ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

April 2015, Volume 24, Number 1 [DOI: 10.13164/re.2015-1]

Show all Hide all

S. Zvanovec, P. Chvojka, P. A. Haigh, Z. Ghassemlooy [references] [full-text] [DOI: 10.13164/re.2015.0001] [Download Citations]
Visible Light Communications towards 5G

5G networks have to offer extremely high capacity for novel streaming applications. One of the most promising approaches is to embed large numbers of co-operating small cells into the macro-cell coverage area. Alternatively, optical wireless based technologies can be adopted as an alternative physical layer offering higher data rates. Visible light communications (VLC) is an emerging technology for future high capacity communication links (it has been accepted to 5GPP) in the visible range of the electromagnetic spectrum (~370–780 nm) utilizing light-emitting diodes (LEDs) simultaneously provide data transmission and room illumination. A major challenge in VLC is the LED modulation bandwidths, which are limited to a few MHz. However, myriad gigabit speed transmission links have already been demonstrated. Non line-of-sight (NLOS) optical wireless is resistant to blocking by people and obstacles and is capable of adapting its’ throughput according to the current channel state information. Concurrently, organic polymer LEDs (PLEDs) have become the focus of enormous attention for solid-state lighting applications due to their advantages over conventional white LEDs such as ultra-low costs, low heating temperature, mechanical flexibility and large photoactive areas when produced with wet processing methods. This paper discusses development of such VLC links with a view to implementing ubiquitous broadcasting networks featuring advanced modulation formats such as orthogonal frequency division multiplexing (OFDM) or carrier-less amplitude and phase modulation (CAP) in conjunction with equalization techniques. Finally, this paper will also summarize the results of the European project ICT COST IC1101 OPTICWISE (Optical Wireless Communications - An Emerging Technology) dealing VLC and OLEDs towards 5G networks.

  1. C. V. N. Index, Global Mobile Data Traffic Forecast Update, 2014-2019, White paper, ed. 2013.
  2. BANGERTER, B., TALWAR, S., AREFI, R., STEWART, K. Networks and devices for the 5G era. IEEE Communications Magazine, 2014, vol. 52, p. 90–96. DOI: 10.1109/MCOM.2014.6736748
  3. WANG CHENG-XIANG, HAIDER, F., XIQI GAO, XIAO-HU YOU, YANG YANG, DONGFENG YUAN, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 2014, vol. 52, p. 122 to 130. DOI: 10.1109/MCOM.2014.6736752
  4. LI, Q. C., HUANING NIU, PAPATHANASSIOU, A., GENG WU. 5G network capacity: Key elements and technologies. IEEE Vehicular Technology Magazine, 2014, vol. 9, no. 1, p. 71–78. DOI: 10.1109/MVT.2013.2295070
  5. YONG SHENG SOH, QUEK, T. Q. S., KOUNTOURIS, M., HYUNDONG SHIN. Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 2013, vol. 31, p. 840–850. DOI: 10.1109/JSAC.2013.130503 .
  6. HU, R. Q., YI QUIAN. An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 2014, vol. 52, p. 94–101. DOI: 10.1109/MCOM.2014.6815898
  7. PARCA, G., SHAHPARI, A., CARROZZO, V., TOSI BELEFFI, G. M., TEIXEIRA, A. L. J. Optical wireless transmission at 1.6-Tbit/s (16×100  Gbit/s) for next-generation convergent urban infrastructures. Optical Engineering, 2013, vol. 52, no. 11, p. 116102. DOI: 10.1117/1.OE.52.11.116102
  8. COSSU, G., KHALID, A. M., CHOUDHURY, P., CORSINI, R., CIARAMELLA, E. 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Optics Express, 2012, vol. 20, no. 26, p. B501–B506. DOI: 10.1364/OE.20.00B501
  9. BURROUGHES, J. H., BRADLEY, D. D. C., BROWN, A. R., MARKS, R. N., MACKAY, K., FRIEND, R. H., et al. Lightemitting diodes based on conjugated polymers. Nature, 1990, vol. 347, p. 539–541. DOI:10.1038/347539a0
  10. TANG, C. W., VANSLYKE, S. A. Organic electroluminescent diodes. Applied Physics Letters, 1987, vol. 51, p. 913–915. DOI: 10.1063/1.98799
  11. MCKENDRY, J. J. D., GREEN, R. P., KELLY, A. E., ZHENG, G., GUILHABERT, B., MASSOUBRE, D., et al. High-speed visible light communications using individual pixels in a micro light-emitting diode array. IEEE Photonics Technology Lett., 2010, vol. 22, no. 18, p. 1346–1348. DOI: 10.1109/LPT.2010.2056360
  12. HAIGH, P. A., GHASSEMLOOY, Z., RAJBHANDARI, S., PAPAKONSTANTINOU, I., POPOOLA, W. Visible light communications: 170 Mb/s using an artificial neural network equalizer in a low bandwidth white light configuration. Journal of Lightwave Technology, 2014, vol. 32, no. 9, p. 1807–1813. DOI: 10.1109/JLT.2014.2314635
  13. MCKENDRY, J. J. D., MASSOUBRE, D., ZHANG, S., RAE, B. R., GREEN, R. P., GU, E., et al. Visible-light communications using a CMOS-controlled micro-light-emitting-diode array. Journal of Lightwave Technology, 2012, vol. 30, no. 1, p. 61–67. DOI: 10.1109/JLT.2011.2175090
  14. TSONEV, D., HYUNCHAE, C., RAJBHANDARI, S., MCKENDRY, J. J. D., VIDEV, S., GU, E., et al. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED. IEEE Photonics Technology Letters, 2014, vol. 26, p. 637–640. DOI: 10.1109/LPT.2013.2297621
  15. KHALID, A. M., COSSU, G., CORSINI, R., CHOUDHURY, P., CIARAMELLA, E. 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics Journal, 2012, vol. 4, p. 1465–1473. DOI: 10.1109/JPHOT.2012.2210397
  16. SINGH, R. Global Organic Electronics Market (Application and Geography) - Size, Share, Global Trends, Company Profiles, Demand, Insights, Analysis, Research, Report, Opportunities, Segmentation and Forecast, 2013 – 2020. 2014.
  17. HAIGH, P. A., BAUSI, F., LE MINH, H., PAPAKONSTANTINOU, I., POPOOLA, W., BURTON, A., et al. Wavelength-multiplexed polymer LEDs: Towards 55 Mb/s organic visible light communications. IEEE Journal on Selected Areas in Communications. Accepted, 2014.
  18. HAIGH, P. A., GHASSEMLOOY, Z., RAJBHANDARI, S., PAPAKONSTANTINOU, I. Visible light communications using organic light emitting diodes. IEEE Communications Magazine, 2013, vol. 51, p. 148–154. DOI: 10.1109/MCOM.2013.6576353
  19. BARLOW, I. A., KREOUZIS, T., LIDZEY, D. G. High-speed electroluminescence modulation of a conjugated-polymer light emitting diode. Applied Physics Letters, 2009, vol. 94, p. 243301– 3. DOI: 10.1063/1.3147208
  20. HAIGH, P. A., GHASSEMLOOY, Z., PAPAKONSTANTINOU, I. 1.4-Mb/s white organic LED transmission system using discrete multitone modulation. IEEE Photonics Technology Letters, 2013, vol. 25, no. 6, p. 615–618. DOI: 10.1109/LPT.2013.2244879
  21. HAIGH, P. A., GHASSEMLOOY, Z., PAPAKONSTANTINOU, I. HOA LE MINH. 2.7 Mb/s with a 93-kHz white organic light emitting diode and real time ANN equalizer. IEEE Photonics Technology Letters, 2013, vol. 25, no. 17, p. 1687–1690. DOI: 10.1109/LPT.2013.2273850
  22. HAIGH, P. A., BAUSI, F., KANESAN, T., LE, S. T., RAJBHANDARI, S., GHASSEMLOOY, Z., et al. A 20-Mb/s VLC link with a polymer LED and a multilayer perceptron equalizer. IEEE Photonics Technology Letters, 2014, vol. 26, p. 1975–1978. DOI: 10.1109/LPT.2014.2343692
  23. LE, S. T., KANESAN, T., BAUSI, F., HAIGH, P. A., RAJBHANDARI, S., GHASSEMLOOY, Z., et al. 10 Mb/s visible light transmission system using a polymer light-emitting diode with orthogonal frequency division multiplexing. Optics Letters, 2014, vol. 39, p. 3876–3879. DOI: 10.1364/OL.39.003876
  24. BRABEC, C. J., SARICIFTCI, N. S., HUMMELEN, J. C. Plastic solar cells. Advanced Functional Materials, 2001, vol. 11, no. 1, p. 15–26.
  25. TEDDE, S. F., KERN, J., STERZL, T., FURST, J., LUGLI, P., HAYDEN, O. Fully spray coated organic photodiodes. Nano Letters, 2009, vol. 9, p. 980-3. DOI: 10.1021/nl803386y
  26. HAIGH, P. A., GHASSEMLOOY, Z., HOA LE MINH, RAJBHANDARI, S., ARCA, F., TEDDE, S. F., et al. Exploiting equalization techniques for improving data rates in organic optoelectronic devices for visible light communications. Journal of Lightwave Technology, 2012, vol. 30, no. 19, p. 3081–3088. DOI: 10.1109/JLT.2012.2210028
  27. GHASSEMLOOY, Z., HAIGH, P. A., ARCA, F., TEDDE, S. F., HAYDEN, O., PAPAKONSTANTINOU, I., et al. Visible light communications: 3.75 Mbits/s data rate with a 160 kHz bandwidth organic photodetector and artificial neural network equalization. [Invited] Photonics Research, 2013, vol. 1, no. 2, p. 65–68. DOI: 10.1364/PRJ.1.000065
  28. HAIGH, P. A., GHASSEMLOOY, Z., PAPAKONSTANTINOU, I., ARCA, F., TEDDE, S. F., HAYDEN, O., et al. A 1-Mb/s visible light communications link with low bandwidth organic components. IEEE Photonics Technology Letters, 2014, vol. 26, no. 13, p. 1295–1298. DOI: 10.1109/LPT.2014.2321412
  29. AZHAR, A. H., TRAN, T., O'BRIEN, D. A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications. IEEE Photonics Technology Letters, 2013, vol. 25, no. 2, p. 171–174. DOI: 10.1109/LPT.2012.2231857
  30. TEICHMANN, V. S. C., BARRETO, A. N., PHAM, T. T., RODES, R., MONROY, I. T., MELLO, D. A. A. SC-FDE for MMF short reach optical interconnects using directly modulated 850 nm VCSELs. Optics Express, Nov 5 2012, vol. 20, no. 23, p. 25369–25377. DOI: 10.1364/OE.20.025369
  31. ELGALA, H., LITTLE, T. D. C. Polar-based OFDM and SC-FDE links toward energy-efficient Gbps transmission under IM-DD optical system constraints [Invited]. Journal of Optical Communications and Networking, 2015/02/01, vol. 7, no. 2, p. A277–A284. DOI: 10.1364/JOCN.7.00A277
  32. WU, F. M., LIN, C. T., WEI, C. C., CHEN, C. W., CHEN, Z. Y., HUANG, H. T., et al. Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication. IEEE Photonics Journal, 2013, vol. 5, article no. 7901507. DOI: 10.1109/JPHOT.2013.2271637
  33. OLMEDO, M. I., TIANJIAN ZUO, JENSEN, J. B., QIWEN ZHONG, XIAOGENG XU, POPOV, S., et al. Multiband carrierless amplitude phase modulation for high capacity optical data links. Journal of Lightwave Technology, 2014, vol. 32, no. 4, p. 798–804. DOI: 10.1109/JLT.2013.2284926
  34. HAIGH, P. A., LE, S. T., ZVANOVEC, S., GHASSEMLOOY, Z., LUO, P., XU, T., et al. Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems. IEEE Wireless Communication Magazine. In print, 2015.
  35. HAIGH, P. A., BURTON, A., WERFLI, K., HOA LE MINH, BENTLEY, E., CHVOJKA, P., et al. A multi-CAP visible light communications system with 4.85 b/s/Hz spectral efficiency. IEEE Journal on Selected Areas in Communications. Accepted, 2015.
  36. IEEE 802.15 WPAN™ Task Group 7 (TG7) Visible Light Communication. [Online] Cited 2015-03-05. Available at: http://www.ieee802.org/15/pub/TG7.html
  37. LEE, K., PARK, H., BARRY, J. R. Indoor channel characteristics for visible light communications. IEEE Communications Letters, 2011, vol. 15, no. 2, p. 217–219. DOI: 10.1109/LCOMM.2011.010411.101945
  38. BARRY, J. R., KAHN, J. M., KRAUSE, W. J., LEE, E. A., MESSERSCHMITT, D. G. Simulation of multipath impulse response for indoor wireless optical channels. IEEE Journal on Selected Areas in Communications, 1993, vol. 11, p. 367–379. DOI: 10.1109/49.219552
  39. LANGER, K.-D., HILT, J., SHULZ, D., LASSAK, F., HARTLIEB, F., KOTTKE, C., et al. Rate-adaptive visible light communication at 500Mb/s arrives at plug and play. Optoelectronics & Communications, SPIE Newsroom, 2013. DOI: 10.1117/2.1201311.005196
  40. GROBE, L., PARASKEVOPOULOS, A., HILT, J., SCHULZ, D., LASSAK, F., HARTLIEB, F., et al. High-speed visible light communication systems. IEEE Communications Magazine, 2013, vol. 51, no. 12, p. 60–66. DOI: 10.1109/MCOM.2013.6685758
  41. JUNGNICKEL, V., POHL, V., NONNIG, S., VON HELMOLT, C. A physical model of the wireless infrared communication channel. IEEE Journal on Selected Areas in Communications, 2002, vol. 20, p. 631–640. DOI: 10.1109/49.995522
  42. JIVKOVA, S., KAVEHRAD, M. Shadowing and blockage in indoor optical wireless communications. In IEEE Global Telecommunications Conference GLOBECOM '03. 2003, vol. 6, p. 3269–3273. DOI: 10.1109/GLOCOM.2003.1258840
  43. KOMINE, T., NAKAGAWA, M. A study of shadowing on indoor visible-light wireless communication utilizing plural white LED lightings. In 1st International Symposium on Wireless Communication Systems. 2004, p. 36–40. DOI: 10.1109/ISWCS.2004.1407204
  44. CHVOJKA, P., ZVANOVEC, S., HAIGH, P. A., GHASSEMLOOY, Z. Channel characteristics of visible light communications within dynamic indoor environment. Journal of Lightwave Technology, 2015, vol. 33, no. 9, p. 1719–1725. DOI: 10.1109/JLT.2015.2398894
  45. LIU, H. S., PANG, G. Positioning beacon system using digital camera and LEDs. IEEE Transactions on Vehicular Technology, 2003, vol. 52, no. 2, p. 406–419. DOI: 10.1109/TVT.2002.808800
  46. KATAYAMA, MUTSUMI, M. KAZUYUKI, K. KAZUMITSU, Vehicle position detection system. JP Patent, 2010.
  47. ARAFA, A., XIAN JIN, KLUKAS, R. Wireless indoor optical positioning with a differential photosensor. IEEE Photonics Technology Letters, 2012, vol. 24, no. 12, p. 1027–1029. DOI: 10.1109/LPT.2012.2194140
  48. PENGFEI LUO, GHASSEMLOOY, Z., HOA LE MINH, KHALIGHI, A., XIANG ZHANG, MIN ZHANG, et al. Experimental demonstration of an indoor visible light communication positioning system using dual-tone multi-frequency technique. In 2014 3rd International Workshop in Optical Wireless Communications (IWOW). 2014, p. 55–59. DOI: 10.1109/IWOW.2014.6950776
  49. WANG, T. Q., SEKERCIOGLU, Y. A., NEILD, A., ARMSTRONG, J. Position accuracy of time-of-arrival based ranging using visible light with application in indoor localization systems. Journal of Lightwave Technology, 2013, vol. 31, no. 20, p. 3302–3308. DOI: 10.1109/JLT.2013.2281592
  50. CARRUTHERS, J. B., CAROLL, S. M., KANNAN, P. Propagation modelling for indoor optical wireless communications using fast multi-receiver channel estimation. IEE ProceedingsOptoelectronics, 2003, vol. 150, no. 5, p. 473–481. DOI: 10.1049/ip-opt:20030527
  51. RAPPAPORT, T. S. Wireless Communications. Prentice-Hall, 2002.
  52. MCDONOUGH, R. N., WHALEN, A. D. Detection of Signals in Noise. San Diego (CA, USA): Wiley, 1995.
  53. WU, D., GHASSEMLOOY, Z., ZHONG, W.-D., KHALIGHI, M.- A., HOA LE MINH, CHEN, C., et al. Effect of optimal Lambertian order on the performance of cellular indoor optical wireless communications and positioning. Journal of Lightwave Technologies, 2015, submitted.
  54. The LED Streetlight Replacement Program. [Online] Cited 2014- 02-10 Available at: http://bsl.lacity.org/led.html
  55. PENGFEI LUO, GHASSEMLOOY, Z., HOA LE MINH, BENTLEY, E., BURTON, A., TANG, X. Performance analysis of a car-to-car visible light communication system. Applied Optics, 2015, vol. 54, no. 7, p. 1696–1706. DOI: 10.1364/AO.54.001696
  56. TAKAI, I., ITO, S., YASUTOMI, K., KAGAWA, K., ANDOH, M., KAWAHITO, S. LED and CMOS image sensor based optical wireless communication system for automotive applications. IEEE Photonics Journal, 2013, vol. 5, article no. 6801418. DOI: 10.1109/JPHOT.2013.2277881
  57. NAGURA, T., YAMAZATO, T., KATAYAMA, M., YENDO, T., FUJII, T., OKADA, H. Tracking an LED array transmitter for visible light communications in the driving situation. In 2010 7th International Symposium on Wireless Communication Systems (ISWCS). 2010, p. 765–769. DOI: 10.1109/ISWCS.2010.5624361

Keywords: 5G networks, light emitting diodes, visible light communications

B. Dimitrijevic, B. Nikolic, S. Aleksic, N. Raicevic [references] [full-text] [DOI: 10.13164/re.2015.0010] [Download Citations]
Optimization of Excitation in FDTD Method and Corresponding Source Modeling

Source and excitation modeling in FDTD formulation has a significant impact on the method performance and the required simulation time. Since the abrupt source introduction yields intensive numerical variations in whole computational domain, a generally accepted solution is to slowly introduce the source, using appropriate shaping functions in time. The main goal of the optimization presented in this paper is to find balance between two opposite demands: minimal required computation time and acceptable degradation of simulation performance. Reducing the time necessary for source activation and deactivation is an important issue, especially in design of microwave structures, when the simulation is intensively repeated in the process of device parameter optimization. Here proposed optimized source models are realized and tested within an own developed FDTD simulation environment.

  1. TAFLOVE, A., HAGNESS, S. B. Computational Electrodynamics: The Finite-Difference Time-Domain. 3rd ed. Boston: Artech House, 2005.
  2. BUECHLER, D. N., ROPER, D., DURNEY, C. H., CHRISTENSEN, D. A. Modeling sources in the FDTD formulation and their use in quantifying source and boundary condition errors. IEEE Transactions on Microwave Theory and Techniques, 1995, vol. 43, p. 810–814. DOI: 10.1109/22.375228
  3. YEE, K. S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 1966, vol. 14, no. 3, p. 302–307. DOI: 10.1109/TAP.1966.1138693
  4. MEREWETHER, D. E., FISHER, R., SMITH, F. W. On implementing a numeric Huygen's source scheme in a finite difference program to illuminate scattering bodies. IEEE Transactions Nuclear Science, 1980, vol. 27, no. 6, p. 1829–1833. DOI: 10.1109/TNS.1980.4331114
  5. UMASHANKAR, K. R., TAFLOVE, A. A novel method to analyze electromagnetic scattering of complex objects. IEEE Transactions on Electromagnetic Compatibility, 1982, vol. 24, no. 4, p. 397–405. DOI: 10.1109/TEMC.1982.304054
  6. WATTS, M. E., DIAZ, R. E. Perfect plane-wave injection into a finite FDTD domain through teleportation of fields. Electromagnetics, 2003, vol. 23, p. 187–201. DOI: 10.1080/02726340390159504
  7. OGUZ, U., GUREL, L., ARIKAN, O. An efficient and accurate technique for the incident-wave excitations in the FDTD method. IEEE Microwave and Guided Wave Letters, 1998, vol. 46, no. 6, p. 869–882. DOI: 10.1109/22.681215
  8. TAN, T., POTTER, M. Optimized analytic field propagator (OAFP) for plane wave injection in FDTD simulations. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 3, p. 824–831. DOI: 10.1109/TAP.2009.2039310
  9. GUIFFAUT, C., MAHDJOUBI, K. A perfect wideband plane wave injector for FDTD method. In Proceedings of the IEEE International Symposium on Antennas and Propagation. Salt Lake City (UT, USA), 2000, vol. 1, p. 236–239. DOI: 10.1109/APS.2000.873752
  10. RODEN, J. A., GEDNEY, S. D. Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media. Microwave and Optical Technology Letters, 2000, vol. 27, no. 5, p. 334–339.
  11. MANSOURABADI, M., POURKAZEMI, A. FDTD hard source and soft source reviews and modifications. Progress In Electromagnetics Research C, 2008, vol. 3, p. 143–160. DOI: 10.2528/PIERC08032302
  12. GEDNEY, S. D. Introduction to the Finite-Difference TimeDomain (FDTD) Method for Electromagnetics. Course text, Morgan and Claypool Publishing, 2011. [Online] Cited 2015-03- 03. Available at: http://www.engr.uky.edu/~gedney/courses/ee624.
  13. INAN, I. M., MARSHALL, R. A. Numerical Electromagnetics – The FDTD Method. Cambridge: Cambridge University Press, 2011.
  14. COSTEN, F., BERENGER, J.-P., BROWN, A. Comparison of FDTD hard source with FDTD soft source and accuracy assessment in Debye media. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 7, p. 2014–2022. DOI: 10.1109/TAP.2009.2021882
  15. KALIALAKIS, C. Finite Difference Time Domain Analysis of Microstrip Antenna-Circuit Modules. PhD Thesis. School of Electronic and Electrical Engineering, The University of Birmingham, July 1999.
  16. WAGNER, C. L., SCHNEIDER, J. B. Divergent fields, charge and capacitance in FDTD simulations. IEEE Transactions on Microwave Theory and Techniques, 1998, vol. 46, no. 12, p. 2131–2136. DOI: 10.1109/22.739294
  17. ROPER, D. H., BAIRD, J. M. Analysis of overmoded waveguides using the finite difference time domain method. In Digest Proceedings of the IEEE Microwave Theory and Techniques Society Symposium. Albuquerque (USA), 1992, p. 401–404. DOI: 10.1109/MWSYM.1992.187997
  18. NIKOLIC, B., DIMITRIJEVIC, B., RAICEVIC, N, ALEKSIC, S. Implementation of FDTD based simulation environment. Facta Universitatis. Ser.: Electronics and Energetics. 2013, vol. 26, p. 121–132. DOI: 10.2298/FUEE1302121N

Keywords: Finite difference time domain, source modeling, excitation, optimization.

S. Fatima, S. S. Muhammad, A. D. Raza [references] [full-text] [DOI: 10.13164/re.2015.0017] [Download Citations]
Bandwidth Efficient Root Nyquist Pulses for Optical Intensity Channels

Indoor diffuse optical intensity channels are bandwidth constrained due to the multiple reflected paths between the transmitter and the receiver which cause considerable inter-symbol interference (ISI). The transmitted signal amplitude is inherently non-negative, being a light intensity signal. All optical intensity root Nyquist pulses are time-limited to a single symbol interval which eliminates the possibility of finding bandlimited root Nyquist pulses. However, potential exists to design bandwidth efficient pulses. This paper investigates the modified hermite polynomial functions and prolate spheroidal wave functions as candidate waveforms for designing spectrally efficient optical pulses. These functions yield orthogonal pulses which have constant pulse duration irrespective of the order of the function, making them ideal for designing an ISI free pulse. Simulation results comparing the two pulses and challenges pertaining to their design and implementation are discussed.

  1. HRANILOVIC, S. Minimum bandwidth optical intensity nyquist pulses. IEEE Transactions on Communications, 2007, vol. 55, no. 3, p. 574–583. DOI: 10.1109/TCOMM.2006.888878
  2. HRANILOVIC, S., KSCHISCHANG, F. R. Optical intensitymodulated direct detection channels: signal space and lattice codes. IEEE Transactions on Information Theory, 2003, vol. 49, no. 6, p. 1385–1399. DOI: 10.1109/TIT.2003.811928
  3. KAHN, J. M., BARRY, J. R. Wireless infrared communications. Proceedings of the IEEE, 1997, vol. 85, no. 2, p. 263–298. DOI: 10.1109/5.554222
  4. NIGAM, G., SINGH, R., CHATURVEDI, A. K. Finite duration root nyquist pulses with maximum in-band fractional energy. IEEE Communications Letters, 2010, vol. 14, no. 9, p. 797–799. DOI: 10.1109/LCOMM.2010.09.100314
  5. BEAULIEU, N.C., TAN, C.C., DAMEN, M.O. A better than Nyquist pulse. IEEE Communications Letters, 2001, vol. 5, no. 9, p. 367–368. DOI: 10.1109/4234.951379
  6. SOOD, R., XIAO, H. Root Nyquist pulses with an energy criterion. In IEEE International Conference on Communications. Glasgow (UK), 2007, p. 2711–2716. DOI: 10.1109/ICC.2007.450
  7. HALPERN, P. Optimum finitie duration nyquist signals. IEEE Transactions on Communications, 1979, vol. 27, no. 6, p. 884–888. DOI: 10.1109/TCOM.1979.1094486
  8. RAMIREZ-INIGUIEZ, R., GREEN, R. J. Indoor optical wireless communications. In IEEE Colloquium on Optical Wireless Communications. London (UK), 1999, p. 14/1–14/7. DOI: 10.1049/ic:19990705
  9. TAVAN, M., AGRELL, E., KAROUT, J. Bandlimited intensity modulation. IEEE Transactions on Communications, 2012, vol. 60, no. 11, p. 3429–3439. DOI: 10.1109/TCOMM.2012.091712.110496
  10. HRANILOVIC, S. Wireless Optical Communication Systems. Boston (USA): Springer Science + Business Media, 2005. DOI: 10.1007/b99592
  11. SELPIAN, D., POLLAK, H. O. Prolate spheroidal wave functions, fourier analysis and uncertainty — I. Bell Systems Technical Journal, 1961, p. 43–63.
  12. SELPIAN, D., POLLAK, H. O. Prolate spheroidal wave functions, fourier analysis and uncertainty — II. Bell Systems Technical Journal, 1962, p. 65–84.
  13. ALLEN, B., GHORASHI, S. A., GHAVAMI, M. A review of pulse design for impulse radio. In Proceedings of IEEE Ultra Wideband Communications Technologies and System Design. 2004, p. 93–97.
  14. GHAVAMI, M., MICHAEL, L., KOHNO, R. Hermite function based orthogonal pulses for ultra wideband communication. Wireless Personal Multimedia Communications Symposium, 2001.
  15. DILMAGHANI, R. S., GHAVAMI, M., ALLEN, B., AGHVAMI, H. Novel UWB pulse shaping using prolate spheroidal wave functions. In Proceedings of IEEE Personal, Indoor and Mobile Radio Communications. Beijing (China), 2003, vol. 1, p. 602–606. DOI: 10.1109/PIMRC.2003.1264343
  16. TAVAN, M., AGRELL, E. , KAROUT, J. Strictly bandlimited ISI-free transmission over intensity-modulated channels. In IEEE Globecom. Houston (TX, USA), 2011, p. 1–6. DOI: 10.1109/GLOCOM.2011.6133734
  17. PROAKIS, J. G. Digital Communications. 4th ed. New York: McGraw-Hill, 2001.
  18. TSAI, C. Y., JENG, S. K. Design of Legendre polynomial based orthogonal pulse generator for ultra wideband communications. In IEEE Antennas and Propagation Society International Symposium. 2005, vol. 2B, p. 680–683. DOI: 10.1109/APS.2005.1552105
  19. GHAVAMI, M., MICHAEL, L.B., KOHNO, R. Ultra Wideband Signals and Systems in Communication Engineering. 2nd ed. Wiley, 2007.
  20. OUERTANI, M., BESBES, H., BOUALLEGUE, A. Modified Hermite functions for designing new optimal UWB pulse-shapers. In European Signal Processing Conference (EUSIPCO). Antalya (Turkey), 2005.
  21. GHASEEMLOOY, Z., POPOOLA, W., RAJBHANDARI, S. Optical Wireless Communications: System and Channel Modelling with Matlab. London: CRC Press, 2013.
  22. TAVAN, M., AGRELL, E., KAROUT, J. Indoor high-speed optical wireless communications: Recent developments. In Proceedings of IEEE International Conference on Transparent Optical Networks (ICTON). Graz (Austria), 2014.

Keywords: Nyquist Pulse, optical intensity signaling, PSWF (Prolate Spheroidal Wave Functions), MHPF (Modified Hermite Polynomial Function), ISI (Inter Symbol Interference)

M. Z. Ur Rehman, Z. Baharudin, M. A. Zakariya, M. H. M. Khir, M. T. Jilani [references] [full-text] [DOI: 10.13164/re.2015.0025] [Download Citations]
RF MEMS Based Tunable Bowtie Shaped Substrate Integrated Waveguide Filter

A tunable bandpass filter based on a technique that utilizes substrate integrated waveguide (SIW) and double coupling is presented. The SIW based bandpass filter is implemented using a bowtie shaped resonator structure. The bowtie shaped filter exhibits similar performance as found in rectangular and circular shaped SIW based bandpass filters. This concept reduces the circuit foot print of SIW; along with miniaturization high quality factor is maintained by the structure. The design methodology for single-pole triangular resonator structure is presented. Two different inter-resonator couplings of the resonators are incorporated in the design of the two-pole bowtie shaped SIW bandpass filter, and switching between the two couplings using a packaged RF MEMS switch delivers the tunable filter. A tunning of 1 GHz is achieved for two frequency states of 6.3 and 7.3 GHz. The total size of the circuit is 70mm x 36mm x 0.787 mm (LxWxH).

  1. JAMES, J., PENGBO SHEN, NKANSAH, A., XING LIANG, GOMES, N. J. Millimeter-wave wireless local area network over multimode fiber system demonstration. IEEE Photonics Technology Letters, 2010, vol. 22, no. 9, p. 601–603. DOI: 10.1109/LPT.2010.2043249
  2. LI WANG, GLISIC, S., BORNGRAEBER, J., WINKLER, W., SCHEYTT, J. C. A single-ended fully integrated SiGe 77/79 GHz receiver for automotive radar. IEEE Journal of Solid-State Circuits, 2008, vol. 43, no. 9, p. 1897–1908. DOI: 10.1109/JSSC.2008.2003994
  3. YAN, X., ZHANG, H., WU, C. Research and development of intelligent transportation systems. In Proceedings of the 11th International Symposium on Distributed Computing and Applications to Business Engineering & Science. Guilin (China), 2012, p. 321–327.
  4. WILSON, J. P., SCHUETZ, C. A., MARTIN, R., DILLON, T. E., YAO, P., PRATHER, D. W. Polarization sensitive millimeterwave imaging sensor based on optical up-conversion scaled to a distributed aperture. In Proceedings of the 37th International conference on Infrared, Millimeter, and Terahertz Waves. Wollongong (Australia), 2012, vol. 1, p. 23–28.
  5. NIKNEJAD, A. M., HASHEMI, H. Millimetre-wave Silicon Technology: 60 GHz and beyond. Springer, 2008.
  6. HIROKAWA, J., ANDO, M. Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates. IEEE Transactions on Antennas and Propagation, 1998, vol. 46, no. 5, p. 625–630. DOI: 10.1109/8.668903
  7. KI SEOK YANG, PINEL, S., IL KWON KIM, LASKAR, J. Lowloss integrated-waveguide passive circuits using liquid-crystal polymer System-on-Package (SOP) technology for millimeterwave applications. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 12, p. 4572–4579. DOI: 10.1109/TMTT.2006.886004
  8. JUNFENG XU, ZHI NING CHEN, XIANMING QING, WEI HONG. 140-GHz planar broadband LTCC SIW slot antenna array. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 6, p. 3025–3028. DOI: 10.1109/TAP.2012.2194673
  9. MOKHTAARI, M., BORNEMANN, J., RAMBABU, K., AMARI, S. Coupling-matrix design of dual and triple passband filters. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 11, p. 3940–3946. DOI: 10.1109/TMTT.2006.884687
  10. REHMAN, M. Z. U., BAHARUDIN, Z., ZAKARIYA, M., KHIR, M., KHAN, M., WENG, P. W. Recent advances in miniaturization of substrate integrated waveguide bandpass filters and its applications in tunable filters. In Proceedings of Business Engineering and Industrial Applications Colloquium. (Malaysia), 2013, p. 109–114. DOI: 10.1109/BEIAC.2013.6560093
  11. SUNG TAE CHOI, KI SEOK YANG, TOKUDA, K., YONG HOON KIM. A V-band planar narrow bandpass filter using a new type integrated waveguide transition. IEEE Microwave and Wireless Components Letters, 2004, vol. 14, no. 12, p. 545–547. DOI: 10.1109/LMWC.2004.837386
  12. TANG, H. J., HONG, W., HAO, Z. C., CHEN, J. X., WU, K. Optimal design of compact millimetre-wave SIW circular cavity filters. Electronics Letters, 2006, vol. 41, no. 19, p. 1068–1069. DOI: 10.1049/el:20052251
  13. XIAO-PING CHEN, KE WU. Substrate integrated waveguide cross-coupled filter with negative coupling structure. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 1, p. 142–149. DOI: 10.1109/TMTT.2007.912222
  14. DESLANDES, D., WU, K. Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 6, p. 2516–2526. DOI: 10.1109/TMTT.2006.875807
  15. ALI KHAN, A., MANDAL, M. K., SANYAL, S. Unloaded quality factor of a substrate integrated waveguide resonator and its variation with the substrate parameters. In Proceedings of International Conference on Microwave and Photonics. Dhanbad (India), 2013, p. 1–4. DOI: 10.1109/ICMAP.2013.6733496
  16. RADANT MEMS, MA, USA. RMSW201 SPST RF MEMS switch (datasheet). 2 pages. [Online] Cited 2014-05-10. Available at: http://www.radantmems.com/radantmems.data/Library/RMSW201. pdf

Keywords: Substrate integrated waveguide (SIW), tunable filter, bowtie filter, RF MEMS, double coupling.

N. Khajavi, S. V. Makki, S. Majidifar [references] [full-text] [DOI: 10.13164/re.2015.0032] [Download Citations]
Design of High Performance Microstrip Dual-Band Bandpass Filter

This paper presents a new design of dual-band bandpass filters using coupled stepped-impedance resonators for wireless systems. This architecture uses multiple couple stubs to tune the passband frequencies and the filter characteristics are improved using defected ground structure (DGS) technique. Measurement results show insertion losses of 0.93 dB and 1.13 dB for the central frequencies of 2.35 GHz and 3.61 GHz, respectively. This filter is designed, fabricated and measured and the results of the simulation and measurement are in good agreement.

  1. MONDAL, P., MANDAL, M. K. Design of dual-band bandpass filters using stub-loaded open-loop resonators. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 1, p. 150–155. DOI: 10.1109/TMTT.2007.912204
  2. GUO, L., YU, Z., ZHANG, Y. A dual-band band-pass filter using stepped impedance resonator. Microwave and Optical Technology Letters, 2011, vol. 53, no. 1, p. 123–125. DOI: 10.1002/mop.25648
  3. WANG, L., GUAN, R. Novel compact and high selectivity dualband BPF with wide stopband. Radioengineering, 2012, vol. 21, no. 1, p. 492–495.
  4. AHMED, E. S. Dual-mode dual-band microstrip bandpass filter based on fourth iteration T-square fractal and shorting pin. Radioengineering, 2012, vol. 21, no. 2, p. 617–623.
  5. YUN, T. S., NOH, S. K., KIM, OH, E. K., SON, H. M., LEE, J. C. Compact dualband bandpass filter with two transmission zeros using dual-mode microstrip resonator and tapped-line geometry. Microwave and Optical Technology Letters, 2011, vol. 53, no. 1, p. 108–111. DOI: 10.1002/mop.25627
  6. TSAI, L. C., HSUE, C. W. Dual-band bandpass filters using equallength coupled-serial-shunted line and Z-transform technique. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 4, p. 1111–1117. DOI: 10.1109/TMTT.2004.825680
  7. GUAN, X., MA, Z., CAI, P., KOBAYASHI, Y., ANADA, T., HAGIWARA, G. Synthesis of dual-band bandpass filters using successive frequency transformation and circuit conversions. IEEE Transactions on Microwave and Wireless Components Letters, 2006, vol. 16, no. 3, p. 110–112. DOI: 10.1109/LMWC.2006. 869868
  8. SHETA, A. F. Narrow band compact non-degenerate dual-mode microstrip filter. In Proceedings of the 25th National Radio Science Conference. Egypt, 2008.
  9. MAKKI, S. V. AL-DIN, AHMADI, A., MAJIDIFAR, S., SARIRI, H., RAHMANI, Z. Sharp resonator microstrip LPF using folded stepped impedance open stubs. Radioengineering, 2013, vol. 22, no. 1, p. 328–329.
  10. ZONG, B. F., WANG, G. M., ZENG, H. Y., WANG, Y. W. Compact and high performance dual-band bandpass filter using resonator-embedded scheme for WLANs. Radioengineering, 2012, vol. 21, no. 4, p. 1050–1053.
  11. PARUI, S. K., DAS S. A new defected ground structure for different microstrip circuit applications. Radioengineering, 2007, vol. 16, no. 1, p. 16–22.
  12. VAGNER, P., KASAL, M. A novel bandpass filter using a combination of open-loop defected ground structure and half-wavelength microstrip resonators. Radioengineering, 2010, vol. 19, no. 3, p. 392–396.
  13. KUFA, M., RAIDA, Z. Comparison of planar fractal filters on defected ground substrate. Radioengineering, 2012, vol. 21, no. 4, p. 1019–1024.
  14. SARKAR, P., GHATAK, R., PODDAR, D. R. A dual-band bandpass filter using SIR suitable for WiMAX band. In International Conference on Information and Electronics Engineering IPCSIT. (Malaysia), 2011.
  15. HONG, J. S., LANCASTER, M. J. Microstrip Filters for RF/ Microwave Applications. A Wiley-Interscience Publication. John Wiley & Sons, 2001. ISBN 0-471-38877-7

Keywords: Dual-band bandpass filters, stepped-impedance resonators, defected ground structure (DGS), insertion loss

M. S. R. Bashri, M. Ibn Ibrahimy, S. M. A Motakabber [references] [full-text] [DOI: 10.13164/re.2015.0038] [Download Citations]
Design of a Wideband Inductively Coupled Loop Feed Patch Antenna for UHF RFID Tag

A planar wideband patch antenna for ultra-high frequency (UHF) radio frequency identification (RFID) tag for metallic applications is presented in this research work. Three different shape patches are inductively coupled to a triangle loop to form wide impedance bandwidth for universal application UHF (860-960 MHz) RFID. The structure of proposed antenna exhibits planar profile to provide ease of fabrication for cost reduction well suited for mass production. The simulation of the antenna was carried out using Finite Element Method (FEM) based software, Ansoft HFSS v13. The simulated and measured impedance bandwidth of 113 MHz and 117 MHz (Return Loss≥6 dB) were achieved to cover the entire UHF RFID operating frequency band worldwide. The simulated and measured radiation patterns at the operating frequency of 915 MHz are in good agreement. Moreover the simulated minimum antenna gain at the bore sight direction in free space and when mounted on 200 x 200 mm2 metal plate are -15 dBi and -14dBi respectively which is enough to provide reasonable read range over the entire UHF RFID system operating band.

  1. DOBKIN, D. M. The RF in RFID : Passive UHF RFID in Practice. Massachusetts: Elsevier Inc., 2008.
  2. MARROCCO, G. The art of UHF RFID antenna design: impedance-matching and size-reduction techniques. IEEE Antennas and Propagation Magazine, 2008, vol. 50, no. 1, p. 66 to 79. DOI: 10.1109/MAP.2008.4494504
  3. RAO, K. V. S., et al. Antenna design for UHF RFID tags: A review and a practical application. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 12, p. 3870–3876. DOI: 10.1109/TAP.2005.859919
  4. YANG, B., FENG, Q. A folded dipole antenna for RFID tag. In Proceedings of International Conference on Microwave and Millimeter Wave Technology. Nanjing (China), 2008, p. 1047–1049. DOI: 10.1109/ICMMT.2008.4540601
  5. CHOI, Y., et al. Design of modified folded dipole antenna for UHF RFID tag. Electronics Letters, 2009, vol. 45, p. 387–389. DOI: 10.1049/el.2009.0198
  6. MONTI, G., et al. Broad-band dipole for RFID applications. Progress In Electromagnetics Research C, 2010, vol. 12, p. 163 to 172. doi:10.2528/PIERC10012606
  7. PROTHRO, J. T., et al. The effects of a metal ground plane on RFID tag antennas. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, 2006. DOI: 10.1109/APS.2006.1711302
  8. GHANNAY, N., et al. Effects of metal plate to RFID tag antenna parameters. In Proceedings of the Mediterrannean Microwave Symposium 2009. Tangiers (Morrocco), 2009, p. 1–3. DOI: 10.1109/MMS.2009.5409801
  9. TASHI, T., et al. A complete planner design of microstrip patch antenna for a passive UHF RFID tag. In Proceedings of the 17th International Conference on Automation and ComputingICAC 2011. Huddersfield (UK), 2011, p. 12–17.
  10. SON, H.-W., et al. Design of wideband RFID tag antenna for metallic surfaces. Electronics Letters, 2006, vol. 42, no. 5, p. 263 to 265.DOI: 10.1049/el:20064323
  11. CHOI, W., et al. An RFID tag using a planar inverted-F antenna capable of being stuck to metallic objects. ETRI Journal, 2006, vol. 20, p. 216–218. DOI: DOI: 10.4218/etrij.06.0205.0082
  12. SON, H.-W., JEONG, S.-H. Wideband RFID tag antenna for metallic surfaces using proximity-coupled feed. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 377–380. DOI: 10.1109/LAWP.2011.2148151
  13. MO, L., QIN, C. Tunable compact UHFRFID metal tag based on CPW open stub feed PIFA antenna. International Journal of Antennas and Propagation, 2012, 8 p. DOI: 10.1155/2012/167658
  14. Regulation, U. Regulatory status for using RFID in the UHF spectrum, Cited 28-09-2012. Available: http://www.gs1.org/docs /epcglobal/UHF_Regulations.pdf
  15. MO, L., et al. Broadband UHF RFID tag antenna with a pair of U slots mountable on metallic objects. Electronics Letters, 2008, vol. 44, p. 1173–1174. DOI: 10.1049/el:20089813
  16. HUANG, J. Z., et al. A compact broadband patch antenna for UHF RFID tags. In Proceedings of the Asia Pacific Microwave Conference APMC2009. Singapore, 2009, p. 1044–1047. DOI: 10.1109/APMC.2009.5384364
  17. LAI, M., et al. Low-profile broadband RFID tag antennas mountable on metallic objects. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Toronto (Canada), 2010, 4 p. DOI: 10.1109/APS.2010.5561167
  18. TAN, L. R., WU, R. X. Miniaturized broadband tag antenna for multi-standard UHF RFID applications. In Proceedings of the IEEE International Conference on Microwave Technology and Computational Electromagnetics. Beijing (China), 2011, p. 274 to 276. DOI: 10.1109/ICMTCE.2011.5915510
  19. LU, J.-H., ZHENG, G.-T. Planar broadband tag antenna mounted on the metallic material for UHF RFID system. IEEE Antennas and Propagation Magazine, 2011, vol. 10, p. 1405–1408. DOI: 10.1109/LAWP.2011.217899
  20. EUNNI, M. S. M., DEAVOURS, D. D. A novel planar microstrip antenna design for UHF RFID. Journal of Systemics, Cybernetics and Informatics, 2007, vol. 5, no. 1, p. 6–10.
  21. TASHI, et al. Design and simulation of UHF RFID tag antennas and performance evaluation in presence of a metallic surface. In Proceedings of the 5th International Conference on Software, Knowledge Information, Industrial Management and Applications. Benevento (Italy), 2011, 5 p. DOI: 10.1109/SKIMA.2011.6089974
  22. CHO, H.-G., et al. Design of an embedded-feed type microstrip patch antenna for UHF radio frequency identification tag on metallic objects. IET Microwaves, Antennas & Propagation, 2010, vol. 4, p. 1232–1239. DOI:10.1049/iet-map.2009.040
  23. MO, L., QIN, C. Planar UHF RFID tag antenna with open stub feed for metallic objects. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 9, p. 3037–3043. DOI: 10.1109/TAP.2010.2052570
  24. Alien. Alien Higgs 3 EPC Class 1 Gen 2 RFID Tag IC. Cited 20-10-2012. Available: http://www.alientechnology.com/docs/ products/Alien-Technology-Higgs-3-ALC-360.pdf
  25. LOO, C.-H., et al. Chip impedance matching for UHF RFID tag antenna design. Progress In Electromagnetics Research, 2008, vol. 81, p. 359–370. DOI:10.2528/PIER08011804
  26. BIRD, T. S. Definition and misuse of return loss. IEEE Antennas and Propagation Magazine, 2009, vol. 51, p. 166–167.
  27. SON, H.-W., PYO, C.-S. Design of RFID tag antennas using an inductively coupled feed. Electronics Letters, 2005, vol. 41, no. 18, p. 994–996. DOI: 10.1049/el:20051536
  28. GROVER, F. W. Inductance Calculations: Working Formulas and Tables. New York: D. Van Nostrand, 1946.
  29. Balanis, C. A. Antenna Theory Analysis and Design. 3rd ed. New Jersey: John Wiley & Sons, 2005.
  30. KUMAR, G., RAY, K. P. Broadband Microstrip Antenna. Noorwood, MA: Artech House, 2003.
  31. KUO, S.-K., et al. An accurate method for impedance measurement of RFID tag antenna. Progress In Electromagnetics Research, 2008, vol. 83, p. 93–106. DOI:10.2528/PIER08042104
  32. QING, X. et al. Impedance characterization of RFID tag antennas and application in tag co-design. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, p. 1268–1274. DOI: 10.1109/TMTT.2009.2017288
  33. XU, L., et al. UHF RFID tag antenna with broadband characteristic. Electronics Letters, 2008, vol. 44, no. 2, p. 79–80. DOI: 10.1049/el:20083009
  34. LU, J.-H., HUNG, K.-T. Planar inverted-E antenna for UHF RFID tag onmetallic objects with bandwidth enhancement. Electronics Letters, 2010, vol. 46, no. 17, p. 1182–1183. DOI: 10.1049/el.2010.0817

Keywords: Complex impedance matching, patch antenna, radio frequency identification (RFID), metallic object, ultra high frequency (UHF)

M. N.Osman, M. K. A. Rahim, P. Gardner, M. R. Hamid, M. F. M. Yusoff, H. A. Majid [references] [full-text] [DOI: 10.13164/re.2015.0045] [Download Citations]
An Electronically Reconfigurable Patch Antenna Design for Polarization Diversity with Fixed Resonant Frequency

In this paper, an electronically polarization reconfigurable circular patch antenna with fixed resonant frequency operating at Wireless Local Area Network (WLAN) frequency band (2.4-2.48 GHz) is presented. The structure of the proposed design consists of a circular patch as a radiating element fed by coaxial probe, cooperated with four equal-length slits etched on the edge along x-axis and y-axis. A total of four switches was used and embedded across the slits at specific locations, thus controlled the length of the slits. By activating and deactivating the switches (ON and OFF) across the slits, the current on the patch is changed, thus modifying the electric field and polarization of the antenna. Consequently, the polarization excited by the proposed antenna can be switched into three types, either linear polarization, left-hand circular polarization or right-hand circular polarization. This paper proposes a simple approach that able to switch the polarizations and excited at the same operating frequency. Simulated and measured results of ideal case (using copper strip switches) and real case (using PIN diode switches) are compared and presented to demonstrate the performance of the antenna.

  1. BYUN, S.-B., LEE, J.-A., LIM, J.-H., YUN, T.-Y. Reconfigurable ground-slotted patch antenna using PIN diode switching. ETRI Journal, Dec. 2007, vol. 29, no. 6, p. 832–834.
  2. KUMAR, S., GOLI, H., BASKARAN, P., ANGELA, P. P. Novel reconfigurable microstrip antenna. In IEEE 3rd International Conference on Industrial and Information Systems. Kharagpur (India), Dec. 2008, p. 1–5, DOI: 10.1109/ICIINFS.2008.4798448
  3. RUVIO, G., AMMANN, M. J., CHEN, Z. N. Wideband reconfigurable rolled planar monopole antenna. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 6, p. 1760–1767. DOI: 10.1109/TAP.2007.898575
  4. PANAGAMUWA, C. J., CHAURAYA, A. C., VARDAXOGLOU, J. C. Frequency and beam reconfigurable antenna using photoconducting switches. IEEE Transactions on Antennas and Propagation, Feb. 2006, vol. 54, no. 2, p. 449–454. DOI: 10.1109/TAP.2005.863393
  5. NIKOLAOU, S., KIM, B., VRYONIDES, P. Reconfiguring antenna characteristics using PIN diodes. In The 3rd European Conference on Antennas and Propagation EuCap2009. Berlin (Germany), 2009, p. 3748–3752.
  6. ISMAIL, M. F., A. RAHIM, M. K., MAJID, H. A. The investigation of PIN diode switch on reconfigurable antenna. In IEEE International RF and Microwave Conference RFM 2011. Seremban (Negeri Sembilan, Malaysia), December 2011, p. 234–237. DOI: 10.1109/RFM.2011.6168737
  7. FERRERO, F., LUXEY, C., JACQUEMOD, G., STARAJ, R., FUSCO, V. Polarisation-reconfigurable patch antenna. In International Workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications IWAT 2007. Cambridge (UK), 2007, no. 1, p. 73–76. DOI: 10.1109/IWAT.2007.370083
  8. LIM, J.-H., BACK, G.-T., YUN, T.-Y. Polarization-diversity cross-shaped patch antenna for satellite-DMB systems. ETRI Journal, Apr. 2010, vol. 32, no. 2, p. 312–318. DOI: 10.4218/etrij.10.0109.0280
  9. PIAZZA, D., MOOKIAH, P., D’AMICO, M., DANDEKAR, K. R. Pattern and polarization reconfigurable circular patch for MIMO systems. In European Conference on Antennas and Propagation EuCap 2009. Berlin (Germany), 2009, p. 1047–1051.
  10. PIAZZA, D., MOOKIAH, P., D’AMICO, M., DANDEKAR, K. R. Experimental analysis of pattern and polarization reconfigurable circular patch antennas for MIMO systems. IEEE Transactions on Vehicular Technology, 2010, vol. 59, no. 5, p. 2352–2362. DOI: 10.1109/TVT.2010.2043275
  11. LI, Y., ZHANG, Z., CHEN, W., FENG, Z. Polarization reconfigurable slot antenna with a novel compact CPW-to-slotline transition for WLAN application. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 252–255. DOI: 10.1109/LAWP.2010.2046006
  12. AMINI, M. H., HASSANI, H. R., NEZHAD, S. M. A. A single feed reconfigurable polarization printed monopole antenna. In European Conference on Antennas and Propagation EuCap 2012. Prague (Czech Rep.), 2012, p. 1–4. DOI: 10.1109/EuCAP.2012.6205882
  13. LAI, C.-H., HAN, T.-Y., CHEN, T.-R. Circularly-polarized reconfigurable microstrip antenna. Journal of Electromagnetic Waves and Applications, 2009, vol. 23, no. 2-3, p. 195–201. DOI: 10.1163/156939309787604373
  14. WANG, C.-C., CHEN, L.-T., ROW, J.-S. Reconfigurable slot antennas with circular polarization. Progress in Electromagnetics Research Letters, 2012, vol. 34, p. 101–110. DOI:10.2528/PIERL12072410
  15. MONTI, G., CORCHIA, L., TARRICONE, L. Patch antenna with reconfigurable polarization. Progress in Electromagnetics Research C, 2009, vol. 9, p. 13–23.
  16. HYUN, D.-H., BAIK, J.-W., LEE, S. H., KIM, Y.-S. Reconfigurable microstrip antenna with polarisation diversity. Electronics Letters, 2008, vol. 44, no. 8, p. 509–511. DOI: 10.1049/el:20080125
  17. KIM, B., PAN, B., NIKOLAOU, S., KIM, Y.-S., PAPAPOLYMEROU, J., TENTZERIS, M. M. A novel single-feed circular microstrip antenna with reconfigurable polarization capability. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 3, p. 630–638. DOI: 10.1109/TAP.2008.916894
  18. YANG, X.-X., SHAO, B.-C., YANG, F., ELSHERBENI, A. Z., GONG, B. A polarization reconfigurable patch antenna with loop slots on the ground plane. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 69–72. DOI: 10.1109/LAWP.2011.2182595
  19. CHEN, Y. B., CHEN, T. B., JIAO, Y. C., ZHANG, F. S. A reconfigurable microstrip antenna for switchable polarization. Journal of Electromagnetic Waves and Applications, 2006, vol. 20, no. 10, p. 1391–1398. DOI: 10.1163/156939306779276820
  20. GARG, R., BHARTIA, P., BAHL, I., ITTIPIBOON, A. Microstrip Antenna Design Handbook, Artech House Publishers, January 2001.

Keywords: Polarization reconfigurable antenna, circular patch, slit perturbations

A. Savascihabes, O. Ertug, E. Yazgan [references] [full-text] [DOI: 10.13164/re.2015.0054] [Download Citations]
On the Design and Performance Analysis of Low-Correlation Compact Space-Multimode Diversity Stacked Microstrip Antenna Arrays for MIMO-OFDM WLANs over Statistically-Clustered Indoor Radio Channels

The support of high spectral efficiency MIMO spatial-multiplexing communication in OFDM-based WLAN systems conforming to IEEE 802.11n standard requires the design and use of compact antennas and arrays with low correlation ports. For this purpose, compact space-multimode diversity provisioning stacked circular multimode microstrip patch antenna arrays (SCP-ULA) are proposed in this paper and their performance in terms of spatial and modal correlations, ergodic spectral efficiencies as well as compactness with respect to antenna arrays formed of vertically-oriented center-fed dipole elements (DP-ULA) and dominant-mode operating circular microstrip patch antennas (CP-ULA) are presented. The lower spatial and modal correlations and the consequent higher spectral efficiency of SCP-ULA with ML detection over statistically-clustered Kronecker-based spatially-correlated NLOS Ricean fading channels with respect to DP-ULA and CP-ULA at significantly lower antenna and array sizes represents SCP-ULA as a promising solution for deployment in terminals, modems and access points of next-generation high-speed 802.11n MIMO-OFDM WLAN systems.

  1. TELATAR, I. E. Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 1999, vol. 10, no. 6, p. 585–596. DOI: 10.1002/ett.4460100604
  2. FOSCHINI, G. J., GANS, M. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 1998, vol. 6, p. 311–355. DOI: 10.1023/A:1008889222784
  3. FORENZA, A., HEATH, R. W. Benefit of pattern diversity via two-element array of circular patch antennas in indoor clustered MIMO channels. IEEE Transactions on Communications, 2006, vol. 54, no. 5, p. 943–954. DOI: 10.1109/TCOMM.2006.873978
  4. SANCHEZ-FERNANDEZ, M., RAJO-IGLESIAS, E., QUEVEDO-TERUEL, O., PABLO-GONZALEZ, M. L. Spectral efficiency in MIMO systems using space and pattern diversities under compactness constraints. IEEE Transactions on Vehicular Technology, 2008, vol. 57, no. 3, p. 1637–1645. DOI: 10.1109/TVT.2007.909279
  5. SVANTESSON, T. Correlation and channel capacity of MIMO systems employing multimode antennas. IEEE Transactions on Vehicular Technology, 2002, vol. 51, no. 6, p. 1304–1312. DOI: 10.1109/TVT.2002.804856
  6. MUKHERJEE, A., KWON, H. M. Compact multi-user wideband MIMO system using multiple-mode microstrip antennas. In Proceedings of 65th Vehicular Technology Conference VTC 2007 Spring. Dublin (Ireland), April 2007, p. 584–588. DOI: 10.1109/VETECS.2007.131
  7. WALDSCHMIDT, C., KUHNERT, C., SCHULTEIS, S. WIESBECK, W. Compact MIMO-arrays based on polarizationdiversity. In Proceedings of IEEE Antennas and Propagation Symposium 2003. Columbus (USA), 2003, vol. 2, p. 499–502. DOI: 10.1109/APS.2003.1219284
  8. IEEE 802.11n-2009–Amendment 5: Enhancements for Higher Throughput. IEEE-SA. 29 October 2009. DOI: 10.1109/IEEESTD.2009.5307322.
  9. IEEE P802.11n Wireless LANs: TGn Channel Models. IEEE-SA. May 10 2004. doc.: IEEE 802.11-03/940r4.
  10. Wi-Fi CERTIFIED n: Longer-Range, Faster-Throughput, Multimedia-Grade Wi-Fi® Networks, Wi-Fi Alliance. Sept. 2009.
  11. PAULRAJ, A., NABAR, R., GORE, D. Introduction to SpaceTime Wireless Communications. New York: Cambridge University Press, 2003.
  12. SVANTESSON, T. On the capacity and correlation of multiantenna systems employing multiple polarizations. In Proc. of IEEE Antennas and Propagation Symposium 2002. San Antonio (USA), 2002, vol. 3, p. 202–205. DOI: 10.1109/APS. 2002.1018190
  13. VAUGHAN, R. G. Two-port higher mode circular microstrip antennas. IEEE Transactions on Antennas and Propagation, 1988, vol. 36, no. 3, p. 309–321. DOI: 10.1109/8.192112
  14. GARG, R., BHARTIA, P., BAHL, I. Microstrip Antenna Design Handbook. Artech House, 2001.
  15. BALANIS, C.A. Antenna Theory: Analysis and Design. 2nd ed. United States of America: John Wiley & Sons Inc., 1997.
  16. BAHL, J. Lumped Elements for RF and Microwave Circuits. Boston: Artech House, 2003.
  17. VAN ZELST, A., VAN NEE, R., AWATER, G. A. Space-division multiplexing for OFDM systems. In IEEE Vehicular Technology Conference 2000. Tokyo (Japan), 2000, vol. 2, p. 1070–1074. DOI: 10.1109/VETECS.2000.851289
  18. CHE-NEE CHUAH, KAHN, J. M., TSE, D. N. C. Capacity of multi-antenna array systems in indoor wireless environments. In Proceedings of GLOBECOM’98. Sidney (Australia), 1998, vol. 4, p. 1894–1899. DOI: 10.1109/GLOCOM.1998.775873
  19. GOLDSMITH, A. MIMO Wireless Communications. Cambridge University Press, 2007.
  20. VAN ZELST, A. Space-division multiplexing algorithms. In 10th Mediterranean Electrotechnical Conference 2000, MELECON 2000. Cyprus, 2000, vol. 3, p. 1218–1221. DOI: 10.1109/MELCON.2000.879755

Keywords: IEEE 802.11n MIMO-OFDM WLAN, spectral efficiency, spatial correlation, multimode antenna, spatial-multiplexing, Kronecker channel model, NLOS Ricean fading.

Xue Li, Jinwen Tian [references] [full-text] [DOI: 10.13164/re.2015.0064] [Download Citations]
Low-Profile Fully-Printed Multifrequency Monopoles Loaded with Complementary Metamaterial Transmission Line

The design of a new class of multifrequency monopoles by loading a set of resonant-type complementary metamaterial transmission lines (CMTL) is firstly presented. Two types of CMTL elements are comprehensively explored: the former is the epsilon negative (ENG) one by loading complementary split ring resonators (CSRRs) with different configurations on the signal strip, whereas the latter is the double negative (DNG) one by incorporating the CSRRs and capacitive gaps. In both cases, the CMTLs are considered with different number of unit cells. By cautiously controlling the geometrical parameters of element structure, five antenna prototypes coving different communication standards (GSM, UMTS, DMB and WiMAX) are designed, fabricated and measured. Numerical and experimental results illustrate that the zeroth-order resonance frequencies of the ENG and DNG monopoles are in desirable consistency. Moreover, of all operating frequencies the antennas exhibit fairly good impedance matching performances better than -10dB and quasi-omnidirectional radiation patterns.

  1. ELEFTHERIADES, G. V., BALMAIN, K. G. Negative Refraction Metamaterials: Fundamental Principles and Applications. Hoboken, NJ: Wiley, 2005.
  2. XU, H.-X., WANG, G.-M., LIANG, J.-G., PENG, Q. Novel CRLH TL based on fractal geometry and series power divider application. Acta Physica Sinica, 2012, vol. 61, no. 7, p. 074101.
  3. XU, H.-X., WANG, G.-M., LIANG, J.-G. Novel designed CSRRs and its application in tunable tri-band bandpass filter based on fractal geometry. Radioengineering, 2011, vol. 20, no. 1, p. 312 to 316.
  4. CALOZ, C., ITOH, T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach. Hoboken, NJ: Wiley, 2006.
  5. XU, H.-X., WANG, G.-M., ZHANG, C.-X., WANG, X. Characterization of composite right/left handed transmission line. Electronics Letters, 2011, vol. 47, no. 18, p. 1030–1032. DOI: 10.1049/el.2010.3707
  6. MARQUES, R., MARTIN, F., SOROLLA, M. Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications. Hoboken, NJ: Wiley, 2008.
  7. XU, H.-X., WANG, G.-M., ZHANG, C.-X., LIANG, J.-G. Novel design of compact microstrip diplexer based on fractal-shaped composite right/left handed transmission line. Journal of Infrared and Millimeter Waves, 2011, vol. 30, no. 5, p. 390–396. DOI: 10.3724/sp.j.1010.2011.00390
  8. XU, H.-X., WANG, G.-M., CHEN, X., LI, T.-P. Broadband balun using fully artificial fractal-shaped composite right/left handed transmission line. IEEE Microwave and Wireless Components Letters, 2012, vol. 22, no. 1, p. 16–18. DOI: 10.1109/LMWC.2011.2173929
  9. KIM, D., KIM, M. Narrow-beamwidth T-shaped monopole antenna fabricated from metamaterial wires. Electronics Letters, 2008, vol. 44, no. 3, p. 180–182. DOI: 10.1049/el:20082854
  10. ANTONIADES, M. A., ELEFTHERIADES, G. V. A foldedmonopole model for electrically small NRI-TL metamaterial antennas. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 425–428. DOI: 10.1109/LAWP.2008.2008773
  11. JI, J. K., KIM, G. H., SEONG, W. M. Bandwidth enhancement of metamaterial antennas based on composite right/left-handed transmission line. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 36–39. DOI: 10.1109/LAWP.2010.2041628
  12. ZHU, J., ANTONIADES, M. A., ELEFTHERIADES, G. V. A compact tri-band monopole antenna with single-cell metamaterial loading. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 4, p. 1031–1038. DOI: 10.1109/TAP.2010.2041317
  13. IBRAHIM, A., SAFWAT, A. M. E., EL-HENNAWY, H. Tripleband microstrip-fed monopole antenna loaded with CRLH unit cell. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1547–1550. DOI: 10.1109/LAWP.2011.2181813
  14. ANTONIADES, M. A., ELEFTHERIADES, G. V., ROGERS, E. S. A broadband dual-mode monopole antenna using NRI-TL metamaterial loading, IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 258–261. DOI:10.1109/LAWP.2009.2014402
  15. KOKKINOS, T., FERESIDIS, A. P. Low-profile folded monopoles with embedded planar metamaterial phase-shifting lines. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, p. 2997–3008. DOI: 10.1109/TAP.2009.2028605
  16. XU, H.-X., WANG, G.-M., LV, Y.-Y., QI, M.-Q., GAO, X., GE, S. Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit. Progress in Electromagnetics Research, 2013, vol. 137, p. 703–725.
  17. ELSHEAK, D. N., ISKANDER, M. F., ELSADE, H. A., ABDALLAH, E. A., ELHENAWY, H. Enhancement of ultra-wideband microstrip monopole antenna by using unequal arms V-shaped slot printed on metamaterial surface. Microwave and Optical Technology Letters, 2010, vol. 52, no. 10, p. 2203–2209. DOI: 10.1002/mop.25447
  18. PALANDOKEN, M., GREDE, A., HENKE, H. Broadband microstrip antenna with left-handed metamaterials. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 2, p. 331–338. DOI: 10.1109/TAP.2008.2011230
  19. BARBUTO, M., BILOTTI, F., TOSCANO, A. Design of a multifunctional SRR-loaded printed monopole antenna. International Journal of RF and Microwave Computer-Aided Engineering, 2012, vol. 22, no. 4, p. 552–557. DOI: 10.1002/mmce.20645
  20. LIU, J., GONG, S., XU, Y., ZHANG, X., FENG, C., QI, N. Compact printed ultra-wideband monopole antenna with dual band-notched characteristics. Electronics Letters, 2008, vol. 44, no. 12, p. 710–711. DOI: 10.1049/el:20080931
  21. GIL, M., BONACHE, J., MARTIN, F. Synthesis and applications of new left handed microstrip lines with complementary split-ring resonators etched on the signal strip. IET Microwaves Antennas and Propagation, 2008, vol. 2, no. 4, p. 324–330. DOI:10.1049/iet-map:20070225
  22. XU, H.-X., WANG, G.-M., GONG, J.-Q. Compact dual-band zeroth-order resonance antenna. Chinese Physics Letters, 2012, vol. 29, no.1, p. 014101-1–014101-4. DOI: 10.1088/0256- 307X/29/1/014101

Keywords: Metamaterial transmission line, planar monopole, multi-frequency antenna, complementary, zeroth-order resonator (ZOR).

P. Yoiyod, M. Krairiksh [references] [full-text] [DOI: 10.13164/re.2015.0070] [Download Citations]
Dielectric Properties Determination of a Stratified Medium

The method of detection of variation in dielectric properties of a material covered with another material, which requires nondestructive measurement, has numerous applications and the accurate measurement system is desirable. This paper presents a dielectric properties determination technique whereby the dielectric constant and loss factor are extracted from the measured reflection coefficient. The high frequency reflection coefficient shows the effect of the upper layer, while the dielectric properties of the lower layer can be determined at the lower frequency. The proposed technique is illustrated in 1-11 GHz band using 5 mm-thick water and 5% saline solution. The fluctuation of the dielectric properties between the high frequency and the low frequency, results from the edge diffraction in the material and the multiple reflections at the boundary of the two media, are invalid results. With the proposed technique, the dielectric properties of the lower layer can be accurately determined. The system is validated by measurement and good agreement is obtained at the frequency below 3.5 GHz. It can be applied for justifying variation of the material in the lower layer which is important in industrial process.

  1. GHODGAONKAR, D. K., VARADAN, V. V., VARADAN, V. K. A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies. IEEE Transactions on Instrumentation and Measurement, 1989, vol. 37, no. 3, p. 789–793. DOI: 10.1109/19.32194
  2. ZOUGHI, R., BAKHTIARI, S. Microwave nondestructive detection and evaluation of disbounding and delamination in layered-dielectric-slabs. IEEE Transaction on Instrumentation and Measurement, 1990, vol. 39, no. 6, p. 1059–1063. DOI: 10.1109/19.65826
  3. VENKATESH, M. S., RAGHAVAN, G. S. V. An overview of dielectric properties measuring techniques. Canadian Biosystems Engineering, 2005, vol. 47, p. 7.15–7.30.
  4. SINGH, D., YAMAGUCHI, Y., YAMADA, H., SINGH, K. P. Response of microwave on bare soil moisture and surface roughness by X-band scatterometer. IEICE Transactions on Communications, 2000, vol. E83-B, no. 9, p. 2038–2043.
  5. KHARKOVSKY, S., AKAY, M. F., HASAR, U. C., ATIS, C. D. Measurement and monitoring of microwave reflection and transmission properties of cement-based specimens. IEEE Transactions on Instrumentation and Measurement, 2002, vol. 51, no. 6, p. 1210–1218. DOI: 10.1109/TIM.2002.808081
  6. THAKUR, K. P., HOLMES, W. S. Noncontact measurement of moisture in layered dielectrics from microwave reflection spectroscopy using an inverse technique. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 1, p. 76–82. DOI: 10.1109/TMTT.2003.821243
  7. HASAR, U. C., WESTGAT, C. R., ERTUGRUL, M. Permittivity determination of liquid materials using waveguide measurements for industrial applications. IET Microwave, Antennas and Propagation, 2010, vol. 4, no. 1, p. 141–152. DOI:10.1049/ietmap.2008.0197
  8. MEHTA, P., CHAND, K., NARAYANSWAMY, D., BEETNER, D. G., ZOUGHI, R., STOECKER, W. V. Microwave reflectrometry as a novel diagnostic tool for detection of skin cancers. IEEE Transactions on Instrumentation and Measurement, 2006, vol. 55, no. 4, p. 1309–1316. DOI: 10.1109/TIM.2006.876566
  9. SEKIGUCHI, H., SHIRAI, H. Electromagnetic scattering analysis for crack depth estimation. IEICE Transactions on Electronics, 2003, vol. E86-C, no. 9, p. 2224–2229.
  10. GHASR, M. T., KHARKOVSKY S., ZOUGHI, R., AUSTIN, R. Comparison of near-field millimeter-wave probes for detecting corrosion precursor pitting under paint. IEEE Transactions on Instrumentation and Measurement, 2005, vol. 54, no. 4, p. 1497–1504. DOI: 10.1109/TIM.2005.851086
  11. GHASR, M. T., CARROL, B., KHARKOVSKY, S., AUSTIN, R., ZOUGHI, R. Millimeter-wave differential probe for nondestructive detection of corrosion precursor pitting. IEEE Transactions on Instrumentation and Measurement, 2006, vol. 55, no. 5, p. 1620–1627. DOI: 10.1109/TIM.2006.880273
  12. HUGHES, D., ZOUGHI, R. A novel method for determination of dielectric properties of materials using a combined embedded modulated scattering and near-field microwave techniques. Part IForward model. IEEE Transactions on Instrumentation and Measurement, 2005, vol. 54, no. 6, p. 2389–2397. DOI: 10.1109/TIM.2005.858132
  13. HUGHES, D., ZOUGHI, R. A novel method for determination of dielectric properties of materials using a combined embedded modulated scattering and near-field microwave techniques. Part IIDielectric property recalculation. IEEE Transactions on Instrumentation and Measurement, 2005, vol. 54, no. 6, p. 2398- 2401. DOI: 10.1109/TIM.2005.858133
  14. VENKATESH, M. S., RAGHAVAN, G. S. V. An overview of microwave processing and dielectric properties of agri-food materials. Journal of Biosystems Engineering, 2004, vol. 88, no. 1, p. 1–18. DOI: 10.1016/j.biosystemseng.2004.01.007
  15. NELSON, S. O. Agricultural applications of dielectric measurements. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, vol. 13, no. 4, p. 688–702. DOI: 10.1109/TDEI.2006.1667726
  16. ABUDUL KHALID, M. F., RAMLI, A. S., BABA, N. H., SAAD, H. A novel preliminary study on microwave characterization of siamese mangoes ripeness at K-band. In Proceedings of International RF and Microwave Conference. Kuala Lumpur (Malaysia), 2008, p. 143–147.
  17. HASAR, U. C. A fast and accurate amplitude-only transmissionreflection method for complex permittivity determination of lossy materials. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 9, p. 2129–2135. DOI: 10.1109/TMTT.2008.2002229
  18. ODA, M., MASE, A., UCHINO, K. Non-destructive measurement of sugar content in apples using millimeter wave reflectometry and artificial neural networks for calibration. In Proceedings of the 25th Asia-Pacific Microwave Conference. Melbourne (Australia), 2011, p. 1386–1389.
  19. GHASR, M. T., SIMMS, D., ZOUGHI, R. Multimodal solution for a waveguide radiating into multilayered structures-dielectric property and thickness evaluation. IEEE Transactions on Instrumentation and Measurement, 2009, vol. 58, no. 5, p. 1505–1513. DOI: 10.1109/TIM.2008.2009133
  20. SEAL, M. D., HYDE, M. W., HAVRILLA, M. J. Nondestructive complex permittivity and permeability extraction using a two-layer dual-waveguide probe measurement geometry. Progress In Electromagnetics Research, 2012, vol. 123, p. 123–142. DOI:10.2528/PIER11111108
  21. CHARVAT, G. L., KEMPEL, L. C., ROTHWELL, E. J., COLEMAN, C. M., MOKOLE, E. L. A through-dielectric radar imaging system. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 8, p. 2594–2603. DOI: 10.1109/TAP.2010.2050424
  22. OSA, K., SUMANTYO, J. T. S., NISHIO, F. An application of microwave measurement for complex dielectric constants to detecting snow and ice on road surface. IEICE Transactions on Communications, 2011, vol. E94-B, no. 11, p. 2987–2990. DOI: 10.1587/transcom.E94.B.2987
  23. GENNARELLI, G., RICCIO, G. A uniform asymptotic solution for the diffraction by a right-angle dielectric wedge. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 3, p. 898–903. DOI: 10.1109/TAP.2010.2103031
  24. STOGRYN, A. Equations for calculating the dielectric constant of saline water. IEEE Transactions on Microwave Theory and Techniques, 1971, vol. MTT-19, no. 8, p. 733–736. DOI: 10.1109/TMTT.1971.1127617
  25. KRAUS, J. D., MARHEFKA, R. J. Antennas for All Applications. 3rd ed. New York: McGraw-Hill, 2002.

Keywords: Dielectric properties, stratified medium, reflection coefficient, diffraction coefficient

H. M. Elkamchouchi, M. M. Hassan [references] [full-text] [DOI: 10.13164/re.2015.0080] [Download Citations]
A Wideband Direct Data Domain Genetic Algorithm Beamforming

In this paper, a wideband direct data-domain genetic algorithm beamforming is presented. Received wideband signals are decomposed to a set of narrow sub-bands using fast Fourier transform. Each sub-band is transformed to a reference frequency using the steering vector transformation. So, narrowband approaches could be used for any of these sub-bands. Hence, the direct data-domain genetic algorithm beamforming can be used to form a single ‘hybrid’ beam pattern with sufficiently deep nulls in order to separate and reconstruct frequency components of the signal of interest efficiently. The proposed approach avoids most of drawbacks of already-existing statistical and gradient-based approaches since formation of a covariance matrix is not needed, and a genetic algorithm is used to solve the beamforming problem.

  1. ELKAMCHOUCHI, H., MOHAMED, D., ALI, W. D3 LS STAP approach on wideband signals using uniformly spaced real elements. International Journal of Computer Applications, 2011, vol. 22, no. 4, p. 42–47. DOI: 10.5120/2568-3530
  2. SVENDSEN, A., GUPTA, I. The effect of mutual coupling on the nulling performance of adaptive antennas. IEEE Antennas and Propagation Magazine, June 2012, vol. 54, no. 3, p. 17–38. DOI: 10.1109/MAP.2012.6293947
  3. ADVE, R., SARKAR, T. Compensation for the effects of mutual coupling on direct data domain adaptive algorithms. IEEE Transactions on Antennas and Propagation, January 2000, vol. 48, no. 1, p. 86–94. DOI: 10.1109/8.827389
  4. SARKAR, T., WICKS, M., SALAZAR-PALMA, M., BONNEAU, R. Smart Antennas. Wiley-IEEE Press, 2003.
  5. SHABAN, M., KISHK, S. Steering vector transformation technique for the design of wideband beamformer. In The Proceeding of 27th National Radio Science Conference. Menouf (Egypt), 2010.
  6. LIU, W., WEISS, S. Wideband Beamforming Concepts and Techniques. Wiley (Wiley Series on Wireless Communication and Mobile Computing), 2010. 302 p. ISBN: 978-0-470-71392-1
  7. ELLATIF, W. Smart Antennas: Space Time Adaptive Processing Based on Direct Data Domain Least Squares Using Real Elements. Doctoral Dissertation. Electrical Engineering, Alexandria University, 2011.
  8. SARKAR, T., PEREIRA, O. Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. IEEE Antennas and Propagation Magazine, May 1995, vol. 37, no. 1, p. 48–55. DOI: 10.1109/74.370583
  9. ELKAMCHOUCHI, H., HASSAN, M. Space time adaptive processing using real array elements based on direct data domain adaptive nulls genetic algorithm beam forming. In Proceedings of the International Conference on Electronics and Communication System. Coimbatore (India), 2014, vol. 2, p. 183–187. DOI: 10.1109/ECS.2014.6892563
  10. HASSAN, M. A Proposed Fault Identification Scheme in Systems Using Soft Computing Methodologies. M.Sc. Dissertation. Electrical Engineering, Alexandria University, 2008.
  11. Genetic Algorithm and Direct Search Tool Box User’s Guide. The MathWorks, Inc., 2006.
  12. LIU, W., WEISS, S., HANZO, L. A generalized side lobe canceller employing two-dimensional frequency invariant filters. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 7, p. 2339–2343. DOI: 10.1109/TAP.2005.850759
  13. LIU, W., WEISS, S. A new class of broad arrays with frequency invariant beam patterns. In Proceeding of International Conference on Acoustics, Speech, and Signal Processing ICASSP 2004. Montreal (Canada), 2004, vol. 2, p. 185–188. DOI: 10.1109/ICASSP.2004.1326225
  14. MOGHADDAM, P., AMINDAVAR, H. Direction of arrival estimation: a new approach. In Proceeding of Signal Processing Conference. Nordic (Sweden), 2000.
  15. MONTHIPPA, U., BIALKOWSKI, M. E. A wideband smart antenna employing spatial signal processing. Journal of Telecommunication and Information Technology, 2007, no. 1, p. 13–17.
  16. REN, Y., HE, H., ZHANG, Y., ZHANG, K. An amplitude-only direct data domain least square algorithm of wideband signals based on the uniform circular array. In Proceeding of the 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom 2009). Beijing (China), 2009, p. 1–4. DOI: 10.1109/WICOM.2009.5302753
  17. MANI, V.V.; BOSE, R. Genetic algorithm based smart antenna design for UWB beamforming. In IEEE International Conference on Ultra-Wideband ICUWB 2007. Singapore, 2007, p. 442–446. DOI: 10.1109/ICUWB.2007.4380985

Keywords: Wideband array, direct data-domain, genetic algorithm, signal of interest, matrix pencil method

C.H. Qi, Z.Q. Zhao [references] [full-text] [DOI: 10.13164/re.2015.0087] [Download Citations]
Electromagnetic Scattering and Statistic Analysis of Clutter from Oil Contaminated Sea Surface

In order to investigate the electromagnetic (EM) scattering characteristics of the three dimensional sea surface contaminated by oil, a rigorous numerical method multilevel fast multipole algorithm (MLFMA) is developed to preciously calculate the electromagnetic backscatter from the two-layered oil contaminated sea surface. Illumination window and resistive window are combined together to depress the edge current induced by artificial truncation of the sea surface. By using this combination, the numerical method can get a high efficiency at a less computation cost. The differences between backscatters from clean sea and oil contaminated sea are investigated with respect to various incident angles and sea states. Also, the distribution of the sea clutter is examined for the oil-spilled cases in this paper.

  1. SOLBERG, A. H. S. Remote sensing of ocean oil-spill pollution. Proceedings of the IEEE, 2012, vol. 100, no. 10, p. 2931–2945. DOI: 10.1109/JPROC.2012.2196250
  2. FINGAS, M., BROWN, C. Review of oil spill remote sensing. Marine Pollution Bulletin, 2014. DOI: 10.1016/S1353- 2561(98)00023-1
  3. PINEL, N., DECHAMPS, N., BOURLIER, C. Modelling of the bistatic electromagnetic scattering from sea surfaces covered in oil for microwave applications. IEEE Transactions on Geoscience and Remote Sensing, 2008, vol. 46, no. 2, p. 385–392. DOI: 10.1109/TGRS.2007.902412
  4. GHANMI, H., KHENCHAF, A., COMBLET, F. Numerical modeling of electromagnetic scattering from sea surface covered by oil. Journal of Electromagnetic Analysis and Applications, 2014, vol. 6, p. 15–24. DOI: 10.4236/jemaa.2014.61003
  5. SONG, J., LU, C.-C., CHEW, W. C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Transactions on Antennas and Propagation, 1997, vol. 45, no. 10, p. 1488–1493. DOI: 10.1109/8.633855
  6. YANG, W., ZHAO, Z., QI, C., NIE, Z. Electromagnetic modeling of breaking waves at low grazing angles with adaptive higher order hierarchical Legendre basis functions. IEEE Transactions on Geoscience and Remote Sensing, 2011, vol. 49, no. 1, p. 346–352. DOI: 10.1109/TGRS.2010.2052817
  7. THORSOS, E. I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. Journal of the Acoustical Society of America, 1988, vol. 83, p. 78 to 92. DOI: DOI: 10.1121/1.396188
  8. ZHAO, Z., WEST, J. C. Resistive suppression of edge effects in MLFMA scattering from finite conductivity surfaces. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, p. 1848–1852. DOI: 10.1109/TAP.2005.846810
  9. LI, X., XU, X. Scattering and Doppler spectral analysis for twodimensional linear and nonlinear sea surfaces. IEEE Transactions on Geoscience and Remote Sensing, 2011, vol. 49, p. 603–611. DOI: 10.1109/TGRS.2010.2060204
  10. LOMBARDINI, P., FISCELLA, B., TRIVERO, P., CAPPA, C., GARRETT, W. Modulation of the spectra of short gravity waves by sea surface films: slick detection and characterization with a microwave probe. Journal of Atmospheric and Oceanic Technology, 1989, vol. 6, p. 882–890. DOI: 10.1175/1520- 0426(1989)006<0882:MOTSOS>2.0.CO;2
  11. GADE, M., ALPERS, W., HUHERFUSS, H., WISMANN, V. R., LANGE, P. A, On the reduction of the radar backscatter by oceanic surface films: Scatterometer measurements and their theoretical interpretation. Remote Sensing of Environment, 1998, vol. 66, p. 52–70. DOI:10.1016/S0034-4257(98)00034-0
  12. GLISSON A. W. Electromagnetic scattering by arbitrarily shaped surface with impedance boundary conditions. Radio Science, 1992, vol. 27, no. 6, p. 935–943. DOI: 10.1029/92RS01782
  13. LIU, P., JIN, Y. Q. Numerical simulation of bistatic scattering from a target at low altitude above rough sea surface under an EMwave incidence at low grazing angle by using the finite element method. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 5, p. 1205–1210. DOI: 10.1109/TAP.2004.827497
  14. ZHAO, Z., WEST, J. C. Resistive treatment of edges in MLFMA LGA scattering from finite conductivity 2D surfaces. In IEEE Antennas and Propagation Society International Symposium, 2002, p. 264–267. DOI: 10.1109/APS.2002.1016974
  15. ISKANDER, D. R., ZOUBIR, A. M. Estimation of the parameters of the K-distribution using higher order and fractional moments [radar clutter]. IEEE Transactions on Aerospace and Electronic Systems, 1999, vol. 35, p. 1453–1457. DOI: 10.1109/7.805463
  16. FARINA, A., GINI, F., GRECO, M., VERRAZZANI, L. High resolution sea clutter data: statistical analysis of recorded live data. IEE Proceedings-in Radar, Sonar and Navigation, 1997, vol. 144, no. 3, p. 121–130. DOI: 10.1049/ip-rsn:19971107

Keywords: Oil contaminated sea, sea clutter, MLFMA, resistive loading.

M. Kvicera, P. Pechac [references] [full-text] [DOI: 10.13164/re.2015.0093] [Download Citations]
First-Order Statistics Prediction for a Propagation Channel of Arbitrary Non-Geostationary Satellite Orbits

A method enabling the prediction of first-order statistics of received signal level for arbitrary non-geostationary satellite orbits based on a reference dataset for a wide range of elevation angles is introduced for azimuth-independent scenarios and high elevation angles. The method is further validated by experimental data obtained during measurements performed at a frequency of 2.0 GHz at two scenarios at Stromovka Park in Prague, the Czech Republic, in August 2013 and March 2014. An excellent match between the predicted and actual cumulative distribution functions of received signal levels was identified for both scenarios.

  1. JOST, T., CARRIE, G., PEREZ-FONTAN, F., WANG, W. FIEBIG, U.-C. A Deterministic satellite-to-indoor entry loss model. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 4, p. 2223–2230. DOI: 10.1109/TAP.2012.2232898
  2. CHEFFENA, M., PEREZ-FONTAN, F. Land mobile satellite channel simulator along roadside trees. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 748–751. DOI: 10.1109/LAWP.2010.2060465
  3. AIT-IGHIL, M., LEMORTON, J., PEREZ-FONTAN, F., LACOSTE, F., THEVENON, P., BOURGA, C., BOUSQUET, M. SCHUN - a hybrid land mobile satellite channel simulator enhanced for multipath modelling applied to satellite navigation systems. In Proceedings of the 7th European Conference on Antennas and Propagation. Gothenburg (Sweden), 2013, p. 692–696.
  4. CARRIE, G., PEREZ-FONTAN, F., LACOSTE, F., LEMORTON, J. A generative MIMO channel model: encompassing single satellite and satellite diversity cases. In Proceedings of the 6th European Conference on Antennas and Propagation. Prague (Czech Rep.), 2012, p. 2454–2458. DOI: 10.1109/EuCAP.2012.6206627
  5. JEANNIN, N., PEREZ-FONTAN, F., MAMETSA, H.-J., CASTANET, L. Physical-statistical model for the LMS channel at Ku/Ka Band. In Proceedings of the 5th European Conference on Antennas and Propagation. Rome (Italy), 2011, p. 3571–3575.
  6. ABELE, A., PEREZ-FONTAN, F., BOUSQUET, M., VALTR, P., LEMORTON, J., LACOSTE, F., CORBEL, E. A new physicalstatistical model of the land mobile satellite propagation channel. In Proceedings of the 4th European Conference on Antennas and Propagation. Barcelona (Spain), 2010, p. 1-5.
  7. KVICERA, M., PECHAC, P. Building penetration loss for satellite services at L-, S- and C-band: measurement and modeling. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 84, p. 3013–3021. DOI: 10.1109/TAP.2011.2158963
  8. ARNDT, D., HEYN, T., HEUBERGER, A., PRIETO-CERDEIRA, R., EBERLEIN, E. State modeling of the land mobile satellite channel with angle diversity. In Proceedings of the 6th European Conference on Antennas and Propagation. Prague (Czech Rep.) 2012, p. 3130–3144. DOI: 10.1109/EuCAP.2012.6206141
  9. MOLNAR, B., FRIGYES, I., BODNAR, Z., HERCZKU, Z., KORMANYOS, Z., BERCES, J., PAPP, I., JUHASZ, L. Characterisation of the satellite-to-indoor channel based on narrow-band scalar measurements. In Proceedings of the 8th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Helsinki (Finland), 1997, p. 1014–1018.
  10. PEREZ-FONTAN, F., HOVINEN, V., SCHONHUBER, M., PRIETO-CERDEIRA, R., DELGADO-PENIN, J. A., TESCHL, F., KYROLAINEN, J., VALTR, P. Building entry loss and delay spread measurements on a simulated HAP-to-indoor link at Sband. EURASIP Journal on Wireless Communications and Networking, 2008, vol. 2008, no. 5, 6 p. DOI:10.1155/2008/427352
  11. TESCHL, F., PEREZ-FONTAN, F., SCHONHUBER, M., PRIETO-CERDEIRA, R., TESCHL, R. Attenuation of spruce, pine, and deciduous woodland at C-band. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 109–112. DOI: 10.1109/LAWP.2012.2184253
  12. HORAK, P., PECHAC, P. Excess loss for high elevation angle links shadowed by a single tree: measurements and modeling. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no.7, p. 3541–3545. DOI: 10.1109/TAP.2012.2196944
  13. STEINGASS, A., LEHNER, A. Measuring the navigation multipath channel – a statistical analysis. In Proceedings of the 17th International Technical Meeting of the Satellite Division of he Institute of Navigation (ION GNSS 2004). Long Beach (CA, USA), 2004, p. 1157–1164.
  14. LACOSTE, F., LEMORTON, J., CASADEBAIG, L., ROUSSEAU, F. Measurements of the land mobile and nomadic satellite channels at 2.2 GHz and 3.8 GHz. In Proceedings of the 6th European Conference on Antennas and Propagation. Prague (Czech Rep.), 2012, p. 2422–2426. DOI: 10.1109/EuCAP.2012.6206356
  15. JOST, T., WANG, W., FIEBIG, U.-C., PEREZ-FONTAN, F. Comparison of L- and C-Band satellite-to-indoor broadband wave propagation for navigation applications. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 10, p. 3899–3909. DOI: 10.1109/TAP.2011.2163753
  16. KING, P. R., STAVROU, S. Low elevation wideband land mobile satellite MIMO channel characteristics. IEEE Transactions on Wireless Communications, 2007, vol. 6, no. 70, p. 2712–2720. DOI: 10.1109/TWC.2007.051018
  17. TESCHL, F., HOVINEN, V., PEREZ-FONTAN, F., SCHONHUBER, M., PRIETO-CERDEIRA, R. Narrow- and wideband land mobile satellite channel statistics for various environments at Ku-band. In Proceedings of the 6th European Conference on Antennas and Propagation. Prague (Czech Rep.), 2012, p. 2464–2468. DOI: 10.1109/EuCAP.2012.6206670
  18. JOST, T., WANG, W., SCHUBERT, F., ANTREICH F., FIEBIG, U.-C. Channel sounding using GNSS signals. In Proceedings of the 5th European Conference on Antennas and Propagation. Rome (Italy), 2011, p. 3724–3728.
  19. VELTSISTAS, P., KALABOUKAS, G., KONITOPOULOS, G., DRES, D., KATIMERTZOGLOU, E., CONSTANTINOU, P. Satellite-to-indoor building penetration loss for office environment at 11 GHz. IEEE Antennas and Wireless Propagation Letters, 2007, vol. 6, p. 96–99. DOI: 10.1109/LAWP.2007.893070
  20. ARAPOGLOU, P.-D. M., PANAGOPOULOS, A. D. A tool for synthesizing rain attenuation time series in LEO Earth observation satellite downlinks at Ka band. In Proceedings of the 5th European Conference on Antennas and Propagation. Rome (Italy), 2011, p. 1467–1470.
  21. KOUROGIORGAS, C. I., KVICERA, M., SKRAPARLIS, D., KORINEK, T., SAKARELLOS, V. K., PANAGOPOULOS, A. D., PECHAC, P. Modeling of first-order statistics of the MIMO dual polarized channel at 2 GHz for land mobile satellite systems under tree shadowing. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 10, p. 5410–5415. DOI: 10.1109/TAP.2014.2346186

Keywords: Satellite-to-Earth propagation, channel measurements, modeling, vegetation

S. Cho, S. K. Park [references] [full-text] [DOI: 10.13164/re.2015.0098] [Download Citations]
Uplink Multiuser MIMO Detection Scheme with Reduced Computational Complexity

The wireless communication systems with multiple antennas have recently received significant attention due to their higher capacity and better immunity to fading channels as compared to single antenna systems. A fast antenna selection scheme has been introduced for the uplink multiuser multiple-input multiple-output (MIMO) detection to achieve diversity gains, but the computational complexity of the fast antenna selection scheme in multiuser systems is very high due to repetitive pseudo-inversion computations. In this paper, a new uplink multiuser detection scheme is proposed adopting a switch-and-examine combining (SEC) scheme and the Cholesky decomposition to solve the computational complexity problem. K users are considered that each users is equipped with two transmit antennas for Alamouti space-time block code (STBC) over wireless Rayleigh fading channels. Simulation results show that the computational complexity of the proposed scheme is much lower than the systems with exhaustive and fast antenna selection, while the proposed scheme does not experience the degradations of bit error rate (BER) performances.

  1. GOLDSMITH, A. Wireless Communications. Cambridge: Cambridge University Press, 2005.
  2. WU, Q., YANG, X.-S., ZHANG, Y.-T. Research on 2 × 2 MIMO channel with truncated Laplacian azimuth power spectrum. Radioengineering, 2013, vol. 22, no. 2, p. 544–548.
  3. DIOUM, I., CLEMENTE, M., DIALLO, A., LUXEY, C., ROSSI, J. P., FARSSI, S. M. Meandered monopoles for 700 MHz LTE handsets and improved MIMO channel capacity performance. Radioengineering, 2011, vol. 20, no. 4, p. 726–732.
  4. LIM, C., YOO, T., CLERCKX, B., LEE, B., SHIM, B. Recent trend of multiuser MIMO in LTE-advanced. IEEE Communications Magazine, 2013, vol. 51, no. 3, p. 127–135. DOI: 10.1109/MCOM.2013.6476877
  5. PHROMPICHAI, S. SGD frequency-domain space-frequency semiblind multiuser receiver with an adaptive optimal mixing parameter. Radioengineering, 2013, vol. 22, no. 1, p. 400–410.
  6. CZINK, N., BANDEMER, B., OESTGES, C., ZEMEN, T., PAULRAJ, A. Analytical multi-user MIMO channel modeling: subspace alignment matters. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 1, p. 367–377. DOI: 10.1109/TWC.2012.010412.110980
  7. SUN, C., KARMAKAR, N. C., LIM, K. S., FENG, A. Combining beamforming with Alamouti scheme for multiuser MIMO communications. In Proceedings of the 60th IEEE Vehicular Technology Conference (VTC 2004 Fall). Los Angeles (CA, USA), 2004, vol. 2, p. 1415–1419. DOI: 10.1109/VETECF.2004.1400257
  8. CHEN, M.-X., XU, C.-Q., ZHANG, X.-G. Fast antenna selection for Alamouti multi-user MIMO detection. In Proceedings of the 4th International Conference on Wireless Communications, Networking and Mobile Computing. Dalian (China), 2008, p. 1–4. DOI: 10.1109/WiCom.2008.112
  9. YANG, H.-C., ALOUINI, M.-S. Performance analysis of multibranch switched diversity systems. IEEE Transactions on Communications, 2003, vol. 51, no. 5, p. 782–794. DOI: 10.1109/TCOMM.2003.811408
  10. NAM, H., ALOUINI, M.-S. Multi-branch switched diversity with adaptive switching thresholds. In Proceedings of the International Symposium on Information Theory and its Applications. Auckland (New Zealand), 2008, p. 1–6.
  11. TAROKH, V., NAGUIB, A., SESHADRI, N., CALDERBANK, A. R. Combined array processing and space-time coding. IEEE Transactions on Information Theory, 1999, vol. 45, no. 4, p. 1121 to 1128. DOI: 10.1109/18.761255
  12. ALAMOUTI, S. M. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 1998, vol. 16, no. 8, p. 1451–1458. DOI: 10.1109/49.730453
  13. GESBERT, D., BOLCSKEI, H., GORE, D. A., PAULRAJ, A. J. Outdoor MIMO wireless channels: models and performance prediction. IEEE Transactions on Communications, 2002, vol. 50, no. 12, p. 1926–1934. DOI: 10.1109/TCOMM.2002.806555
  14. LOYKA, S. L. Channel capacity of MIMO architecture using the exponential correlation matrix. IEEE Communications Letters, 2001, vol. 5, no. 9, p. 369–371. DOI: 10.1109/4234.951380
  15. YU, K., BENGTSSON, M., OTTERSTEN, B., MCNAMARA, D., KARLSSON, P., BEACH, M. Modeling of wide-band MIMO radio channels based on NLoS indoor measurements. IEEE Transactions on Vehicular Technology, 2004, vol. 53, no. 3, p. 655–665. DOI: 10.1109/TVT.2004.827164

Keywords: Cholesky decomposition, fast antenna selection, multiuser MIMO, SEC, STBC

K. Rajeswari, S. J. Thiruvengadam [references] [full-text] [DOI: 10.13164/re.2015.0105] [Download Citations]
Optimal Power Allocation for Channel Estimation in MIMO-OFDM System with Per-Subcarrier Transmit Antenna Selection

A novel hybrid channel estimator is proposed for multiple-input multiple-output orthogonal frequency- division multiplexing (MIMO-OFDM) system with per-subcarrier transmit antenna selection having optimal power allocation among subcarriers. In practice, antenna selection information is transmitted through a binary symmetric control channel with a crossover probability. Linear minimum mean-square error (LMMSE) technique is optimal technique for channel estimation in MIMO-OFDM system. Though LMMSE estimator performs well at low signal to noise ratio (SNR), in the presence of antenna-to-subcarrier-assignment error (ATSA), it introduces irreducible error at high SNR. We have proved that relaxed MMSE (RMMSE) estimator overcomes the performance degradation at high SNR. The proposed hybrid estimator combines the benefits of LMMSE at low SNR and RMMSE estimator at high SNR. The vector mean square error (MSE) expression is modified as scalar expression so that an optimal power allocation can be performed. The convex optimization problem is formulated and solved to allocate optimal power to subcarriers minimizing the MSE, subject to transmit sum power constraint. Further, an analytical expression for SNR threshold at which the hybrid estimator is to be switched from LMMSE to RMMSE is derived. The simulation results show that the proposed hybrid estimator gives robust performance, irrespective of ATSA error.

  1. STUBER, G. L., BARRY, J. R., MCLAUGHLIN, S. W., YE LI, G., INGRAM, M. A., PRATT, T. G. Broadband MIMO-OFDM wireless communications. In Proceedings of the IEEE, 2004, vol. 92, no. 2, p. 271–294.
  2. YENG, H. A road to future broadband wireless access: MIMOOFDM based air interface. IEEE Communication Magazine, 2005, vol. 43, no. 1, p. 53–60.
  3. ALAMOUTI, S. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 1998, vol. 16, p. 1451–1458.
  4. BOLCSKEI, H., GESBERT, D., PAULRAJ, A. On the capacity of OFDM based spatial multiplexing systems. IEEE Transactions on Communications, 2002, vol. 50, no. 2, p. 225–234. DOI: 10.1109/26.983319
  5. ZHANG, H., NABAR, R. U. Transmit antenna selection in MIMO-OFDM systems: bulk versus per-tone selection. In Proceedings of the IEEE ICC, 2008, p. 4371–4375. DOI: 10.1109/ICC.2008.820
  6. XUN SHAO, JINHONG YUAN, RAPAJIC, P. Antenna selection for MIMO-OFDM spatial multiplexing system. In Proceedings of the International Symposium on Information Theory ISIT 2003. Yokohama (Japan), 2003, p. 90. DOI: 10.1109/ISIT.2003.1228104
  7. VITHANAGE, C. M., COON, J. P., PARKER, S. C. J. On capacity-optimal precoding for multiple antenna systems subject to EIRP restrictions. IEEE Transactions on Wireless Communications, 2008, vol. 7, no. 12, p. 5182–5187. DOI: 10.1109/T-WC.2008.070879
  8. COON, J. P., SANDELL, M. Combined bulk and per-tone transmit antenna selection in OFDM systems. IEEE Communications Letters, 2010, vol. 14, no. 5, p. 426–428. DOI: 10.1109/LCOMM.2010.05.100055
  9. COON, J. P., SANDELL, M. Performance of transmit antenna selection in space–time-coded OFDM systems. IEEE Transactions on Vehicular Technology, 2011, vol. 60, no. 6, p. 2824–2828.
  10. VAN DE BEEK, J. J., EDFORS, O., SANDELL, M., WILSON, S. K., BORJESSON, P. O. On channel estimation in OFDM systems. In Proceedings of the 45th IEEE Vehicular Technology Conference. Chicago (IL, USA), 1995, p. 815–819.
  11. LI, Y. G., CIMINI, L. J., SOLLENBERGER, N. R. Robust channel estimation for OFDM systems with rapid dispersive fading channels. IEEE Transactions on Communication, 1998, vol. 46, no. 7, p. 902–915.
  12. SRIVASTAVA, V., CHIN KEONG HO, HO WANG FUNG, P., SUMEI SUN. Robust MMSE channel estimation in OFDM systems with practical timing synchronization. In IEEE Conf. on Wireless Communication and Networking WCNC 2004. Atlanta (USA), 2004, p. 711 - 716. DOI: 10.1109/WCNC.2004.1311273
  13. VITHANAGE, C. M., DENIC, S., SANDELL, M. Robust linear channel estimation methods for per-subcarrier transmit antenna selection. IEEE Transaction on Communications, 2011, vol. 59, no. 7, p. 2018–2028. DOI: 10.1109/TCOMM.2011.051711.100420
  14. RAJESWARI, K., SASHIGANTH, M., THIRUVENGADAM, S.J. A hybrid channel estimator for MIMO-OFDM system with persubcarrier transmit antenna selection. Telecommunication Systems, 2015, vol. 58, no. 1, p. 81–89. DOI: 10.1007/s11235-014-9894-3
  15. TUAN, H. D., KHA, H. H., NGUYEN, H. H., LUONG, V.J. Optimized training sequences for spatially correlated MIMOOFDM. IEEE Trans. on Wireless Communication, 2010, vol. 9, no. 9, p. 2768–2778. DOI: 10.1109/TWC.2010.070710.081601
  16. LUONG, V. D., TRAN, N. N., TUAN, H. D. Optimal training sequence design for MIMO-OFDM in spatially correlated fading. In Proceedings of the 2nd International Conference on Signal Processing and Communication Systems. Australia (Gold Coast), Dec. 2008, p. 1–6. DOI: 10.1109/ICSPCS.2008.4813697
  17. GOLOVINS, E., VENTURA, N. Optimal training for the SMMIMO-OFDM systems with MMSE channel estimation. In Proceedings of the 6th Annual Communication Networks and Services Research Conf. Halifax (Canada), 2008, p. 470–477. DOI:10.1109/CNSR.2008.57
  18. XIN GENG, HANYING HU, WEIJIA CUR, YANAN DUN. Optimal pilot design for MIMO OFDM channel estimation. In Proceedings of the International Conference on Signal Processing Systems, 2010, vol. 2, p. V2-404-V2-408.
  19. KAY, S. M. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall, 1993.
  20. YUSHI SHEN, MARTINEZ, E. Channel estimation in OFDM systems. Freescale Semiconductor Application Note, 2006, Rev 0, 1/2006, p. 1–15.
  21. SAVAUX, V, LOUËT, Y, DJOKO-KOUAM, M., SKRZYPCZAK, A. Minimum mean-square-error expression of LMMSE channel estimation in SISO OFDM systems. IET Electronics Letters, 2013, vol. 49, no. 18, p. 1152–1154. DOI: 10.1049/el.2013.1993
  22. BIGUESH, M., GERSHMAN, A. B. Training based MIMO channel estimation: A study of estimator tradeoffs and optimal training signals. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 3, p. 884–893. DOI: 10.1109/TSP.2005.863008
  23. 3GPP TS 36.101. User Equipment (UE) Radio Transmission and Reception. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA).

Keywords: MIMO-OFDM, per-subcarrier antenna selection, antenna-to–subcarrier assignment, LMMSE, relaxed MMSE, hybrid estimator.

T. Zhang, W. Yang, Y. Cai [references] [full-text] [DOI: 10.13164/re.2015.0115] [Download Citations]
Exact Outage Performance Analysis of Multiuser Multi-relay Spectrum Sharing Cognitive Networks

In this paper, we investigate the outage performance of dual-hop multiuser multi-relay cognitive radio networks under spectrum sharing constraints. Using an efficient relay-destination selection scheme, the exact and asymptotic closed-form expressions for the outage probability are derived. From these expressions it is indicated that the achieved diversity order is only determined by the number of secondary user (SU) relays and destinations, and equals to M+N (where M and N are the number of destination nodes and relay nodes, respectively). Further, we find that the coding gain of the SU network will be affected by the interference threshold $bar I$ at the primary user (PU) receiver. Specifically, as the increases of the interference threshold, the coding gain of the considered network approaches to that of the multiuser multi-relay system in the non-cognitive network. Finally, our study is corroborated by representative numerical examples.

  1. MITOLA, J. Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio. Ph. D. dissertation, Royal Institute of Technology (KTH), Stockholm, Sweden, 2000.
  2. XU, W., ZHANG, J., ZHANG, P., TELLAMBURA, C. Outage probability of decode-and-forward cognitive relay in presence of primary user’s interference, IEEE Communication Letters, vol. 16, no. 8, p. 1252–1255, 2012. DOI: 10.1109/LCOMM.2012.061912.120770
  3. XIA, M., AISSA, S. Cooperative AF relaying in spectrumsharing systems: performance analysis under average interference power constraints and Nakagami-m fading. IEEE Transactions on Communications, vol. 60, no. 6, p. 1523–1533, 2012. DOI: 10.1109/TCOMM.2012.042712.110410
  4. SUN, L., ZHANG, T., LU, L., NIU, H. On the combination of cooperative diversity and multiuser diversity in multi-source multi-relay wireless networks. IEEE Signal Processing Letters, vol. 17, no. 6, p. 535–538, 2010. DOI: 10.1109/LSP.2010.2046350
  5. DING, H., GE, J., DA COSTA, D. B., JIANG, Z. A new efficient low complexity scheme for multi-source multi-relay cooperative networks. IEEE Transactions on Vehicular Technology, vol. 60, no. 2, p. 716–722, 2011. DOI: 10.1109/TVT.2010.2100416
  6. HUANG, Y., AL-QAHTANI, F., WU, Q., ZHONG, C., WANG, J., ALNUWEIRI, H. Outage analysis of spectrum sharing relay systems with multi-secondary destinations under primary user’s interference. IEEE Transactions on Vehicular Technology, vol. 63, no. 7, p. 3456– 3463, 2014. DOI: 10.1109/TVT.2014.2297973
  7. GUIMARAES, F. R. V., DA COSTA, D. B., TSIFTSIS, T. A., CAVALCANTE, C. C., ET AL. Multi-user and multi-relay cognitive radio networks under spectrum sharing constraints. IEEE Transactions on Vehicular Technology, vol. 63, no. 1, p. 433–439, 2014. DOI: 10.1109/TVT.2013.2275201
  8. DE MELO, M. A. B., DA COSTA, D. B. An efficient relay-destination selection scheme for multiuser multirelay downlink cooperative networks. IEEE Transactions on Vehicular Technology, vol. 61, no. 5, p. 2354–2360, 2012. DOI: 10.1109/TVT.2012.2192488
  9. XU, T., GE, J., DING, H. Opportunistic scheduling for uplink cognitive cellular networks with outage protection of the primary user, IEEE Communication Letters, vol. 17, no. 1, p. 71–74, 2013. DOI: 10.1109/LCOMM.2012.111612.121872
  10. DUONG, T. Q., DA COSTA, D. B., ELKASHLAN, M., BAO, V. N. Q. Cognitive amplify-and-forward relay networks over Nakagami-m fading, IEEE Transactions on Vehicular Technology, vol. 61, no. 5, p. 2368–2374, 2012. DOI: 10.1109/TVT.2012.2192509

Keywords: Spectrum sharing, cognitive relay, outage probability, diversity order, coding gain.

S. Peng, Z. Yuan, J. You, Y. Shen, W. Jian [references] [full-text] [DOI: 10.13164/re.2015.0122] [Download Citations]
A Simplified Scheme of Estimation and Cancellation of Companding Noise for Companded Multicarrier Transmission Systems

Nonlinear companding transform is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise greatly degrades the bit-error-rate (BER) performance of the companded multicarrier systems. In this paper, a simplified but effective scheme of estimation and cancellation of companding noise for the companded multicarrier transmission system is proposed. By expressing the companded signals as the summation of original signals added with a companding noise component, and subtracting this estimated companding noise from the received signals, the BER performance of the overall system can be significantly improved. Simulation results well confirm the great advantages of the proposed scheme over other conventional decompanding or no decompanding schemes under various situations.

  1. WUNDER, G., FISHCHER, R. F. H., BOCHE, H., ET AL. The PAPR problem in OFDM transmission: new direction for longlasting problem. IEEE Signal Processing Magazine, 2013, vol. 51, no. 11, p. 130–144. DOI: 10.1109/MSP.2012.2218138
  2. POLAK, L., KRATOCHVIL, T. Exploring of the DVB-T/T2 performance in advanced mobile TV fading channels. In Proc. 36th International Conference on Telecommunictaions and Signal Processing (TSP2013), Rome (Italy), 2013, p. 768–772. DOI: 10.1109/TSP.2013.6614042
  3. HAN, S. H., LEE, J. H. An overview: peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Wireless Communications, 2004, vol. 12, no. 2, p. 56–65. DOI: 10.1109/MWC.2005.1421929
  4. ZHU, X., PAN, W., LI, H., ET AL. Simplified approach to optimized iterative clipping and filtering for PAPR reduction of OFDM signals. IEEE Transactions on Communications, 2013, vol. 61, no. 5, p. 1891–1901. DOI: 10.1109/TCOMM.2013.021913.110867
  5. CHEN, H., HAIMOVICH, A., M. Iterative estimation and cancellation of clipping noise for OFDM signals. IEEE Communications Letters, 2003, vol. 7, no. 7, p. 305–307. DOI: 10.1109/LCOMM.2003.814720
  6. XIA, L., LI, Z., YOUXI, T., ET AL. Analysis of the performance of iterative estimation and cancellation of clipping non-linear distortion in OFDM. In Proceeding of Future Generation of Communications and Networking, 2007, p. 1–5. DOI: 10.1109/FGCN.2007.68
  7. SLMANE, S., B. Reduction the peak-to-average power ratio of OFDM signals through precoding. IEEE Transactions on Vehicular Technology, 2007, vol. 56, no. 2, p. 686–695. DOI: 10.1109/TVT.2007.891409
  8. QI, X., LI, Y, HUANG., H. A low complexity PTS scheme based on tree for PAPR reduction. IEEE Communications Letters, 2012, vol. 16, no. 9, p. 1486–1488. DOI: 10.1109/LCOMM.2012.072012.121228
  9. VARAHRAM, P., ALI, M., B. A low complexity partial transmit sequence for peak to average power ratio reduction in OFDM systems. Radioengineering, 2011, vol. 20, no. 3, p.677–682.
  10. MARSALEK, R. On the reduced complexity interleaving method for OFDM PAPR reduction. Radioengineering, 2006, vol. 15, no. 3, p. 49–53.
  11. JIANG, T., NI, C., GUAN, L. A novel phase offset SLM scheme for PAPR reduction in Alamouti MIMO-OFDM systems without side information. IEEE Signal Processing Letters, 2013, vol 20, No. 4, p. 383–386. DOI: 10.1109/LSP.2013.2245119
  12. WANG, L., TELLAMBURE, C. Analysis of clipping noise and tone reservation algorithms for peak reduction in OFDM systems. IEEE Transactions on Vehicular Technology, 2008, vol. 57, no. 3, p. 1675– 1694. DOI: 10.1109/TVT.2007.907282
  13. JIANG, T., YANG, Y., SONG, Y., H. Exponential companding technique for PAPR reduction in OFDM systems. IEEE Transactions on Broadcasting, 2005, vol. 51, no. 2, p. 244–248. DOI: 10.1109/TBC.2005.847626
  14. WANG, Y., GE, J., WANG, L., ET AL. Nonlinear companding transform for reduction of peak-to-average power ratio in OFDM systems. IEEE Transactions on Broadcasting, 2013, vol. 59, no. 2, p. 369– 375. DOI: 10.1109/TBC.2012.2219252
  15. JENG, S., S., CHEN, J., M. Effective PAPR reduction in OFDM systems based on a companding technique with trapezium distribution. IEEE Transactions on Broadcasting, 2010, vol. 56, no. 2, p. 258– 262. DOI: 10.1109/TBC.2011.2112237
  16. PENG, S., SHEN, S., YUAN, Z., ET AL. A novel nonlinear companding transform for PAPR reduction in lattice-OFDM systems. Frequenz, 2014, vol. 69, no. 2, p. 461–469. DOI: 10.1515/freq-2013- 0169
  17. HOU, J., GE, J., ZHAI, D.,ET AL. Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme. IEEE Transactions on Broadcasting, 2010, vol. 56, no. 2, p. 258–262. DOI: 10.1109/TBC.2010.2046970
  18. PENG, S., SHEN, Y., YUAN, Z., ET AL. PAPR reduction of LOFDM signals with an efficient nonlinear companding transform. In Proceeding of International Conference on Wireless Communications and Signal Processing, WCSP’13, Hangzhou, 2013, p. 1–6. DOI: 10.1109/WCSP.2013.6677217
  19. JIANG, T., YAO, W., SONG, Y., ET AL. Two novel nonlinear companding schemes with iterative receiver to reduce PAPR in multicarrier modulation systems. IEEE Transactions on Broadcasting, 2006, vol. 52, no. 2, p. 268–273. DOI: 10.1109/TBC.2006.872992
  20. PENG, S., SHEN, Y., YUAN, Z. PAPR reduction of multi-carrier systems with simple nonlinear companding transform. Electronic Letters, 2014, vol. 50, no. 6, p. 473–475. DOI: 10.1049/el.2013.4216
  21. COSTA, E., MIDRIO, M., PUPOLIN, S. Impact of amplifier nonlinearities on OFDM transmission systems performance. IEEE Communications Letters, 1999, vol. 3, no. 2, p. 37–39. DOI: 10.1109/4234.749355

Keywords: Multicarrier transmission systems, peak-to-average power ratio (PAPR), nonlinear companding transform (NCT), companding noise cancellation

V. Panko, S. Banas, R. Burton, K. Ptacek, J. Divin, J. Dobes [references] [full-text] [DOI: 10.13164/re.2015.0130] [Download Citations]
Enhanced Model of Nonlinear Spiral High Voltage Divider

This paper deals with the enhanced accurate DC and RF model of nonlinear spiral polysilicon voltage divider. The high resistance polysilicon divider is a sensing part of the high voltage start-up MOSFET transistor that can operate up to 700 V. This paper presents the structure of a proposed model, implemented voltage, frequency and temperature dependency, and scalability. A special attention is paid to the ability of the created model to cover the mismatch and influence of a variation of process parameters on the device characteristics. Finally, the comparison of measured data vs. simulation is presented in order to confirm the model validity and a typical application is demonstrated.

  1. HALL, J., QUDDUS, M. T., BURTON, R., OIKAWA, K., CHANG, G. High Voltage Sensor Device and Method Therefor. US patent 955943. 2011.
  2. HALL, J., QUDDUS, M. T. Method of Sensing a High Voltage. US Patent 8349625. 2013.
  3. WEISSTEIN, E. W. Archimedes Spiral. MathWorld – A Wolfram Web Resource. [Online] Cited 2014-12-02. Available at: http://mathworld.wolfram.com/ArchimedesSpiral.html
  4. PANKO, V., BANAS, S., PTACEK, K., BURTON, R., DOBES, J. An accurate DC and RF modeling of nonlinear spiral polysilicon voltage divider in high voltage MOSFET transistor. In Proceedings of the IEEE 11th International Conference on Solid-State and Integrated Circuit Technology (ICSICT). Xi’an (China), 2012. DOI: 10.1109/ICSICT.2012.6467635
  5. PAPATHANASIOU, K. A designer’s approach to device mismatch: Theory, modeling, simulation techniques, applications and examples. Analog Integrated Circuits and Signal Processing, 2006, vol. 48, no. 2, p. 95–106. DOI: 10.1007/s10470-006-5367-2
  6. DRENNAN, P. G., McANDREW, C. C. Understanding MOSFET mismatch for analog design. IEEE Journal of Solid-State Circuits, 2003, vol. 38, no. 3, p. 450–456. DOI: 10.1109/JSSC.2002.808305
  7. McANDREW, C.C. Statistical modeling using backward propagation of variance (BPV). Compact Modeling. Springer Netherlands, 2010, p. 491–520. DOI: 10.1007/978-90-481-8614-3 16
  8. LIU, W. MOSFET Models for SPICE Simulation: Including BSIM3v3 and BSIM4. Wiley – IEEE Press, 2001.
  9. YTTERDAL, T., CHENG, Y., FJELDLY, T. A. Device Modeling for Analog and RF CMOS Circuit Design. Wiley, 2003.
  10. LIOU, J., ORTIZ-CONDE, A., GARC´IA-SANCHEZ, F. ´ Analysis and Design of MOSFETs: Modeling, Simulation, and Parameter Extraction. Kluwer Academic Publishers, 1998. DOI: 10.1007/978-1- 4615-5415-8
  11. MASSOBRIO, G., ANTOGNETTI, P. Semiconductor Device Modeling with SPICE, 2nd edition. McGraw-Hill, 1993.
  12. ON Semiconductor. Design of a 65 W Adapter Utilizing the NCP1237 PWM Controller. Application note AND8461/D. October 2014.
  13. ON Semiconductor. Designing Converters with the NCP101X Family. Application note AND8134/D. October 2003.

Keywords: High voltage start-up MOSFET, pinch-off, high voltage spiral divider, statistical modeling

M. Hayati, A. Abdipour , A. Abdipour [references] [full-text] [DOI: 10.13164/re.2015.0137] [Download Citations]
A Wilkinson Power Divider with Harmonic Suppression and Size Reduction using High-low Impedance Resonator Cells

A miniaturized Wilkinson power divider using high-low impedance resonator cells are designed and fabricated. The proposed power divider occupies 23.7% of the conventional structure circuit area at the operating frequency of 0.9 GHz and it is also able to suppress harmonics. According to the measured results at 0.9 GHz, the insertion-losses of output ports are 3.087 dB, the return-losses at all ports are more than 30 dB, and the isolation between output ports is better than 35 dB. Also, 2nd to 10th spurious frequencies are suppressed. According to the measured S11, when it is less than -15 dB (from 0.65 GHz to 1.1 GHz) the fractional bandwidth of the proposed structure is 50%. Good agreement between simulation and measured results is achieved.

  1. POZAR, D. M. Microwave Engineering. 3rd ed. New York: Wiley, 2005, ch. 7, p. 333–337.
  2. WANG, J., NI, J., GUO, Y. X., FANG, D. Miniaturized microstrip Wilkinson power divider with harmonic suppression. IEEE Microwave and Wireless Components Letters, 2009, vol. 19, no. 7, p. 440–442. DOI: 10.1109/LMWC.2009.2022124
  3. LIN, C. M., SU, H. H., CHIU, J. C., WANG, Y. H. Wilkinson power divider using microstrip EBG cells for the suppression of harmonics. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 10, p. 700–702. DOI: 10.1109/LMWC.2007.905595
  4. ZHANG, F., LI, C. F. Power divider with microstrip electromagnetic band gap element for miniaturization and harmonic rejection. Electronics Letters, 2008, vol. 44, no. 6, p. 422–423. DOI: 10.1049/el:20083693
  5. WOO, D. J., LEE, T. K. Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 6, p. 2139–2144. DOI: 10.1109/TMTT.2005.848772
  6. YANG, J., GU, C. F., WU, W. Design of novel compact coupled microstrip power divider with harmonic suppression. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 9, p. 572–574. DOI: 10.1109/LMWC.2008.2002444
  7. TSENG, C.-H., WU, C.-H. Compact planar Wilkinson power divider using pi-equivalent shunt-stub-based artificial transmission lines. Electronics Letters, 2010, vol. 46, no. 19, p. 1327–1328. DOI: 10.1049/el.2010.2194
  8. HONG, J.-S., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. John Wiley & Sons, Inc., 2001.

Keywords: Harmonic suppression, high-low impedance resonator, miniaturized Wilkinson power divider.

A. Oncu [references] [full-text] [DOI: 10.13164/re.2015.0142] [Download Citations]
A 1.2 V and 69 mW 60 GHz Multi-channel Tunable CMOS Receiver Design

A multi-channel receiver operating between 56 GHz and 70 GHz for coverage of different 60 GHz bands worldwide is implemented with a 90 nm Complementary Metal-Oxide Semiconductor (CMOS) process. The receiver containing an LNA, a frequency down-conversion mixer and a variable gain amplifier incorporating a band-pass filter is designed and implemented. This integrated receiver is tested at four channels of centre frequencies 58.3 GHz, 60.5 GHz, 62.6 GHz and 64.8 GHz, employing a frequency plan of an 8 GHz-intermediate frequency (IF). The achieved conversion gain by coarse gain control is between 4.8 dB–54.9 dB. The millimeter-wave receiver circuit is biased with a 1.2V supply voltage. The measured power consumption is 69 mW.

  1. DOAN, C. H., EMAMI, S., NIKNEJAD, A. M., BRODERSEN, R. W. Design of CMOS for 60GHz applications. In IEEE International Solid-State Circuits Conference ISSCC Digest of Technical Papers. 2004, p. 440–441. DOI: 10.1109/ISSCC.2004.1332783
  2. REYNOLDS, S. K., FLOYD, B. A., PFEIFFER, U. R., BEUKEMA, T., GRZYB, J., HAYMES, C., GAUCHER, B., SOYUER, M. A silicon 60-GHz receiver and transmitter chipset for broadband communications. IEEE Journal on Solid-State Circuits, 2006, vol. 41, no. 12, p. 2820–2831. DOI: 10.1109/JSSC.2006.884820
  3. LAI, I. C. H., KAMBAYASHI, Y., FUJISHIMA, M. 60-GHz CMOS down-conversion mixer with slow-wave matching transmission lines. In Proceedings of the IEEE Asian Solid-State Circuits Conference ASSCC 2006. Hangzhou (China), 2006, p. 195–198. DOI: 10.1109/ASSCC.2006.357884
  4. RAZAVI, B. A millimeter-wave CMOS heterodyne receiver with on-chip LO and divider. In IEEE International Solid-State Circuits Conference ISSCC Digest of Technical Papers, 2007, p. 188–189. DOI: 10.1109/ISSCC.2007.373357
  5. EMAMI, S., WISER, R. F., ALI, E., FORBES, M. G., GORDON, M. Q., GUAN, X., LO, S., MCELWEE, P. T., PARKER, J., TANI, J. R., GILBERT, J. M., DOAN, C. H. A 60GHz CMOS phasedarray transceiver pair for multi-Gb/s wireless communications. In IEEE ISSCC Digest of Technical Papers, 2004, p. 164–166.
  6. YASUTAKE, N., OHUCHI, K., FUJIWARA, M., ADACHI, K., HOKAZONO, A., KOJIMA, K., AOKI, N., SUTO, H., WATANABE, T., MOROOKA, T., MIZUNO, H., MAGOSHI, S., SHIMIZU, T., MORI, S., OGUMA, H., SASAKI, T., OHMURA, M., MIYANO, K., YAMADA, H., TOMITA, H., MATSUSHITA, D., MURAOKA, K., INABA, S., TAKAYANAGI, M., ISHIMARU, K., ISHIUCHI, H. A hp22 nm node low operating power (LOP) technology with sub-10 nm gate length planar bulk CMOS devices. In VLSI Technology Symposium Digest of Technical Papers, 2004, p. 84–85. DOI: 10.1109/VLSIT.2004.1345407
  7. VARONEN, M., KARKKAINEN, M., KANTANEN, M., HALONEN, K. Millimeter-wave integrated circuits in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 2008, vol. 43, no. 9, p. 1991–2002. DOI: 10.1109/JSSC.2008.2001902
  8. COSTANTINI, A., LAWRENCE, B., MAHON, S., HARVEY, J., MCCULLOCH, G., BESSEMOULIN, A. Broadband active and passive balun circuits: Functional blocks for modern millimeterwave radio architectures. In Proceedings of the 1st European Microwave Integrated Circuits Conference. Manchester (UK), 2006, p. 421–424. DOI: 10.1109/EMICC.2006.282672
  9. NATSUKARI, Y., FUJISHIMA, M. 36 mW 63 GHz CMOS differential low-noise amplifier with 14 GHz bandwidth. In CORD Conference Proceedings. June 2009, p. 252–253.
  10. RAZAVI, B. A 60GHz direct-conversion CMOS receiver. In IEEE International Solid-State Circuits Conference ISSCC Digest of Technical Papers. San Francisco (USA), 2005, p. 400–401. DOI: 10.1109/ISSCC.2005.1494038
  11. MARCU, C., CHOWDHURY, D., THAKKAR, C., KONG, L. K., TABESH, M., PARK, J. D., WANG, Y., AFSHAR, B., GUPTA, A., ARBABIAN, A., GAMBINI, S., ZAMANI, R., NIKNEJAD, A. M., ALON, E. A 90nm CMOS low-power 60GHz transceiver with integrated baseband circuitry. In IEEE International SolidState Circuits Conference ISSCC Digest of Technical Papers. 2009, p. 314–315.
  12. PINEL, S., SARKAR, S., SEN, P., PERUMANA, B., YEH, D., DAWN, D., LASKAR, J. A 90nm CMOS 60GHz radio. In IEEE International Solid-State Circuits Conference ISSCC Digest of Technical Papers. San Francisco (USA), 2008, p. 130 –131. DOI: 10.1109/ISSCC.2008.4523091
  13. LEE, J., HUANG, Y., CHEN, Y., LU, H., CHANG, C. A lowpower fully integrated 60GHz transceiver system with OOK modulation and on-board antenna assembly. In IEEE International Solid-State Circuits Conference ISSCC Digest of Technical Papers. San Francisco (USA), 2009, p. 316 –318. DOI: 10.1109/ISSCC.2009.4977435
  14. WEYERS, C., MAYR, P., KUNZE, J. W., LANGMANN, U. A 22.3dB voltage gain 6.1dB NF 60GHz LNA in 65nm CMOS with differential output. In International Solid-State Circuits Conference ISSCC Digest of Technical Papers. San Francisco (USA), 2008, p. 192 –606. DOI: 10.1109/ISSCC.2008.4523122
  15. CHAO-SHIUN WANG, J. W. H. A 0.13μm CMOS fully differential receiver with on-chip baluns for 60GHz broadband wireless communications. In Proc. of Custom Integrated Circuits Conference CICC 2008. San Jose (USA), 2008, p. 479–482. DOI: 10.1109/CICC.2008.4672125
  16. CHEN, P.-H., CHEN, M.-C., KO, C.-L., WU, C.-Y. An integrated CMOS front-end receiver with a frequency tripler for V-band applications. IEICE Transactions on Electronics, 2010, vol. E93– C, no. 6, p. 877–883. DOI: 10.1587/transele.E93.C.877
  17. BLASCHKE, V., VICTORY, J. A scalable model methodology for octagonal differential and single-ended inductors. In Proceedings of Custom Integrated Circuits Conference CICC 2006. San Jose (USA), 2006, p. 717 –720. DOI: 10.1109/CICC.2006.320897
  18. SILIGARIS, A., RICHARD, O., MARTINEAU, B., MOUNET, C., CHAIX, F., FERRAGUT, R., DEHOS,C., LANTERI, J., DUSSOPT, L., YAMAMOTO, S. D., PILARD, R., BUSSON, P., CATHELIN, A., BELOT, D., VINCENT, P. A 65nm CMOS fully integrated transceiver module for 60GHz wireless HD applications. In IEEE International Solid-State Circuits Conference ISSCC Digest of Technical Papers 2011. San Francisco (USA), 2011, p. 162–164. DOI: 10.1109/ISSCC.2011.5746264
  19. OKADA, K., MATSUSHITA, K., BUNSEN, K., MURAKAMI, R., MUSA, A., SATO, T., ASADA, H., TAKAYAMA, N., LI, N., ITO, S., CHAIVIPAS, W., MINAMI, R., MATSUZAWA, A. A 60GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE 802.15.3c. In IEEE International Solid-State Circuits Conference ISSCC 2011 Digest of Technical Papers. San Francisco (USA), 2011, p. 160–162. DOI: 10.1109/ISSCC.2011.5746263
  20. VECCHI, F., BOZZOLA, S., POZZONI, M., GUERMANDI, D., TEMPORITI, E., REPOSSI, M., DECANIS, U., MAZZANTI, A., SVELTO, F. A wideband mm-wave CMOS receiver for Gb/s communications employing interstage coupled resonators. In IEEE International Solid-State Circuits Conference ISSCC 2010 Digest of Technical Papers. San Francisco (USA), 2010, p. 220–221. DOI: 10.1109/ISSCC.2010.5433953
  21. KAWASAKI, K., AKIYAMA, Y., KOMORI, K., UNO, M., TAKEUCHI, H., ITAGAKI, T., HINO, Y., KAWASAKI, Y., ITO, K., HAJIMIRI, A. A millimeter-wave intra-connect solution. In IEEE International Solid-State Circuits Conference ISSCC 2010 Digest of Technical Papers. San Francisco (USA), 2010, p. 414 to 415. DOI: 10.1109/ISSCC.2010.5433831
  22. PARSA A., RAZAVI, B. A new transceiver architecture for the 60-GHz band. IEEE Journal of Solid-State Circuits, 2009, vol. 44, no. 3, p. 751–762. DOI: 10.1109/JSSC.2008.2012368
  23. TOMKINS, A., AROCA, R. A., YAMAMOTO, T., NICOLSON, S. T., DOI, Y., VOINIGESCU, S. P. A zero-IF 60 GHz 65 nm CMOS transceiver with direct BPSK modulation demonstrating up to 6 Gb/s data rates over a 2 m wireless link. IEEE Journal of Solid-State Circuits, 2009, vol. 44, no. 8, p. 2085–2099. DOI: 10.1109/JSSC.2009.2022918
  24. BORREMANS, J., RACZKOWSKI, K., WAMBACQ, P. A digitally controlled compact 57-to-66GHz front-end in 45nm digital CMOS. In IEEE International Solid-State Circuits Conference ISSCC2009 Digest of Technical Papers. San Francisco (USA), 2009, p. 492–493. DOI: 10.1109/ISSCC.2009.4977523
  25. NATARAJAN, A., TSAI, M.-D., FLOYD, B. 60GHz RF-path phase-shifting two-element phased-array front-end in silicon. In Dig. Symposium on VLSI Circuit. Kyoto (Japan), 2009, p. 250 to 251.

Keywords: 60GHz, CMOS, integrated circuit, receiver design, low-power

M. Czyzak, J. Horiszny, R. Smyk [references] [full-text] [DOI: 10.13164/re.2015.0148] [Download Citations]
Pipelined Two-Operand Modular Adders

Pipelined two-operand modular adder (TOMA) is one of basic components used in digital signal processing (DSP) systems that use the residue number system (RNS). Such modular adders are used in binary/residue and residue/binary converters, residue multipliers and scalers as well as within residue processing channels. The design of pipelined TOMAs is usually obtained by inserting an appriopriate number of latch layers inside a nonpipelined TOMA structure. Hence their area is also determined by the number of latches and the delay by the number of latch layers. In this paper we propose a new pipelined TOMA that is based on a new TOMA, that has the smaller area and smaller delay than other known structures. Comparisons are made using data from the very large scale of integration (VLSI) standard cell library.

  1. SZABO, N. S., TANAKA, R. I. Residue Arithmetic and its Applications to Computer Technology. McGraw-Hill Inc., 1967.
  2. SODERSTRAND, M. A., JENKINS, M., JULLIEN, G. A., TAYLOR, F. J. Residue Number System Arithmetic: Modern Applications in Digital Signal Processing. IEEE Press, 1986.
  3. OMONDI, A., PREMKUMAR, B. Residue Number Systems, Theory and Implementation. Imperial College Press, 2007.
  4. ANANDA MOHAN, P.V. Residue Number Systems, Algorithms and Architectures. Kluwer Academic Publishers, 2002.
  5. JENKINS, W. K., KROGMEIER, J. V. The design of dual-mode complex signal processors based on quadratic modular number codes. IEEE Transactions on Circuits and Systems, 1987, vol. 34, no. 4, p. 354–364. DOI: 10.1109/TCS.1987.1086154
  6. KRISHAN, R., JULLIEN, G. A., MILLER, W. C. The modified quadratic residue number system (MQRNS) for complex highspeed signal processing. IEEE Transactions on Circuits and Systems, 1986, vol. 33, no. 3, p. 325–327. DOI: 10.1109/TCS.1986.1085897
  7. ULMAN, Z., CZYZAK, M. Highly parallel, fast scaling of numbers in nonredundant residue arithmetic. IEEE Transactions on Signal Processing, 1998, vol. 46, no. 2, p. 487–496. DOI: 10.1109/78.655432
  8. FRERKING, W. I., PARHI, K. K. Low-power FIR digital filters using residue arithmetic. In Proceedings of the 31st Asilomar Conference on Signals, Systems and Computers ACSSC1997. Pacific Grove (CA, USA), November 2 - 7, 1997, p. 739–743. DOI: 10.1109/ACSSC.1997.680542
  9. CARDARILLI, G. C., DEL RE, A., LOJACONO, R., NANNARELLI, A., RE, M. RNS implementation of high performance filter for satellite demultiplexing. In Proceedings of the 2003 IEEE Aerospace Conference. Big Sky (Montana, USA), March 8 - 15, 2003, vol. 3, p. 1365–1379. DOI: 10.1109/AERO.2003.1235253
  10. CARDARILLI, G. C., DEL RE, A. NANNARELLI, A., RE, M. Low-power implementation of polyphase filters in quadratic residue number system. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2004). Vancouver (Canada), 2004, p. 725–728. DOI: 10.1109/ISCAS.2004.1329374
  11. CZYZAK, M., SMYK, R. FPGA implementation of the two-stage high-speed FIR filter in residue arithmetic. Elektronika, 2011, no. 12, p. 90–92.
  12. CZYZAK, M., SMYK, R. Radix-4 DFT butterfly realization with the use of the modified quadratic residue number system. Poznan University of Technology Academic Journals. Electrical Engineering, 2010, no. 63, p. 39–51.
  13. GARCIA, A., MEYER-BAESE, U., TAYLOR, F. J. Pipelined Hogenauer CIC filters using field-programmable logic and residue number system. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing. Seattle (Washington, USA), May 12 - 15, 1998, p. 3085–3088. DOI: 10.1109/ICASSP.1998.678178
  14. BARRACLOUGH, S. R., SOTHERAN, M., BURGIN, K., WISE, A. P., et al. The design and implementation of the IMS A110 image and signal processor. In Proceedings of the 1989 IEEE Custom Integrated Circuits Conference (ICICC 1989). San Diego (CA, USA), May 15 - 18, 1989, p. 24.5.1–24.5.4. DOI: 10.1109/CICC.1989.56826
  15. WEI, W., SWAMY, M.N.S., AHMAD, M.O. RNS application for digital image processing. In Proceedings of the 4th IEEE International Workshop System-on-Chip for Real-Time Applications. Banff (Alberta, Canada), July 19 - 21, 2004, p. 77 to 80. DOI: 10.1109/IWSOC.2004.1319854
  16. BANERJI, D. K. A novel implementation method for addition and subtraction in residue number systems. IEEE Transactions on Computers, 1974, vol. 23, no. 1, p. 106–109. DOI: 10.1109/TC.1974.223790
  17. AGRAWAL, D. P., RAO, T. R. N. Modulo 2n +1 arithmetic logic. IEEE Journal on Electronic Circuits and Systems, 1978, vol. 2, no. 6, p. 186–188. DOI: 10.1049/ij-ecs.1978.0037
  18. SODERSTRAND, M. A. A new hardware implementation of modulo adders for residue number systems. In Proceedings of the 26th IEEE Midwest Symposium on Circuits and Systems. Puebla (Mexico), August 15 - 16, 1983, p. 412–415.
  19. BAYOUMI, M., JULLIEN. G. A. VLSI implementation of residue adders. IEEE Transactions Circuits and Systems, 1987, vol. 34, no. 3, p. 284–288. DOI: 10.1109/TCS.1987.1086130
  20. DUGDALE, M. VLSI implementation of residue adders based on binary adders. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1992, vol. 39, no. 5, p. 325–329. DOI: 10.1109/82.142036
  21. PIESTRAK, S. J. Design of high-speed residue-to-binary number system converter based on the chinese remainder theorem. In Proceedings of the International Conference on Computer Design ICCD’94, VLSI in Computers and Processors. Cambridge (MA, USA), 1994, p. 508–511. DOI: 10.1109/ICCD.1994.331962
  22. ZIMMERMANN, R. Efficient VLSI implementation of modulo (2n ± 1) addition and multiplication. In Proceedings of the 14th IEEE Symposium on Computer Arithmetic. Adelaide (Australia), April, 1999, p. 158–167. DOI: 10.1109/ARITH.1999.762841
  23. HIASAT, A. A. High-speed and reduced-area modular adder structures for RNS. IEEE Transactions on Computers, 2002. vol. 51, no. 1, p. 84–89. DOI: DOI: 10.1109/12.980018
  24. PATEL, R. A., BENAISSA, M., POWELL, N., BOUSSAKTA, S. Novel power-delay-area-efficient approach to generic modular addition. IEEE Transactions on Circuits and Systems–I Regular Papers, June 2007, vol. 54, no. 6, p. 1279–1292. DOI: 10.1109/TCSI.2007.895369
  25. KELLIHER, T. P., OWENS, R.M., IRWIN, M. J., HWANG, T.-T. ELM - a fast addition algorithm discovered by a program. IEEE Transactions on Computers, 1992, vol. 41, no. 9, p. 1181–1184. DOI: 10.1109/12.165399
  26. KOGGE, P. M., STONE, H. S. A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Transactions on Computers, 1973, vol. 22, no. 8, p. 786–793. DOI: 10.1109/TC.1973.5009159
  27. LADNER, R. E., FISCHER, M. J. Parallel-prefix computation. Journal of Association of Computing Machinery, 1980, vol. 27, no. 4, p. 831–838. DOI: 10.1145/322217.322232
  28. BRENT, R. P., KUNG, H. T. A regular layout for parallel adders. IEEE Transactions on Computers, 1982, vol. 31, no. 3, p. 260 to 264.
  29. 0.13 micron Standard Cell Logic Library STDH 150. Samsung Inc., 2004.
  30. PARHAMI, B. Computer Arithmetic: Algorithms and Hardware Designs. New York: Oxford University Press, 2000.

Keywords: Carry-lookahead adder, FPGA, modular adder, parallel-prefix adder, residue number system (RNS), ripple-carry adder, VLSI design

J. Slezak, T. Gotthans [references] [full-text] [DOI: 10.13164/re.2015.0161] [Download Citations]
Design of Passive Analog Electronic Circuits Using Hybrid Modified UMDA algorithm

Hybrid evolutionary passive analog circuits synthesis method based on modified Univariate Marginal Distribution Algorithm (UMDA) and a local search algorithm is proposed in the paper. The modification of the UMDA algorithm which allows to specify the maximum number of the nodes and the maximum number of the components of the synthesized circuit is proposed. The proposed hybrid approach efficiently reduces the number of the objective function evaluations. The modified UMDA algorithm is used for synthesis of the topology and the local search algorithm is used for determination of the parameters of the components of the designed circuit. As an example the proposed method is applied to a problem of synthesis of the fractional capacitor circuit.

  1. SLEZAK, J. ´ Evolutionary Synthesis of Analog Electronic Circuits Using EDA Algorithms. Ph.D. Thesis, Brno: Brno University of Technology, The Faculty of Electrical Engineering and Communication, 2014. 123 pages.
  2. ZINCHENKO, L., MUHLENBEIN, H., KUREICHIK, V., MAH- ¨ NING, T. Application of the univariate marginal distribution algorithm to analog circuit design. In Proceedings of NASA/DoD Conference on Evolvable Hardware, 2002, p. 93–101. DOI: 10.1109/EH.2002.1029871
  3. TORRES, A., PONCE, E. E., TORRES, M. D., DIAZ, E., PADILLA, F. Comparison of two evolvable systems in the automated analog circuit synthesis. In Proceedings of Eighth Mexican International Conference on Artificial Intelligence (MICAI 2009) Mexico, 2009, p. 3–8, ISBN 978-0-7695-3933-1. DOI: 10.1109/MICAI.2009.25
  4. TANG, M., LAU, R. Y. K. A hybrid estimation of distribution algorithm for the minimal switching graph problem. In Proceedings of International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Austria 2005, p. 708–713. DOI: 10.1109/CIMCA.2005.1631347
  5. MUHLENBEIN, H., PAAß, G. From recombination of genes to the ¨ estimation of distributions I. Binary parameters. Lecture Notes in Computer Science 1411: Parallel Problem Solving from Nature - PPSN IV, p. 178–187. DOI: 10.1007/3-540-61723-X 982
  6. SANTANA, R., OCHOA, A., SOTO, M. R. Factorized distribution algorithms for functions with unitation constraints. In Proceedings of the Third Symposium on Adaptive Systems (ISAS-2001), 2001, p. 158–165.
  7. MUHLENBEIN, H., MAHNIG, T., OCHOA, A. Schemata, distribu- ¨ tions and graphical models in evolutionary optimization. Journal of Heuristics, 1999, p. 215–247.
  8. SANTANA, R., ECHEGOYEN, C., MENDIBURU, A., BIELZA, C., LOZANO, J. A., LARRANAGA, P., ARMA ˜ NANZAS, R., ˜ SHAKYA, S. MATEDA: A suite of EDA programs in Matlab. Technical Report EHU-KZAA-IK-2/09, University of the Basque Country, 2009.
  9. CARLSON, G. E., HALIJAK, C. A. Approximation of fractional capacitors (1/s) (1/n) by a regular Newton process. IEEE Transactions on Circuit Theory, 1964, vol. 11, no. 2, p. 210–213, ISSN 0018-9324. DOI: 10.1109/TCT.1964.1082270
  10. BALAKRISHNAN, V. K. Graph Theory, McGraw-Hill, 1997, ISBN 0-07-005489-4.
  11. EL-MIHOUB, T. A., HOPGOOD, A. A., NOLLE, L., BATTERSBY, A. Hybrid genetic algorithms: A review. Engineering Letters, 2006, vol. 13, no. 2, p. 124-137, ISSN: 1816-093X.
  12. SLEZAK, J., GOTTHANS, T., DRINOVSKY, J. Evolutionary Synthesis of Fractional Capacitor Using Simulated Annealing Method. Radioengineering, 2012, vol. 21, no. 4, p. 1252–1259, ISSN 1210- 2512.
  13. FELDMANN, P. Model order reduction techniques for linear systems with large numbers of terminals. In Proceedings of Design, Automation and Test in Europe Conference and Exhibition, 2004, vol. 2.1, p. 944-947. DOI: 10.1109/DATE.2004.1269013

Keywords: Evolutionary algorithm, optimization, estimation of distribution algorithm, EDA, analog circuit design, fractional capacitor.

G. V. K. Sharma, K. Raja Rajeswari [references] [full-text] [DOI: 10.13164/re.2015.0171] [Download Citations]
Fast Implementation of Transmit Beamforming for Colocated MIMO Radar

Multiple-input Multiple-output (MIMO) radars benefit from spatial and waveform diversities to improve the performance potential. Phased array radars transmit scaled versions of a single waveform thereby limiting the transmit degrees of freedom to one. However MIMO radars transmit diverse waveforms from different transmit array elements thereby increasing the degrees of freedom to form flexible transmit beampatterns. The transmit beampattern of a colocated MIMO radar depends on the zero-lag correlation matrix of different transmit waveforms. Many solutions have been developed for designing the signal correlation matrix to achieve a desired transmit beampattern based on optimization algorithms in the literature. In this paper, a fast algorithm for designing the correlation matrix of the transmit waveforms is developed that allows the next generation radars to form flexible beampatterns in real-time. An efficient method for sidelobe control with negligible increase in mainlobe width is also presented.

  1. LI, J., STOICA, P. (Eds.) MIMO Radar Signal Processing. New York: Wiley, 2008.
  2. HAIMOVICH, A. M., BLUM, R. S., CIMINI, L. J. MIMO radar with widely separated antennas. IEEE Signal Processing Magazine, 2008, vol. 25, no. 1, p. 116–129. DOI: 10.1109/MSP.2008.4408448
  3. LI, J., STOICA, P. MIMO radar with colocated antennas. IEEE Signal Processing Magazine, Sept. 2007, vol. 24, no. 5, p. 106 to 114. DOI: 10.1109/MSP.2007.904812
  4. LI, J., STOICA, P., XIE, Y. On probing signal design for MIMO radar. IEEE Transactions on Signal Processing, Aug. 2007, vol. 55, no. 8, p. 4151–4161. DOI: 10.1109/TSP.2007.894398
  5. FUHRMANN, D., SAN ANTONIO, G. Transmit beamforming for MIMO radar systems using partial signal correlation. In Proc. 38th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, (CA, USA), Nov. 2004, vol. 1, p. 295–299. DOI: 10.1109/ACSSC.2004.1399140
  6. FUHRMANN, D., SAN ANTONIO, G. Transmit beamforming for MIMO radar systems using signal cross-correlation. IEEE Transactions on Aerospace Electronic Systems, Jan. 2008, vol. 44, no. 1, p. 171–186. DOI: 10.1109/TAES.2008.4516997
  7. SHADI, K., BEHNIA, F. Transmit beampattern synthesis using eigenvalue decomposition in MIMO radar. In 8th International Conference on Information, Communication and Signal Processing (ICICS 2011). Singapore, December 2011. DOI: 10.1109/ICICS.2011.6174302
  8. AITTOMAKI, T., KOIVUNEN, V. Signal covariance matrix optimization for transmit beamforming in MIMO radars. In Conf. Record of the Forty-First Asilomar Conference on Signals, Systems and Computers (2007, ACSSC). Nov. 2007, p. 182–186. DOI: 10.1109/ACSSC.2007.4487191
  9. AHMED, S., THOMPSON, J. S., PETILLOT, Y. R., MULGREW, B. Unconstrained synthesis of covariance matrix for MIMO radar transmit beampattern. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 8, p. 3837–3849. DOI: 10.1109/TSP.2011.2153200
  10. AITTOMAKI, T., KOIVUNEN, V. Low complexity method for transmit beamforming in MIMO radar. In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Honolulu (HI, USA), Apr. 2007, vol. 2, p. 305–308. DOI: 10.1109/ICASSP.2007.366233
  11. HE, H., STOICA, P., LI, J. Designing unimodular sequence sets with good correlations – including an application to MIMO radar. IEEE Transactions on Signal Processing, Nov. 2009, vol. 57, no. 11, p. 4391–4405. DOI: 10.1109/TSP.2009.2025108
  12. LI, J., STOICA, P., ZHU, X. MIMO radar waveform synthesis. In IEEE Radar Conference 2008 (RADAR’08). Rome (Italy), May 2008, 6 p. DOI: 10.1109/RADAR.2008.4721118
  13. AHMED, S., THOMPSON, J. S., PETILLOT, Y. R., MULGREW, B. Finite alphabet constant-envelope waveform design for MIMO radar. IEEE Transactions on Signal Processing, Nov. 2011, vol. 59, no. 11, p. 5326–5337. DOI: 10.1109/TSP.2011.2163067
  14. MATHELIER, B., KIRAN, D., S., REDDY, V. U. Synthesis of waveforms from zero-lag cross-correlation matrix with specified constraints and power levels. In International Conference on Signal Processing and Communications SPCOM 2012. Bangalore, 2012. DOI: 10.1109/SPCOM.2012.6289999
  15. PEEBLES, P. Z. Radar Principles. Wiley IEEE Press, 1998.
  16. XU, L., LI, J., STOICA, P. Radar imaging via adaptive MIMO techniques. In Proceedings of 14th European Signal Processing Conference (EUSIPCO’06). Florence (Italy), Sep. 2006.
  17. SRINIVAS, A., REDDY, V. U. Transmit beamforming for colocated MIMO radar. In International Conference on Signal Processing and Communications SPCOM. Bangalore, July 2010, 5 p. DOI: 10.1109/SPCOM.2010.5560551
  18. OPPENHEIM, A. V., SCHAFER, R. W. Digital Signal Processing. Prentice Hall, 1975.
  19. SHARMA, G.V.K., RAJA RAJESWARI, K. Four phase orthogonal code design for MIMO radar systems. In IEEE National Conference on Communications, NCC-2012. IIT Kharagpur (India), Feb. 2012, 4 p. DOI: 10.1109/NCC.2012.6176764
  20. RAO, H. M., SHARMA, G. V. K., RAJA RAJESWARI, K. Orthogonal phase coded waveforms for MIMO radars. International Journal of Computer Applications, Feb. 2013, vol. 63, no. 6, p. 31–35. DOI: 10.5120/10471-5200
  21. WANHAMMAR, L. DSP Integrated Circuits. Academic Press, 1999.
  22. STOICA, P., MOSES, R. L. Spectral Analysis of Signals. Upper Saddle River, NJ: Prentice-Hall, 2005.

Keywords: Multiple-input multiple-output radar, transmit beamforming, fast implementation, waveform diversity, zero-lag correlation matrix

F. Zaplata, M. Kasal [references] [full-text] [DOI: 10.13164/re.2015.0178] [Download Citations]
Efficient Spectral Power Estimation on an Arbitrary Frequency Scale

The Fast Fourier Transform is a very efficient algorithm for the Fourier spectrum estimation, but has the limitation of a linear frequency scale spectrum, which may not be suitable for every system. For example, audio and speech analysis needs a logarithmic frequency scale due to the characteristic of a human’s ear. The Fast Fourier Transform algorithms are not able to efficiently give the desired results and modified techniques have to be used in this case. In the following text a simple technique using the Goertzel algorithm allowing the evaluation of the power spectra on an arbitrary frequency scale will be introduced. Due to its simplicity the algorithm suffers from imperfections which will be discussed and partially solved in this paper. The implementation into real systems and the impact of quantization errors appeared to be critical and have to be dealt with in special cases. The simple method dealing with the quantization error will also be introduced. Finally, the proposed method will be compared to other methods based on its computational demands and its potential speed.

  1. ZHENG, F., ZHANG, G., SONG, Z. Comparison of different implementations of MFCC. Journal of Computer Science and Technology, 2001, vol. 16, no. 6, p. 582–589. DOI: 10.1007/BF02943243
  2. DAVIS, S. B., MERMELSTEIN, P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech and Signal Processing, 1980, vol. 28, no. 4, p. 357–366. DOI: 10.1109/TASSP.1980.1163420
  3. BROWN, J. C. Calculation of constant Q spectral transform. Journal of the Acoustical Society of America, 1991, vol. 89, no. 1, p. 425–434. DOI: 10.1121/1.400476
  4. GANCHEV, T., FAKOTAKIS, N., KOKKINAKIS, G. Comparative evaluation of various MFCC implementations on the speaker verification task. In Proceedings of the 10th International Conference on Speech and Computer SPECOM 2005. Patras (Greece), October 2005, vol. 1, p. 191–194.
  5. MOLAU, S., PITZ, M., SCHLUTER, R., NEY, H. Computing MEL-frequency cepstral coefficients on the power spectrum. In IEEE International Conference on Acoustics, Speech and Signal Processing. Salt Lake City (USA), May 2001, vol. 1, p. 73–76. DOI: 10.1109/ICASSP.2001.940770
  6. BROWN, J. C., PUCKETTE, M. S. An efficient algorithm for the calculation of a constant Q transform. Journal of the Acoustical Society of America, Nov. 1992, vol. 92, no. 5, p. 2698–2701. DOI: 10.1121/1.404385
  7. DOS SANTOS, C. N., NETTO, S. L., BISCAINHO, L. W. P., GRAZIOSI, D. B. A modified constant Q-transform for audio signals. In IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP2004. Montreal (Canada), 2004, vol. 2, p. 469–472. DOI: 10.1109/ICASSP.2004.1326296
  8. TROBS, M., HEINZEL, G. Improved spectrum estimation from digitized time series on a logarithmic frequency axis. Measurement, 2006, vol. 39, no. 2, p. 120–129. DOI: 10.1016/j.measurement.2005.10.010
  9. ZAPLATA, F., KASAL, M. Using the Goertzel algorithm as a filter. In Proceedings of the 24th International Conference Radioelektronika 2014. Bratislava (Slovakia), 2014, p. 1–3. DOI: 10.1109/Radioelek.2014.6828441
  10. ZAPLATA, F., KASAL, M. Software defined DCF77 receiver. Radioengineering, 2013, vol. 22, no. 4, p. 1211–1217. ISSN: 1210-2512.
  11. DE JESUS, M. A., TEIXEIRA, M., VICENTE, L., RODRIGUEZ, Y. Nonuniform discrete short-time Fourier transform: A Goertzel filter bank versus a FIR filtering approach. In IEEE International Midwest Symposium on Circuits and Systems MWSCAS 2006. San Juan (Puerto Rico), 2006, vol. 2, p. 188–192. DOI: 10.1109/MWSCAS.2006.382241
  12. ZAPLATA, F., KASAL, M. SDR implementation for DCF77. In Proceedings of the 23rd International Conference Radioelektronika 2013. Pardubice (Czech Republic), 2013, p. 340–345. DOI: 10.1109/RadioElek.2013.6530943

Keywords: Goertzel algorithm, Mel frequency cepstral coefficients, MFCCs, Q-constant transform, Spectral power estimation

B. Jaksic, D. Stefanovic, M. Stefanovic, P. Spalevic, V. Milenkovic [references] [full-text] [DOI: 10.13164/re.2015.0185] [Download Citations]
Level Crossing Rate of Macrodiversity System in the Presence of Multipath Fading and Shadowing

Macrodiversity system including macrodiversity SC receiver and two microdiversity SC receivers is considered in this paper. Received signal experiences, simultaneously, both, long term fading and short term fading. Microdiversity SC receivers reduces Rayleigh fading effects on system performance and macrodiversity SC receiver mitigate Gamma shadowing effects on system performance. Closed form expressions for level crossing rate of microdiversity SC receivers output signals envelopes are calculated. This expression is used for evaluation of level crossing rate of macrodiversity SC receiver output signal envelope. Numerical expressions are illustrated to show the influence of Gamma shadowing severity on level crossing rate.

  1. SUBER, G. L. Mobile Communication. 2nd ed. Dordrecht: Kluwer Academic Publisher, 2003.
  2. PROAKIS, J. Digital Communications. 4nd ed. New York: McGraw-Hill, 2001.
  3. MUKHERJEE, S., AVIDOR, D. Effect of microdiversity and correlated macrodiversity on outages in a cellular system. IEEE Transactions on Wireless Technology, 2003, vol. 2, no. 1, p. 50 to 58. DOI: 10.1109/TWC.2002.806363
  4. PANIC, S., STEFANOVIC, M., ANASTASOV, J., SPALEVIC, P. Fading and Interference Mitigation in Wireless Communications. USA: CRC Press, 2013.
  5. SIMON, M. K., ALOUINI, M. S. Digital Communication over Fading Channels. USA: John Wiley & Sons, 2000.
  6. SHANKAR, P. M. Analysis of microdiversity and dual channel macrodiversity in shadowed fading channels using a compound fading model. International Journal of Electronics and Communications (AEUE), 2008, vol. 62, no. 6, p. 445–449. DOI: 10.1016/j.aeue.2007.06.008
  7. KLINGENBRUNN, T., MOGENSEN, P. Modelling crosscorrelated shadowing in network simulations. In Proceedings of the 50th IEEE Vehicular Technology Conf. (VTC 1999 Fall). Amsterdam (The Netherlands), 1999, vol. 3, p. 1407–1411. DOI: 10.1109/VETECF.1999.801494
  8. ZHANG, J., AALO, V. Effect of macrodiversity on average-error probabilities in a Rician fading channel with correlated lognormal shadowing. IEEE Transactions on Communications, 2001, vol. 49, no. 1, p. 14–18. DOI: 10.1109/26.898244
  9. SAFAK, A., PRASAD, R. Effects of correlated shadowing signals on channel reuse in mobile radio systems. IEEE Transactions on Vehicular Technology, 1991, vol. 40, no. 4, p. 708–713. DOI: 10.1109/25.108381
  10. STEFANOVIC, D., PANIC, S., SPALEVIC, P. Second-order statistics of SC macrodiversity system operating over Gamma shadowed Nakagami-m fading channels. AEU - International Journal of Electronics and Communications, 2011, vol. 65, no. 5, p. 413–418. DOI: 10.1016/j.aeue.2010.05.001
  11. SEKULOVIC, N., STEFANOVIC, M. Performance analysis of system with micro- and macrodiversity reception in correlated Gamma shadowed Rician fading channels. Wireless Personal Communications, 2012, vol. 65, no. 1, p. 143–156. DOI: 10.1007/s11277-011-0232-8
  12. ISKANDER, C. D., MATHIOPOULOS, P. T. Analytical level crossing rate and average fade duration in Nakagami fading channels. IEEE Transactions on Communications, 2002, vol. 50, no. 8, p 1301–1309. DOI: 10.1109/TCOMM.2002.801465
  13. GRADSHTEYN, I., RYZHIK, I. Tables of Integrals, Series, and Products. New York: Academic Press, 1994.

Keywords: Macrodiversity selection combining (SC) receiver, Rayleigh multipath fading, Gamma shadowing, level crossing rate, correlation

M. T. Mushtaq, I. Khan, M. S. Khan, O. Koudelka [references] [full-text] [DOI: 10.13164/re.2015.0192] [Download Citations]
Signal Detection for QPSK Based Cognitive Radio Systems using Support Vector Machines

Cognitive radio based network enables opportunistic dynamic spectrum access by sensing, adopting and utilizing the unused portion of licensed spectrum bands. Cognitive radio is intelligent enough to adapt the communication parameters of the unused licensed spectrum. Spectrum sensing is one of the most important tasks of the cognitive radio cycle. In this paper, the auto-correlation function kernel based Support Vector Machine (SVM) classifier along with Welch's Periodogram detector is successfully implemented for the detection of four QPSK (Quadrature Phase Shift Keying) based signals propagating through an AWGN (Additive White Gaussian Noise) channel. It is shown that the combination of statistical signal processing and machine learning concepts improve the spectrum sensing process and spectrum sensing is possible even at low Signal to Noise Ratio (SNR) values up to -50 dB.

  1. TRAGOS, E., ZEADALLY, S., FRAQKIADAKIS, A., SIRIS , V. Spectrum assignment in cognitive radio networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 2013, vol. 15, no. 3, p. 1108–1135. DOI: 10.1109/SURV.2012.121112.00047
  2. FCC. Report of the Spectrum Efficiency Working Group Spectrum Policy Task Force Report ET Docekt No 02-135. 2002
  3. AKYILDIZ, I. F., LEE, W. Y., VURAN, M., MOHANTY, S. NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Computer Networks, 2006, vol. 50, no. 13, p. 2127– 2159. DOI: 10.1016/j.comnet.2006.05.001
  4. CABRIC, D., MISHRA, S., WILLKOMM, D., BRODERSEN, R., WOLISZ, A. A Cognitive radio approach for usage of virtual unlicensed spectrum. In 14th IST Mobile and Wireless Communications Summit. 2005.
  5. DA SILVA, C. R. C., CHOI, B., KIM, K. Distributed spectrum sensing for cognitive radio systems. In Proceedings of 2007 Information Theory and Applications Workshop. 2007, p. 120–123.
  6. MITOLA, J. Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio. PhD Thesis. Stockholm (Sweden): Royal Institute of Technology (KTH), 2000.
  7. KIM, S. J., GIANNAKIS, G. B. Rate-optimal and reducedcomplexity sequential sensing algorithms for cognitive OFDM radios. EURASIP Journal on Advances in Signal Processing, 2009. DOI: 10.1155/2009/421540
  8. MOLISCH, A., GREENSTEIN, L., SHAFI, M. Propagation issues for cognitive radio. Proceedings of the IEEE, 2009, vol. 97, no. 5, p. 787–804. DOI: 10.1109/JPROC.2009.2015704
  9. KAMIL, N. H., KADHIM, D. J., LIU, W., CHENG, W. Signal processing techniques for robust spectrum sensing. In ETP International Conference on Future Computer and Communication. Wuhan (China), 2009, p. 120–123. DOI: 10.1109/FCC.2009.14
  10. KONG, R., ZHANG, B. Auto-correlation kernel functions for support vector machines. In International Conference of Natural Computation. 2007, vol. 1, p. 512–516.
  11. SADEGHI, H., AZMI, P. A novel primary user detection method for multiple antenna cognitive radio. In International Symposium on Telecommunications (IST). Tehran (Iran), 2008, p. 188–192. DOI: 10.1109/ISTEL.2008.4651297
  12. HU, H., SONG, J. , WANG, Y. Signal classification based on spectral correlation analysis and svm in cognitive radio. In 22nd International Conference on Advanced Information Networking and Applications (AINA). Okinawa (Japan), 2008, p. 883–887.
  13. MITOLA, J., MAQUIRE, G. Q. Cognitive radio: making software radio more personal. IEEE Personal Communications, 1999, vol. 6, no. 4, p. 13–18. DOI: 10.1109/98.788210
  14. DIGHAM, F. F., ALOUINI, M.-S., SIMOK, M. L. On the energy detection of unknown signals over fading channels. In IEEE International Conference on Communications (ICC). 2003, vol. 5, p. 3575– 3579. DOI: 10.1109/ICC.2003.1204119
  15. CHRISTOPHER, J. A Tutorial on support vector machine for pattern recognition. Data Mining and Knowledge Discovery, 1998, vol. 2, no. 2, p. 121–167.
  16. CRISTIANINI, N., TAYOR, J. S. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000. DOI: 10.1017/CBO9780511801389
  17. VAPNIK, V. V. The Nature of Statistical Learning Theory. Springer, 1995. DOI: 10.1007/978-1-4757-2440-0
  18. SAFARI, A. Multi-Class Semi-Supervised and Online Boosting Institute for Computer Graphics and Vision. Ph.D Thesis. Graz (Austria): Graz University of Technology, 2010.
  19. CHEN, K. C., CHEN, P. Y., PRASAD, N., LIANG, Y. C., SUN, S. Trusted cognitive radio networking. Wireless Communications and Mobile Computing, 2010, vol. 10, no. 4, p. 467–485. DOI: 10.1002/wcm.777
  20. ZOU, Y., YAO, Y. D., ZHENG, B. Outage probability analysis of cognitive transmissions: Impact of spectrum sensing overhead. IEEE Transactions on Wireless Communications, 2010, vol. 9, no. 8, p. 2676–2688. DOI: 10.1109/TWC.2010.061710.100108
  21. KAY, S. M. Fundamentals of Statistical Signal Processing: Detection Theory. Prentice Hall, 1993
  22. SCHOLKOPF, B., SMOLA, A. Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. Cambridge (MA, USA): MIT Press, 2001.
  23. CHANG, C.-C., LIN, C.-J. A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, vol. 2, no. 3, p. 1–27.
  24. BRADLEY, A. P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 1997, vol. 30, no. 7, p. 1145–1159. DOI: 10.1016/S0031- 3203(96)00142-2
  25. RAKOTOMAMONJY, A. Support Vector Machines and Area Under ROC Curves. 2004.
  26. WELCH, P. D. the use of Fast Fourier Transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 1967, vol. 15, no. 2, p. 70–73. DOI: 10.1109/TAU.1967.1161901

Keywords: Cognitive radio, autocorrelation function, machine learning, Support Vector Machine, spectrum sensing, statistical signal processing, opportunistic dynamic spectrum access

C. G. Shi, F. Wang, J.J. Zhou, J. Chen [references] [full-text] [DOI: 10.13164/re.2015.0199] [Download Citations]
Fuzzy Chance-constrained Programming Based Security Information Optimization for Low Probability of Identification Enhancement in Radar Network Systems

In this paper, the problem of low probability of identification (LPID) improvement for radar network systems is investigated. Firstly, the security information is derived to evaluate the LPID performance for radar network. Then, without any prior knowledge of hostile intercept receiver, a novel fuzzy chance-constrained programming (FCCP) based security information optimization scheme is presented to achieve enhanced LPID performance in radar network systems, which focuses on minimizing the achievable mutual information (MI) at interceptor, while the attainable MI outage probability at radar network is enforced to be greater than a specified confidence level. Regarding to the complexity and uncertainty of electromagnetic environment in the modern battlefield, the trapezoidal fuzzy number is used to describe the threshold of achievable MI at radar network based on the credibility theory. Finally, the FCCP model is transformed to a crisp equivalent form with the property of trapezoidal fuzzy number. Numerical simulation results demonstrating the performance of the proposed strategy are provided.

  1. PACE, P. E. Detecting and Classifying Low Probability of Intercept Radar. Boston: Artech House, 2009, p. 342–352.
  2. FISHER, E., HAIMOVICH, A., BLUM, R. S., CIMINI, L. J., CHIZHIK, D., VALENZUELA, R. A. Spatial diversity in radars: models and detection performance. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 3, p. 823–838. DOI: 10.1109/TSP.2005.862813
  3. HAIMOVICH, A. M., BLUM, R. S., CIMINI, L. J. JR. MIMO radar with widely separated antennas. IEEE Signal Processing Magazine, 2008, vol. 25, no. 1, p. 116–129. DOI: 10.1109/MSP.2008.4408448
  4. TANG, B., TANG, J., PENG, Y. N. MIMO radar waveform design in colored noise based on information theory. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 9, p. 4684–4697. DOI: 10.1109/TSP.2010.2050885
  5. YANG, Y., BLUM, R. S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation. IEEE Transactions on Aerospace and Electronic System, 2007, vol. 43, no. 1, p. 330–343. DOI: 10.1109/TAES.2007.357137
  6. CHEN, Y. F., NIJSURE, Y., YUEN, C., CHEW, Y. H., DING, Z. G. Adaptive distributed MIMO radar waveform optimization based on mutual information. IEEE Transactions on Aerospace and Electronic System, 2013, vol. 49, no. 2, p. 1374–1385. DOI: 10.1109/TAES.2013.6494422
  7. SONG, X. F., WILLETT, P., ZHOU, S. L. Optimal power allocation for MIMO radars with heterogeneous propagation losses. In IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2012. Kyoto (Japan), 2012, p. 2465–2468. DOI: 10.1109/ICASSP.2012.6288415
  8. SHI, C. G., ZHOU, J. J., WANG, F. Low probability of intercept optimization for radar network based on mutual information. In 2014 2nd IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP). Xi'an (China), 2014, p. 683–687. DOI: 10.1109/ChinaSIP.2014.6889331
  9. SHI, C. G., WANG, F., SELLATHURAI, M., ZHOU, J. J. LPI optimization framework for target tracking in radar network architectures using information-theoretic criteria. International Journal of Antennas and Propagation, 2014, 10 p. DOI: 10.1155/2014/654561
  10. WYNER, A. X. The wiretap channel. The Bell System Technical Journal, 1975, vol. 54, no. 8, p. 1355–1387. DOI: 10.1002/j.1538- 7305.1975.tb02040.x
  11. SWINDLEHURST, A. L. Fixed SINR solutions for the MIMO wiretap channel. In IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2009. Taipei, 2009, p. 2437–2440. DOI: 10.1109/ICASSP.2009.4960114
  12. ZHOU, X. Y., MCKAY, M. R. Secure transmission with artificial noise over fading channels: achievable rate and optimal power allocation. IEEE Transactions on Vehicular Technology, 2010, vol. 59, no. 8, p. 3831–3842. DOI: 10.1109/TVT.2010.2059057
  13. ROMERO-ZURITA, N., MCLERNON, D., GHOGHO, M., SWAMI, A. PHY layer security based on protected zone and artificial noise. IEEE Signal Processing Letters, 2013, vol. 20, no. 5, p. 487–490. DOI: 10.1109/LSP.2013.2252898
  14. MUKHERJEE, A., SWINDLEHURST, A. L. Jamming games in the MIMO wiretap channel with an active eavesdropper. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 1, p. 82–91. DOI: 10.1109/TSP.2012.2222386
  15. ZOU, Y. L., WANG, X. B., SHEN, W. M. Physical-layer security with multiuser scheduling in cognitive radio networks. IEEE Transactions on Communications, 2013, vol. 61, no. 12, p. 5103 to 5113.
  16. WANG, F., SELLATHURAI, M., LIU, W. G., ZHOU, J. J. Security information factor based airborne radar RF stealth. Journal of Systems Engineering and Electronics, 2014. (Unpublished)
  17. SHI, C. G., ZHOU, J. J., WANG, F., CHEN, J. Optimal power allocation for low probability of identification in radar network based on security information with cooperative jamming. ICIC Express Letters, 2014, vol. 8, no. 12, p. 3401–3406.
  18. SHI, C. G., ZHOU, J. J., WANG, F., CHEN, J. LPID optimization with security information in radar network. Industrial Electronics and Engineering, 2014, vol. 93, p. 255–263. DOI: 10.2495/ICIEE140291
  19. ZADEH, L. A. Fuzzy sets. Information and Control, 1965, vol. 8, no. 3, p. 338–353. DOI: 10.1016/S0019-9958(65)90241-X
  20. LIU, B. D., LIU, Y. K. Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 2002, vol. 10, no. 4, p. 445–450. DOI: 10.1109/TFUZZ.2002.800692
  21. LIU, B. D. Uncertainty Theory: An Introduction to Its Axiomatic Foundations. Berlin: Springer-Verlag, 2004, p. 109–128.
  22. PAGNONCELLI, B. K., AHMED, S., SHAPIRO, A. Sample average approximation method for chance constrained programming: theory and application. Journal of Optimization Theory and Application, 2009, vol. 142, no. 2, p. 399–416. DOI: 10.1007/s10957-009-9523-6
  23. LIU, B. D., ZHAO, R. Q., WANG, G. Uncertainty programming with Application. Beijing: Tsinghua University Press, 2003, p. 138-187. (In Chinese)
  24. LIU, B. D. Theory and Practice of Uncertainty Programming. Heidelberg: Physical-Verlag, 2002, p. 53–74.

Keywords: Security information, low probability of identification (LPID), power allocation, fuzzy chance-constrained programming (FCCP), radar network systems

H. Chen, Q. Wan, R. Fan, F. Wen [references] [full-text] [DOI: 10.13164/re.2015.0208] [Download Citations]
Direction-of-Arrival Estimation Based on Sparse Recovery with Second-Order Statistics

Traditional direction-of-arrival (DOA) estimation techniques perform Nyquist-rate sampling of the received signals and as a result they require high storage. To reduce sampling ratio, we introduce level-crossing (LC) sampling which captures samples whenever the signal crosses predetermined reference levels, and the LC-based analog-to-digital converter (LC ADC) has been shown to efficiently sample certain classes of signals. In this paper, we focus on the DOA estimation problem by using second-order statistics based on the LC samplings recording on one sensor, along with the synchronous samplings of the another sensors, a sparse angle space scenario can be found by solving an $ell_1$ minimization problem, giving the number of sources and their DOA's. The experimental results show that our proposed method, when compared with some existing norm-based constrained optimization compressive sensing (CS) algorithms, as well as subspace method, improves the DOA estimation performance, while using less samples when compared with Nyquist-rate sampling and reducing sensor activity especially for long time silence signal.

  1. JOHNSON, D. H., DUDGEON, D. E. Array Signal Processing:Concepts and Techniques. Prentice Hall, 1993.
  2. DONOHO, D. L. Compressed sensing. IEEE Transactions on Information Theory, 2006, vol. 52, no. 4, p. 1289–1306. DOI: 10.1109/TIT.2006.871582
  3. GURBUZ, A., MCCLELLAN, J. H., CEVHER, V. A compressive beamforming method. In Proceedings of 2008 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Las Vegas (NV, USA), 2008, p. 2617–2620. DOI: 10.1109/ICASSP.2008.4518185
  4. GURBUZ, A. C., CEVHER, V., MCCLELLAN, J. H. Bearing estimation via spatial sparsity using compressive sensing. IEEE Transactions on Aerospace and Electronic Systems, 2012, vol. 48, no. 2, p. 1358–1369. DOI: 10.1109/TAES.2012.6178067
  5. FUCHS, J. J. On the application of the global matched filter to DOA estimation with uniform circular arrays. IEEE Transactions on Signal Processing, 2001, vol. 49, no. 4, p. 702–709. DOI: 10.1109/78.912914
  6. FUCHS, J. J. Linear programming in spectral estimation. Application to array processing. In Proceedings of 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Atlanta (GA, USA), 1996, vol. 6, p. 3161–3164. DOI: 10.1109/ICASSP.1996.550547
  7. TROPP, J. A., WAKIN, M. B., DUARTE, M. F., BARON, D., BARANIUK, R. G. Random filters for compressive sampling and reconstruction. In Proceedings of 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Toulouse (France), 2006. DOI: 10.1109/ICASSP.2006.1660793
  8. ROMBERG, J. Compressive sensing by random convolution. SIAM Journal on Imaging Sciences, 2008, vol. 4, no. 4, p. 1098–1128. DOI: 10.1137/08072975X
  9. LI, L. L., LI, F. Compressive sensing based robust signal sampling. Applied Physics Research, 2012, vol. 4, no. 1, p. 30–41. DOI: 10.5539/apr.v4n1p30
  10. GUAN, K. M., SINGER, A. C. A level-crossing sampling scheme for non-bandlimited signals. In Proceedings of 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Toulouse (France), 2006, vol. 3. DOI: 10.1109/ICASSP.2006.1660670
  11. GUAN, K. M., SINGER, A. C. Opportunistic sampling of bursty signals by level-crossing – an information theoretical approach. In 41st Annual Conference on Information Sciences and Systems (CISS). Baltimore (USA), 2007, p. 701–707. DOI: 10.1109/CISS.2007.4298396
  12. TSIVIDIS, Y. Digital signal processing in continuous time: a possibility for avoiding aliasing and reducing quantization error. In Proceedings of 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Montreal (Canada), 2004, vol. 2, p. 589–592. DOI: 10.1109/ICASSP.2004.1326326
  13. GUAN, K. M. Opportunistic Sampling by Level-Crossing, Ph.D. thesis. Urbana (USA): University of Illinois at Urbana-Champaign, 2008.
  14. GUAN, K. M., KOZAT, S. S., SINGER, A. C. Adaptive reference levels in a level-crossing analog-to-digital converter. EURASIP Journal on Advances in Signal Processing, 2008, vol. 2008, no. 183, Article ID 513706, 11 pages. DOI: 10.1155/2008/513706
  15. SENAY, S., OH, J. S., CHAPARRO, L. F. Regularized signal reconstruction for level-crossing sampling using Slepian functions. Signal Processing, 2012, vol. 92, no. 4, p. 1157–1165. DOI: 10.1016/j.sigpro.2011.11.017
  16. GRUNDE, U. Non-stationary signal reconstruction from levelcrossing samples using Akima Spline. Electronics and Electrical Engineering, 2012, vol. 117, no. 1, p. 9–12. DOI: 10.5755/j01.eee.117.1.1044
  17. AKOPYAN, F., MANOHAR, R., APSEL, A. B. A level-crossing flash asynchronous analog-to-digital converter. In Proceedings of 2006 IEEE International Symposium on Asynchronous Circuits and Systems. Grenoble (France), 2006, p. 12–22. DOI: 10.1109/ASYNC.2006.5
  18. CANDES, E., TAO, T. The Dantzig Selector: Statistical estimation when p is much larger than n. Annals of Statistics, 2007, vol. 35, no. 6, p. 2313–2351. DOI: 10.1214/009053606000001523
  19. BOYD, S., VANDENBERGHE, L. Convex Optimzation. Cambridge (UK): Cambrige University Press, 2003.
  20. TOH, K. C., TODD, M. J., TUTUNCU, R. H. SDPT3-a Matlab software package for semidefinite programming. Optimization Methods and Software, 1999, p. 545–581.
  21. MALIOUTOV, D., CETIN, M., WILLSKY, A. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 8, p. 3010–3022. DOI: 10.1109/TSP.2005.850882
  22. AKIMA, H. A new method of interpolation and smooth curve fitting based on local procedures. Journal of the Association for Computing Machinery, 1970, vol. 17, no. 4, p. 589–602. DOI: 10.1145/321607.321609

Keywords: Direction-of-arrival estimation, level crossing, compressive sensing, dantzing selector, convex optimization

R. Guo, X. Mao, S. Li, Y. Wang, X. Wang [references] [full-text] [DOI: 10.13164/re.2015.0214] [Download Citations]
A Fast DOA Estimation Algorithm Based on Polarization MUSIC

A fast DOA estimation algorithm developed from MUSIC, which also benefits from the processing of the signals' polarization information, is presented. Besides performance enhancement in precision and resolution, the proposed algorithm can be exerted on various forms of polarization sensitive arrays, without specific requirement on the array's pattern. Depending on the continuity property of the space spectrum, a huge amount of computation incurred in the calculation of 4-D space spectrum is averted. Performance and computation complexity analysis of the proposed algorithm is discussed and the simulation results are presented. Compared with conventional MUSIC, it is indicated that the proposed algorithm has considerable advantage in aspects of precision and resolution, with a low computation complexity proportional to a conventional 2-D MUSIC.

  1. BOHME, J. F. Estimation of source parameters by maximum likelihood and nonlinear regression. In Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP’84. 1984, vol. 9, p. 271–274. DOI: 10.1109/ICASSP.1984.1172397
  2. BOHME, J. F. Estimation of spectral parameters of correlated signals in wavefields. Signal Processing, 1986, vol. 11, no. 4, p. 329–337. DOI: 10.1016/0165-1684(86)90075-7
  3. SCHMIDT, R. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 3, p. 278–280. DOI: 10.1109/TAP.1986.1143830
  4. ROY, R., PAULRAJ, A., KAILATH, T. ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Transactions on Acoustics, Speech and Signal Processing, 1986, vol. 34, no. 5, p. 1340–1342. DOI: 10.1109/TASSP.1986.1164935
  5. OTTERSTEN, B., VIBERG, M., STOICA, P., NEHORAI, A. Exact and Large Sample ML Techniques for Parameter Estimation and Detection in Array Processing. New York: Springer-Verlag, 1993.
  6. RAO, B. D., HARI, K. V. S. Performance analysis of root-MUSIC. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, vol. 37, no. 12, p. 1939–1949. DOI: 10.1109/29.45540
  7. ROY, R., KAILATH, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, vol. 37, no. 7, p. 984–995. DOI: 10.1109/29.32276
  8. YARDIBI, T., LI, J., STOICA, P., CATTAFESTA III, L. N. Sparsity constrained deconvolution approaches for acoustic source mapping. The Journal of the Acoustical Society of America, 2008, vol. 123, p. 2631. DOI: 10.1121/1.2896754
  9. YARDIBI, T., LI, J., STOICA, P., XUE, M., BAGGEROER, A. B. Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares. IEEE Transactions on Aerospace and Electronic Systems, 2010, vol. 46, no. 1, p. 425–443. DOI: 10.1109/TAES.2010.5417172
  10. MISHALI, M., ELDAR, Y.C., ELRON, A. J. Xampling: Signal acquisition and processing in union of subspaces. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 10, p. 4719–4734. DOI: 10.1109/TSP.2011.2161472
  11. GAO, F., GERSHMAN, A. B. A generalized ESPRIT approach to direction-of-arrival estimation. IEEE Signal Processing Letters, 2005, vol. 12, no. 3, p. 254–257. DOI: 10.1109/LSP.2004.842276
  12. ELKADER, S. A., GERSHMAN, A. B., WONG, K. M. Rank reduction direction-of-arrival estimators with an improved robustness against subarray orientation errors. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 5, p. 1951–1955. DOI: 10.1109/TSP.2006.872321
  13. RUBSAMEN, M., GERSHMAN, A. B. Direction-of-arrival estimation for nonuniform sensor arrays: from manifold separation to Fourier domain MUSIC methods. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 2, p. 588–599. 10.1109/TSP.2008.2008560
  14. KAVEH, M., BARABELL, A. The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise. IEEE Transactions on Acoustics, Speech and Signal Processing, 1986, vol. 34, no. 2, p. 331–341. DOI: 10.1109/TASSP.1986.1164815
  15. STOICA, P., ARYE, N. MUSIC, maximum likelihood, and CramerRao bound. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, vol. 37, no. 5, p. 720–741. DOI: 10.1109/29.17564
  16. NEHORAI, A., PALDI, E. Vector-sensor array processing for electromagnetic source localization. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 2, p. 376–398. DOI: 10.1109/78.275610
  17. LI, J., COMPTON, J. Angle and polarization estimation using ESPRIT with a polarization sensitive array. IEEE Transactions on Antennas and Propagation, 1991, vol. 39, no. 9, p. 1376–1383. DOI: 10.1109/8.99047
  18. LI, J., COMPTON, J. Two-dimensional angle and polarization estimation using the ESPRIT algorithm. IEEE Transactions on Antennas and Propagation, 1992, vol. 40, no. 5, p. 550–555. DOI: 10.1109/8.142630
  19. HUA, Y. A pencil-MUSIC algorithm for finding two-dimensional angles and polarizations using crossed dipoles. IEEE Transactions on Antennas and Propagation, 1993, vol. 41, no. 3, p. 370–376. DOI: 10.1109/8.233122
  20. HO, K.-C, TAN, K.-C., TAN, B. T. G. Efficient method for estimating directions-of-arrival of partially polarized signals with electromagnetic vector sensors. IEEE Transactions on Signal Processing, 1997, vol. 45, no. 10, p. 2485–2498. DOI: 10.1109/78.640714
  21. HO, K.-C., TAN, K.-C., NEHORAI, A. Estimating directions of arrival of completely and incompletely polarized signals with electromagnetic vector sensors. IEEE Transactions on Signal Processing, 1999, vol. 47, no. 10, p. 2845–2852. DOI: 10.1109/78.790664
  22. ZOLTOWSKI, M., WONG, K. ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors. IEEE Transactions on Signal Processing, 2000, vol. 48, no. 8, p. 2195– 2204. DOI: 10.1109/78.852000
  23. HE, J., LIU, Z. Computationally efficient 2D direction finding and polarization estimation with arbitrarily spaced electromagnetic vector sensors at unknown locations using the propagator method. Digital Signal Processing, 2009, vol. 19, no. 3, p. 491–503. DOI: 10.1016/j.dsp.2008.01.002
  24. RAHAMIM, D., TABRIKIAN, J., SHAVIT, R. Source localization using vector sensor array in a multipath environment. IEEE Transactions on Signal Processing, 2004, vol. 52, no. 11, p. 3096– 3103. DOI: 10.1109/TSP.2004.836456
  25. WEISS, A. J., FRIEDLANDER, B. Direction finding for diversely polarized signals using polynomial rooting. IEEE Transactions on Signal Processing, 1993, vol. 41, no. 5, p. 1893–1905. DOI: 10.1109/78.215307
  26. WONG, K., LI, L., ZOLTOWSKI, M. D. Root-MUSIC-based direction-finding and polarization estimation using diversely polarized possibly collocated antennas. IEEE Antennas and Wireless Propagation Letters, 2004, vol. 3, no. 1, p. 129–132. DOI: 10.1109/LAWP.2004.831083
  27. MIRON, S., GUO, X., BRIE, D. DOA estimation for polarized sources on a vector-sensor array by PARAFAC decomposition of the fourth-order covariance tensor. In Proceedings of the EUSIPCO. 2008, p. 25–29.
  28. GONG, X., LIU, Z., XU, Y., ISHTIAQ, A. Direction-of-arrival estimation via twofold mode-projection. Signal Processing, 2009, vol. 89, no. 5, p. 831–842. DOI: 10.1016/j.sigpro.2008.10.034
  29. YUAN, Q., CHEN, Q., SAWAYA, K. MUSIC based DOA finding and polarization estimation using USV with polarization sensitive array antenna. In IEEE Radio and Wireless Symposium. 2006, p. 339–342. DOI: 10.1109/RWS.2006.1615164
  30. LIU, S., JIN, M., QIAO, X. Joint polarization-DOA estimation using circle array. In IET International Radar Conference. 2009, p. 1–5.
  31. COSTA, M., KOIVUNEN, V., RICHTER, A. Azimuth, elevation, and polarization estimation for arbitrary polarimetric array configurations. In Statistical Signal Processing. Cardiff (UK), 2009, p. 261– 264. DOI: 10.1109/SSP.2009.5278590
  32. COSTA, M., RICHTER, A., KOIVUNEN, V. DoA and polarization estimation for arbitrary array configurations. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 5, p. 2330–2343. DOI: 10.1109/TSP.2012.2187519
  33. YANG, P., YANG, F., NIE, Z., ZHOU, H., LI, B., TANG, X. Fast 2-d DOA and polarization estimation using arbitrary conformal antenna array. Progress In Electromagnetics Research C, 2012, vol. 25, p. 119–132. DOI: 10.2528/PIERC11070706
  34. GUO, R., MAO, X., LI, S., LIN, Z. Fast four-dimensional joint spectral estimation with array composed of diversely polarized elements. In IEEE Radar Conference (RADAR). 2012 , p. 919–923. DOI: 10.1109/RADAR.2012.6212268
  35. FRIEDLANDER, B., WEISS, A. J. The resolution threshold of a direction-finding algorithm for diversely polarized arrays. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 7, p. 1719– 1727. DOI: 10.1109/78.298279
  36. ZHOU, C., HABLER, F., JAGGARD, D. L. A resolution measure for the MUSIC algorithm and its application to plane wave arrivals contaminated by coherent interference. IEEE Transactions on Signal Processing, 1991, vol. 39, no. 2, p. 454–463. DOI: 10.1109/78.80829
  37. STOICA, P., NEHORAI, A. MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, vol. 38, no. 12, p. 2140–2150. DOI: 10.1109/29.61541
  38. HUDSON, J. E. Adaptive Array Principles. Peter Peregrinus Press, 1981.

Keywords: Polarization sensitive array, DOA, MUSIC, fast algorithm.

A. Kizilkaya, A. Ukte, M. D. Elbi [references] [full-text] [DOI: 10.13164/re.2015.0226] [Download Citations]
Statistical Multirate High-Resolution Signal Reconstruction Using the EMD-IT Based Denoising Approach

The reconstruction problem of a high-resolution (HR) signal from a set of its noise-corrupted low-resolution (LR) versions is considered. As a part of this problem, a hybrid method that consists of four operation units is proposed. The first unit applies noise reduction based on the empirical mode decomposition interval-thresholding to the noisy LR observations. In the second unit, estimates of zero-interpolated HR signals are obtained by performing up-sampling and then time shifting on each noise reduced LR signal. The third unit combines the zero-interpolated HR signals for attaining one HR signal. To eliminate the ripple effect, finally, median filtering is applied to the resulting reconstructed signal. As compared to the work that employs linear periodically time-varying Wiener filters, the proposed method does not require any correlation information about desired signal and LR observations. The validity of the proposed method is demonstrated by several simulation examples.

  1. JAHROMI, O. S. Multirate Statistical Signal Processing. Dordrecht: Springer-Verlag, 2007.
  2. JAHROMI, O. S., FRANCIS, B. A., KWONG, R. H. Multirate signal estimation. In Proc. IEEE Canadian Conf. Electrical Computer Eng. Toronto (ON, Canada), 2001, p. 147–152.
  3. CRISTI, R., KOUPATSIARIS, D. A., THERRIEN, C. W. Multirate filtering and estimation: the multirate Wiener filter. In Proc. IEEE Thirty-Fourth Asilomar Conf. Signals, Systems and Computers. Pacific Grove, CA (USA), 2000, p. 450–454. DOI: 10.1109/ACSSC.2000.910995
  4. THERRIEN, C. W., HAWES, A. H. Least squares optimal filtering with multirate observations. In Proc. IEEE Thirty-Sixth Asilomar Conf. Signals, Systems and Computers. Pacific Grove, CA (USA), 2002, p. 1782–1786. DOI: 10.1109/ACSSC.2002.1197081
  5. KUCHLER, R. J., THERRIEN, C. W. Optimal filtering with multirate observations. In Proc. IEEE Thirty-Seventh Asilomar Conf. Signals, Systems and Computers. Pacific Grove, CA (USA), 2003, p. 1208–1212. DOI: 10.1109/ACSSC.2003.1292116
  6. KUCHLER, R. J. Theory of multirate statistical signal processing and applications. Ph.D. thesis, Naval Postgraduate School, Monterey, CA (USA), 2005.
  7. SCROFANI, J. W., THERRIEN, C. W. A stochastic multirate signal processing approach to high-resolution signal reconstruction. In Proc. 30th IEEE Int. Conf. Acoustics, Speech, and Signal Process. Philadelphia, PA (USA), 2005, p. 561–564. DOI: 10.1109/ICASSP.2005.1416070
  8. SCROFANI, J. W., THERRIEN, C. W. A multirate approach to high-resolution image reconstruction. In Proc. 7th IASTED Int. Conf. Signal and Image Process. Honolulu, (HI, USA), 2005, p. 538–542.
  9. SCROFANI, J. W. Theory of Multirate Signal Processing with Application to Signal and Image Reconstruction. Ph.D. thesis, Naval Postgraduate School, Monterey, CA (USA), 2005.
  10. HAWES, A. H., THERRIEN, C. W. LMS adaptive filtering with multirate observations. In Proc. IEEE Thirty-Seventh Asilomar Conf. Signals, Systems and Computers. Pacific Grove, CA (USA), 2003, p. 567–570.
  11. TANC, A. K., EKSIOGLU, E. M., KAYRAN, A. H. Adaptive multirate signal estimation with lattice orthogonalization. In Proc. 16th IEEE International Conf. Electronics, Circuits and Systems. Yasmine Hammamet (Tunesia), 2009, p. 117–119. DOI: 10.1109/ICECS.2009.5410937
  12. EKSIOGLU, E. M., TANC, A. K., KAYRAN, A. H. A compressive sensing framework for multirate signal estimation. In Proc. 10th IEEE Int. Conf. Information Sciences Signal Processing and their Applications. Kuala Lumpur (Malaysia), 2010, p. 716– 719. DOI: 10.1109/ISSPA.2010.5605572
  13. HUANG, N. E., LONG, S. R., SHEN, Z. The mechanism for frequency downshift in nonlinear wave evolution. Advances in Applied Mechanics, 1996, vol. 32, p. 59–117C. DOI: 10.1016/S0065-2156(08)70076-0
  14. HUANG, N. E., SHEN, Z., LONG, S. R., WU, M. L. C., SHIH, H. H., ZHENG, Q. N., YEN, N. C., TUNG, C. C., LIU, H. H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. vol. 454, no. 1971, 1998, p. 903–995. DOI: 10.1098/rspa.1998.0193
  15. WU, Z. H., HUANG, N. E. A study of the characteristics of white noise using the empirical mode decomposition method. In Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. vol. 460, no. 2046, 2004, p. 1597–1611. DOI: 10.1098/rspa.2003.1221
  16. UKTE, A., KIZILKAYA, A., ELBI, M. D. Two empirical methods for improving the performance of statistical multirate highresolution signal reconstruction. Digital Signal Processing, 2014, vol. 26, p. 36–49. DOI: 10.1016/j.dsp.2013.11.014
  17. KOPSINIS, Y., MCLAUGHLIN, S. Development of EMD-based denoising methods inspired by wavelet thresholding. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 4, p. 1351 to 1362. DOI: 10.1109/TSP.2009.2013885

Keywords: Empirical mode decomposition (EMD), statistical multirate signal reconstruction, noise reduction, high-resolution, median filtering

M. R. Dincic, Z. H. Peric [references] [full-text] [DOI: 10.13164/re.2015.0233] [Download Citations]
Multiproduct Uniform Polar Quantizer

The aim of this paper is to reduce the complexity of the unrestricted uniform polar quantizer (UUPQ), keeping its high performances. To achieve this, in this paper we propose the multiproduct uniform polar quantizer (MUPQ), where several consecutive magnitude levels are joined in segments and within each segment the uniform product quantization is performed (i.e. all levels within one segments have the same number of phase levels). MUPQ is much simpler for realization than UUPQ, but it achieves similar performances as UUPQ. Since MUPQ has low complexity and achieves much better performances than the scalar uniform quantizer, it can be widely used instead of scalar uniform quantizers to improve performances, for any signal with the Gaussian distribution.

  1. JAYANT, N. S., NOLL, P. Digital Coding of Waveforms. New Jersey: Prentice-Hall, 1984.
  2. GERSHO, A., GRAY, R. M. Vector Quantization and Signal Compression. Massachusetts: Kluwer Academic Publishers, 1992.
  3. SWASZEK, P., KU, T. Asymptotic performances of unrestricted polar quantizer. IEEE Transactions on Information Theory, 1986, vol. 32, no. 2, p. 330–333. DOI: 10.1109/TIT.1986.1057141
  4. NEUHOFF, D. Polar quantization revisited. In Proceedings of IEEE International Symposium on Information Theory. Ulm (Germany), 1997, p. 60. DOI: 10.1109/ISIT.1997.612975
  5. SWASZEK, P. Uniform spherical coordinate quantization of spherically symmetric sources. IEEE Transactions on Communications, 1985, vol. 33, no. 6, p. 518–521. DOI: 10.1109/TCOM.1985.1096333
  6. MOO, P. W., NEUHOFF, D. Uniform polar quantization revisited. In Proceedings of IEEE International Symposium on Information Theory ISIT’98. Cambridge (USA), 1998. DOI: 10.1109/ISIT.1998.708687
  7. HAMKINS, J., ZEGER, K. Gaussian source coding with spherical codes. IEEE Transactions on Information Theory, 2002, vol. 48, no. 11, p. 2980–2989. DOI: 10.1109/TIT.2002.804056
  8. RAVELLI, E., DAUDET, L. Embedded polar quantization. IEEE Signal Processing Letters, 2007, vol. 14, no. 10, p. 657–660. DOI: 10.1109/LSP.2007.896379
  9. MATSCHKAL, B., HUBER, J. B. Spherical logarithmic quantization. IEEE Transactions on Audio, Speech and Language Processing, 2010, vol. 18, no. 1, p. 126–140. DOI: 10.1109/TASL.2009.2024383
  10. DINCIC, M., PERIC, Z., PETKOVIC, M., DENIC, D. Design of product polar quantizers for A/D conversion of measurement signals with Gaussian distribution. Measurement, 2013, vol. 46, no. 8, p. 2441–2446.
  11. DINCIC, M., PERIC, Z. Log-polar quantizer with embedded the ITU-T G.711 codec. Radioengineering, 2010, vol. 19, no. 4, p. 712–717.
  12. PERIC, Z., DINCIC, M., PETKOVIC, M. The general design of asymptotic unrestricted polar quantizers with square cells. Digital Signal Processing, 2013, vol. 23, no. 5, p. 1731–1737. DOI: 10.1016/j.dsp.2013.06.001
  13. PERIC, Z., STEFANOVIC, M. Asymptotic analysis of optimal uniform polar quantization. International Journal of Electronics and Communications AEU, 2002, vol. 56, no. 5, p. 345–347. DOI:10.1078/1434-8411-54100111
  14. STOJANOVIC, D., ALEKSIC, D., PERIC, Z., JOVANOVIC, A. Analysis of uniform polar quantization over Bennett’s integral. Elektronika ir elektrotechnika, 2005, vol. 8(64), p. 5–9.
  15. JOVANOVIC, A., PERIC, Z. Geometric piecewise uniform lattice vector quantization of the memoryless Gaussian source. Information Sciences, 2011, vol. 181, no. 14, p. 3043–3053. DOI: 10.1016/j.ins.2011.03.012

Keywords: Unrestricted uniform polar quantization, multiproduct uniform polar quantization, polar coordinates, Gaussian distribution

M. Cedillo-Hernandez, A. Cedillo-Hernandez, F. Garcia-Ugalde, M. Nakano-Miyatake, H. Perez-Meana [references] [full-text] [DOI: 10.13164/re.2015.0240] [Download Citations]
Copyright Protection of Color Imaging Using Robust-Encoded Watermarking

In this paper we present a robust-encoded watermarking method applied to color images for copyright protection, which presents robustness against several geometric and signal processing distortions. Trade-off between payload, robustness and imperceptibility is a very important aspect which has to be considered when a watermark algorithm is designed. In our proposed scheme, previously to be embedded into the image, the watermark signal is encoded using a convolutional encoder, which can perform forward error correction achieving better robustness performance. Then, the embedding process is carried out through the discrete cosine transform domain (DCT) of an image using the image normalization technique to accomplish robustness against geometric and signal processing distortions. The embedded watermark coded bits are extracted and decoded using the Viterbi algorithm. In order to determine the presence or absence of the watermark into the image we compute the bit error rate (BER) between the recovered and the original watermark data sequence. The quality of the watermarked image is measured using the well-known indices: Peak Signal to Noise Ratio (PSNR), Visual Information Fidelity (VIF) and Structural Similarity Index (SSIM). The color difference between the watermarked and original images is obtained by using the Normalized Color Difference (NCD) measure. The experimental results show that the proposed method provides good performance in terms of imperceptibility and robustness. The comparison among the proposed and previously reported methods based on different techniques is also provided.

  1. AGOYI, M., ÇELEBI, E., ANBARJAFARI, G. A watermarking algorithm based on chirp z-transform, discrete wavelet transform, and singular value decomposition. Signal, Image and Video Processing, 2014, DOI: 10.1007/s11760-014-0624-9.
  2. TAO, H., CHONGMIN, L., ZAIN, J. M., ABDALLA, A. N. Robust image watermarking theories and techniques: A review. Journal of Applied Research and Technology (JART), 2014, vol. 12, p. 122–138.
  3. ZHANG, Y., ZHOU, Z-H., ZHANG, C., LI, Y. An anti-geometric digital watermark algorithm based on histogram grouping and fault-tolerance channel. Intelligent Science and Intelligent Data Engineering Lecture Notes in Computer Science, 2012, vol. 7202, p. 753–760. DOI: 10.1007/978-3-642-31919-8_96
  4. YAN, L., JIYING, Z. A new video watermarking algorithm based on 1D DFT and Radon transform. Signal Processing, 2010, vol. 90, p. 626–639. DOI: 10.1016/j.sigpro.2009.08.001
  5. DONG, P., BRANKOV, J. B., GALATSANOS, N. P., YANG, Y., DAVOINE, F. Digital watermarking to geometric distortions. IEEE Transactions on Image Processing, 2005, vol. 14, no. 12, p. 2140–2150. DOI: 10.1109/TIP.2005.857263
  6. CEDILLO, M., NAKANO, M., PEREZ, H. A robust watermarking technique based on image normalization. Rev. Fac. Ing. Univ. Antioquia / Journal of the Engineering Faculty University of Antioquia, 2010, vol. 52, p. 147–160.
  7. MOUSAVI, S. M., NAGHSH, A., ABU-BAKAR, S. A. R. Watermarking techniques used in medical images: A survey. Journal of Digital Imaging, 2014, vol. 27, no. 6, p. 714–729. DOI: 10.1007/s10278-014-9700-5
  8. CHAREYRON, G., DA RUGNA, J., TREMEAU, A. Color in image watermarking. In A. Al-Haj (Ed.), Advanced Techniques in Multimedia Watermarking: Image, Video and Audio Applications, 2010, p. 36–56. DOI: 10.4018/978-1-61520-903-3.ch003
  9. TREMEAU, A., TOMINAGA, S., PLATANIOTIS, K. Color in image and video processing: Most recent trends and future research directions. EURASIP Journal on Image and Video Processing, 2008, p. 1–26. DOI:10.1155/2008/581371
  10. MAITY, S. P., KUNDU, M. K. DHT domain digital watermarking with low loss in image informations. AEU - International Journal of Electronics and Communications, 2009. DOI: 10.1016/j.aeue.2008.10.004
  11. ZHANG, X., WANG, S. Fragile watermarking scheme using a hierarchical mechanism. Signal Processing, 2009, vol. 89, no. 4, p. 675–679. DOI: 10.1016/j.sigpro.2008.10.001
  12. CEDILLO, M., GARCIA, F., NAKANO, M., PEREZ, H. Robust hybrid color image watermarking method based on DFT domain and 2D histogram modification. Signal Image and Video Processing, 2013, vol. 8, no. 1, p. 49–63. DOI: 10.1007/s11760- 013-0459-9.
  13. PAN-PAN NIU, XIANG-YANG WANG, YI-PING YANG, MING-YU LU. A novel color image watermarking scheme in non sampled contourlet-domain. Expert Systems with Applications, 2011, vol. 38, no. 3, p. 2081–2098. DOI: 10.1016/j.eswa. 2010.07.147
  14. HU, M.-K. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 1962, vol. 8, no. 2, p. 179–187. DOI: 10.1109/TIT.1962.1057692
  15. ALGHONIEMY, M., TEWFIK, A. H. Geometric invariance in image watermarking. IEEE Transactions on Image Processing, 2004, vol. 13, no. 2, p. 145–153. DOI: 10.1109/TIP.2004.823831
  16. QI SONG, GUANG-XI ZHU, HANG-JIAN LUO. Geometrically robust image watermarking based on image normalization. In Proceedings of International Symp. on Intelligent Signal Processing and Communication Systems ISPACS 2005. Hong-Kong (China), 2005, p. 333–336. DOI: 10.1109/ISPACS.2005.1595414
  17. LUKAC, R., PLATANIOTIS, K. Color Image Processing. CRC Press, 2007.
  18. SKLAR, B. Digital Communications: Fundamentals and Applications. Second ed. System View, 2001.
  19. BATSON, B. H., MOOREHEAD, R. W. Simulation Results for the Viterbi Decoding Algorithm. NASA-TR-R-396, Technical report, 1972.
  20. TANG, C. W., HANG, H. M. A feature-based robust digital image watermarking scheme. IEEE Transactions on Signal Processing, 2003, vol. 51, no. 4, p. 950–959. DOI: 10.1109/TSP.2003.809367
  21. SHEIKH, H. R., BOVIK, A. C. Image information and visual quality. IEEE Transactions on Image Processing, 2006, vol. 15, no. 2, p. 430–444. DOI: 10.1109/TIP.2005.859378
  22. WANG ZHOU, BOVIK, A. C., SHEIKH, H. R., SIMONCELLI, E. P. Image quality assessment: From error measurement to structural similarity. IEEE Transactions on Image Processing, 2004, vol. 13, no. 4, p. 600–612. DOI: 10.1109/TIP.2003.819861
  23. CHANG, H. A., CHEN, H. H. Stochastic color interpolation for digital cameras. IEEE Transactions on Circuits and Systems for Video Technology, 2007, vol. 17, no. 8, p. 964–973. DOI: 10.1109/TCSVT.2007.897471
  24. PLATANIOTIS, K. N., VENETSANOPOULOS, A. N. Color Image Processing and Applications. Berlin: Springer Verlag, 2000.
  25. SAHOO, A., SINGH, M. P. Fuzzy weighted adaptive linear filter for color image restoration using morphological detectors. International Journal on Computer Science and Engineering, 2009, vol. 1, no. 3, p. 217–221.
  26. PETITCOLAS, F. A. P. Watermarking schemes evaluation. IEEE Signal Processing, 2000, vol. 17, no. 5, p. 58–64. DOI: 10.1109/79.879339

Keywords: Digital watermarking, image normalization, geometric and signal processing distortions, convolutional encoder, Viterbi decoder, discrete cosine transform.

A. Kar, M. Chandra [references] [full-text] [DOI: 10.13164/re.2015.0252] [Download Citations]
An Improved Variable Structure Adaptive Filter Design and Analysis for Acoustic Echo Cancellation

In this research an advance variable structure adaptive Multiple Sub-Filters (MSF) based algorithm for single channel Acoustic Echo Cancellation (AEC) is proposed and analyzed. This work suggests a new and improved direction to find the optimum tap-length of adaptive filter employed for AEC. The structure adaptation, supported by a tap-length based weight update approach helps the designed echo canceller to maintain a trade-off between the Mean Square Error (MSE) and time taken to attain the steady state MSE. The work done in this paper focuses on replacing the fixed length sub-filters in existing MSF based AEC algorithms which brings refinements in terms of convergence, steady state error and tracking over the single long filter, different error and common error algorithms. A dynamic structure selective coefficient update approach to reduce the structural and computational cost of adaptive design is discussed in context with the proposed algorithm. Simulated results reveal a comparative performance analysis over proposed variable structure multiple sub-filters designs and existing fixed tap-length sub-filters based acoustic echo cancellers.

  1. SCHULDT, C., LINDSTROMB, F., LI, H., CLAESSON, I. Adaptive filter length selection for acoustic echo cancellation. Signal Processing, 2009, vol. 89, no. 6, p.1185–1194. DOI: 10.1016/j.sigpro.2008.12.023
  2. GUPTA, V. K., CHANDRA, M., SARAN, S. N. Acoustic echo and noise cancellation system for hand-free telecommunication using variable step size algorithms. Radioengineering, 2013, vol. 22, no. 1, p. 200–207.
  3. GONG, Y., COWAN, C. F. N. An LMS style variable tap-length algorithm for structure adaptation. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 7, p. 2400–2407. DOI: 10.1109/TSP.2005.849170
  4. KAR, A., CHANDRA, M. Pseudo-fractional tap-length learning based applied soft computing for structure adaptation of LMS in high noise environment. In Soft Computing Techniques in Engineering Applications, p. 115–129, Springer-Verlag, Germany, 2014. DOI: 10.1007/978-3-319-04693-8_8
  5. KAR, A., CHANDRA, M. A minimized complexity dynamic structure adaptive filter design for improved steady state performance analysis. International Journal of Computational Vision and Robotics, 2014, vol. 3, no. 4, p. 326–340. DOI: 10.1504/IJCVR.2013.059100
  6. LI, L. Adaptive algorithms and variable structures for distributed estimation. Ph.D. Thesis, Advanced Signal Processing Group, Loughborough University, 2009.
  7. WANG, X., SHEN, T., WANG, W. An approach for echo cancellation system based on improved NLMS algorithm. In Proceedings of IEEE Wireless Communications, Networking and Mobile Computing Conference. Shanghai (China), 2007, p. 2853 to 2856. DOI: 10.1109/WICOM.2007.708
  8. SHARMA, R. N., CHATURVEDI, A. K., SHARMA, G. Acoustic echo cancellation using multiple sub-filters. In Proc. of IEEE Conf. on Convergent Technologies for the Asia-Pacific Region TENCON 2003. Bangalore (India), 2003, p. 393–396. DOI: 10.1109/TENCON.2003.1273352
  9. BARIK, A., MURMU, G., BHARDWAJ, T. P., NATH, R. LMS adaptive multiple sub-filters based acoustic echo cancellation. In Proceedings of the IEEE International Conference on Computer and Communication Technology. Allahabad (India), 2010, p. 824 to 827. DOI: 10.1109/ICCCT.2010.5640392
  10. NATH, R. Adaptive echo cancellation based on a multipath model of acoustic channel. Ph.D. Thesis. Dept. of Electrical Engineering Indian Institute of Technology Kanpur, UP, India, 2005.
  11. KAR, A., CHANDRA, M. Dynamic tap-length estimation based low complexity acoustic echo canceller. In Proceedings of the IEEE International Conference on Emerging Trends in Science, Engineering and Technology. Trichy (India), 2012, p. 339–343. DOI: 10.1109/INCOSET.2012.6513929
  12. WIDROW B., STERNS, S. D. Adaptive Signal Processing. Prentice Hall, Englewood Cliffs, NJ,1985.
  13. MAYYAS, K., ABOUNASR, T. Reduced-complexity transformdomain adaptive algorithm with selective coefficient update. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2004, vol. 51, no. 3, p. 136–142. DOI: 10.1109/TCSII.2003.822437
  14. MAYYAS, K. New transform-domain adaptive algorithms for acoustic echo cancellation. Digital Signal Processing, 2003, vol. 13, no. 3, p. 415-432. DOI: 10.1016/S1051-2004(03)00004-6
  15. KELLERMANN, W. Echo Cancellation. Handbook of Signal Processing in Acoustics. Springer-Verlag, Germany, vol. 1, p. 883–895, 2009.
  16. YU, H., LIU, Z., LI, G. A VSLMS style tap-length learning algorithm for structure adaptation. In Proceedings of IEEE International Conference on Communication Systems. Guangzhou (China), 2008, p. 503–508. DOI: 10.1109/ICCS.2008.4737235

Keywords: Adaptive filter, acoustic echo cancellation, variable structure design, multiple sub-filters, least mean square, mean square error, convergence.

P. C. Xu, Y. H. Shen, H. Li [references] [full-text] [DOI: 10.13164/re.2015.0262] [Download Citations]
New Negentropy Optimization Schemes for Blind Signal Extraction of Complex Valued Sources

Blind signal extraction, a hot issue in the field of communication signal processing, aims to retrieve the sources through the optimization of contrast functions. Many contrasts based on higher-order statistics such as kurtosis, usually behave sensitive to outliers. Thus, to achieve robust results, nonlinear functions are utilized as contrasts to approximate the negentropy criterion, which is also a classical metric for non-Gaussianity. However, existing methods generally have a high computational cost, hence leading us to address the problem of efficient optimization of contrast function. More precisely, we design a novel “reference-based” contrast function based on negentropy approximations, and then propose a new family of algorithms (Alg.1 and Alg.2) to maximize it. Simulations confirm the convergence of our method to a separating solution, which is also analyzed in theory. We also validate the theoretic complexity analysis that Alg.2 has a much lower computational cost than Alg.1 and existing optimization methods based on negentropy criterion. Finally, experiments for the separation of single sideband signals illustrate that our method has good prospects in real-world applications.

  1. VAN DER VEEN, A.-J. Algebraic methods for deterministic blind beamforming. Proceedings of. IEEE, Oct. 1998, vol. 86, no. 10, p. 1987–2008. DOI: 10.1109/5.720249
  2. RAJU, K., RISTANIEMI, T., KARHUNEN, J., OJA, E. Suppression of bitpulsed jammer signals in DS-CDMA array system using independent component analysis. In Proceedings of the Int. Symp. on Circuits and Systems ISCAS 2002. Phoenix-Scottsdale (Arizona, USA), May 2002, vol. 1, p. 189–192. DOI: 10.1109/ISCAS.2002.1009809
  3. WAHEED, K. SALEM, F. M. Blind information-theoretic multiuser detection algorithms for DS-CDMA and WCDMA downlink systems. IEEE Transactions on Neural Networks, July 2005, vol. 16, no. 4, p. 937–948. DOI: 10.1109/TNN.2005.849848
  4. KWAK, K. C., PEDRYCZ, W. Face recognition using an enhanced independent component analysis approach. IEEE Transactions on Neural Networks, March 2007, vol. 18, no. 2, p. 530–541. DOI: 10.1109/TNN.2006.885436
  5. CALHOUN, V. D., ADALI, T. Unmixing fMRI with independent component analysis. IEEE Engineering in Medicine and Biology Magazine, Apr. 2006, vol. 25, no. 2, p. 79–90.
  6. ANNEMULLER, J., SEJNOWSKI, T. J., MAKEIG, S. Complex spectral domain independent component analysis of electroencephalographic data. In 4th international Symposium on Independent Component Analysis and Blind Signal Separation ICA2003. Nara (Japan), March 2003, p. 47–52.
  7. HUANG, D. S., MI, J. X. A new constrained independent component analysis method. IEEE Transactions on Neural Networks, Sep. 2007, vol. 18, no. 5, p. 1532–1535. DOI: 10.1109/TNN.2007.895910
  8. CHAUMETTE, E., COMON, P., MULLER, D. ICA-based technique for radiating sources estimation: Application to airport surveillance. In Inst. Electr. Eng. Proc., 1993, vol. 140, no. 6, p. 395–401.
  9. KARLSEN, B., SORENSEN, H. B., LARSEN, J., JACKOBSEN, K. B. Independent component analysis for clutter reduction in ground penetrating radar data. In Proc. SPIE, Detection and Remediation Technologies for Mines and Minelike Targets VII, 2002, vol. 4742, p. 378–389. DOI:10.1117/12.479110
  10. COMON, P., JUTTEN, C. Handbook of Blind Source Separation: Independent Component Analysis and Applications. New York: Elsevier, 2010.
  11. MOREUA, E., THIRION-MOREUA, N. Nonsymmetrical contrasts for sources separation. IEEE Transactions on. Signal Processing, 1999, vol. 47, no. 8, p. 2241–2252. DOI: 10.1109/78.774767
  12. DOUGLAS, S. C. Fixed-point algorithms for the blind separation of arbitrary complex-valued non-Gaussian signal mixtures. EURASIP Journal on Advances in Signal Processing, 2007, p. 1–15. DOI: 10.1155/2007/36525
  13. LI, Y., WANG, J., CICHOCKI, A. Blind source extraction from convolutive mixtures in ill-conditioned multi-input multi-output channels. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, vol. 51, no. 9, p. 1814–1822. DOI: 10.1109/ TCSI.2004.832723
  14. HYVARINEN, A. One-unit contrast functions for independent component analysis: A statistical analysis. In Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing. Amelia Island (FL, USA), Sep. 1997, p. 388–397. DOI: 10.1109/NNSP.1997.622420
  15. NOVEY, M., ADALI, T. Complex ICA by negentropy maximization. IEEE Transactions on Neural Networks, 2008, vol. 19, no. 4, p. 596–609. DOI: 10.1109/TNN.2007.911747
  16. BINGHAM, E., HYVARINEN, A. A fast fixed-point algorithm for independent component analysis of complex valued signals. International Journal of Neural Systems, 2000, vol. 10, p. 1–8. DOI: 10.1142/S0129065700000028
  17. NOVEY, M., ADALI, T. On extending the complex fastICA algorithm to noncircular sources. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 5, p. 2148–2154. DOI: 10.1109/TSP.2007.911278
  18. DURAN-DIAZ, I., CRUCES, S., SARMIENTO-VEGA, M. A., AGUILERA-BONET, P. Cyclic maximization of non-Gaussianity for blind signal extraction of complex-valued sources. Neurocomputing, 2011, vol. 74, p. 2867–2873. DOI: 10.1016/j.neucom.2011.03.031
  19. CASTELLA, M., RHIOUI, S., MOREAU, E., PESQUET, J.-C. Quadratic higher-order criteria for iterative blind separation of a MIMO convolutive mixture of sources. IEEE Transactions on Signal Processing, Jan. 2007, vol. 55, no. 1, p. 218–232. DOI: 10.1109/TSP.2006.882113
  20. DUBROCA, R., DE LUIGI, C., CASTELLA, M., MOREAU, E. A general algebraic algorithm for blind extraction of one source in a MIMO convolutive mixture. IEEE Transactions on Signal Processing, May 2010, vol. 58, no. 5, p. 2484–2493. DOI: 10.1109/TSP.2010.2042487
  21. CASTELLA, M., MOREAU, E. New kurtosis optimization schemes for MISO equalization. IEEE Transactions on Signal Processing, March 2012, vol. 60, no. 3, p. 1319–1330. DOI: 10.1109/TSP.2011.2177828
  22. KAWAMOTO, M., KOHNO, K., INOUYE, Y. Eigenvector algorithms incorporated with reference systems for solving blind deconvolution of MIMO-IIR linear systems. IEEE Signal Processing Letters, Dec. 2007, vol. 14, no. 12, p. 996–999. DOI: 10.1109/LSP.2007.906225
  23. CASTELLA, M., MOREAU, E. A new optimization method for reference-based quadratic contrast functions in a deflation scenario. In Proc.of IEEE Int. Conf. Acoustics, Speech and Signal Processing ICASSP 2009. Taipei, (Taiwan), Apr. 2009, p. 3161–3164. DOI: 10.1109/ICASSP.2009.4960295
  24. HYVARINEN, A., OJA, E. Independent component analysis: algorithms and applications. Neural Networks, June 2000, vol. 13, no. 4-5, p. 411–430.
  25. AMARI, S. Natural gradient works efficiently in learning. Neural Computation, 1998, vol. 10, p. 251–276.
  26. HYVARINEN, A., KARHUNEN, J., OJA, E. Independent Component Analysis. New York: Wiley press, 2001.
  27. DEMPSTER, A. P., LAIRD, N. M., RUBIN, D. B. Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Ser. B, 1977, vol. 39, no. 1, p. 1–38.
  28. HUNTER, D. R., LANGE, K. A tutorial on MM algorithms. Amer. Statist., Feb. 2004, vol. 58, no. 1, p. 30–37.
  29. HERZET, C., RAMON, V., VANDENDORPE, L., MOENECLAEY, M. EM algorithm-based timing synchronization in turbo receivers. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2003. HongKong (China), 2003, vol. 4, p. 612–615. DOI: 10.1109/ICASSP.2003.1202717
  30. SYKORA, J., VCELAK, J. Iterative EM based IMD synchronization for fast time-variant channel with subspace order recursive LS iterator. In Asia-Pacific Conference on Communications. Perth (Australia), 2005, vol. 2005, p. 921–925. DOI: 10.1109/APCC.2005.1554197
  31. GUENACH, M., WYMEERSCH, H., MOENECLAEY, M. Joint estimation of path delay and complex gain for coded systems using the EM algorithm. In International Zurich Seminar on Digital Communications. 2004, p. 216–219. DOI: 10.1109/IZS.2004. 1287428
  32. SYKORA, J., BURR, A. G. Iterative decoding networks with iteratively data eliminating SDD and EM based channel state estimator. In IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. 2004, vol. 2, p. 785–790. DOI: 10.1109/PIMRC.2004.1373807
  33. NOELS, N., HERZET, C., DEJONGHE, A., LOTTICI, V., STEENDAM, H., MOENECLAEY, M., LUISE, M., VANDENDORPE, L. Turbo synchronization: An EM algorithm interpretation. In IEEE International Conference on Communications ICC 2003. Anchorage (Alaska, USA), 2003, vol. 4, p. 2933–2937. DOI: 10.1109/ICC.2003.1204575
  34. RAMON, V., HERZET, C., VANDENDORPE, L., MOENECLAEY, M. EM algorithm-based multiuser synchronization in turbo receivers. In IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2004. Montreal (Canada), 2004, vol. 4, p. 849-852. DOI: 10.1109/ICASSP.2004.1326960
  35. FIGUEIREDO, M. A. T., BIOUCAS-DIAS, J. M., NOWAK, R. D. Majorization-minimization algorithms for wavelet-based image restoration. IEEE Transactions on Image Processing, Dec. 2007, vol. 16, no. 12, p. 2980–2991. DOI: 10.1109/TIP.2007.909318
  36. DELFOSSE, N., LOUBATON, P. Adaptive blind separation of independent sources: a deflation approach. Signal Processing, 1995, vol. 45, p. 59–83. DOI:10.1016/0165-1684(95)00042-C
  37. PROAKIS, J. G. Digital Communications. 5th ed. Asia: McGraw-Hill Education Co., 2007.

Keywords: Negentropy criterion, blind signal extraction, quadratic optimization, global convergence, reference system.

S. Duangsuwan, S. Promwong [references] [full-text] [DOI: 10.13164/re.2015.0272] [Download Citations]
ISI Cancellation Using Blind Equalizer Based on DBC Model for MIMO-RFID Reader Reception

Under the dyadic backscatter channel (DBC) model, a conventional zero forcing (ZF) and minimum mean square error (MMSE) method for MIMO-RFID reader reception are not able to be rapidly cancelled inter-symbol interference (ISI) because of the error of postpreamble transmission. In order to achieve the ISI cancellation, the conventional method of ZF and MMSE are proposed to resolve a convergence rate without postpreamble by using a constant modulus algorithm (CMA). Depending on the cost function, the CMA is used which based on second order statistics to estimate the channel statement of channel transfer function. Furthermore, the multiple-tag detection is also considered under the assumption of the maximum likelihood estimation. The comparison of the conventional method and the proposed method is analyzed by using computer simulation and experimental data. We can see that the proposed method is better than the conventional method with a faster ISI cancelling and a lower bit error rate (BER) improving as up to 12 tags.

  1. BOLIC, M., SIMPLOT-RYL, D., STOJMENOVIC, I. RFID Systems: Research Trends and Challenges. Wiley, 2010.
  2. BOYER, C., ROY, S. Code QAM backscatter modulation for RFID. IEEE Transactions on Communications, 2012, vol. 60, no. 7, p. 1925–1934. DOI: 10.1109/TCOMM.2012.051012.110317
  3. ABIDI, A., A. The path to the software-defined radio receiver. IEEE Journal of Solid-State Circuits, 2007, vol. 42, no. 5, p. 954–966. DOI: 10.1109/JSSC.2007.894307
  4. GREY, S., VOM BOGEL, G., GRABMAIER, A. Flexible development and testing environment for implementation of new algorithms in RFID systems. In Proceedings of Fourth International EURASIP Workshop on RFID Technology. Torino (Italy), 2012, p. 35–40. DOI: 10.1109/RFID.2012.9
  5. CANTUCCINI, L., DE DONNO, D., COLELLA, R., RICCIATO, F., TARRICONE, L. A cost-effective SDR platform for performance characterization of RFID tags. IEEE Transaction on Instrumentation and Measurement, 2012, vol. 61, no. 4, p. 903–910. DOI: 10.1109/TIM.2011.2174899
  6. DE DONNO, D., RICCIATO, F., TARRICONE, L. Listening to tags: Uplink RFID measurements with an open-source software-defined radio tool. IEEE Transaction on Instrumentation and Measurement, 2013, vol. 62, no. 2, p. 109–117. DOI: 10.1109/TIM.2012.2212513
  7. YANJUN ZUO. Survivable RFID system: issues, challenges, and techniques. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2010, vol. 40, no. 4, p. 406–418. DOI: 10.1109/TSMCC.2010.2043949
  8. DUANGSUWAN, S., PROMWONG, S. Performance evaluation of RFID reader with blind filtering equalization for SDR platform. In Proceedings of the 26th International Technical Conference on Circuits/Systems, Computers and Communications. Gyeongju (Korea), 2011, p. 42–45.
  9. CHEN HE, WANG, J. Impact of the correlation between forward and backscatter channels on RFID system performance. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague (Czechia), 2011, p. 3540–3543. DOI: 10.1109/ICASSP.2011.5946242
  10. GRIFFIN, J. D., DURGIN, G. D. Gains for RF tags using multiple antennas. IEEE Transactions on Antennas and Propagations, 2008, vol. 56, no. 2, p. 563–570. DOI: 10.1109/TAP.2007.915423
  11. ZHANG, G., ZHANG, Y., KANG, W. Low-complexity channel estimation for the UHF MIMO-RFID system with optimal training. International Journal of Advancements in Computing Technology, 2012, vol. 4, no. 1, p. 387–394.
  12. HE, C., CHEN, X., WANG, Z. J., SU, W. On the performance of MIMO RFID backscattering channels. EURASIP Journal on Wireless Communications and Networking, 2012, vol. 1, no. 357, p. 1–15. DOI: 10.1186/1687-1499-2012-357
  13. FENG ZHENG, KAISER, T. On the transmit signal design at the reader for RFID MIMO system. In Proceedings of Fourth International EURASIP Workshop on RFID Technology. Torino (Italy), 2012, p. 59–64. DOI: 10.1109/RFID.2012.11
  14. BOYER, C., ROY, S. Space time coding for backscatter RFID. IEEE Transactions on Wireless Communications, 2013, vol. 12, no. 5, p. 2272–2280. DOI: 10.1109/TWC.2013.031313.120917
  15. MINDIKOGLU, A. F., VAN DER VEEN, A. J. Separation of overlapping RFID signals by antenna arrays. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Las Vegas (USA), 2008, p. 2737–2740. DOI: 10.1109/ICASSP.2008.4518215
  16. KAITOVIC, J., LANGWIESER, R., RUPP, M. RFID reader with multi antenna physical layer collision recovery receivers. In Proceedings of IEEE International Conference on RFID-Technologies and Applications. Sitges (Spain), 2011, p. 286–291. DOI: 10.1109/RFIDTA.2011.6068651
  17. DO-YUN KIM, ET AL. Reverse-link interrogation range of a UHF MIMO-RFID system in nakagami-m fading channels. IEEE Transactions on Industrial Electronics, 2010, vol. 57, no. 4, p. 1468–1477. DOI: 10.1109/TIE.2009.2030134
  18. ANGERER, C., LANGWIESER, R., RUPP, M. RFID reader receivers for physical layer collision recovery. IEEE Transactions on Communications, 2010, vol. 58, no. 12, p. 3526–3537. DOI: 10.1109/TCOMM.2010.101910.100004
  19. ANGERER, C., LANGWIESER, R., MAIER, G., RUPP, M. Maximal ratio combining receivers for dual antenna RFID readers. In IEEE MTT-S International Microwave Worskhop on Wireless Sensing, Local Positioning and RFID. Cavtat (Croatia), 24-25 Sept. 2009, p. 1 - 4. DOI: 10.1109/IMWS2.2009.5307888
  20. KAITOVIC, J., SIMKO, M., LANGWIESER, R., RUPP, M. Channel estimation in tag collision scenario. In Proceedings of IEEE International Conference on RFID. Orlando (USA), 2012, p. 74–80. DOI: 10.1109/RFID.2012.6193059
  21. FYHN, K., JACOBSEN, R. M., POPOVSKI, P., SCAGLIONE, A., LARSEN, T. Mutlipacket reception of passive UHF RFID tags: a communication theoretic approach. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 9, p. 4225–4236. DOI: 10.1109/TSP.2011.2159499
  22. BAI YU, ZHANG LIYI, TENG JIANFU. The application of the CMA blind equalization in UHF RFID system. In IET Conference on Wireless, Mobile and Sensor Networks. Shanghai (China), 2007, p. 326–329.
  23. YE LI, LIU, K. J. R. Adaptive blind source separation and equalization for multiple-input/multiple-output systems. IEEE Transaction on Information Theory, 1998, vol. 44, no. 7, p. 2864–2876. DOI: 10.1109/18.737518
  24. TUGCU, E., CAKIR, F., OZEN, A. A new step size control technique for blind and non-blind equalization algorithms. Radioengineering, 2013, vol. 22, no. 1, p. 44–51.

Keywords: RFID reader reception, MIMO receiver, DBC model, blind equalizer, ISI cancellation.

M. Hadavi, M. Radmard, M. M. Nayebi [references] [full-text] [DOI: 10.13164/re.2015.0280] [Download Citations]
A New MCMC Sampling Based Segment Model for Radar Target Recognition

One of the main tools in radar target recognition is high resolution range profile (HRRP)‎. ‎However‎, ‎it is very sensitive to the aspect angle‎. ‎One solution to this problem is to assume the consecutive samples of HRRP identically independently distributed (IID) in small frames of aspect angles‎, ‎an assumption which is not true in reality‎. ‎However, b‎‎ased on this assumption‎, ‎some models have been developed to characterize the sequential information contained in the multi-aspect radar echoes‎. ‎Therefore‎, ‎they only consider the short dependency between consecutive samples‎. ‎Here‎, ‎we propose an alternative model‎, ‎the segment model‎, ‎to address the shortcomings of these assumptions‎. ‎In addition‎, ‎using a Markov chain Monte-Carlo (MCMC) based Gibbs sampler as an iterative approach to estimate the parameters of the segment model‎, ‎we will show that the proposed method is able to estimate the parameters with quite satisfying accuracy and computational load‎.

  1. RABINER, L. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 1989, vol. 77, no. 2, p. 257–286. DOI: 10.1109/5.18626
  2. OSTENDORF, M., DIGALAKIS, V., KIMBALL, O. A. From HMM’s to segment models: A unified view of stochastic modeling for speech recognition. IEEE Transactions on Speech and Audio Processing, 1996, vol. 4, no. 5, p. 360–378. DOI: 10.1109/89.536930
  3. LEE, C., SOONG, F. K., JUANG, B. A segment model based approach to speech recognition. In International Conference on Acoustics, Speech, and Signal Processing (ICASSP). New York (USA), 1988, p. 501–541. DOI: 10.1109/ICASSP.1988.196629
  4. TSAO, Y., SUN, H., LI, H., LEE, C. An acoustic segment model approach to incorporating temporal information into speaker modeling for text-independent speaker recognition. In IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP). Dallas (TX, USA), 2010, p. 4422–4425. DOI: 10.1109/ICASSP.2010.5495617
  5. NUO, Z., WEI, C. High range resolution profile automatic target recognition using sparse representation. Chinese Journal of Aeronautics, 2010, vol. 23, no. 5, p. 556–562. DOI: 10.1016/S1000- 9361(09)60254-5
  6. XING, M., BAO, Z., PEI, B. Properties of high-resolution range pro- files. Optical Engineering, 2002, vol. 41, no. 2, p. 493–504. DOI: 10.1117/1.1431251
  7. LIAO, X., BAO, Z., XING, M. On the aspect sensitivity of high resolution range profiles and its reduction methods. In IEEE International Radar Conference, 2000, p. 310–315. DOI: 10.1109/RADAR.2000.851852
  8. ZHU, F., ZHANG, X., HU, Y., XIE, D. Nonstationary hidden Markov models for multiaspect discriminative feature extraction from radar targets. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 5, p. 2203–2214. DOI: 10.1109/TSP.2007.892708
  9. DU, L., LIU, H., BAO, Z. Radar HRRP statistical recognition: Parametric model and model selection. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 5, p. 1931–1944. DOI: 10.1109/TSP.2007.912283
  10. AJORLOO, A., HADAVI, M., NAYEBI, M. M., BASTANI, M. H. Statistical modeling of consecutive range profiles for radar target recognition. In 14th International Radar Symposium (IRS). Dresden (Germany), 2013, vol. 2, p. 608–613.
  11. AJORLOO, A., HADAVI, M., BASTANI, M. H., NAYEBI, M. M. Radar target recognition using dynamic system model. In IEEE Radar Conference. 2014, p. 1446-1450. DOI: 10.1109/RADAR.2014.6875828
  12. AJORLOO, A., HADAVI, M., BASTANI, M. H., NAYEBI, M. M. Radar HRRP modeling using dynamic system for radar target recognition. Radioengineering, 2014, vol. 23, no. 1, p. 121–127.
  13. SKOLNICK, M. I. Introduction to Radar Systems. McGraw-Hill, 2002.
  14. LI, J., STOICA, P. Efficient mixed-spectrum estimation with applications to target feature extraction. IEEE Transactions on Signal Processing, 1996, vol. 44, no. 2, p. 281–295. DOI: 10.1109/78.485924
  15. CUI, J., GUDNASON, J., BROOKES, M. Hidden Markov models for multi-perspective radar target recognition. In IEEE Radar Conference. Rome (Italy), 2008, p. 1–5. DOI: 10.1109/RADAR.2008.4721004
  16. MA, B., ZHU, D., LI, H. Acoustic segment modeling for speaker recognition. In IEEE International Conference on Multimedia and Expo (ICME). New York (USA), 2009, p. 1668–1671. DOI: 10.1109/ICME.2009.5202841
  17. WANG, H., LEE, T., LEUNG, C. Unsupervised spoken term detection with acoustic segment model. In International Conference on Speech Database and Assessments (Oriental COCOSDA). Hsinchu (Taiwan), 2011, p. 106–111. DOI: 10.1109/ICSDA.2011.6085989
  18. KOTTKE, D. P., FWU, J., BROWN, K. Hidden Markov modeling for automatic target recognition. In Conference Record of the ThirtyFirst Asilomar Conference on Signals, Systems & Computers. Pacific Grove (CA, USA), 1997, vol. 1, p. 859–863. DOI: 10.1109/ACSSC.1997.680565
  19. ANDRIEU, C., DOUCET, A., FITZGERALD, W. J. An introduction to Monte Carlo methods for Bayesian data analysis. Nonlinear Dynamics and Statistics. Springer, 2001, p. 169–217. DOI: 10.1007/978-1-4612-0177-9 7
  20. DJURIC, P. M., CHUN, J. An MCMC sampling approach to estimation of nonstationary hidden Markov models. IEEE Transactions on Signal Processing, 2002, vol. 50, no. 5, p. 1113–1123. DOI: 10.1109/78.995067
  21. DIACONIS, P. The Markov chain Monte Carlo revolution. Bulletin of the American Mathematical Society, 2008, vol. 46, no. 2, p. 179–205. DOI: 10.1090/S0273-0979-08-01238-X
  22. ANDRIEU, C., DEFREITAS, N., DOUCET, A., JORDAN, M. I. An introduction to MCMC for machine learning. Machine Learning, 2003, vol. 50, no. 1-2, p. 5–43. DOI: 10.1023/A:1020281327116

Keywords: Radar target recognition‎, ‎segment model‎, ‎Markov chain Monte-Carlo‎, ‎Gibbs sampler

F. Li, L. Geng, S. Zhu [references] [full-text] [DOI: 10.13164/re.2015.0288] [Download Citations]
Joint Dynamic Radio Resource Allocation and Mobility Load Balancing in 3GPP LTE Multi-Cell Network

Load imbalance, together with inefficient utilization of system resource, constitute major factors responsible for poor overall performance in Long Term Evolution (LTE) network. In this paper, a novel scheme of joint dynamic resource allocation and load balancing is proposed to achieve a balanced performance improvement in 3rd Generation Partnership Project (3GPP) LTE Self-Organizing Networks (SON). The new method which aims at maximizing network resource efficiency subject to inter-cell interference and intra-cell resource constraints is implemented in two steps. In the first step, an efficient resource allocation, including user scheduling and power assignment, is conducted in a distributed manner to serve as many users in the whole network as possible. In the second step, based on the resource allocation scheme, the optimization objective namely network resource efficiency can be calculated and load balancing is implemented by switching the user that can maximize the objective function. Lagrange Multipliers method and heuristic algorithm are used to resolve the formulated optimization problem. Simulation results show that our algorithm achieves better performance in terms of user throughput, fairness, load balancing index and unsatisfied user number compared with the traditional approach which takes resource allocation and load balancing into account, respectively.

  1. TR 36.902, 3RD GENERATION PARTNERSHIP PROJECT. Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Self-configuring and self-optimizing network use cases and solutions; Protocol specification (Release 9).
  2. VIERING, I., DOTTLING, M., LOBINGER, A. A mathematical perspective of self-optimizing wireless networks. In IEEE International Conference on Communications ICC’09. Dresden (Germany), 2009, p. 1–6.
  3. LOBINGER, A. STEFANSKI, S., JANSEN, T., BALAN, I. Load balancing in downlink LTE self-optimizing networks. In IEEE 71th Vehicular Technology Conference. Taipei (Taiwan), 2010, p. 1–5. DOI: 10.1109/VETECS.2010.5493656
  4. KWAN, R., ARNOTT, R., PATERSON, R., TRIVISONNO, R., KUBOTA, M. On mobility load balancing for LTE systems. In IEEE 72th Vehicular Technology Conference. Ottawa (Canada), 2010, p. 1–5. DOI: 10.1109/VETECF.2010.5594565
  5. ZHANG, L., LIU, Y., ZHANG, M. G., JIA, S. C., DUA, X. Y. A two-layer mobility load balancing in LTE self-organization networks. In Proceedings of IEEE 13th International Conference on Microwave Conference on Communication Technology. Jinan (China), 2011, p. 925–929. DOI: 10.1109/ICCT.2011.6158014
  6. HU, H. L., ZHANG, J., ZHENG, X. Y., YANG, Y., WU, P. Selfconfiguration and self-optimization for LTE networks. IEEE Communications Magazine, 2010, vol. 48, no. 2, p. 94–100. DOI: 10.1109/MCOM.2010.5402670
  7. LI, Z. H., WANG, H., PAN, Z. W., LIU, N., YOU X. H. Joint optimization on load balancing and network load in 3gpp lte multi-cell networks. In Proceedings of International Conference on Wireless Communications and Signal Processing WCSP’2011. Nanjing (China), 2011, p. 1–5. DOI: 10.1109/WCSP.2011.6096768
  8. TONGUZ, O. K., YANMAZ, E. The mathematical theory of dynamic load balancing in cellular networks. IEEE Transactions on Mobile Computing, 2008, vol. 7, no. 12, p. 1504–1518. DOI: 10.1109/TMC.2008.66
  9. GIOVANIDIS, A., LIAO, Q., STANCZAKY, S. A distributed interference-aware load balancing algorithm for LTE multi-cell networks. In International ITG Workshop on Smart Antennas. Dresden (Germany), 2012, p. 28–35. DOI: 10.1109/WSA.2012.6181222
  10. SANG, A., WANG, X., MADIHIAN, M., GITLIN, R. D. Coordinated load balancing, handover/cell-site selection, and scheduling in multi-cell packet data systems. Wireless Networks, 2008, vol. 14, no. 1, p. 103–120. DOI: 10.1145/1023720.1023750
  11. YANG, Y., DONG, W. X., CHEN, X. H., et al. A utility-based load-balancing scheme with guarantee of users' rate for LTE selforganization networks. International Journal of Network Management, 2013, vol. 23, p. 172–185. DOI: 10.1002/nem.1824
  12. KATOOZIAN, M., NAVAIE, K., YANIKOMEROGLU, H. Utility-based adaptive radio resource allocation in OFDM wireless networks with traffic prioritization. IEEE Transactions on Wireless Communications, 2009, vol. 8, no. 1, p. 66–71. DOI: 10.1109/TWC.2009.080033
  13. ZHANG, H. H., RANGARAJAN, S. Joint load balancing, scheduling, and interference mitigation in multi-cell and multicarrier wireless data systems. In 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks. Seoul (South Korea), 2009, p. 1–10. DOI: 10.1109/WIOPT.2009.5291637
  14. SON, K., CHONG, S., VECIANA, G. Dynamic association for load balancing and interference avoidance in multi-cell networks. IEEE Transactions on Wireless Communications, 2009, vol. 8, no. 7, p. 3566–3576. DOI: 10.1109/TWC.2009.071140
  15. YU, Y. W., DUTKIEWICZ, E., HUANG, X. J., MUECK, M. Downlink resource allocation for next generation wireless networks with inter-cell interference. IEEE Transactions on Wireless Communications, 2013, vol. 12, no. 4, p. 1783–1793. DOI: 10.1109/TWC.2013.030413.120760
  16. FATHI, M., KARIPIDIS, E. Distributed resource optimization in multicell OFDMA networks. In Proceedings of IEEE Wireless Communications and Networking Conference. Shanghai (China), 2012, p. 1316–1320. DOI: 10.1109/WCNC.2012.6213982
  17. LI, G. Q., LIU, H. Downlink radio resource allocation for multicell ofdma system. IEEE Transactions on Wireless Communications, 2006, vol. 5, no. 12, p. 3451–3459. DOI: 10.1109/TWC.2006.256968
  18. SHEN, Z. K., ANDREWS, J. G., EVANS, B. L. Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints. IEEE Transactions on Wireless Communications, 2005, vol. 4, no. 6, p. 2726–2737. DOI: 10.1109/TWC.2005.858010
  19. JANG, J. H., LEE, K. B. Transmit power adaptation for multiuser OFDM systems. IEEE Journal on Selected Areas in Communications, 2003, vol. 21, no. 2, p. 171–178. DOI: 10.1109/JSAC.2002.807348
  20. VISWANATH, P., TSE, D. N. C., ANANTHARAM, V. Asymptotically optimal water-filling in vector multiple-access channels. IEEE Transactions on Information Theory, 2001, vol. 47, no. 1, p. 241–267. DOI: 10.1109/18.904525

Keywords: Load balancing, resource allocation, LTE SON, efficiency and fairness

Zongsheng Zhang, Qihui Wu, Jinlong Wang [references] [full-text] [DOI: 10.13164/re.2015.0296] [Download Citations]
ARQ Protocols in Cognitive Decode-and-Forward Relay Networks: Opportunities Gain

In this paper, two novel automatic-repeat-request (ARQ) based protocols were proposed, which exploit coop- eration opportunity inherent in secondary retransmission to create access opportunities. If the signal was not decoded correctly in destination, another user can be acted as a relay to reduce retransmission rounds by relaying the signal. For comparison, we also propose a Direct ARQ Protocol. Specif- ically, we derive the exact closed-form outage probability of three protocols, which provides an effective means to evalu- ate the effects of several parameters. Moreover, we propose a new metric to evaluate the performance improvement for cognitive networks. Finally, Monte Carlo simulations were presented to validate the theory analysis, and a comparison is made among the three protocols.

  1. Federal Communications Commission. Spectrum Policy Task Force Report, FCC 02-155. 2002.
  2. Federal Communications Commission. Second Report and Order, FCC 08-260. 2008.
  3. MITOLA, J., MAGUIRE, G. Q. Jr. Cognitive radios: making software radio more personal. IEEE Personal Communications, 1999, vol. 6, no. 4, p. 13–18. DOI: 10.1109/98.788210
  4. MITOLA, J. Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio, Ph. D. dissertation. Stockholm (Sweden) KTH Royal Institute of Technology, 2000.
  5. XU, Y., WANG, J., WU, Q., ZHANG, Z., ANPALAGAN, A., SHEN, L. Optimal energy-efficient channel exploration for opportunistic spectrum usage. IEEE Wireless Commmunication Letters, 2012, vol. 1, no. 2, p. 77–80. DOI: 10.1109/WCL.2012.012012.110257
  6. ZHANG, Z., HUI, Q., WANG, J. Energy-efficient power allocation strategy in cognitive relay networks. Radioengineering, 2012, vol. 21, no. 3, p. 809–814.
  7. WU, Q., HAN, H., WANG, J., ZHAO, Z., ZHANG, Z. Sensing task allocation for heterogeneous channels in cooperative spectrum sensing. Radioengineering, 2010, vol. 19, no. 4, p. 544–551.
  8. BLETSAS, A., SHIN, H., WIN, M. Z., LIPPMAN, A. A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 2006, vol. 24, no. 3, p. 659–672. DOI: 10.1109/JSAC.2005.862417
  9. ZHI, Q., CUI, S., SAYED, A. H. Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2008, vol. 2, no. 1, p. 28–40. DOI: 10.1109/JSTSP.2007.914882
  10. HOU, Y. T., SHI, Y., SHERALI, H. D. Spectrum sharing for multihop networking with cognitive radios. IEEE Journal of Selected Areas in Communications, 2008, vol. 26, no. 1, p. 146–155. DOI: 10.1109/JSAC.2008.080113
  11. GANNESAN, G., LI, Y. G. Cooperative spectrum sensing in cognitive radio – part I: Two user networks. IEEE Transactions on Wireless Communications, 2007, vol. 6, no. 6, p. 2204–2213. DOI: 10.1109/TWC.2007.05775
  12. SADEK, A. K., LIU, K. J. R., EPHREMIDES, A. Cognitive multiple access via cooperation: Protocol design and performance analysis. IEEE Transactions on Information Theory, 2007, vol. 53, no. 10, p. 3677–3696. DOI: 10.1109/TIT.2007.904784
  13. YANG, P., LUO, L., QIN, J. Outage performance of cognitive relay networks with interference from primary user. IEEE Communications Letters, 2012, vol. 16, no. 10, p. 1695–1698. DOI: 10.1109/LCOMM.2012.081612.121086
  14. DUONG, T. Q., ET AL. Cognitive relay networks with multiple primary transceivers under spectrum-sharing. IEEE Signal Processing Letters, 2012, vol. 19, no. 11, p. 741–744. DOI: 10.1109/LSP.2012.2217327
  15. ZHONG, C., RATNARAJAH, T., WONG, K. K. Outage analysis of decode-and-forward cognitive dual-hop systems with the interference constraint in Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 2011, vol. 60, no. 6, p. 2875–2879. DOI: 10.1109/TVT.2011.2159256
  16. DUONG, T. Q., ET AL. Outage and diversity of cognitive relaying systems under spectrum sharing environments in Nakagami-m fading. IEEE Communications Letters, 2012, vol. 16, no. 12, p. 2075– 2078. DOI: 10.1109/LCOMM.2012.100812.121859
  17. DUONG, T. Q., DA COSTA, D. B., ELKASHLAN, M., BAO, V. N. Q. Cognitive amplify-and-forward relay networks over Nakagami-m fading. IEEE Transactions on Vehicular Technology, 2012, vol. 61, no. 5, p. 2368–2374. DOI: 10.1109/TVT.2012.2192509
  18. TANNIOUS, R., NOSRATINIA, A. Coexistence through ARQ restransmission in fading cognitive radio channels. In IEEE International Symposium on Information Theory Proceedings. Austin (TX, USA), 2010, p. 2078–2082. DOI: 10.1109/ISIT.2010.5513394
  19. GUAN, X., CAI, Y., SHENG, Y., YANG, W. Exploiting primary retransmission to improve secondary throughput by cognitive relaying with best-relay selection. IET Communications, 2012, vol. 6, no. 2, p. 1769–1780. DOI: 10.1049/iet-com.2011.0940
  20. GRADSHTEYN, I. S., RYZHIK, I. M. Table of Integrals, Series, and Products, 5th ed. Orlando (FL, USA): Academic Press, 1994.

Keywords: Cognitive relay networks, outage probability, automatic-repeat-request

Yun Liu, Jiachen Yang, Rongrong Chu [references] [full-text] [DOI: 10.13164/re.2015.0305] [Download Citations]
Objective Evaluation Criteria for Shooting Quality of Stereo Cameras over Short Distance

Stereo cameras are the basic tools used to obtain stereoscopic image pairs, which can lead to truly great image quality. However, some inappropriate shooting conditions may cause discomfort while viewing stereo images. It is therefore considerably necessary to establish the perceptual criteria that can be used to evaluate the shooting quality of stereo cameras. This article proposes objective quality evaluation criteria based on the characteristics of parallel and toed-in camera configurations. Considering the different internal structures and basic shooting principles, this paper focuses on short-distance shooting conditions and establishes assessment criteria for both parallel and toed-in camera configurations. Experimental results show that the proposed evaluation criteria can predict the visual perception of stereoscopic images and effectively evaluate stereoscopic image quality.

  1. GOVINDU, V. M., POOJA, A. On averaging multiview relations for 3D scan registration. IEEE Transactions on Image Processing, 2014, vol. 23, no. 3, p. 1289–1302. DOI: 10.1109/TIP.2013.2246517
  2. KIM, D., CHOI, S., SOHN, K. Visual comfort enhancement for stereoscopic video based on binocular fusion characteristics. IEEE Transactions on Circuits and Systems for Video Technology, 2013, vol. 23, no. 3, p. 482–487. DOI: 10.1109/TCSVT.2012.2210658
  3. KAMENCAY, P., BREZNAN, M., JARINA, R., LUKAC, P., ZACHARIASOVA, M. Improved depth map estimation from stereo images based on hybrid method. Radioengineering, 2012, vol. 22, no. 4, p. 70–78.
  4. SLANINA, M., KRATOCHVIL, T., RICNY, V., BOLECEK, L., KALLER, O., POLAK, L. Testing QoE in different 3D HDTV technologies. Radioengineering, 2012, vol. 20, no. 1, p. 445–454.
  5. MACADAM, D. L. Stereoscopic perceptions of size shape distance and direction. Journal of the Society of Motion Picture and Television Engineers, 1954, vol. 62, no. 4, p. 271–293. DOI: 10.5594/J00917
  6. HERMAN, S. Principles of binocular 3D displays with applications to television. Journal of the Society of Motion Picture and Television Engineers, 1971, vol. 80, no. 7, p. 539–544. DOI: 10.5594/J00821
  7. KIM, D., SOHN, K. Visual fatigue prediction for stereoscopic image. IEEE Transactions on Circuits and Systems for Video Technology, 2011, vol. 21, no. 2, p. 231–236. DOI: 10.1109/TCSVT.2011.2106275
  8. BAE, K. H., KO, J. H., LEE, J. S. Stereo image reconstruction using regularized adaptive disparity estimation. Journal of Electronic Imaging, 2007, vol. 16, no. 1, p. 013013–013013-10. DOI: 10.1117/1.2710452
  9. YANO, S., EMOTO, M., MITSUHASHI, T. Two factors in visual fatigue caused by stereoscopic HDTV images. Displays, 2004, vol. 25, no. 4, p. 141–150. DOI: 10.1016/j.displa.2004.09.002
  10. OUYANG, W., XU, B. Pavement cracking measurements using 3D laser-scan images. Measurement Science and Technology, 2013, vol. 24, no. 10, p. 105204. DOI: 10.1088/0957-0233/24/10/105204
  11. PARK Y., ET AL. Stereoscopic 3D visual attention model considering comfortable viewing. In IET Conference on Image Processing (IPR 2012). London (UK), 2012, p. 1–5. DOI: 10.1049/cp.2012.0445
  12. HOFFMAN, D. M., ET AL. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision, 2008, vol. 8, no. 33, p. 1–30. DOI: 10.1167/8.3.33
  13. LIN, Y. H., WU, J. L. Quality assessment of stereoscopic 3D image compression by binocular integration behaviors. IEEE Transactions on Image Processing, 2014, vol. 23, no. 4, p. 1527–1542. DOI: 10.1109/TIP.2014.2302686
  14. YUN, N., FENG, Z. Y., YANG, J. C., LEI, J. J. The objective quality assessment of stereo image. Neurocomputing, 2013, vol. 120, p. 121–129. DOI: 10.1016/j.neucom.2012.06.059
  15. JAVUREK, R. Efficient models for objective video quality assessment. Radioengineering, 2004, vol. 13, no. 4, p. 48–50.
  16. IJSSELSTEIJN W. A., DE RIDDER, H., VLIEGEN, J. Subjective evaluation of stereoscopic images: effects of camera parameters and display duration. IEEE Transactions on Circuits and Systems for Video Technology, 2000, vol. 10, no. 2, p. 225–233. DOI: 10.1109/76.825722
  17. XU, D., CORIA, L., NASIOPOULOS, P. Guidelines for capturing high quality stereoscopic content based on a systematic subjective evaluation. 17th IEEE International Conference on Electronics Circuits and Systems. Athens (Greece), 2010, p. 162–165. DOI: 10.1109/ICECS.2010.5724479
  18. YAMANOUE, H., OKUI, M., OKANO, F. Geometrical analysis of puppet-theater and cardboard effects in stereoscopic HDTV images. IEEE Transactions on Circuits and Systems for Video Technology, 2006, vol. 16, no. 6, p. 744–752. DOI: 10.1109/TCSVT.2006.875213
  19. HASMANDA, M., RIHA, K. The modelling of stereoscopic 3D scene acquisition. Radioengineering, 2012, vol. 21, no. 4, p. 134– 142.
  20. TSUCHIDA, M., ET AL. Stereo one-shot six-band camera system for accurate color reproduction. Journal of Electronic Imaging, 2013, vol. 22, no. 3, p. 033025–033025. DOI: 10.1117/1.JEI.22.3.033025
  21. HAM, W., ET AL. Implementation of a three-dimensional stereo image capture system based on the multi-segment method. Journal of Electronic Imaging, 2012, vol. 21, no. 4, p. 043004-1–043004-13. DOI: 10.1117/1.JEI.21.4.043004
  22. YU, Z. J., LU, S. F. The research on modeling of stereo vision measurement and system accuracy in non-ideal situation. Applied Mechanics and Materials, 2011, vol. 121, p. 4837–4841. DOI: 10.4028/www.scientific.net/AMM.121-126.4837
  23. WANG, S. M. The key technology of stereoscopic photography. Motion Picture and Video Technology, 1998, vol. 2, p. 8–11.
  24. CHEN, E. Y., LU, S. W. Brief introduction of three-dimensional imaging shooting and reproduction principle. Television Engineers, 2010, vol. 3, p. 25–30.
  25. PARK, S. Y., MOON, J., LEE, N. Automatic vergence and focus control of a microstereoscopic camera. Journal of Electronic Imaging, 2009, vol. 18, no. 2, p. 023006–023006-9. doi:10.1117/1.3126384
  26. YAMANOUE, H., OKUI, M., OKANO, F. Geometrical analysis of puppet-theater and cardboard effects in stereoscopic HDTV images. IEEE Transactions on Circuits and Systems for Video Technology, 2006, vol. 16, no. 6, p. 744–752. DOI: 10.1109/TCSVT.2006.875213
  27. LEE, J., CHAE, K., JI, S. A research on controlling threedimensional effect of the video frames obtained from stereo camera. 8th International Conference on Information, Communications and Signal Processing (ICICS). Singapore, 2011, vol. 13, no. 16, p. 1–5. DOI: 10.1109/ICICS.2011.6173572
  28. TAKASHI, S., ET AL. The zone of comfort: Predicting visual discomfort with stereo displays. Journal of Vision, 2011, vol. 11, no. 8, p. 1–29. DOI: 10.1167/11.8.11
  29. KISHI, S., ABE, N., SHIBATA, T., KAWAI, T., MAEDA, M., HOSHI, K. Stereoscopic camera system with creator-friendly functions. Stereoscopic Displays and Applications XX, 2009, p. 72371M. DOI: 10.1117/12.807245
  30. WATTIE, J. Bercovitz formulae for stereo base. [Online] 2012. Available at: http://nzphoto.tripod.com/stereo/3dtake/fbercowitz.htm
  31. MENDIBURU, B. 3D Movie Making: Stereoscopic Digital Cinema From Scrip to Screen. Taylor and Francis CRC Press, 2009.
  32. YAMANOUE, H. The differences between toed-in camera con- figurations and parallel camera configurations in shooting stereoscopic images. In 2006 IEEE International Conference on Multimedia and Expo. Toronto (Canada), 2006, p. 1701–1704. DOI: 10.1109/ICME.2006.262877
  33. JONES, G. R., LEE, D., HOLLIMAN, N. S., EZRA, D. Controlling perceived depth in stereoscopic images. Stereoscopic Displays and Virtual Reality Systems VIII, 2001, p. 42–53. DOI: 10.1117/12.430855
  34. Stereo Vision and Bio-Optics Laboratory. [Online] 2014. Avalable at: http://www.svbolab.com
  35. ITU-R BT.2021 Subjective Methods for the Assessment of Stereoscopic 3DTV Systems. International Telecommunication Union, (2012).
  36. SEO, J., LIU, X., KIM, D., ET AL. An objective video quality metric for compressed stereoscopic video. Circuits, Systems, and Signal Processing, 2012, vol. 31, no. 3, p. 1089–1107. DOI: 10.1007/s00034-011-9369-7
  37. BOSLAUGH, S., WATTERS, P. A. Statistics in a Nutshell. O’Reilly Media, 2008.
  38. LAMBOOIJ, M., FORTUIN, M., HEYNDERICKX, I., IJSSELSTEIJN, W. Visual discomfort and visual fatigue of stereoscopic displays: A review. Journal of Imaging Science and Technology, 2009, vol. 53, no. 3, p. 30201-1–30201-14. DOI: 10.2352/J.ImagingSci.Technol.2009.53.3.030201
  39. WAN, X., XU, G. Camera parameters estimation and evaluation in active vision system. Pattern Recognition, 1996, vol. 29, no. 3, p. 439–447. DOI: 10.1016/0031-3203(94)00126-X
  40. SHAO, F., LIN, W., GU, S. Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics. IEEE Transactions on Image Processing, 2013, vol. 22, no. 5, p. 1940–1953. DOI: 10.1109/TIP.2013.2240003
  41. KIM, D., RYU, S., SOHN, K. Depth perception and motion cue based 3D video quality assessment. In 2012 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. Seoul (Korea), 2012, p. 1–4. DOI: 10.1109/BMSB.2012.6264272
  42. CHOU, C.-H., LI, Y.-C. A perceptually tuned subband image coder based on the measure of just-noticeable distortion profile. IEEE Transaction on Circuits and Systems for Video Technology, 1995, vol. 5, no. 6, p. 467–476. DOI: 10.1109/76.475889
  43. DRAPER, N. R., SMITH, H. Applied Regression Analysis, 3rd ed. New York: Wiley, 1998.
  44. RAZALI, A. M., AL-WAKEEL A. A. Mixture Weibull distributions for fit-ting failure times data. Applied Mathematics and Computation, 2013, vol. 219, no. 24, p. 11358–11364. DOI: 10.1016/j.amc.2013.05.062

Keywords: stereo camera, objective evaluation, shooting princi-ples, stereoscopic image pairs, short-distance shooting, parallel and toed-in camera configurations.