conference (WCNC). Cancun (Mexico), 2011, p. 1310 - 1315.
  10. YAO, J., WU, Q., WANG, J. Attacker detection based on dissimilarity of local sensing reports in collaborative spectrum sensing. IEICE Transactions on Communications, 2012, vol. E95-B, no. 9, p. 3024 - 3027.
  11. FENG, S., ZHENG, X., YAO, J., DING, G. Seeking justice: lapsed reputation-based cooperative spectrum sensing with lasting trusted nodes assistance. Proceedings of IEEE WCSP, 2012.
  12. PAGE, E. Continuous inspection schemes. Biometika, 1954, vol. 41, p. 100 - 115.
  13. LORDEN, G. Procedures for reacting to a change in distribution. Annals of Mathematical Statistics, 1971, vol. 42, no. 6, p. 1897 - 1908.
  14. KAY, S., M. Fundamentals of Statistical Signal Processing: Detection Theory. Prentice Hall, 1998.
  15. KHAN, Z., LEHTOMAKI, J., UMEBAYASHI, K., VARTIAINEN, J. On the selection of the best detection performance sensors for cognitive radio networks. IEEE Letters on Signal Processing, 2010, vol. 17, no. 4, p. 359 - 362.
  16. DIGHAM, F. F., ALOUINI, M. S., SIMON, M. K. On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 2007, vol. 55, no. 1, p. 21 - 24.
  17. LETAIEF, K. B., ZHANG,W. Cooperative communications for cognitive radio networks. Proceedings of the IEEE, 2009, vol. 97, no. 5, p. 878 - 893.
  18. MIN, A. W., KIM, K., SHIN, K. G. Robust cooperative sensing via state estimation in cognitive radio networks. IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN). Aachen (Germany), 2011, p. 185 - 196.
  19. KAY, S. M. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall, 1998.
  20. LORDEN, G. On excess over the boundary. Annals of Mathematical Statistics, 1970, vol. 41, no. 2, p. 520 - 527.
  21. LORDEN, G. Open-ended tests for Koopman-Darmois families. Annals of Mathematical Statistics, 1973, vol. 1, no. 4, p. 633 - 643.

Keywords: Malicious behavior, change-point detection, Rao test statistic, collaborative spectrum sensing.

Q. Wu, X.-S. Yang, Y.-T. Zhang [references] [full-text]
Research on 2×2 MIMO Channel with Truncated Laplacian Azimuth Power Spectrum

Multiple-input multiple-output (MIMO) Rayleigh fading channel with truncated Laplacian azimuth power spectrum (APS) is studied. By using the power correlation matrix of MIMO channel model and the modified Jakes simulator, into which with random phases are inserted, the effect of the azimuth spread (AS), angle of departure (AOD) and angle of arrival (AOA) on the spatial correlation coefficient and channel capacity are investigated. Numerical results show that larger AS generates smaller spatial correlation coefficient amplitude, while larger average AOD or AOA produces larger spatial correlation coefficient amplitude. The average capacity variation is comprehensively dominated by the average AOD, AOA and AS.

  1. CHIURTU, N., RIMOLDI, B., TELATAR, E. On the capacity of multi-antenna Gaussian channels. In IEEE International Symposium on Information Theory, 2001, vol. 1.
  2. FOSCHINI, G. J., GANS, M. J. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 1998, vol. 6, p. 311-335.
  3. MIETZNER, J., SCHOBER, R., LAMPE, L. Multiple-antenna techniques for wireless communications – a comprehensive literature survey. IEEE Communications Surveys & Tutorials, 2009, vol. 11, p. 87-105.
  4. ALMERS, P., BONEK, E., BURR, A., CZINK, N., DEBBAH, M., DEGLI-ESPOSTI, V., HOFSTETTER, H., KYOSTI, P., LAURENSON, D., MATZ, G., MOLISCH, A. F., OESTGES, C., OZCELIK, H. Survey of channel and radio propagation models for wireless MIMO systems. EURASIP Journal on Wireless Communications and Networking, 2007, p. 56-56.
  5. CHUAH, C. N., KAHN, J. M., TSE, D. Capacity of multi-antenna array systems in indoor wireless environment. In Global Telecommunications Conference, 1998, vol. 4, p. 1894-1899.
  6. WEICHSELBERGER, W., HERDIN, M., OZCELIK, H., BONEK, E. A stochastic MIMO channel model with joint correlation of both link ends. IEEE Transactions on Wireless Communications, 2006, vol. 5, p. 90-100.
  7. KERMOAL, J. P., SCHUMACHER, L., PEDERSEN, K. I., MOGENSEN, P. E., FREDERIKSEN, F. A stochastic MIMO radio channel model with experimental validation. IEEE Journal on Selected Areas in Communications, 2002, vol. 6, p. 1211-1226.
  8. PEDERSEN, K. I., ANDERSEN, J. B., KERMOAL, J. P., MOGENSEN, P. E. A stochastic multiple-input-multiple-output radio channel model for evaluation of space-time coding algorithms. In IEEE 52nd Vehicular Technology Conference. 2000, p. 893-897.
  9. PATZOLD, M., LAUE, F. Statistical properties of Jakes’ fading channel simulator. In IEEE 48th Vehicular Technology Conf. 1998, vol. 2, p. 712-718.
  10. POP, M. F., BEAULIEU, N. C. Limitations of sum-of-sinusoids fading channel simulators. IEEE Transactions on Communications, 2001, vol. 49, p. 699-708.
  11. SPENCER, Q. H., JEFFS, B. D., JENSEN, M. A., SWINDLEHURST, A. L. Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel. IEEE Journal on Selected Areas in Communications, 2000, vol. 18, p. 347-360.
  12. SPENCER, Q., RICE, M., JEFFS, B., JENSEN, M. A statistical model for angle of arrival in indoor multipath propagation. In IEEE 47th Vehicular Technology Conf. 1997, vol. 3, p. 1415-1419.
  13. KIM, W., LEE, K., KIM, M.-D., PARK, J. J., CHUNG, H. K., LEE, H. Performance analysis of spatially correlated MIMOOFDM beamforming systems with the maximum eigenvalue model from measured MIMO channels, IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 10, p. 3744-3753.

Keywords: Multiple-input multiple-output (MIMO), Jakes simulator, power correlation matrix, spatial correlation

M. Kakitani, G. Brante, R. Souza [references] [full-text]
Energy Efficiency Analysis of a Two Dimensional Cooperative Wireless Sensor Network with Relay Selection

The energy efficiency of non-cooperative and cooperative transmissions are investigated in a two-dimensional wireless sensor network, considering a target outage probability and the same end-to-end throughput for all transmission schemes. The impact of the relay selection method in the cooperative schemes is also analyzed. We show that under non line-of-sight conditions the relay selection method has a greater impact in the energy efficiency than the availability of a return channel. By its turn, under line-of-sight conditions a return channel is more valuable to the energy efficiency of cooperative transmission than the specific relay selection method. Finally, we demonstrate that the energy efficiency advantage of the cooperative over the non-cooperative transmission increases with the distance among nodes and with the nodes density.

  1. AKYILDIZ, I., SU, W., SANKARASUBRAMANIAM, Y., CAYIRCI, E. A survey on sensor networks. IEEE Communications Magazine, 2002, vol. 40, no. 8, p. 102 - 114.
  2. PENTIKOUSIS, K. In search of energy-efficient mobile networking. IEEE Communications Magazine, 2010, vol. 48, no. 1, p. 95 - 103.
  3. DOHLER, M., HEATH, R., LOZANO, A., PAPADIAS, C., VALENZUELA, R. Is the phy layer dead? IEEE Communications Magazine, 2011, vol. 49, no. 4, p. 159 - 165.
  4. CHEN, G., HANSON, S., BLAAUW, D., SYLVESTER, D. Circuit design advances for wireless sensing applications. Proceedings of the IEEE, 2010, vol. 98, no. 11, p. 1808 - 1827.
  5. ISLAM, M. R., An issue of boundary value for velocity and training overhead using cooperative MIMO technique in wireless sensor network. Radioengineering, 2011, vol. 20, no. 2, p. 505 - 511.
  6. SENDONARIS, A., ERKIP, E., AAZHANG, B. User cooperation diversity – part I: System description. IEEE Transactions on Communications, 2003, vol. 51, no. 11, p. 1927 - 1938.
  7. LANEMAN, J., TSE, D., WORNELL, G. Cooperative diversity in wireless networks: Efficient protocols and outage behavior IEEE Transactions on Information Theory, 2004, vol. 50, no. 12, p. 3062 - 3080.
  8. WANG, S., NIE, J. Energy efficiency optimization of cooperative communication in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2010, p. 3:1 - 3:8.
  9. CHANDRA, A., BOSE, C., BOSE, M. Wireless relays for next generation broadband networks. IEEE Potentials, 2011, vol. 30, no. 2, p. 39 - 43.
  10. CUI, S., GOLDSMITH, A., BAHAI, A. Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 2004, vol. 22, no. 6, p. 1089 - 1098.
  11. CUI, S., GOLDSMITH, A. J., BAHAI, A. Energy-constrained modulation optimization. IEEE Transactions on Wireless Communications, 2005, vol. 4, no. 5, p. 2349 - 2360.
  12. ONG, L., MOTANI, M. Optimal routing for decode-forward in cooperative wireless networks. IEEE Transactions on Communications, 2010, vol. 58, no. 8, p. 2345 - 2355.
  13. JACOBSON, K., KRZYMIEN,W. Cooperative vs multihop relaying in cellular systems. In IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Tokyo (Japan), 2009, p. 1853 - 1857.
  14. SADEK, A. K., YU,W., LIU, K. J. R. On the energy efficiency of cooperative communications in wireless sensor networks. ACM Transactions on Sensor Networks, 2009, vol. 6, no. 1, p. 1 - 21.
  15. BRANTE, G., KAKITANI, M., SOUZA, R. Energy efficiency analysis of some cooperative and non-cooperative transmission schemes in wireless sensor networks. IEEE Transactions on Communications, 2011, vol. 59, no. 10, p. 2671 - 2677.
  16. KAKITANI, M., BRANTE, G., SOUZA, R., MUNARETTO, A. Comparing the energy efficiency of single-hop, multi-hop and incremental decode-and-forward in multi-relay wireless sensor networks. In IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Toronto (Canada), 2011, p. 970 - 974.
  17. BLETSAS, A., SHIN, H., WIN, M. Cooperative communications with outage-optimal opportunistic relaying. IEEE Transactions on Wireless Communications, 2007, vol. 6, no. 9, p. 3450 - 3460.
  18. ABDULHADI, S., JASEEMUDDIN, M., ANPALAGAN, A. A survey of distributed relay selection schemes in cooperative wireless ad hoc networks. Wireless Personal Communications, 2012, vol. 63, no. 4, p. 917 - 935.
  19. MADAN, R., MEHTA, N., MOLISCH, A., ZHANG, J. Energyefficient cooperative relaying over fading channels with simple relay selection. IEEE Transactions onWireless Communications, 2008, vol. 7, no. 8, p. 3013 - 3025.
  20. CHEN, Y., YU, G., QIU, P., ZHANG, Z. Power-aware cooperative relay selection strategies in wireless ad hoc networks. In IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Helsinki (Finland), 2006, p. 1 - 5.
  21. ZHOU, Z., ZHOU, S., CUI, S., CUI, J. H. Energy-efficient cooperative communication in a clustered wireless sensor network. IEEE Transactions on Vehicular Technology, 2008, vol. 57, no. 6, p. 3618 - 3628.
  22. KE, F., FENG, S., ZHUANG, H. Relay selection and power allocation for cooperative network based on energy pricing. IEEE Communications Letters, 2010, vol. 14, no. 5, p. 396 - 398.
  23. ZARIFI, K., ABUTHINIEN, M., GHRAYEB, A., AFFES, S. Relay selection schemes for uniformly distributed wireless sensor networks. In IEEE Wireless Communications and Networking Conference (WCNC). Budapest (Hungary), 2009, p. 1 - 6.
  24. SIMON, M. K., ALOUINI, M. S. Digital Communication over Fading Channels. 2nd ed. Wiley Interscience, 2004.
  25. YACOUB, M. The k

Keywords: Energy efficiency, wireless sensor networks, cooperative communications, relay selection

X. Zhang, X. Li, Z. Yun [references] [full-text]
The Impact of Sensing Range on Spatial-Temporal Opportunity

In this paper, we study the impact of secondary user (SU) sensing range on spectrum access opportunity in cognitive radio networks. We first derive a closed-form ex- pression of spectrum access opportunity by taking into ac- count the random variations in number, locations and trans- mitted powers of primary users (PUs). Then, we show how SU sensing range affects spectrum access opportunity, and the tradeoff between SU sensing range and spectrum ac- cess opportunity is formulated as an optimization problem to maximize spectrum access opportunity. Furthermore, we prove that there exists an optimal SU sensing range which yields the maximum spectrum access opportunity, and nu- merical results validate our theoretical analysis.

  1. ZHAO, Q., SWAMI, A. A decision-theoretic framework for opportunistic spectrum access. IEEE Wireless Communications Magazine, 2007, vol. 14, no. 4, p. 14 - 20.
  2. WU, Q., HAN, H., WANG, J., ZHAO, Z., ZHANG, Z. Sensing task allocation for heterogeneous channels in cooperative spectrum sensing. Radioengineering, 2010, vol. 19, no. 4, p. 544 - 551.
  3. TANDRA, R., SAHAI, A., VEERAVALLI, V. Unified space-time metrics to evaluate spectrum sensing. IEEE Communications Magazine, 2011, vol. 49, no. 3, p. 54 - 61.
  4. HAN,W., LI, J., LIU, Q., ZHAO, L. Spatial false alarms in cognitive radio. IEEE Communications Letters, 2011, vol. 15, no. 5, p. 518 - 520.
  5. REN, W., ZHAO, Q., SWAMI, A. Power control in cognitive radio networks: How to cross a multi-lane highway. IEEE Journal on Selected Areas in Communications, 2009, vol. 27, no. 7, p. 1283 - 1296.
  6. HAENGGI, M., ANDREWS, J. G., BACCELLI, F., DOUSSE, O., FRANCESCHETTI, M. Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE Journal on Selected Areas in Communications, 2009 vol. 27, no. 7, p. 1029 - 1046.
  7. CHOI, K.W., HOSSAIN, E., KIM, D. I. Cooperative spectrum sensing under a random geometric primary user network model. IEEE Transactions on Wireless Communications, 2011 vol. 10, no. 6, p. 1932 - 1944.
  8. BACCELLI, F., BLSZCZYSZYN, B. Stochastic Geometry andWireless Networks, Volume I: Theory. Now Publishers Inc., 2009.
  9. GHASEMI, A., SOUSA, E. S. Interference aggregation in spectrumsensing cognitive wireless networks. IEEE Journal of Selected Topics in Signal Processing, 2008, vol. 2, no. 1, p. 41 - 56.
  10. LEE, C. H., HAENGGI, M. Interference and outage in Poisson cognitive networks. IEEE Transactions on Wireless Communications, 2012 vol. 11, no. 4, p. 1392 - 1401.
  11. DERAKHASHANI, M., LE-NGOC, T. Aggregate interference and capacity-outage analysis in a cognitive radio network. IEEE Transactions on Vehicular Technology, 2012, vol. 61, no. 1, p. 196 - 207.
  12. LIANG, Y.-C., ZENG, Y., PEH, E. C., HOANG, A. T. Sensingthroughput tradeoff for cognitive radio networks. In IEEE Transactions on Wireless Communications, 2008, vol. 7, no. 4, p. 1326 - 1337.
  13. ALJUAID, M., YANIKOMEROGLU, H. Investigating the Gaussian convergence of the distribution of the aggregate interference power in large wireless networks. In IEEE Transactions on Vehicular Technology, 2010 vol. 59, no. 9, p. 4418 - 4426.

Keywords: Cognitive radio, spectrum access opportunity, spatial false alarm, optimal SU sensing range

F. G. Zhang, W. M. Jia, M. L. Yao, S. H. Zhou [references] [full-text]
SPSA-Based Tracking Method for Single-Channel-Receiver Array

A novel tracking method in the phased antenna array with a single-channel receiver for the moving signal source is presented in this paper. And the problems of the direction-of-arrival track and beamforming in the array system are converted to the power maximization of received signal in the free-interference conditions, which is different from the existing algorithms that maximize the signal to interference and noise ratio. The proposed tracking method reaches the global optimum rather than local by injecting the extra noise terms into the gradient estimation. The antenna beam can be steered to coincide with the direction of the moving source fast and accurately by perturbing the output of the phase shifters during motion, due to the high efficiency and easy implementation of the proposed beamforming algorithm based on the simultaneous perturbation stochastic approximation (SPSA). Computer simulations verify that the proposed tracking scheme is robust and effective.

  1. MOUSAVI, P., FAKHARZADEH, M., JAMALI, S. H., NARIMANI, K., HOSSU, M., BOLANDHEMMAT, H., RAFI, Z., SAFAVI-NAEINI, S. A low-cost ultra low profile phased array system for mobile satellite reception using zero-knowledge beamforming algorithm. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 12, p. 3667-3679.
  2. FAKHARZADEH, M., JAMALI, H., MOUSAVI, P., SAFAVINAEINI, S. Fast beamforming for mobile satellite receiver phased arrays: theory and experiment. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 6, p.1645-1654.
  3. REZK, M., KIM, W., YUN, Z., ISKANDER, F. Performance comparison of a novel hybrid smart antenna system versus the fully adaptive and switched beam antenna arrays. IEEE Antennas and Wireless Propagation Letters, 2005, vol. 4, p. 285-288.
  4. MIN, S., SEO, D., LEE, K.B., KWON, H.M., LEE, Y.H. Direction- of-arrival tracking scheme for DS/CDMA systems: direction lock loop. IEEE Transactions on Wireless Communications, 2004, vol. 3, no. 1, p. 191-202.
  5. SCALISE, S., ERNST, H., HARLES, G. Measurement and modeling of the land mobile satellite channel at Ku-band. IEEE Transactions on Vehicular Technology, 2008, vol. 57 no. 2, p. 693-703.
  6. GIERON, R., SIATCHOUA, P. Application of 2D-direciton locked loop tracking algorithm to mobile satellite communication. In Fourth IEEE Workshop on Sensor Array and Multichannel Processing. Waltham (MA), 2006, p. 546-550.
  7. GAUDENZI, R., LUISE, M. Decision-directed coherent delaylock tracking loop for DS-spread-spectrum signals. IEEE Transactions on Communication, 1991, vol. 39, no. 5, p. 758–765.
  8. SASTRY, C. R., KAMEN, E. W., SIMAAN, M. An efficient algorithm for tracking the angles of arrival of moving targets. IEEE Transactions on Signal Processing, 1991, vol. 39, no. 5, p. 242 –246.
  9. SCHMIDT, R. O. Multiple emitter location and signal parameters estimation. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 3, p. 276–280.
  10. CAPON, J. High resolution frequency-wave number spectrum analysis. IEEE Proceedings, 1986, vol. 57, no. 8, p. 1408–1418.
  11. XU, X., YE, Z. Two-dimensional direction of arrival estimation by exploiting the symmetric configuration of uniform rectangular array. IET Radar, Sonar & Navigation, 2012, vol. 6, no. 5, p. 307 to 313.
  12. YUAN, X. Estimating the DOA and the polarization of a polynomial- phase signal using a single polarized vector-sensor. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 3, p. 1270 to 1282.
  13. FARZANEH, S., SEBAK, A. R. Fast adaptive microwave beamforming using array signal estimation. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 3, p. 850-858.
  14. THEILER, J., ALPER, J. On the choice of random directions for stochastic approximation algorithms. IEEE Transactions on Automatic Control, 2006, vol. 51, no. 3, p. 476-481.
  15. SPALL, J. C. Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Transactions on Aerospace and Electronic Systems, 1998, vol. 34, no. 3, p. 817–823.
  16. SPALL, J. C. An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins APL Technical Digest, 1998, vol. 19, no. 4, p. 482–492.
  17. HAO, L.Y., YAO, M.L. SPSA-based step tracking algorithm for mobile DBS reception. Simulation Modeling Practice and Theory, 2011, vol. 19, no. 2, p. 837-846.
  18. CHO, C.H., LEE, S.H., KWON, T.Y., LEE, C. Antenna control system using step tracking algorithm with H1 controller. International Journal of Control, Automation, and Systems, 2003, vol. 1, no. 1, p. 83–92.

Keywords: Phased array antenna, tracking, single-channel receiver, simultaneous perturbations stochastic approximation (SPSA)

R. Zentner, A. Katalinić Mucalo, R. Nađ [references] [full-text]
A Study of Differences in Calculated Capacity when Using Single-, Mixed- or Multiple-Bounce GSCM Schemes

The paper looks for differences in MIMO system capacity when using either single-, mixed-, or multiple-bounce geometry based stochastic channel models (GSCMs). The investigation considers Saleh-Valenzuela temporal indoor model, expanded for angular domain. In the model omnidirectional and idealized sector antennas were used as array elements. The single-bounce assumption, combination of single and multiple bounces, and pure random multiple bounces assumption were compared within “temporally identical” environment regarding the overall MIMO capacity. Assumption of clustered scatterers/reflectors is used in all three cases. The comparison is performed in statistical sense, using a large number of stochastically generated temporal models. The model is two- dimensional, i.e. neither elevation angle nor polarization/ depolarization was considered.

  1. ALMERS, P. et al. Survey of channel and radio propagation models for wireless MIMO systems. EURASIP Journal on Wireless Communications and Networking, 2007, article ID 19070, 19 p.
  2. HANEDA, K., POUTANEN, J., TUVFESSON, F., LIU, L., KOLMONEN, V., VAINIKAINEN, P., OESTEGES, C. Development of multi-link geometry-based stochastic channel models. In Antennas and Propagation Conference (LAPC 2011). Loughborough (UK), 14-15 November 2011, p. 1-7.
  3. VERDONE, R., ZANELLA, A. Pervasive mobile and ambient wireless communications. COST Action 2100 (Signals and Communication Technology), Springer, 2012.
  4. POUTANEN, J., HANEDA, K., LINGFENG LIU, OESTEGES, C., TUFVWSSON, F., VAINIKAINEN, P. Parameterization of the COST 2100 MIMO channel model in indoor scenarios. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP). Rome (Italy), 11-15 April 2011, p. 3606-3610.
  5. RAPPAPORT, T. S., LIBERTI, J. C. Smart Antennas for Wireless Communications. Chapter 7. Upper Saddle River (NJ, USA): Prentice Hall PTR, 1999.
  6. KUIPERS, B. W. M., MACKOWIAK, M., CORREIA, L. M. Understanding geometrically based multiple bounce channel models. In The Second European Conference on Antennas and Propagation, EuCAP 2007. p. 1–4
  7. OESTEGES, C. Multi-link propagation modeling for beyond next generation wireless. In Antennas and Propagation Conference (LAPC 2011). Loughborough (UK), 14-15 November 2011, p. 1-8.
  8. SALEH, A. A. M., VALENZUELA, R. A. A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, February 1987, vol. 5, no. 2.
  9. SPENCER, Q. H., JEFFS, B. D., JENSEN, M. A., SWINDLEHURST, A. L., Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel. IEEE Journal on Selected Areas in Communications, March 2000, vol. 18, no. 3.
  10. FOERSTER, J., LI, Q. UWB channel modeling contribution from Intel. IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), IEEE P802.15-02/279r0-SG3a, June 2002, p. 21-22.
  11. ZENTNER, R., KATALINIĆ A., NAGY, R., Geometry based stochastic analysis of MIMO channel performance when using stacked microstrip antennas. In The Third European Conference on Antennas and Propagation, EuCAP 2009.
  12. CORREIA, L. (Ed.) Mobile Broadband Multimedia Networks, COST 273 final report. Elsevier Science Publishers B.V., 2006.
  13. MARQUES, G., CORREIA, L. M. A wideband directional channel model for mobile communication Systems. In S. Chandran (ed.), Adaptive Antenna Arrays, Berlin, (Germany): Springer, 2004.
  14. FOSCHINI, F. et al. Analysis of multipath propagation in urban environment through multidimensional measurements and advanced ray tracing simulation. IEEE Transactions on Antennas and Propagation, vol. 56, no. 3, March 2008, pp. 848 – 857
  15. HOFSTETTER, H., MOLISCH, A., CZINK, N. A twin-cluster MIMO channel model. In The First European Conference on Antennas and Propagation, EuCAP 2006. p. 1 – 4
  16. FOSCHINI, G. J., GANS, M. J. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 1998, vol. 6, p. 311 to 335.

Keywords: Single-bounce, multiple-bounce, geometry stochastic channel model (GSCM), MIMO, indoor propagation

H. H. Chen, J .W. Ren, W. M. Jia, M. L. Yao [references] [full-text]
Simultaneous Perturbation Stochastic Approximation for Unambiguous Acquisition in Cosine-BOC Signals

The binary offset carrier (BOC) proposed for the global navigation satellite systems (GNSS) will enhance navigation performance and spectrum compatibility. However, the acquisition process is made more complex, due to the ambiguity in the autocorrelation function (ACF) of BOC. This paper proposes an unambiguous acquisition technique for the new cosine phased BOC (cosine-BOC) modulated signals, which will most likely be used in both European Galileo system and Chinese Compass system. The test criterion employed in this technique is based on a synthesized correlation function which completely removes major positive side peaks while keeping the sharp main peak using the concept of simultaneous perturbation stochastic approximation (SPSA). Theoretical analysis and simulation results indicate that the proposed technique completely removes the ambiguity threat in acquisition process with some performance degradation. This technique is also suitable for arbitrary order cosine-BOC signals.

  1. UNITED NATIONS. Current and planned global and regional navigation satellite systems and satellite-based augmentations systems. In International Committee on Global Navigation Satellite Systems Provider’s Forum. New York, June 2010, p. 35-40.
  2. BETZ, J. W. Binary offset carrier modulations for radionavigation. Journal of the Institute of Navigation, 2002, vol. 48, no. 4, p. 227 to 246.
  3. FINE, P., WILSON, W. Tracking algorithm for GPS offset carrier signals. In Proceedings of ION NTM, 1999, p. 671-676.
  4. HEIRIES, V., ROVIRAS, D., RIES, L., CALMETTES, V. Analysis of non-ambiguous BOC signal acquisition performance. In Proceedings of ION GNSS, 2004, p. 2611-2622.
  5. LOHAN, E. S., BURIAN, A., RENFORS, M. Low-complexity unambiguous acquisition methods for BOC-modulated CDMA signals. Int. J. Commun. Syst. Network, 2008, vol. 26, p. 503-522.
  6. FISHMAN, P., BETZ, J. W. Predicting performance of direct acquisition for the M code signal. In Proceedings of ION NTM, 2000, p. 574-582.
  7. ZHENG, Y., LU, M. Q., FENG, Z. M. Unambiguous sine-phased binary offset carrier modulated signal acquisition technique. IEEE Trans. Wireless Communications, 2010, vol. 9, no. 2, p. 577-580.
  8. YAO, Z., LU, M. Q. Side-peaks cancellation analytic design framework with applications in BOC signals unambiguous processing. In Proceedings of ION ITM, 2011, p. 775-785.
  9. SPALL, J. C. A stochastic approximation technique for generating maximum likelihood parameter estimates. In Proceedings of the 1987 American Control Conference. 1987, p.1161-1167.
  10. SPALL, J. C. Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans. Aerosp. Electron. Syst., 1992, vol. 34, no. 3, p. 817-823.
  11. SPALL, J. C. Adaptive stochastic approximation by the simultaneous perturbation method. IEEE Transactions on Automatic Control, 2000, vol. 45, p. 1839-1853.
  12. SPALL, J. C. Feedback and weighting mechanisms for improving jacobian estimates in the adaptive simultaneous perturbation algorithm. IEEE Transactions on Automatic Control, 2009, vol. 54, p. 1216-1229.
  13. SONG, Q., SPALL, J. C., SOH, Y. C., NI, J. Robust neural network tracking controller using simultaneous perturbation stochastic approximation. IEEE Trans. Neural Netw., 2008, vol. 19, p. 817-835.
  14. GUO, C. Y., SONG, Q., CAI, W. J. A neural network assisted cascade control system for air handling unit. IEEE Trans. Ind. Electron., 2007, vol. 54, p. 620-628.
  15. HAO, L. Y., YAO, M. L. SPSA-based step tracking algorithm for mobile DBS reception. Simulation Modelling Practice and Theory, 2011, vol. 19, p. 837-846.
  16. SIMON, M. K. The Nuttall Q function-its relation to the Marcum Q function and its application in digital communication performance evaluation. IEEE Trans. Commun., 2002, vol. 50, p. 1712 to 1715.

Keywords: Galileo, compass, BOC, unambiguous acquisition, SPSA.

Z. Martinasek, V. Zeman [references] [full-text]
Innovative Method of the Power Analysis

This paper describes an innovative method of the power analysis which presents the typical example of successful attacks against trusted cryptographic devices such as RFID (Radio-Frequency IDentifications) and contact smart cards. The proposed method analyzes power consumption of the AES (Advanced Encryption Standard) algorithm with neural network, which successively classifies the first byte of the secret key. This way of the power analysis is an entirely new approach and it is designed to combine the advantages of simple and differential power analysis. In the extreme case, this feature allows to determine the whole secret key of a cryptographic module only from one measured power trace. This attribute makes the proposed method very attractive for potential attackers. Besides theoretical design of the method, we also provide the first implementation results. We assume that the method will be certainly optimized to obtain more accurate classification results in the future.

  1. HIU, A., FIONA, Y. ERG4920CM Thesis II Keyboard Acoustic Triangulation Attack. PhD thesis. Hong Kong (China): University of Hong Kong, 2006.
  2. ZHUANG, L., ZHOU, F., TYGAR, J. D. Keyboard acoustic emanations revisited. In Proceedings of the 12th ACM Conference on Computer and Communications Security. New York (NY, USA), 2005, p. 373 - 382.
  3. KUR, J., SMOLKA, T., SVENDA, P. Improving resiliency of java card code against power analysis. In Mikulaska kryptobesidka, Sbornik prispevku. 2009, p. 29 - 39.
  4. MARTINASEK, Z., MACHA, T., ZEMAN, V. Classifier of power side channel. In Proceedings of NIMT. 2010.
  5. LIU, N., GUO, D. Security analysis of public-key encryption scheme based on neural networks and its implementing. In International Conference on Computational Intelligence and Security. Guangzhou (China), 2006, vol. 2, p. 1327 - 1330.
  6. KIM, H.-M., KANG, D.-J., KIM, T.-H. Flexible key distribution for scada network using multi-agent system. ECSIS Symposium on Bioinspired, Learning, and Intelligent Systems for Security (BLISS). Edinburgh (UK), 2007, p. 29 - 34.
  7. LIAN, S., SUN, J.,WANG, Z. One-way hash function based on neural network. CoRR abs/0707.4032 (2007).
  8. WANG, Y.-H., SHEN, Z.-D., ZHANG, H.-G. Pseudo random number generator based on hopfield neural network. In International Conference on Machine Learning and Cybernetics. Dalian (China), 2006, p. 2810 - 2813.
  9. MISLOVATY, R., PERCHENOK, Y., KANTER, I., KINZEL, W. Secure key-exchange protocol with an absence of injective functions. Physics Review E, 2002, vol. 66, p. 066102.
  10. KOCHER, P. C., JAFFE, J., JUN, B. Differential power analysis. In Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology (CRYPTO). London (UK), 1999, p. 388 - 397.
  11. MANGARD, S., OSWALD, E., POPP, T. Power Analysis Attacks: Revealing the Secrets of Smart Cards (Advances in Information Security). Springer, 2007.
  12. MARTINASEK, Z., PETRIK, T., STANCIK, P. Conditions affecting the measurement of power analysis. In The 13th International Conference on Research in Telecommunication Technologies (RTT). Techov (Czech Republic), 2011, p. 1 - 5.
  13. JOYE, M., OLIVIER, F. Side channel analysis. Encyclopedia of Cryptography and Security (2nd Ed.). 2011, p. 1198 - 1204.
  14. MESSERGES, T. S., DABBISH, E. A., SLOAN, R. H., MESSERGES, T. S., DABBISH, E. A., SLOAN, R. H. Investigations of power analysis attacks on smartcards. In USENIX Workshop on Smartcard Technology. 1999, p. 151 - 162.
  15. BERTONI, G., ZACCARIA, V., BREVEGLIERI, L., MONCHIERO, M., PALERMO, G. AES power attack based on induced cache miss and countermeasure. In Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05). Washington, DC (USA), 2005 vol. I, p. 586 - 591.
  16. MANGARD, S. A simple power-analysis (SPA) attack on implementations of the AES key expansion. In 5th International Conference on Information Security and Cryptology (ICISC). Seoul (Korea), 2002, p. 343 - 358.
  17. CHARI, S., RAO, J. R., ROHATGI, P. Template attacks. In 4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES). Redwood Shores (CA, USA), 2002, p. 13 - 28.
  18. RECHBERGER, C., OSWALD, E. Practical template attacks. In 5th International Workshop on Information Security Applications (WISA). Jeju Island, (Korea), 2004, p. 443 - 457.
  19. AGRAWAL, D., RAO, J., ROHATGI, P., SCHRAMM, K. Templates as master keys. In 7th International Workshop on Cryptographic Hardware and Embedded Systems (CHES) Edinburgh (UK), 2005, p. 15 - 29.
  20. HANLEY, N., TUNSTALL, M., MARNANE, W. P. Using templates to distinguish multiplications from squaring operations. International Journal Information Security, 2011, vol. 10, no. 4, p. 255 - 266.
  21. OSWALD, D., PAAR, C. Breaking Mifare DESFire MF3ICD40: Power analysis and templates in the real world. In Proceedings of the 13th International Conference on Cryptographic Hardware and Embedded Systems (CHES). Nara (Japan), 2011, p. 207 - 222.
  22. Federal information processing standards publication (FIPS 197). Advanced Encryption Standard (AES), 2001.
  23. CORON, J.-S., NACCACHE, D., KOCHER, P. Statistics and secret leakage. ACM Transactions on Embedded Computing Systems (TECS), 2004, vol. 3, no. 3, p. 492 - 508.
  24. CHARI, S., JUTLA, C., RAO, J. R., ROHATGI, P. A cautionary note regarding evaluation of AES candidates on smart-cards. In Second Advanced Encryption Standard (AES) Candidate Conference. Rome (Italy), 1999, p. 133 - 147.
  25. AKKAR, M.-L., BEVAN, R., DISCHAMP, P., MOYART, D. Power analysis, what is now possible... In Advances in Cryptology - ASIACRYPT 2000. Kyoto (Japan), 2000, p. 489 - 502.
  26. PEETERS, E., STANDAERT, F.-X., QUISQUATER, J.-J. Power and electromagnetic analysis: Improved model, consequences and comparisons. Integration, the VLSI Journal – Special Issue: Embedded Cryptographic Hardware, 2007, vol. 40, no. 1, p. 52 - 60.
  27. MORADI, A., SALMASIZADEH, M., MANZURI SHALMANI, M. T., EISENBARTH, T. Vulnerability modeling of cryptographic hardware to power analysis attacks. Integration, the VLSI Journal, 2009, vol. 42, no. 4, p. 468 - 478.
  28. FEI, Y., LUO, Q., DING, A. A statistical model for DPA with novel algorithmic confusion analysis. In Cryptographic Hardware and Embedded Systems (CHES). Leuven (Belgium), 2012, p. 233 - 250.
  29. JOYE, M., PAILLIER, P., SCHOENMAKERS, B. On second-order differential power analysis. In Cryptographic Hardware and Embedded Systems (CHES). Edinburgh (UK), 2005, p. 293 - 308.
  30. HERBST, C., OSWALD, E., MANGARD, S. An AES smart card implementation resistant to power analysis attacks. In Second International Conference on Applied Cryptography and Network Security (ACNS). Singapore, 2006, p. 239 - 252.
  31. BRIER, E., CLAVIER, C., OLIVIER, F. Correlation power analysis with a leakage model. In Cryptographic Hardware and Embedded Systems (CHES). Cambridge (USA), 2004, p. 16 - 29.
  32. CLAVIER, C., FEIX, B., GAGNEROT, G., ROUSSELLET, M., VERNEUIL, V. Improved collision-correlation power analysis on first order protected AES. In Cryptographic Hardware and Embedded Systems (CHES). Nara (Japan), 2011, p. 49 - 62.
  33. MARTINASEK, Z., MACHA, T., RASO, O., MARTINASEK, J., SILHAVY, P. Optimization of differential power analysis. Przeglad Elektrotechniczny, 2011, vol. 87, no. 12, p. 140 - 144.
  34. MARTINASEK, Z., ZEMAN, V., SYSEL, P., TRASY, K. Near electromagnetic field measurement of microprocessor. Przeglad Elektrotechniczny, 2013, vol. 89, no. 2, p. 203 - 207.
  35. MARTINASEK, Z., ZEMAN, V., TRASY, K. Simple electromagnetic analysis in cryptography. International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems, 2012, vol. 1, no. 1, p. 1 - 6.
  36. MARTINASEK, Z., MACHU, P. New side channel in cryptography. In Proceedings of the 17th Conference Student EEICT 2011. Brno (Czech Republic), 2011.
  37. HAJNY, J., MALINA, L. Anonymous credentials with practical revocation. In IEEE First AESS European Conference on Satellite Telecommunications (ESTEL). Rome (Italy), 2012, p. 1 - 6.
  38. HAJNY, J., MALINA, L. Unlinkable attribute-based credentials with practical revocation on smart-cards. In Proceedings of the 11th International Conference on Smart Card Research and Advanced Applications (CARDIS). Graz (Austria), 2012, p. 62 - 76.
  39. MALINA, L., HAJNY, J. Accelerated modular arithmetic for lowperformance devices. In 34th International Conference on Telecommunications and Signal Processing (TSP). Budapest (Hungary), 2011, p. 131 - 135.
  40. AMBROSE, J., ALDON, N., IGNJATOVIC, A., PARAMESWARAN, S. Anatomy of differential power analysis for AES. In 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). Timisoara (Romania), 2008, p. 459 - 466.
  41. NABNEY, I. T. NETLAB: Algorithms for Pattern Recognition. Springer, 2002.

Keywords: Power analysis, Smart cards, Neural network, SPA, DPA

S. Suresh, M. G. Madhan, M. Sivaraj, S.Parasuraman [references] [full-text]
Analysis of ITU-R Performance and Characterization of Ku Band Satellite Downlink Signals during Rainy Season over Chennai Region of India

In this paper, we present the analysis of Ku band Satellite signal reception during rainy season over Chennai region, India (Latitude: 12° 56' 60 N, Longitude: 80° 7' 60 E). We also examine the effectiveness of International Telecommunication Union – Radio communication (ITU-R) model in predicting the rainfall induced attenuation in Ku band, over this region. An improved Simulink model for Digital Video Broadcast – Satellite (DVB-S2) downlink channel incorporating rain attenuation and Cross Polarization Discrimination (XPD) effects is developed to study the rain attenuation effects, by introducing the experimental data in the ITU-R model pertaining to that region. Based on the improved model, a Monte Carlo simulation of the DVB–S2 signal link is carried out and the performance is analyzed by received constellation and Bit Error Rate (BER) parameters.

  1. ITU-R Recommendation P. 618-7: Propagation Data and Prediction Methods Required for the Design of Earth-Space Telecommuni-cation Systems. Geneva (Switzerland): International Telecommunication Union, 2005.
  2. MANDEEP, J. S. Analysis effect of water on a Ka-band antenna. Progress in Electromagnetic Research Letters, 2009, vol. 9, p. 49 - 57.
  3. BHATTACHARYA, R., DAS, R., GUHA, R., BARMAN, S. D., BHATTACHARYA, A. B. Variability of millimeter wave rain attenuation and rain prediction: A survey. Indian Journal of Space and Radio Physics, 2007, vol. 36, no. 4, p. 325 - 344.
  4. MAITRA, A., CHAKRAVARTY, K., BHATTACHARYA, S., BAGCHI, S. Propagation studies at Ku band over an earth-space at Kolkata. Indian Journal of Radio and Space Physics, 2007, vol. 36, no. 5, p. 363 - 368.
  5. GARCI- LOPEZ, J. A., HERNANDO, J. M., SELGA, J. M. Simple rain attenuation prediction method for satellite radio links. IEEE Transactions on Antennas and Propagation, 1982, vol. 36, no. 3, p. 460 - 465.
  6. CRANE, R. K. Comparative evaluation of several rain attenuation models. Radio Science, 1985, vol. 20, p. 843 - 863.
  7. MANDEEP, J. S., ALNUTT, J. E. Rain attenuation predictions at Ku band in south-east Asian countries. Progress in Electromagnetic Research, 2007, vol. 76, p. 65 - 74.
  8. MOUPFOUMA, P. Improvement of rain attenuation prediction methods for terrestrial microwave links. IEEE Transaction on Antennas and Propagation, 1984, vol. 32, no. 12, p. 1368 - 1372.
  9. RICE, P., HOLMBERG, N. Cumulative time statistics of surface point rainfall rates. IEEE Transactions on Communication, 1973, vol. 21, no. 10, p. 1131 - 1136.
  10. Indian Meterological Department. Rainfall Data, June – December 2010. [Online] Available at http:www.imdchennai.gov.in/np2.htm.
  11. SURESH, S., MADHAN, G. M. An experimental study of rain attenuation at Ku band frequencies for an earth space over Chennai. IJCA International Journal of Computer Applications, 2011, no. 6, p. 1 - 5.
  12. MANDEEP, J. S. Equatorial rainfall measurement on Ku band satellite communication downlink. Progress in Electromagnetic Research, 2007, vol.76, p. 195 - 200.
  13. MORELLO, A., MIGNONE, V. DVB- S2: The second generation standard for satellite broad band services. Proceedings of the IEEE, 2006, vol. 94, no. 1, p. 210 - 227.
  14. LIU, X., XIONG, X., YANG, P. Modeling and simulation for IDMA systems based on Simulink. In Proceedings of Pacific Asia conference on Circuits, Communications and Systems (PACCS), Chengdu (China), 2009, p. 213 - 216.
  15. RONGA, L. S., DEL RE, E., GANDON, F. Link co-operation technique for DVB- S2 down link reception with mobile terminals. Satellite communication and Navigation Systems, 2008, vol. 4, p. 561 - 572.
  16. Mathworks, Inc. DVB- S2 – Simulink Demo. [Online] Available at: http://www.mathworks.com
  17. AJAYI, G. O. Characteristics of rain-induced attenuation and phase shift at cm and mm waves using a tropical raindrop size distribution model. International Journal of Infrared and Millimeter Waves, 1985, vol. 6, no. 8, p. 771 - 806.
  18. AJAYI, G. O., RODERIC, A., OLSEN, L. Modeling of a tropical raindrop size distribution for microwave and millimetre wave applications. Radio Science, 1985, vol. 20, no. 2, p. 193 – 202.
  19. ITU-R Recommendation S.736-3: Estimation of Polarization Discrimination in Calculations of Interference between Geostationary- Satellite Networks in the Fixed-Satellite Service. Geneva (Switzerland): International Telecommunication Union, 1997.
  20. ETSI EN 302 307, v. 1.2.1.: Digital Video Broadcasting (DVB); Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications (DVB-S2). European Telecommunications Standards Institute, 2009.

Keywords: ITU-R, Ku band, DVB-S2, DTH, Simulink, Monte Carlo simulation

H. Chen, Q. Wan, R. Fan [references] [full-text]
Beampattern Synthesis using Reweighted l1-Norm Minimization and Array Orientation Diversity

The pattern synthesis of sparse antenna arrays has many practical applications in situations where the weights, size, and cost of antennas are limited. In this work the antenna array synthesis problem, with minimum number of elements, is studied from the new perspective of sparseness constrained optimization. The number of antenna elements in the array can be efficiently reduced by casting the pattern synthesis problem into the compressive sensing (CS) framework of sparseness constrained optimization and solving with the reweighted l1-norm minimization algorithm. Besides, the proposed method allows exploitation of the array orientation diversity in the CS framework to address left-right radiation pattern ambiguity problem. Numerical examples are presented to show the high efficiency of achieving the desired radiation pattern with the minimum number of antenna elements.

  1. KUMAR, B., BRANNER, G. Design of unequally spaced arrays for performance improvement. IEEE Transaction on Antennas and Propagation, 1999, vol. 47, no. 3, p. 511 - 523.
  2. LIU, Y., NIE, Z., LIU, Q. Reducing the number of elements in a linear antenna array by the matrix pencil method. IEEE Transaction on Antennas and Propagation, 2008, vol. 56, no. 9, p. 2955 - 2962.
  3. YE J., PANG, W. Immune algorithm in array-pattern synthesis with side lobe reduction. In Proceedings of the 6th International Conference on Microwave and Millimeter Wave Technology. Nanjing (China), 2008, vol. 3, p. 1127-1130.
  4. LIU, Y., LIU, Q., NIE, Z. Reducing the number of elements in the synthesis of shaped-beam patterns by the forward-backward matrix pencil method. IEEE Transaction on Antennas and Propagation, 2010, vol. 58, no. 2, p. 604 - 608.
  5. BALANIS, C. Antenna Theory: Analysis and Design. 3rd ed. New York: Wiley, 2005.
  6. CHEN, K., YUN, X., HE, Z., HAN, C. Synthesis of sparse planar arrays using modified real genetic algorithm. IEEE Transaction on Antennas and Propagation, 2007, vol. 55, no. 4, p. 1067 - 1073.
  7. CHEN, Y., YANG, S., NIE, Z. The application of a modified differential evolution strategy to some array pattern synthesis problems. IEEE Transaction on Antennas and Propagation, 2008, vol. 56, no. 7, p. 1919 - 1927.
  8. KURUP, D., HIMDI, M., RYDBERG, A. Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm. IEEE Transaction on Antennas and Propagation, 1999, vol. 47, no. 3, p. 511 - 513.
  9. KHODIER, M. M., CHRISTODOULOU, C. G. Linear array geometry synthesis with minimum side lobe level and null control using particle swarm optimization. IEEE Transaction on Antennas and Propagation, 2005, vol. 53, no. 8, p. 2674 - 2679.
  10. WANG, F., BALAKRISHNAN, V., ZHOU, P. Y., CHEN, J., YANG, R., FRANK, C. Optimal array pattern synthesis using semidefinite programming. IEEE Transaction on Signal Processing, 2003, vol. 51, no. 5. p. 1172 - 1183.
  11. ZHANG, W. J., LI, L., LI, F. Reducing the number of elements in linear and planar antenna arrays with sparseness constrained optimization. IEEE Transaction on Antennas and Propagation, 2011, vol. 59, no. 8, p. 3106 - 3111.
  12. CHEN, H., WAN, Q., HUANG, A. M., WANG, J. Array pattern synthesis via sparse weight vector finding and convex programming. In Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing. Beijing (China), 2009, p. 1 - 4.
  13. CANDES, E. J., WAKIN, M. B., BOYD, S. Enhancing sparsity by reweighted `1 minimization. Journal of Fourier Analysis and Applications, 2008, vol. 14, no. 5 - 6, p. 877 - 905.
  14. BOYD, S., VANDENBERGHE, L. Convex Optimization. Cambridge (UK): Cambridge University Press, 2003.
  15. CANDES, E., WAKIN, M. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, vol. 25, no. 2, p. 21 - 30.
  16. CANDES, E., ROMBERG, J., TAO, T. Robust uncertainty principles: Exact signal reconstruction form highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, vol. 52, no. 2, p. 489 - 509.
  17. CANDES, E., ROMBERG, J., TAO, T. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 2006, vol. 59, no. 8, p. 1207 - 1223.
  18. DONOHO, D. Compressed sensing. IEEE Transactions on Information Theory, 2006, vol. 52, no. 4, p. 5406 - 5425.
  19. CANDES, E., TAO, T. Decoding by linear programming. IEEE Transactions on Information Theory, 2005, vol. 51, p. 4203 - 4215.
  20. CANDES, E., TAO, T. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 2006, vol. 52, no. 12, p. 5406 - 5425.
  21. STURM, J. F. Using SeDuMi 1.02, a Matlab Toolbox for Optimization over Symmetric Cones. [Online] Cited 2001-10-31. Available at: http://www.optimizationonline.org/DB HTML/2001/10/395.html.

Keywords: Sparse array pattern synthesis, reweighted l1-norm minimization, orientation diversity, convex optimization

J. Montero-de-Paz, L. E. Garcia-Muñoz, D. Segovia-Vargas [references] [full-text]
A 300 GHz "Always-in-Focus" Focusing System for Target Detection

A focusing system for a 300 GHz radar with 5 m target distance and 10 mm diameter spot size resolution is proposed. The focusing system is based on a Gaussian telescope scheme and its main parameters have been de¬signed using Gaussian beam quasi-optical propagation theory with an in-house developed MATLAB® based analysis tool. Then, this approach has been applied to a real focusing system based on two elliptical mirrors in order to reduce the distortion and cross-polar level and a plane mirror to provide scanning capabilities. The over¬all system has been simulated with a full-wave electromag¬netic simulator and its behavior is presented. With this approach, the focusing system always works "in-focus" since the only mirror that is rotated when scanning is the output plane mirror, so the beam is almost not distorted. The design process, although based in the well-known Gaussian beam quasi-optical propagation theory, provides a fast and accurate method and minimizes the overall size of the mirrors. As a consequence, the size of the focusing system is also reduced.

  1. SIEGEL, P. H. Terahertz technology. IEEE Trans. on Microwave Theory and Tech., March 2002, vol. 50, no. 3, p. 910 - 928.
  2. CAI, M., LI, E. P. A novel terahertz sensing device comprising of a parabolic reflective surface and a bi-conical structure. Progress in Electromagnetics Research, 2009, vol. 97, p. 61-73.
  3. JANSEN, C., WIETZKE, S., PETERS, O., SCHELLER, M., VIEWEG, N., SALHI, M., KRUMBHOLZ, N., JORDENS, C., HOCHREIN, T., KOCH, M. Terahertz imaging: applications and perspectives. Applied Optics, May 2010, vol. 49, no. 19, p. E48- E57.
  4. LIZARRAGA, J., DEL-RIO, C. Resolution capabilities of future THz cameras. Radioengineering, June 2011, vol. 20, no. 2, p. 373 to 379.
  5. KAPILEVICH, B., PINHASI, Y., ARUSI, R., ANISIMOV, M., HARDON, D., LITVAK, B., WOOL, Y. 330 GHz FMCW Image sensor for homeland security applications. Journal of Infrared, Millimeter and Terahertz Waves, September 2010, vol. 31, no. 11, p. 1370-1381.
  6. DEMIRCI, S., CETINKAYA, H., YIGIT, E., OZDEMIR, C., VERTIY, A. A study on millimeter-wave imaging of concealed objects: Application using back-projection algorithm. Progress in Electromagnetics Research, 2012, vol. 128, p. 457-477.
  7. COOPER, K. B., DENGLER, R. J., LLOMBART, N., BRYLLERT, T., CHATTOPADHYAY, G., SCHLECHT, E., GILL, J., LEE, C., SKALARE, A., MEHDI, I., SIEGEL, P. H., Penetrating 3-D imaging at 4- and 25-m range using a submillimeter- wave radar. IEEE Transactions on Microwave Theory and Techniques, December 2008, vol. 56, no. 12.
  8. EDERRA, I., GONZALO, R., ALDERMAN, B. E. J., HUGGARD, P. G., DE HON, B. P., VAN BEURDEN, M. C., MURK, A., MARCHAND, L., DE MAAGT, P. Sub-millimeter wave imaging array at 500 GHz based on 3-D electromagnetic band-gap material. IEEE Transactions on Microwave Theory and Techniques, November 2008, vol. 56, no. 11, p. 2256-2265.
  9. HARMER, S. W., COLE, S. E., BOWRING, N. J., REZGUI, N. D., ANDREWS, D. On body concealed weapon detection using a phased antenna array. Progress in Electromagnetics Research, 2012, vol. 124, p. 187-210.
  10. ANDRES-GARCIA, B., GARCIA-MUÑOZ, L. E., SEGOVIAVARGAS, D. Ultrawideband antenna excited by a photomixer for terahertz band. Progress in Electromagnetics Research, February 2011, vol. 114, p. 1-15.
  11. GOLDSMITH, P. F. Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications. New York: IEEE Press/Chapman and Hall, 1998.
  12. GRASP, General Reflector and Antenna arm analysis software, http://www.ticra.com/what-we-do/software-descriptions/grasp/, June 2012.
  13. MURPHY, J. A. Distortion of a simple Gaussian beam on reflection from off-axis ellipsoidal mirrors. International Journal of Infrared and Millimeter Waves, September 1987, vol. 8, no. 9, p. 1165-1186.
  14. BARYSHEV, A., WILD, W. ALMA band 9 optical layout. ALMA Memo #394, 2001.
  15. MURPHY, J. A., WITHINGTON, S. Perturbation analysis of Gaussian-beam-mode scattering at off-axis ellipsoidal mirrors. Infrared Physics and Technology, 1996, vol. 37, p. 205-219.
  16. WYLDE, R. J. Millimeter-wave Gaussian beam-mode optics and corrugated feed horns. IEE Proceedings, August 1984, vol. 131, no. 4.
  17. MOLINA-ROMERO, M. Implementacion de una herramienta para el estudio rapido de sistemas cuasi-opticos. Master Thesis Dissertation, Universidad Carlos III de Madrid, Leganes, 2010 (in Spanish).
  18. MATLAB, http://www.mathworks.com/, June 2012.
  19. KABOUREK, V., CERNY, P., MAZANEK, M. Clutter reduction based on principal component analysis technique for hidden objects detection. Radioengineering, April 2012, vol. 21, no. 1, p. 464 - 470.

Keywords: Quasi-optical Gaussian beam propagation, radar, focusing system, terahertz imaging

Ke Lu, Guang-Ming Wang, Bo Tian [references] [full-text]
Design of Dual-band Branch-Line Coupler Based on Shunt Open-Circuit DCRLH Cells

In this article, the shunt open-circuit dual composite right/left-handed (DCRLH) cell is initially proposed and one dual-band branch-line coupler based on the proposed cells is designed. It is found that, compared with DCRLH cell, the frequency selectivity, matching condition and adjustment range of the shunt open-circuit DCRLH cell improve greatly. Moreover, the shunt open-circuit DCRLH cell exhibits two adjustable frequency points with -90degrees phase shift within its first two passbands. In order to explore this exotic property effectively, the influence of the primary geometrical parameter is investigated through parametric analysis. Thus, one dual-band branch-line coupler based on the shunt open-circuit DCRLH cells is designed. Both simulated and measured results indicate that comparative performance is achieved. Different from part of previous dual-band branch line couplers, for the proposed coupler, the signs of phase difference of two output ports within the two operating frequency bands are identical with each other. This branch-line coupler is quite suitable for the application which is sensitive to the variation of phase difference and its effective area is compact.

  1. TAEGYU, K., LEE, B., MYUN-JOO, P. Dual-band branch-line coupler with two center-tapped stubs. Microwave and Optical Technology. Letters, 2008, vol. 50, no. 11, p. 3136 - 3139.
  2. HUALIANG, Z., CHEN, K. J. A stub tapped branch line coupler for dual-band operations. IEEE Microwave and Wireless Component Letters, 2007, vol. 17, no. 2, p. 106 - 108.
  3. HYUNCHUL, K., BYUNGJE, L., MYUN-JOO, P., Dual-band branch-line coupler with port extensions. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 3, p. 651 - 655.
  4. I-HSIANG, L., DEVINCENTIS, M., CALOZ, C., ITOH, T. Arbitrary dual-band components using composite right/left-handed transmission lines. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 4, p. 1142 - 1149.
  5. BONACHE, J., SISO, G., GIL, M., INIESTA, A., GARCIARINCON, J., MARTIN, F. Application of composite right/left handed (CRLH) transmission lines based on complementary split ring resonators (CSRRs) to the design of dual-band microwave components. IEEE Microwave and Wireless Component Letters, 2008, vol. 18, no. 8, p. 524 - 526.
  6. CALOZ, C. Dual composite right/left-handed (D-CRLH) transmission line metamaterial. IEEE Microwave and Wireless Component Letters, 2006, vol. 16, no. 11, p. 585 - 687.
  7. GONZǍLEZ-POSADAS, V., JIMENEZ-MARTIN, J. L., PARRA-CERRADA, A., GARCIA-MUNOZ, L. E., SEGOVIAVARGAS, D. Dual-composite right–left-handed transmission lines for the design of compact diplexers. IET Microwaves, Antennas & Propagation, 2010, vol. 4, no. 8, p. 982 - 990.
  8. CALOZ, C., NGUYEN, H. V. Novel broadband conventional and dual-composite right/left-handed (C/D-CRLH) metamaterials: properties, implementation and double-band coupler application. Applied Physics A-Materials Science & Processing, 2007, vol. 87, p. 309 - 316.
  9. TONG, W., HU, Z., ZHANG, H., CALOZ, C., RENNINGS, A. Study and realisation of dual-composite right/left-handed coplanar waveguide metamaterial in MMIC technology. IET Microwaves, Antennas & Propagation, 2008, vol. 2, no. 7, p. 731 - 736.
  10. YOUNG-HO RYU, JAE-HYUN PARK, JEONG-HAE LEE, JOON-YUB KIM, HEUNG-SIK TAE DGS dual composite right/left handed transmission line. IEEE Microwave and Wireless Component Letters, 2008, vol. 18, no. 7, p. 434 - 436.
  11. CHANGJUN L., MENZEL, W. A Microstrip diplexer from metamaterial transmission lines. In IEEE MTT-S International Microwave Symposium Digest. Boston (MA, USA), 2009, p. 65 - 68.
  12. WANG, W., LIU, C., YAN, L., HUANG, K. A Novel power divider based on dual composite right/left handed transmission line. Journal of Electromagnetic Waves and Applications, 2009, vol. 23: no. 8 - 9, p. 1173 - 1180.

Keywords: Dual composite right/left-handed cell, shunt open-circuit DCRLH cell, dual-band, branch-line coupler

A. Acharyya, K. Datta, R. Ghosh, M. Sarkar, R. Sanyal, S. Banerjee, J. P. Banerjee [references] [full-text]
Diamond Based DDR IMPATTs: Prospects and Potentiality as Millimeter-Wave Source at 94 GHz Atmospheric Window

Large-signal simulation is carried out in this paper to investigate the prospects and potentiality of Double-Drift Region (DDR) Impact Avalanche Transit Time (IMPATT) device based on semiconducting type-IIb diamond as millimeter-wave source operating at 94 GHz atmospheric window frequency. Large-signal simulation method developed by the authors and presented in this paper is based on non-sinusoidal voltage excitation. The simulation is carried out to obtain the large-signal characteristics such as RF power output, DC to RF conversion efficiency etc. of DDR diamond IMPATT device designed to operate at 94 GHz. The results show that the device is capable of delivering a peak RF power output of 7.01 W with 10.18% DC to RF conversion efficiency for a bias current density of 6.0×10^8 A m-2 and voltage modulation of 60% at 94 GHz; whereas for the same voltage modulation 94 GHz DDR Si IMPATT can deliver only 693.82 mW RF power with 8.74 efficiency for the bias current density of 3.4×10^8 A m-2.

  1. TREW, R. J., YAN, J. B., MOCK, P. M. The potentiality of diamond and SiC electronic devices for microwave and millimeterwave power applications. Proc. of IEEE, 1991, vol. 79, no. 5, p. 598-620.
  2. MIDFORD, T. A., BERNICK, R. L. Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans. Microwave Theory Tech., 1979, vol. 27, no. 5, p. 483-492.
  3. CHANG, Y., HELLUM, J. M., PAUL, J. A., WELLER, K. P. Millimeter-wave IMPATT sources for communication applications. In IEEE MTT-S International Microwave Symposium Digest, 1977, p. 216-219.
  4. GRAY, W. W., KIKUSHIMA, L., MORENTC, N. P., WAGNER, R. J. Applying IMPATT power sources to modern microwave systems. IEEE J. of Solid-State Circuits, 1969, vol. 4, p. 409 - 413.
  5. LUY, J. F., CASEL, A., BEHR, W., KASPER, E. A 90-GHz double- drift IMPATT diode made with Si MBE. IEEE Trans. Electron Devices, 1987, vol. 34, p.1084-1089.
  6. DALLE, C., ROLLAND, P., LIETI, G. Flat doping profile doubledrift silicon IMPATT for reliable CW high power high-efficiency generation in the 94-GHz window. IEEE Trans Electron Devices, 1990, vol. 37, p. 227-236.
  7. LUSCHAS, M., JUDASCHKE, R., LUY, J. F. Measurement results of packaged millimeter-wave silicon IMPATT diodes. In Proc. of 27th International Conference on Infrared and Millimeter Waves, Conference Digest. 2002, p. 135-136.
  8. LUSCHAS, M., JUDASCHKE, R., LUY, J. F. Simulation and measurement results of 150 GHz integrated silicon IMPATT diodes. IEEE MTT-S International Microwave Symposium Digest, 2002, p. 1269-1272.
  9. SHIH, H. D., BAYRAKTAROGLU, B., DUNCAN, W. M. Growth of millimeter-wave GaAs IMPATT structures by molecular beam epitaxy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1983, vol. 1, p. 199-201.
  10. EISELE, H., HADDAD, G. I. GaAs TUNNETT diodes on diamond heat sinks for 100 GHz and above. IEEE Trans. Microwave Theory Tech., 1995, vol. 43, p. 210-213.
  11. MUKHERJEE, M., BANERJEE, S., BANERJEE, J. P. Dynamic characteristics of III-V and IV-IV semiconductor based transit time devices in the terahertz regime: A comparative analysis. Terahertz Science and Tech., 2010, vol. 3, p. 98-109.
  12. MUKHERJEE, M., MAZUMDER, N. Optically illuminated 4HSiC terahertz IMPATT device. Egypt. J. Solids, 2007, vol. 30, p. 87-101.
  13. MUKHERJEE, M., MAZUMDER, N., ROY, S. K. Prospects of 4H-SiC double drift region IMPATT device as a photo-sensitive high-power source at 0.7 terahertz frequency regime. Active and Passive Electronic Components, 2008, vol. 2008, p. 1-9.
  14. PANDA, A. K., PARIDA, R. K., AGARWALA, N. C., DASH, G. N. A comparative study on the high band gap materials (GaN and SiC) based IMPATTs. In Proc. of Asia-Pacific Microwave Conference. 2007, p 1-4.
  15. PANDA, A. K., PAVLIDIS, D., ALEKSEEV, E. DC and highfrequency characteristics of GaN-based IMPATTs. IEEE Transaction on Electron Devices, 2001, vol. 48, p. 820-823.
  16. BANERJEE, S., MUKHERJEE, M., BANERJEE, J. P. Bias current optimization of Wurtzite-GaN DDR IMPATT diode for high power operation at THz frequencies. International Journal of Advanced Science and Technology, 2010, vol. 16, p. 12-20.
  17. YUAN, L., JAMES, A., COOPER, J. A., MELLOCH, M. R., WEBB, K. J. Experimental demonstration of a silicon carbide IMPATT oscillator. IEEE Electron Device Letter, 2001, vol. 22, p. 266-268.
  18. VASSILEVSKI, K. V., ZORENKO, A. V., ZEKENTES, K., TSAGARAK,I K., BANO, E., BANC, C., LEBEDEV, A. 4H-SiC IMPATT diode fabrication and testing. In Technical Digest of International Conference on SiC and Related Materials. Tsukuba (Japan), 2001, p. 713-714.
  19. ACHARYYA, A., BANERJEE, J. P. Potentiality of IMPATT devices as terahertz source: An avalanche response time based approach to determine the upper cut-off frequency limits. IETE Journal of Research, accepted, publication schedule: March-April 2013.
  20. MOCK, P. M., TREW, R. J. Power generation of millimeter-wave diamond IMPATT diodes. In Proc. of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits. 1989, p. 383-389.
  21. HEWETT, C. A., ZEIDLER, J. R. Issues in diamond device fabrication. Diamond and Related Materials, 1991, p. 688-691.
  22. GURBUZ, Y., ESAME, O., TEKIN, I., KANG, W. P., DAVIDSON, J. L. Diamond semiconductor technology for RF device applications. Solid-State Electronics, 2005, vol. 49, p. 1055-1070.
  23. WILLANDER, M., FRIESEL, M., WAHAB, Q.U., STRAUMAL, B. Silicon carbide and diamond for high temperature device applications. Journal of Materials Science: Materials in Electronics, 2006, vol. 17, p. 1- 25.
  24. KASU, M. Diamond field-effect transistors as microwave power amplifiers. NTT Technical Review, 2010, vol. 8, no. 8, p. 1-5.
  25. ACHARYYA, A., BANERJEE, S., BANERJEE, J. P. Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. Journal of Semiconductors, vol. 34, no. 2, p. 024001-12.
  26. ACHARYYA, A., BANERJEE, S., BANERJEE, J. P. Large-signal simulation of 94 GHz pulsed DDR silicon IMPATTs including the temperature transient effect. Radioengineering, 2012, vol. 21, no. 4, p. 1218-1225.
  27. ACHARYYA, A., BANERJEE, S., BANERJEE, J. P. Temperature transient effect on the large-signal properties and frequency chirping in pulsed silicon DDR IMPATTs at 94 GHz. In IEEE Conference CODEC 2012. Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, December 17-19, 2012, p. 133-136.
  28. ACHARYYA, A., BANERJEE, S., BANERJEE, J. P. A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-Band Si IMPATTs from the electric field snap-shots. International Journal of Microwave and Wireless Technologies, 2013, vol. 5, no. 1, p. 91-100.
  29. SZE, S. M., RYDER, R. M. Microwave avalanche diodes. In Proc. of IEEE, Special Issue on Microwave Semiconductor Devices, 1971, vol. 59, p. 1140-1154.
  30. KONOROVA, E. A., KUZNETSOV, Y. A., SERGIENKO, V. F., TKACHENKO, S. D., TSIKUNOV, A. K., SPITSYN, A. V., DANYUSHEVSKI, Y. Z. Impact ionization in semiconductor structures made of ion-implanted diamond. Sov. Phys. – Semicond., 1983, vol. 17, p. 146-149.
  31. FERRY, D. K. High-field transport in wide-bandgap semiconductors. Phys. Rev. B, 1975, vol. 12, p. 2361-2369.
  32. CANALI, C., GATTI, E., KOZLOV, S. F., MANFREDI, P. F., MANFREDOTTI, C., NAVA, F., QUIRINI, A. Electrical properties and performances of neutral diamond nuclear radiation detectors. Nuclear Instrum. and Methods, 1979, vol. 160, p. 73-77.
  33. OSMAN, M. A., ANDREWS, G., KRESKOVSKY, J. P., GRUBIN, H. L. Numerical simulation studies of semiconducting diamond electronic devices. Final Report on Contract DNA001- 87-C-0250, Defense Nuclear Agency, 1989.
  34. NAVA, F., CANALI, C., JACOBONI, C., REGGIANI, L., KOZLOZ, S. F. Electron effective masses and lattice scattering in neutral diamond. Solid State Commun., 1980, vol. 33, p. 475-477.
  35. Electronic Archive: New Semiconductor Materials, Characteristics and Properties, 2012. [Online] Available at: http://www.ioffe.ru/SVA/NSM/Semicond/Diamond/index.html.
  36. SRIDHARAN, M., ROY, S. K. Computer studies on the widening of the avalanche zone and decrease on efficiency in silicon X-band symmetrical DDR. Electron Lett., 1978, vol. 14, p. 635-637.
  37. SRIDHARAN, M., ROY, S. K. Effect of mobile space charge on the small signal admittance of silicon DDR. Solid State Electron, 1980, vol. 23, p. 1001-1003.

Keywords: Diamond, DDR IMPATTs, large-signal simulation, millimeter-wave.

P. Skoda, J. Radil, J. Vojtech, M. Hula [references] [full-text]
Analyses of 100 Gbps Coherent System Performances

This paper presents the results of laboratory and field testing of coherent 100 Gbps system with DP-QPSK modulation. Several measurements were performed including power budget, nonlinear threshold, spectrum filtration, constellation diagram, interoperability with 10 Gbps lambdas and dispersion compensation type impact. Field tests addressed transmission of 100 Gbps signal as an Alien Wavelength through multivendor network, influence of photonic service parallel to 100 Gbps signal and performance of 100 Gbps system over single fiber bidirectional transmission lines. 100 Gbps system has been found extremely resilient to most classical impairments thanks to advances error coding and compatible with standard 10 Gbps NRZ lambdas and any type of dispersion compensation. The system was also working over single fiber bidirectional lines and in parallel with Photonic Service of time transfer. The paper also shows recent results of single hop test with 100 Gbps system in laboratory environment.

  1. ESSIAMBRE, R.-J., KRAMER, G., WINZER, P. J., FOSCHINI, G. J., GOEBEL, B. Capacity limits of optical fiber networks. Journal of Lightwave Technology, 2010, vol. 28, no. 4, p. 662 - 701.
  2. ROBERTS, K., O'SULLIVAN, M., KUANG-TSAN WU, HAN SUN, AWADALLA, A., KRAUSE, D. J., LAPERLE, C. Performance of dual-polarization QPSK for optical transport systems. Journal of Lightwave Technology, 2009, vol. 27, no. 16, p. 3546 - 3559.
  3. WANG, J. et al. Optical data exchange of 100-Gbit/s DQPSK signals. Optics Express, 2010, vol. 18, no. 23, p. 23740 - 23745.
  4. MURATA, K. et al. 100-Gbit/s PDM-QPSK coherent receiver with wide dynamic range and excellent common-mode rejection ratio. Optics Express, 2011, vol. 19, no. 26, p. B125 - B130.
  5. RENAUDIER, J. et al. Investigation on WDM nonlinear impairments arising from the insertion of 100-Gb/s coherent PDMQPSK over legacy optical networks. IEEE Photonics Technology Letters, 2009, vol. 21, no. 24, p. 1816 - 1818.
  6. BERTRAN-PARDO, O. et al. Overlaying 10 Gb/s legacy optical networks with 40 and 100 Gb/s coherent terminals. Journal of Lightwave Technology, 2012, vol. 30, no. 14, p. 2367 - 2375.
  7. BIRK, M. et al. Real-time single-carrier coherent 100 Gb/s PMQPSK field trial. Journal of Lightwave Technology, 2011, vol. 29, no. 4, p. 417 - 425.
  8. BIRK, M. et al. Coherent 100 Gb/s PM-QPSK field trial. IEEE Communications Magazine, 2010, vol. 48, no. 7, p. 52 - 60.
  9. AGRAWAL, G. P. Fiber-Optic Communication Systems, 4th ed. New York (USA): Wiley, 2010.
  10. SMOTLACHA, V., KUNA, A., MACHE, W. Time transfer using fiber links. In 24th European Frequency and Time Forum (EFTF). Noordwijk (The Netherlands), 2010.

Keywords: 100 Gbps, DP-QPSK, field tests, dispersion compensation, photonic service

Y. Leng, G.H. Qi, X.Y. Xu [references] [full-text]
A BIC Based Initial Training Set Selection Algorithm for Active Learning and Its Application in Audio Detection

To construct a classification system or a detection system, large amounts of labeled samples are needed. However, manual labeling is dull and time consuming, so researchers have proposed the active learning technology. The initial training set selection is the first step of an active learning process, but currently there have been few studies on it. Most active learning algorithms adopt random sampling or algorithms like sampling by clustering (SBC) to select the initial training samples. But these two kinds of method would lose their effectiveness in detecting events of small probability. Because sometimes they could not select or select too few samples of the small probability events. To solve this problem, this paper proposes a BIC based initial training set selection algorithm. The BIC based algorithm performs clustering on the whole training set first. Then uses BIC to judge the status of clusters. Finally, it adopts different selection strategies for clusters of different status. Experimental results on two real data sets show that, compared to random sampling and SBC, the proposed BIC based initial training set selection algorithm can efficiently solve the detection problem of small probability events. In the mean time, it has obvious advantages in detecting events of non-small probability.

  1. COHN, D. A., GHAHRAMANI, Z. B., JORDAN, M. I. Active learning with statistical models. In Proceedings of Neural Information Processing Systems, 1994, p. 705 - 712.
  2. REZAEE, P., TAYARANI, M., KNOECHEL, R. Miniaturized microstrip filter design using active learning method. Radioengineering, 2011, vol. 20, no. 4, p. 857 – 865.
  3. TONG, S., KOLLER, D. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2001, vol. 2, p. 45 – 66.
  4. DEMIR, B., PERSELLO, C., BRUZZONE, L. Batch-mode activelearning methods for the interactive classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2011, vol. 49, no. 3, p. 1014 – 1031.
  5. NGUYEN, H. T., SMEULDERS, A. W. M. Active learning using pre-clustering. In Proceedings of International Conference on Machine Learning. 2004, p. 623 – 630.
  6. BEYGELZIMER, A., DASGUPTA, S., LANGFORD, J. Importance weighted active learning. In Proceedings of International Conference on Machine Learning. 2009, p. 7 – 56.
  7. HE, X. F. Laplacian regularized D-optimal design for active learning and its application to image retrieval. IEEE Transactions on Image Processing, 2010, vol. 19, no. 1, p. 254 – 263.
  8. SETTLES, B. Active learning literature survey. Computer Sciences Technical Report 1648. University of Wisconsin– Madison, 2010.
  9. ZHU, J. B., WANG, H. Z., TSOU, B. K., et al. Active learning with sampling by uncertainty and density for data annotations. IEEE Transactions on Audio, Speech & Language Processing, 2010, vol. 18, no. 6, p. 1323 – 1331.
  10. SEUNG, H. S., OPPER, M., SOMPOLINSKY, H. Query by committee. In Proceedings of 5th Annual Workshop on Computational Learning Theory, 1992, p. 287 - 294.
  11. YE Z. X., BERGER, T. Information Measures for Discrete Random Fields. Beijing and New York: Science Press, 1998.
  12. HU, R., NAMEE, B. M., DELANY, S. J. Off to a good start: using clustering to select the initial training set in active learning. In Proceedings of the Florida AI Research Society Conference. 2010, p. 26 - 31.
  13. ZHU, J. B., WANG, H. Z., YAO, T. S., et al. Active learning with sampling by uncertainty and density for word sense disambiguation and text classification. In Proceedings of the 22nd International Conference on Computational Linguistics. 2008, p. 1137 - 1144.
  14. KANG, J., RYU, K. R., KWON, H. C. Using cluster-based sampling to select initial training set for active learning in text classification. In Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2004, p. 384 - 388.
  15. YUAN W. W., HAN, Y. K., GUAN, D. H., et al. Initial training data selection for active learning. In Proceedings of International Conference on Ubiquitous Information Management and Communication. 2011, p. 1 - 7.
  16. CEBRON, N., BERTHOLD, M. R. Adaptive active classification of cell assay images. In Proceedings of Principles of Data Mining and Knowledge Discovery. 2006, p. 79 - 90.
  17. ZDANSKY, J. Detection of acoustic change-points in audio streams and signal segmentation. Radioengineering, 2005, vol. 14, no. 1, p. 37 – 40.
  18. XUE, H., LI, H. F., GAO, C., et al. Computationally efficient audio segmentation through a multi-stage BIC approach. In Proceedings of 3rd International Congress on Image and Signal Processing. 2010, p. 3774 – 3777.
  19. CHENG, S. S., WANG, H. M., FU, H. C. BIC-based speaker segmentation using divide-and-conquer strategies with application to speaker diarization. IEEE Transactions on Audio, Speech & Language Processing, 2010, vol. 18, no. 1, p. 141 – 157.
  20. JIANG, W. H., ZHOU, X. F., YANG, J. Y. Subspace sample selection for SVM on face recognition (in Chinese). Computer Engineering and Application, 2007, vol. 43, no. 20, p. 14 – 17.
  21. WANG, L. Support Vector Machines: Theory and Applications. Springer, 2005.
  22. ZHANG, T., OLES, F. J. A probability analysis on the value of unlabeled data for classification problems. In Proceedings of International Conference on Machine Learning. 2000, p. 1191 to 1198.

Keywords: Initial training set selection, active learning, BIC, subspace sample selection, audio detection

D, A. Chowdhry, A. M. Siddiqui, I. Touqir [references] [full-text]
Contrast Enhancement in Poor Visibility Conditions Using Guided Filtering

In this paper, extraction of atmospheric veil is proposed to enhance the contrast of the images captured under poor visibility conditions. The method based on guided filtering can accurately recover hidden edges, maintain structural similarity (SSIM) to input image and it is effective for both color and gray level images. The proposed algorithm works without prior information about the scene and its complexity is linear function of the input image size. Experimental comparisons with state of the art algorithms demonstrate that our approach can significantly enhance the contrast and restore the visibility in fine details.

  1. SHWARTZ, S., NAMER, E., SCHECHNER, Y. Y. Blind haze separation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York (USA), 2006, vol. 2, p. 1984 -1991.
  2. SCHECHNER, Y. Y., NARASIMHAN, S. G., NAYAR, S. K. Instant dehazing of images using polarization. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Kauai (USA), 2001, vol. 1, p. 325 - 332.
  3. YOON, I., KIM, S., KIM, D., HAYES, M. H., PAIK, J. Adaptive defogging with color correction in the HSV color space for consumer surveillance system. IEEE Transactions on Consumer Electronics, 2012, vol. 58, no. 1, p. 111 - 116.
  4. NAYAR, S. K., NARASIMHAN, S. G. Vision in bad weather. In Proceedings of Seventh International Conference on Computer Vision (ICCV). Corfu (Greece), 1999, vol. 2, p. 820 - 827.
  5. NARASIMHAN, S. G., NAYAR, S. K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2003, vol. 25, no. 6, p. 713 - 724.
  6. HAUTIERE, N., TAREL, J., AUBERT, D. Toward fog-free invechicle vision systems through contrast restoration. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis (USA), 2007, p. 1 - 8.
  7. NARASIMHAN S. G., NAYAR, S. K. Interactive deweathering of an image using physical models. Proceedings of IEEE ICCV Workshop on Color and Photometric Methods in Computer Vision (CPMCV). 2003.
  8. KOPF, J., NEUBERT, B., CHEN, B., COHEN, M., COHEN-OR, D., DEUSSEN, O., UYTTENDAELE, M., LISCHINSKI, D. Deep photo: Model-based photograph enhancement and viewing. ACM Transactions on Graphics (SIGGRAPH Asia’08), 2008, vol. 27, no. 5, p. 116:1 - 116:10.
  9. RAO, R., SEUNGSIN, L. Algorithms for scene restoration and visibility estimation from aerosol scatter impaired images. In IEEE International Conference on Image Processing (ICIP). Genoa (Italy), 2005, vol. 1, p. I-929 - I-932.
  10. ZUO, H., ZHANG, Q.,RUJIN Z. An efficieny restoration method for turbulence-degraded image base on improved SeDDaRA method. International symposium on Photoelectronic detection and Imaging. Beijing (China), 2009.
  11. FATTAL, R. Single image dehazing. ACM Transactions on Graphics (SIGGRAPH’08), 2008, vol. 27, p. 1 - 9.
  12. HE, K., SUN, J., TANG, X. Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2011, vol. 33, no. 12, p. 2341 - 2353.
  13. TAN, R. T. Visibility in bad weather from a single image. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage (USA), 2008, p. 1 - 8.
  14. TAREL, J.-P., HAUTIERE, N. Fast visibility restoration from a single color or gray level image. In International Conference on Computer Vision (ICCV). Kyoto (Japan), 2009.
  15. PARIJS, Y. Video Based Fog Removal. Thesis Number: ICA- 3369234. Utrecht (The Netherlands): University of Utrecht, 2012.
  16. HE, K., SUN, J., TANG, X. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2013, vol. 35, no. 6, p. 1397 - 1409.
  17. HAUTIERE, N., TAREL, J.-P., AUBERT, D., DUMONT, E. Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analysis & Stereology Journal, 2008, vol. 27, no. 2, p. 87 - 95.
  18. WANG, Z., BOVIK, A. C., SHEIKH, H. R. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, vol. 13, no. 4, p. 600 - 612.

Keywords: Poor visibility conditions, atmospheric aerosols, contrast enhancement, atmospheric veil, guided filter, haze and fog removal.

C. Yang [references] [full-text]
A Comparison of the Machine Learning Algorithm for Evaporation Duct Estimation

In this research, a comparison of the relevance vector machine (RVM), least square support vector machine (LSSVM) and the radial basis function neural network (RBFNN) for evaporation duct estimation are presented. The parabolic equation model is adopted as the forward propagation model, and which is used to establish the training database between the radar sea clutter power and the evaporation duct height. The comparison of the RVM, LSSVM and RBFNN for evaporation duct estimation are investigated via the experimental and the simulation studies, and the statistical analysis method is employed to analyze the performance of the three machine learning algorithms in the simulation study. The analysis demonstrate that the M profile of RBFNN estimation has a relatively good match to the measured profile for the experimental study; for the simulation study, the LSSVM is the most precise one among the three machine learning algorithms, besides, the performance of RVM is basically identical to the RBFNN.

  1. YARDIM, C., GERSTOFT, P., HODGKISS, W. S. Estimation of radio refractivity from radar clutter using Bayesian Monte Carlo analysis. IEEE Trans. Antennas Propag, 2006, vol. 54, no. 4, p. 1318-1327.
  2. YARDIM, C., GERSTOFT, P., HODGKISS, W. S. Tracking refractivity from clutter using Kalman and particle filters. IEEE Trans. Antennas Propag, 2008, vol. 56, no. 4, p. 1058-1070.
  3. ROGER, L. T., HATTAN, C. P. Estimating evaporation duct heights from radar sea echo. Radio Sci., 2000, vol. 35, no. 4, p. 955-966.
  4. GERSTOFT, P., ROGER, L. T., KROLIK, J. L., HODGKISS, W. S. Inversion for refractivity parameters from radar sea clutter. Radio Sci., 2003, vol. 38, no. 3, p. 8053.
  5. ROGER, L. T., JABLECKI, M. Posterior distributions of a statistic of propagation loss inferred from radar sea clutter. Radio Sci., 2005, vol. 40, p. RS6005.
  6. VASUDEVAN, S., ANDERSON, R. H., KRAUT, S., GERSTOFT, P., ROGERS, L. T., KROLIK, J. L. Recursive Bayesian electromagnetic refractivity estimation from radar sea clutter. Radio Sci., 2007, vol. 42, p. RS2104.
  7. YARDIM, C., GERSTOFT, P., HODGKISS, W. S. Statistical maritime radar duct estimation using a hybrid genetic algorithms– Markov chain Monte Carlo method. Radio Sci., 2007, vol. 42, p. RS3014.
  8. DOUVENOT, R., FABBRO, V., GERSTOFT, P., BOURLIER, C., SAILLARD, J. A duct mapping method using least squares support vector machines. Radio Sci., 2008, vol. 43, p. RS6005.
  9. YARDIM, C., GERSTOFT, P., HODGKISS, W. S. Sensitivity analysis and performance estimation of refractivity from clutter techniques. Radio Sci., 2009, vol. 44, p. RS1008.
  10. ZHAO, X. F., HUANG, S. X., DU, H. D. Theoretical analysis and numerical experiments of variational adjoint approach for refractivity estimation. Radio Sci., 2011, vol. 46, p. RS1006.
  11. KARIMIAN, A., YARDIM, C., GERSTOFT, P., HODGKISS, W. S., BARRIOS, A. E. Refractivity estimation from sea clutter: An invited review. Radio Sci., 2011, vol. 46, p. RS6013.
  12. WANG, B., WU, Z. S., ZHAO, Z. W.,WANG, H. G. Retrieving evaporation duct heights from radar sea clutter using particle swarm optimization (PSO) algorithm. Prog. Electromagn. Res., 2009, vol. 9, p.79-91.
  13. ZHANG, J. P., WU, Z. S., ZHU, Q. L., WANG, B. A four-parameter M-profile model for the evaporation duct estimation from radar clutter. Prog. Electromagn. Res., 2011, vol. 114, p.353-368.
  14. PAULUS, R. A. Evaporation duct effects on sea clutter. IEEE Trans. Antennas Propag., 1990, vol. 38, no. 11, p. 1765-1771.
  15. KUTTLER, J. R., JANASWAMY, R. Improved Fourier transform methods for solving the parabolic wave equation. Radio Sci., 2002, vol. 37, no. 2, p. RS6013.
  16. VALTR, P., PECHAC, P. Tropospheric refraction modeling using ray-tracing and parabolic equation. Radioengineering, 2005, vol. 14, no. 4, p. 98-104.
  17. VALTR, P., PECHAC, P., KVICERA, V., GRABNER, M. A terrestrial multiple-receiver radio link experiment at 10.7 GHz – comparisons of results with parabolic equation calculations. Radioengineering, 2010, vol. 19, no. 1, p. 117-121.
  18. ZHAO, X., HUANG, S. Influence of sea surface roughness on the electromagnetic wave propagation in the duct environment. Radioengineering, 2010, vol. 19, no. 4, p. 601 – 605.
  19. SIRKOVA, I. Brief review on PE method application to propagation channel modeling in sea environment. Central European Journal of Engineering, 2012, vol. 2, no. 1, p. 19-38.
  20. REILLY, J. P., DOCKERY, G. D. Influence of evaporation ducts on radar sea return. IEE Proc. Radar and Signal Processing, 1990, p. 80-88.
  21. TIPPING, M. E. Sparse Bayesian learning and the relevance vector machine. The Journal of Machine Learning Research, 2001, vol. 1, p. 211-244.
  22. WONG, P. K., XU, Q. S., VONG, C. M., WONG, H. C. Ratedependent hysteresis modeling and control of a postage using online support vector machine and relevance vector machine. IEEE Trans. on Industrial Electronics, 2012, vol. 59, no. 4, p. 1988 to 2001.
  23. GAO, J. The Principles of Neural Network and Its Simulation Example. Beijing: China Machine Press, 2003.
  24. HAN, J. Study on inversion the low-altitude atmospheric refractivity profile from radar sea clutter. Master Dissertation, China Academy of Electronics and Information Technology, Beijing, 2008.
  25. NOTARNICOLA, C., ANGIULLI, M., POSA, F. Soil moisture retrieval from remotely sensed data: neural network approach versus Bayesian method. IEEE Trans. Geosci. Remote Sens., 2008, vol. 46, no.2, p.547-557. About

Keywords: Machine learning algorithm, evaporation duct, radar sea clutter, parameter estimation.