ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)



Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile

December 2015, Volume 24, Number 4 [DOI: 10.13164/re.2015-4]

Show all Hide all

J. Vrba, D. Vrba [references] [full-text] [DOI: 10.13164/re.2015.0877] [Download Citations]
A Microwave Metamaterial Inspired Sensor for Non-Invasive Blood Glucose Monitoring

In this paper, a microwave sensor based on an artificial transmission line is proposed for non-invasive blood glucose monitoring. A corresponding numerical model of the sensor implemented in microstrip technology is created in the commercial full-wave numerical simulation tool COMSOL Multiphysics and virtually tested by means of numerical simulations. Blood-glucose solution models with various blood glucose concentrations are used as a model of a biological tissue under test. Furthermore, a possible methodology for performing non-invasive tests is proposed. Sensitivity of the sensor developed here is compared to a sensor based on a section of a conventional microstrip transmission line of the same length and width.

  1. International Diabetes Federation. IDF Diabetes Atlas, Sixth edition. [Online] 2013. ISBN 2930229853. Available at:
  2. CNOGA Medical Ltd. [Online] Cited 2015-06-14. Available at
  3. Integrity Applications. [Online] Cited 2015-06-14. Available at: Integrity-Applications-Fact-Sheet-September-2014.pdf
  4. OTIS, B., LIAO, Y.-T., AMIRPARVIZ, B. Wireless Powered Contact Lens with Glucose Sensor. US Patent US20120245444A1
  5. Google Inc. [Online] Cited 2015-06-14. Available at
  6. Mediwise. [Online] Cited 2015-09-15. Available at
  7. SCHUELER, M., MANDEL, C., PUENTES, M., JAKOBY, R. Metamaterial inspired microwave sensors. IEEE Microwave Magazine, 2012, vol. 16, no. 4, p. 57–68. ISSN: 1527-3342. DOI: 10.1109/MMM.2011.2181448
  8. GUARIN, G., HOFMANN, M., NEHRING, J., WEIGEL, R., FISCHER, G., KISSINGER, D. Miniature microwave biosensors: Noninvasive applications. IEEE Microwave Magazine, 2015, vol. 16, no. 4, p. 71–86. ISSN: 1527-3342. DOI: 10.1109/MMM.2015.2394024
  9. MULEY, A. A., GHONGADE, R. B. Design and simulate an antenna for aqueous glucose measurement. In Proceedings of the 2014 Annual IEEE India Conference (INDICON). 2014, p. 1–6. ISBN: 978-1-4799-5362-2. DOI: 10.1109/INDICON.2014.7030620
  10. FREER, B., VENKATARAMAN, J. Feasibility study for noninvasive blood glucose monitoring. In Proceedings of the 2010 IEEE International Symposium on Antennas and Propagation (APSURSI). 2010, p. 1–4. DOI: 10.1109/APS.2010.5561003
  11. GREEN, E. C. Design of a Microwave Sensor for Non-Invasive Determination of Blood-Glucose Concentration. Ph.D. Thesis, 2005.
  12. VRBA, J., KARCH, J., VRBA, D. Phantoms for development of microwave sensors for noninvasive blood glucose monitoring. International Journal of Antennas and Propagation, 2015, vol. 2015, Article ID 570870, p. 1–5. ISSN: 1687-5877. DOI:10.1155/2015/570870
  13. HOFMANN, M., FISCHER, G., WEIGEL, R., KISSINGER, D. Microwave based noninvasive concentration measurements for biomedical applications. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, p. 2195–2204. ISSN: 0018-9480. DOI: 10.1109/TMTT.2013.2250516
  14. KIM, S., KIM, J., KIM, K., LEE, J.-H., BABAJANYAN, A., FRIEDMAN, B., LEE, K. In vitro monitoring of goatblood glycemia with a microwave biosensor. Current Applied Physics, 2014, vol. 14, no. 4, p. 563–569. ISSN: 1567-1739. DOI: 10.1016/j.cap.2014.01.011
  15. YILMAZ, T., FOSTER, R., HAO Y. Towards accurate dielectric property retrieval of biological tissues for blood glucose monitoring. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 52, no. 12, p. 3193–3204. ISSN: 0018-9480. DOI: 10.1109/TMTT.2014.2365019
  16. MELIKYAN, H., DANIELYAN, E., KIM, S., KIM, J., BABAJANYAN, A., LEE, J., FRIEDMAN, B., LEE, K. Noninvasive in vitro sensing of d-glucose in pig blood. Medical Engineering, 2011, vol. 34, no. 3, p. 299–304. ISSN: 1350-4533. DOI: 10.1016/j.medengphy.2011.07.020
  17. JEAN, B., GREEN, E., MCCLUNG, M. A microwave frequency sensor for non-invasive blood-glucose measurement. In Proceedings of the IEEE Sensors Applications Symposium (SAS 2008). 2008, p. 4–7. DOI: 10.1109/SAS.2008.4472932
  18. SIDLEY, M., VENKATARAMAN, J. Non-invasive estimation of blood glucose a feasibility study. In Proceedings of the 2013 IEEE Applied Electromagnetics Conference (AEMC). 2013, p. 1–2. ISBN: 978-1-4799-3266-5. DOI: 10.1109/AEMC.2013.7045069
  19. CHOI, H., NAYLON, J., LUZIO, S., BEUTLER, J., BIRCHALL, J., MARTIN, C., PORCH, A. Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 10, p. 3016–3025. ISSN: 0018-9480. DOI: 10.1109/TMTT.2015.2472019
  20. DAMM, C., SCHUESSLER, M., PUENTES, M., MAUNE, H., MAASCH, M., JAKOBY, R. Artificial transmission lines for high sensitive microwave sensors. In 2009 IEEE Sensors. 2009, p. 755–758. ISSN: 1930-0395. DOI: 10.1109/ICSENS.2009.5398538
  21. DAMM, C., BAUMGARTEN, B., PUENTES, M., MAASCH, M., JAKOBY, R. Planar sensor structure for biomedical mm-wave applications based on artificial transmission lines. In Proceedings of the 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). 2012. DOI: 10.1109/IRMMWTHz.2012.6380089
  22. PUENTES, M., SCHUESSLER, M., PENIRSCHKE, A., DAMM, C., JAKOBY, R. Metamaterials in microwave sensing applications. In 2010 IEEE Sensors. 2010, p. 2166–2171. ISSN: 1930-0395. DOI: 10.1109/ICSENS.2010.5690570
  23. NAGEL, M., RICHTER, F., HARING-BOL AVAR, P., KURZ, H. A functionalized THz sensor for marker-free DNA analysis. Physics in Medicine and Biology, 2003, vol. 48, p. 3625–3625. ISSN: 0031- 9155. DOI: 10.1088/0031-9155/48/22/001
  24. SMULDERS, P. F. M., BUYSSE, M. G., HUANG, M. D. Dielectric properties of glucose solutions in the 0.5-67 GHz range. Microwave and Optical Technology Letters, 2013, vol. 55, p. 1916–1917. ISSN: 1098-2760. DOI: 10.1002/mop.27672
  25. TOPSAKAL, E., KARACOLAK, T., MORELAND, E. Glucosedependent dielectric properties of blood plasma. In 2011 XXXth URSI Proceedings of the General Assembly and Scientific Symposium. 2011, p. 1–4. DOI: 10.1109/URSIGASS.2011.6051324
  26. KARACOLAK, T., MORELAND, E. C., TOPSAKAL, E. Cole-cole model for glucose dependent dielectric properties of blood plasma for continuous glucose monitoring. Microwave and Optical Technology Letters, 2013, vol. 55, p. 1160–1164. ISSN: 1098-2760. DOI: 10.1002/mop.27515
  27. HAYASHI, Y., LIVSHITS, L., CADUFF, A., FELDMAN, Y. Dielectric spectroscopy study of specific glucose influence on human erythrocyte membranes. Journal of Physics D: Applied Physics. 2003, vol. 36, no. 4, p. 369–374. ISSN: 0022-3727. DOI: doi:10.1088/issn.0022-3727
  28. LIVSHITS, L., CADUFF, A., TALARY, M. S., FELDMAN, Y. Dielectric response of biconcave erythrocyte membranes to d- and l-glucose. Journal of Physics D: Applied Physics, 2007, vol. 40, p. 15–19. ISSN: 0022-3727. DOI: 10.1088/0022-3727/40/1/S03
  29. VENKATARAMAN J., FREER, B. Feasibility of non-invasive blood glucose monitoring: In-vitro measurements and phantom models. In Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI). 2011, p. 603–606. DOI: 10.1109/APS.2011.5996782
  30. ADHYAPAK, A.,SIDLEY, M., VENKATARAMAN J. Analytical model for real time, noninvasive estimation of blood glucose level. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2013, p. 5020–5023. DOI: 10.1109/EMBC.2014.6944752
  31. CALOZ, C., ITOH, T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. New Jersey (USA): John Wiley & Sons, 2005. ISBN: 9780471669852
  32. [Online] 2015. Available at:
  33. MathWorks. Matlab 2015b, Program and User’s Manual. 2015.
  34. COMSOL ab. COMSOL Multiphysics 5.1, COMSOL Multiphysics Reference Manual, 2015.
  35. Keysight Technologies. Keysight Technologies 85070E, Dielectric Probe Kit, 200 MHz to 50 GHz, technical overview. 2014.
  36. VRBA, D., VRBA, J. Novel applicators for local microwave hyperthermia based on zeroth-order mode resonator metamaterial. International Journal of Antennas and Propagation, vol. 2014, Article ID 631398, p. 1–7. ISSN: 1687-5877. DOI:10.1155/2014/631398
  37. VRBA, D., VRBA, J., RODRIGUES, D., STAUFFER, P. Numerical investigation of novel microwave applicators based on zero-order mode resonance for hyperthermia treatment of cancer. Journal of The Franklin Institute, 2015. Accepted for publication. ISSN: 0016-0032.

Keywords: Artificial transmission line, metamaterial, microwave, sensor, blood glucose, concentration, non-invasive

V. Prajzler, R. Mastera, J. Spirkova [references] [full-text] [DOI: 10.13164/re.2015.0885] [Download Citations]
Large Core Three Branch Polymer Power Splitters

We report about three branch large core polymer power splitters optimized for connecting standard plastic optical fibers. A new point of the design is insertion of a rectangle-shaped spacing between the input and the central part of the splitter, which will ensure more even distribution of the output optical power. The splitters were designed by beam propagation method using BeamPROP software. Acrylic-based polymers were used as optical waveguides being poured into the Y-grooves realized by computer numerical controlled engraving on poly(methyl methacrylate) substrate. Measurement of the optical insertion losses proved that the insertion optical loss could be lowered to 2.1 dB at 650 nm and optical power coupling ratio could reach 31.8% : 37.3% : 30.9%.

  1. DeCUSATIS, C. Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking. Elsevier, 2008. ISBN: 978-0-12-374216-2
  2. REED, G. T. Silicon Photonics the State of the Art. John Wiley & Sons Ltd., 2008. ISBN: 978-0-470-02579-6
  3. BANBA, S., OGAWA, H. Novel symmetrical three-branch optical waveguide with equal power division. IEEE Microwave and Guided Wave Letters, 1992, vol. 2, no. 5, p. 188–190. ISSN: 1051- 8207. DOI: 10.1109/75.134350
  4. LIN, H.B., WANG, Y.H., WANG, W.S. Singlemode 1x3 integrated optical branching circuit design using microprism. Electronics Letters, 1994, vol. 3, no. 5, p. 408–409. ISSN: 0013- 5194. DOI: 10.1049/el:19940260
  5. WANG, T.J., HUANG, C.F., WANG, W.S. Wide-angle 1x3 optical power divider in LiNbO3 for variable power splitting. IEEE Photonics Technology Letters, 2003, vol. 15, no. 10, p. 1401 to 1403. ISSN: 1041-1135. DOI: 10.1109/LPT.2003.818256
  6. YABU, T., GESHIRO, M., MINAMI, N., SAWA, S. Symmetric three-branch optical power divider with a coupling gap. Journal of Lightwave Technology, 1999, vol. 17, no. 9, p. 1693–1699. ISSN: 0733-8724. DOI: 10.1109/50.788576
  7. SOLDANO, L.B., PENNINGS, E.C.M. Optical multi-mode interference devices based on self-imaging - principles and applications. Journal of Lightwave Technology, 1995, vol. 13, no. 4, p. 615–627. ISSN: 0733-8724. DOI: 10.1109/50.372474
  8. IBRAHIM, M.H., SHUH-YING, L., MEE-KOY, C., KASSIM, N.M., MOHAMMAD, A.B. Multimode interference optical splitter based on photodefinable benzocyclobutene, (BCB 4024-40) polymer. Optical Engineering, 2007, vol. 46, no. 1, p. 013401-1- 013401-4. ISSN: 0091-3286. DOI: DOI:10.1117/12.850593
  9. ZIGANG, Z., DUAN, X. Integrated waveguide splitter fabricated by Cs+ -Na+ ion-exchange, Optics Communications, 2006, vol. 266, no. 1, p. 129–13. ISSN: 0030-4018. DOI: 10.1016/j.optcom. 2006.03.023
  10. SINGH, G., SIROHI, A. K., VERMA, S. Estimation of the performance of a 3-dB Y-junction optical coupler with a channel profile of proton-exchanged lithium niobate. Physics of Wave Phenomena, 2013, vol. 21, no. 3, p. 201–206. ISSN: 1541-308X. DOI: 10.3103/S1541308X13030059
  11. SAKAI, A., FUKAZAWA, T., TOSHIHIKO, B. Low loss ultra small branches in silicon photonic wire waveguide. IEICE Transactions on Electronics, 2002, vol. E85-C, no. 4, p. 1033 to 1038. ISSN: 1745-1353.
  12. BOOTH, B. L. Low-low channel wave-guides in polymers. Journal of Lightwave Technology, 1989, vol. 7, no. 10, p. 1445 to 1453. ISSN: 0733-8724. DOI: 10.1109/50.39079
  13. MA, H., JEN, A.K.Y., DALTON, L. R. Polymer-based optical waveguides: Materials, processing, and devices. Advanced Materials, 2002, vol. 14, p. 1339–1365. ISSN: 0935-9648. DOI: 10.1002/1521-4095(20021002)14
  14. BETTIOL, A. A., SUM, T. C., CHEONG, F. C., SOW, C. H., RAO, S. V., van KAN, J. A., TEO, E. J., ANSARI, K., WATT, F. A progress review of proton beam writing applications in microphotonics. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2005, vol. 231, p. 364–371. ISSN: 0168-583X.
  15. WONG, W. H., LIU, K. K., CHAN, P. S., PUN, E.Y.B. Polymer devices for photonic applications. Journal of Crystal Growth, 2006, vol. 228, p. 100–104. ISSN: 0022-0248. DOI: 10.1016/j.jcrysgro.2005.12.017
  16. LYUTAKOV, O., TUMA, J., PRAJZLER, V., HUTTEL, I., HNATOWICZ, V., SVORCIK, V. Preparation of rib channel waveguides on polymer in electric field. Thin Solid Films, 2010, vol. 519, no. 4, p. 1452–1457. ISSN: 0040-6090. DOI: 10.1016/j.tsf.2010.08.019
  17. PRAJZLER, V., KLAPUCH, J., LYUTAKOV, O., HUTTEL, I., SPIRKOVA, J., NEKVINDOVA, P., JERABEK, V. Design, fabrication and properties of rib poly (methylmethacrylimide) optical waveguides. Radioengineering, 2011, vol. 20, p. 479–485. ISSN: 1210-2512. DOI: 10.13164/re
  18. PRAJZLER, V., LYUTAKOV, O., HUTTEL, I., BARNA, J., SPIRKOVA, J., NEKVINDOVA, P., JERABEK, V. Simple way of fabrication of epoxy novolak resin optical waveguides on silicon substrate. Physica Status Solidi C, 2011, vol. 1–4. ISSN: 1862-6351. DOI 10.1002/pssc.201084031
  19. PRAJZLER, V., HYNEK, T., SPIRKOVA, J., JERABEK, V. Design and modeling of symmetric three branch polymer planar optical power dividers. Radioengineering, 2013, vol. 22, p. 233 to 239. ISSN: 1210-2512. DOI: 10.13164/re
  20. PRAJZLER, V., PHAM, N. K., SPIRKOVA, J. Design, fabrication and properties of the multimode polymer planar 1 x 2 Y optical splitter. Radioengineering, 2012, vol. 21, p. 1202–1207. ISSN: 1210-2512. DOI: 10.13164/re
  21. PRAJZLER, V., NERUDA, M., SPIRKOVA, J. Planar large core polymer optical 1x2 and 1x4 splitters connectable to plastic optical fiber. Radioengineering, 2013, vol. 22, p. 751–757. ISSN: 1210- 2512. DOI: 10.13164/re
  22. PRAJZLER, V., MASTERA, R., JERABEK, V. Large core planar 1 x 2 optical power splitter with acrylate and epoxy resin waveguides on polydimetylsiloxane substrate. Radioengineering, 2014 vol. 23, no. 1, p. 488–495. ISSN: 1210-2512. DOI: 10.13164/re
  23. BELTRAMI, D. R., LOVE, J. D., LADOUCEUR, F. Multimode planar devices. Optical and Quantum Electronics, 1999, vol. 31, p. 307–326. DOI: 10.1023/A:1006971108806

Keywords: Optical planar waveguides, optical splitter, three branches, design, polymer

O. Cerny, R. Dolecek, P. Kopecky, V. Schejbal, V. Zavodny [references] [full-text] [DOI: 10.13164/re.2015.0892] [Download Citations]
Optimization of Far-Field Antenna Range

Measurements of test antennas are performed on antenna ranges. The operated microwave far-field outdoor range was built-up in 1970’s and therefore it was not appropriate for the today measurements. Thus, it was decided to perform the complete reconstruction and testing. Some results of new ample measurement campaign are just given. The optimization of antenna range using merely measurement is very inefficient, and therefore that is done by numerical simulations. Consequently the paper surveys briefly electromagnetic wave propagation over irregular terrain. The physical optics approximation of vector problem was chosen. That allows the comparison of selected numerical simulations and measurements for the reconstructed far-field range. A possibility of antenna range optimizing by using numerical simulation considering various constraints is verified.

  1. BALANIS, C. A. Modern Antenna Handbook. 1st ed. Hoboken: John Wiley & Sons, 2008. ISBN 978-0-470-03634-1.
  2. HOLLIS, J. S., LYON, T. J., CLAYTON, L. Microwave Antenna Measurements. 3rd ed. Atlanta, Scientific-Atlanta, Inc., 1985.
  3. YAGHJIAN, A. D. An overview of near-field antenna measurements. IEEE Transactions on Antennas and Propagation. 1986, vol. 34, no. 1, p. 30–45. DOI: 10.1109/TAP.1986.1143727.
  4. BENNETT, J. C., ANDERSON, A. P., MCINNES, P. A., WHITAKER, A. J. T. Microwave holographic metrology of large reflector antennas. IEEE Transactions on Antennas and Propagation, 1976, vol. AP-24, no. 3, p. 295–302. DOI: 10.1109/TAP.1976.1141354.
  5. PUSKELY, J. Application of iterative Fourier method in cylindrical phaseless antenna measurement technique. Radioengineering, Apr. 2012, vol. 21, part 3, no. 1, p. 422–429. DOI: 10.13164/re.2012.
  6. RAZAVI, S. F., RAHMAT-SAMII, Y. Resilience to probepositioning errors in planar phaseless near-field measurements. IEEE Transactions on Antennas and Propagation, 2010, vol. AP- 58, no. 8, p. 2632–2640. DOI: 10.1109/TAP.2010.2050421.
  7. SMITH, D., YURDUSEVEN, O., LIVINGSTONE, B., SCHEJBAL, V. Microwave imaging using indirect holographic techniques. IEEE Antennas and Propagation Magazine, Feb 2014, vol. 56, no. 1, p. 104–117. DOI: 10.1109/MAP.2014.6821762.
  8. LUEBBERS, R. J. Propagation prediction for hilly terrain using GTD wedge diffraction. IEEE Transactions on Antennas and Propagations, Sep 1984, vol. 32, no. 9, p. 951–955. DOI: 10.1109/TAP.1984.1143449.
  9. HVIID, J. T., ANDERSON, J. B., TOFTGÅRD, J. T., BØJER, J. Terrestrial-based propagation model for rural area—an integral equation approach. IEEE Transaction on Antennas and Propagations. Jan 1995, vol. 43, no. 1, p. 41–46. DOI: 10.1109/8.366349.
  10. AKORLI, F. K., COSTA, E. An efficient solution of an integral equation applicable to simulation of propagation along irregular terrain. IEEE Transaction on Antennas and Propagations. Jul 2001, vol. 49, no. 7, p. 1033–1036. DOI: 10.1109/8.933482.
  11. SKOLNIK, M. I. Radar Handbook. 3rd ed. New York: McGrawHill, 2008. ISBN 978-0-07-148547-0.
  12. SCHEJBAL, V. Computing the electrical field strength of an antenna above an uneven earth. Slaboproudy obzor (in Czech), Dec. 1973, vol. 34, no. 12, p. 541-547. ISSN 0037- 668X.
  13. KUPCAK, D. ATC Radar Antennas. Environment Influence on ATC Radar Operation (in Czech), vol. III. MNO, Prague: Czech Rep., 1986.
  14. SCHEJBAL, V. Propagation over irregular terrain. Radioengineering, Apr. 1997, vol. 6, no. 1, p. 19–22. DOI: 10.13164/re.1997.
  15. SCHEJBAL, V. Comparison of propagation over irregular terrain. Radioengineering, Sep. 1997, vol. 6, no. 3, p. 6–9. DOI: 10.13164/re.1997.
  16. SCHEJBAL, V., et al. Czech radar technology. IEEE Transactions on Aerospace and Electronics Systems, Jan. 1994, vol. 30, no. 1, p. 2–17. DOI: 10.1109/7.250400.
  17. SCHEJBAL, V. Improved analysis of propagation over irregular terrain. Radioengineering, vol. 18, no. 1, p. 18–22, Apr 2009. DOI: 10.13164/re.2009.
  18. SCHEJBAL, V., FISER, O. Enhanced analysis of propagation over irregular terrain In EuCAP 2010. Barcelona (Spain), 2010, p. 1697-1701. ISBN 978-1-4244-6431-9.
  19. SCHEJBAL, V., GRABNER, M. Investigation of propagation over terrain. In 24th International Conference Radioelektronika 2014. Bratislava (Slovakia), 2014, p. 1–4. DOI: 10.1109/Radioelek.2014.6828454
  20. UFIMTSEV, P. Ya. New insight into the classical Macdonald physical optics approximation. IEEE Antennas and Propagation Magazine, Jun 2008, vol. 50, no. 3, p. 11–20. DOI: 10.1109/MAP.2008.4563560
  21. UFIMTSEV, P. Ya. Improved physical theory of diffraction: removal of the grazing singularity. IEEE Transactions on Antennas and Propagation, Oct 2006, vol. 54, no. 10, p. 2698–2702. DOI: 10.1109/TAP.2006.882179.
  22. ZAVODNY, V., KOPECKY, P. Reflector antenna in L band. In Conference on Microwave Techniques (COMITE). Pardubice (Czech Republic), 22-23 April 2015, p. 68–71. DOI: 10.1109/COMITE.2015.7120337.
  23. ZAVODNY, V., KOPECKY, P. Measurement of far-field patterns of phased array antennas. In Conference on Microwavwe Techniques (COMITE). Pardubice (Czech Republic), 22-23 April 2015, p. 72–74. DOI: 10.1109/COMITE.2015.7120333.
  24. ZAVODNY, V., KOPECKY, P. Omnidirectional antenna cosimulation. In Conference on Microwavwe Techniques (COMITE). Pardubice (Czech Republic), 22-23 April 2015, p. 72–74. DOI: 10.1109/COMITE.2015.7120337
  25. BEZOUSEK, P., SCHEJBAL, V. Radar technology in the Czech Republic. IEEE Aerospace and Electronic Systems Magazine, 2004, vol. 19, no. 8, p. 27–34. DOI: 10.1109/MAES.2004.1346896.

Keywords: Microwave antenna, antenna measurements, irregular surface, physical optics, numerical analysis, experiments.

K. Pitra, Z. Raida, J. Lacik [references] [full-text] [DOI: 10.13164/re.2015.0898] [Download Citations]
Low-profile Circularly Polarized Antenna Exploiting Fabry-Perot Resonator Principle

We designed a patch antenna surrounded by a mushroom-like electromagnetic band-gap (EBG) structure and completed it by a partially reflective surface (PRS). EBG suppresses surface waves and creates the bottom wall of the Fabry-Perot (FP) resonator. PRS plays the role of a planar lens and forms the top wall of the FP resonator. The novel PRS consists of a two-layer grid exhibiting inductive and capacitive (LC) behavior which allows us to obtain a reflection phase between –108 and +180 degrees. Thanks to this PRS, we can control the height of the cavity in the range from λ/2 to λ/300. Obtained results show that the FP resonator antenna enables us to achieve a low profile and a high-gain. The patch is excited by a microstrip transmission line via the cross-slot aperture generating the circular polarization. Functionality of the described concept of the FP antenna was verified at 10 GHz. The antenna gain was 15 dBi, the impedance bandwidth 2.3% for |S11| < –10 dB, and the axial ratio bandwidth 0.6% for AR < 3.0 dB. Hence, the antenna is suitable for narrowband applications. Computer simulations show that the microwave FP antenna can be simply redesigned to serve as a source of circularly polarized terahertz waves.

  1. BOUTAYEB, H., MAHDJOUBI, K., TAROT, A. C., DENIDNI, T.A. Directivity of an antenna embedded inside a Fabry-Perot cavity: analysis and design. Microwave and Optical Technology Letters, 2006, vol. 48, no. 1, p. 12–17. ISSN: 1098-2760. DOI: 10.1002/mop.21249
  2. FERESIDIS, A. P., GOUSSETIS, G., WANG, S. H., VARDAXOGLOU, C. J. Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 1, p. 209–215. DOI: 10.1109/TAP.2004.840528
  3. SIEVENPIPER, D., ZHANG, L., BROAS, R. F. J., ALEXOPOULOS, N. G., YABLONOVITCH, E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 1999, vol. 47, no. 11, p. 2059–2074. ISSN: 0018-9480. DOI: 10.1109/22.798001
  4. WEILY, A. R., HORVATH, L., ESSELLE, K. P., SANDERS, B. C., BIRD, T. S. A planar resonator antenna based on a woodpile EBG material. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 1, p. 216–223. ISSN: 0018-926X. DOI: 10.1109/TAP.2004.840531
  5. LI, L. L., LEI, S., LIANG, C. H. Metamaterial-based Fabry-Perot resonator for ultra-low profile high-gain antenna. Microwave and Optical Technology Letters, 2012, vol. 54, no. 11, p. 2620–2623. ISSN: 1098-2760. DOI: 10.1002/mop.27155
  6. LI, Y, ESSELLE, K. P. Small EBG resonator high-gain antenna using in-phase highly-reflecting surface. Electronics Letters, 2009, vol. 45, no. 21, p 1058–1060. ISSN: 0013-5194. DOI: 10.1049/el.2009.0959
  7. ZHOU, L., LI, H. Q., QIN, Y. Q., WEI, Z. Y., CHAN, C. T. Directive emissions from sub wavelength metamaterial-based cavities. Applied Physics Letters, 2005, vol. 86, no. 10, p. 101101. ISSN: 0003-6951. DOI: 10.1063/1.1881797
  8. OURIR, A., DE LUSTRAC, A., LOURTIOZ, J. M. Optimization of metamaterial based sub wavelength cavities for ultra-compact directive antennas. Microwave and Optical Technology Letters, 2006, vol. 48, no. 12, p. 2573–2577. ISSN: 1098-2760. DOI: 10.1002/mop.21996
  9. PITRA, K., RAIDA, Z., HARTNAGEL, H. L. Design of circularly polarized terahertz antenna with interdigital electrode photomixer. In Proceedings of the 7th European Conference on Antennas and Propagation EuCAP 2013. Gothenburg (Sweden), 2013, p. 2431– 2434. ISBN: 978-88-907018-3-2
  10. GARG, R., BHARTIA, P., BAHL, I., ITTIPIBOOM, A. Microstrip Antenna Design Handbook. Norwood (USA): Artech House, 2001. ISBN: 0-89006-513-6
  11. ZEB, B. A., ESSELLE, K. P. A partially reflecting surface with polarization conversion for circularly polarized antennas with high directivity. In Proceedings of the International Conference on Electromagnetics in Advanced Applications ICEAA 2012. Cape Town (South Africa), 2012, p. 466–469. ISBN: 978-1-4673-0333- 0, DOI: 10.1109/ICEAA.2012.6328672
  12. WANGWANG, H., JUN, O., GUO, Z., LI, Y., YANG, F. A single-feed high-gain Fabry-Perot antenna with reconfigurable polarization capability. In Proceedings of the Conference on Cross Strait Quad-Regional Radio Science and Wireless Technology CSQRWC 2013. Chengdu (China), 2013, p. 279–281. DOI: 10.1109/CSQRWC.2013.6657408
  13. BO ZHU, ZHI NING CHEN, YIJUN FENG Fully substrate-integrated high-gain thin Fabry-Perot cavity antennas. In Proceedings of Asia-Pacific Microwave Conference APMC 2011, Melbourne (Australia), 2011, p. 602–605. ISBN: 978-1-4577-2034-5
  14. VAIDYA, A. R., GUPTA, R. K., MISHRA, S. K., MUKHERJEE, J. Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 431–434. ISSN: 1536-1225. DOI: 10.1109/LAWP.2014.2308926
  15. HUANG, Y., KHIABANI, N., SHEN. Y., LI, D. Terahertz photoconductive antenna efficiency. In Proceedings of the International Workshop on Antenna Technology iWAT 2011. Hong Kong (China), 2011, p. 152–156. ISBN: 978-1-4244-9133-9. DOI: 10.1109/IWAT.2011.5752384
  16. HASHMI, R. M., ZEB, B. A., ESSELLE, K.P. Wideband highgain EBG resonator antennas with small footprints and all-dielectric superstructures. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 6, p. 2970–2977. ISSN: 0018-926X. DOI: 10.1109/TAP.2014.2314534
  17. KOVACS, P., RAIDA, Z. Design and optimization of high-impedance surfaces. International Journal of RF and Microwave Computer-Aided Engineering, 2012, vol. 22, no. 4, p. 541–544. ISSN: 1096-4290. DOI: 10.1002/mmce.20643

Keywords: High gain antenna, Fabry-Perot resonator, terahertz source, partially reflective surface, mushroom-like electromagnetic band-gap structure, circular polarization

K.Y. Lee, B. K. Chung, K. Y. You, E. M. Cheng, Z. Abbas [references] [full-text] [DOI: 10.13164/re.2015.0906] [Download Citations]
Development of a Symmetric Ring Junction as a Four-Port Reflectometer for Complex Reflection Coefficient Measurements

Six-port reflectometer is well-known for its ability to measure magnitude and phase-shift of microwave signal using four power detectors that perform magnitude-only measurements. This paper presents the development of an innovative symmetric ring junction as four-port reflectometer for complex reflection coefficient measurements. It reduces the number of required detectors to two. Design optimization, new calibration modeling and algorithm are discussed in details for this four-port reflectometer. The developed four-port reflectometer is compared to five-port reflectometer and vector network analyzer. It is found that the measured magnitude and phase-shift shows good performance in comparison with the commercial vector network analyzer and the five-port reflectometer.

  1. TRUSHKIN, A. N. A measuring device of the complex reflection coefficient. In IEEE 23rd International Crimean Conference Microwave and Telecommunication Technology (CriMiCo). Sevastopol (Ukraine), 2013, p. 963–964.
  2. LEE, K., CHUNG, B., YOU, K., CHENG, E., ABBAS, Z. Study of dual open ended coaxial sensor system for calculation of phase using two magnitudes. IEEE Journal on Sensors, 2014, vol. 14, no. 1, p. 129–134. DOI: 10.1109/JSEN.2013.2281416
  3. ENGEN, G. F. The six-port reflectometer: An alternative network analyzer. IEEE Transactions on Microwave Theory and Techniques, 1978, vol. 25, no. 12, p. 1075–1080. DOI: 10.1109/TMTT.1977.1129277
  4. EROGLU, A., MADISHETTI, S. Six-port coupler design for highpower radio frequency applications. IEEE Transactions on Instrumentation and Measurement, 2014, vol. 63, no. 6, p. 1600–1612. DOI: 10.1109/TIM.2013.2289702
  5. YEE, L. K., ABBAS, Z., JUSOH, M. A., YOU, Y. K., MENG, C. E. Determination of moisture content in oil palm fruits using a five-port reflectometer. Sensors, 2011, vol. 11, no. 4, p. 4073 to 4085. DOI: 10.3390/s110404073
  6. GHANNOUCHI, F. M., MOHAMMADI, A. The Six-Port Technique with Microwave and Wireless Applications. Artech House, 2009. ISBN: 1608070336
  7. BILIK, V. Six-port measurement technique: Principles, impact, applications. In Proceedings of the International Conference Radioelektronika. 2002.
  8. ENGEN, G. F., HOER, C. A. Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer. IEEE Transactions on Microwave Theory and Techniques, 1979, vol. 27, no. 12, p. 987–993. DOI: 10.1109/TMTT.1979.1129778
  9. STASZEK, K., GRUSZCZYNSKI, S., WINCZA, K. Theoretical limits and accuracy improvement of reflection-coefficient measurements in six-port reflectometers. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 6, no. 8, p. 2966–2974. DOI: 10.1109/TMTT.2013.2269053
  10. DVORAK, R., URBANEC, T. Data processing in multiport-based reflectometer systems. Radioengineering, 2011, vol. 20, no. 4, p. 832–837. DOI: 10.13164/re
  11. HANSSON, E. R., RIBLET, G. P. An ideal six-port network consisting of a matched reciprocal lossless five-port and a perfect directional coupler. IEEE Transactions on Microwave Theory and Techniques, 1983, vol. 31, no. 3, p. 284–288. DOI: 10.1109/TMTT.1983.1131477
  12. HADDADI, K., EL AABBAOUI, H., LOYEZ, C., GLAY, D., ROLLAND, N., LASRI, T. Wide-band 0.9 GHz to 4 GHz fourport receiver. In IEEE International Conference on Electronics, Circuits and Systems. Nice (France), 2006, p. 1316–1319. DOI: 10.1109/ICECS.2006.379724
  13. HADDADI, K., WANG, M., GLAY, D., LASRI, T. Ultra wideband four-port reflectometer using only two quadratic detectors. In IEEE MTT-S International Conference: Microwave Symposium Digest. 2008, p. 379–382. DOI: 10.1109/MWSYM.2008.4633182
  14. HADDADI, K., WANG, M. M., NOURI, K., GLAY, D., LASRI, T. Calibration and performance of two new ultra-wideband fourport-based systems. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 12, p. 3137–3142. DOI: 10.1109/TMTT.2008.2007138
  15. HADDADI, K., WANG, M. M., GLAY, D., LASRI, T. Performance of a compact dual six-port millimeter-wave network analyzer. IEEE Transactions on Instrumentation and Measurement, 2011, vol. 60, no. 9, p. 3207–3213. DOI: 10.1109/TIM.2011.2124690
  16. HADDADI, K., LASRI, T. Formulation for complete and accurate calibration of six-port reflectometer. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 6, no. 3, p. 574–581. DOI: 10.1109/TMTT.2011.2181861
  17. DEB, K. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, 2001. ISBN: 978-0-471-87339-6

Keywords: Six-port reflectometer, complex reflection coefficient, four-port reflectometer, network analysis, nonlinear multi-objective optimization

H. Torpi,S. M. Bostan [references] [full-text] [DOI: 10.13164/re.2015.0912] [Download Citations]
Ku Band Rotary Joint Design for SNG Vehicles

A wideband I-type rectangular waveguide rotary joint (RJ) is designed, simulated and built. It has an excellent performance over the whole Ku Band (10.7-14.5 GHz) where the return loss is less than -23 dB at its highest and the insertion loss is below 0.4 dB. The rotary joint is specifically designed for satellite news gathering (SNG) vehicles providing elevation and azimuthal movement to the antenna and matching polarization when it is needed at the feed. It can also be used in other high power microwave applications,where rotation ability of the antenna is a must during the transmission such as radars.

  1. KAIDEN, M., KIMURA, K., OGAWA, H., et al. Septum polarizer for Ka-band H-shaped rotary joint. Journal of Infrared, Millimeter and Terahertz Waves, 2009, vol. 30, p. 727–737. DOI: 10.1007/s10762- 009-9491-9
  2. CHANG, T. H., YU, B. R. High-power millimeter-wave rotary joint for radar applications. In 34th Internatinal Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Busan (Souh Korea), 2009. DOI: 10.1109/ICIMW.2009.5325680
  3. ABRAMOV, V. I., PARK, H.-J., KIM, D.-H., LEE, T.-H. U-style rotary joint with E01 mode for millimeter waves. 2004 IEEE MTTS International Microwave Symposium Digest. Fort Worth (USA), 2004, p. 1879–1882. DOI: 10.1109/MWSYM.2004.1338974
  4. RAMBABU, K, BORNEMANN, J. Compact single channel rotary joint using ridged waveguide sections for phase adjustment. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 8, p. 1982–1986. DOI: 10.1109/TMTT.2003.815269
  5. McNAMARA, D.A., HILDEBRAND, L.T. Fullwave analysis of noncontacting rotary joint choke sections using the generalized scattering matrix (GSM) approach. IEE Proceedings – Microwaves, Antennas and Propagation, 2003, vol. 150, no. 1, p. 5–9. DOI: 10.1049/ipmap:20030438
  6. FRANCO, M. A. R., SERRAO, V. A., FUHRMANN, C., HERDADE, S. B. A simple procedure for impedance matching and tuning of microwave couplers for an electron linear accelerator. IEEE Transactions on Microwave Theory and Techniques, 2001, vol. 49, no. 3, p. 562–564. DOI: 10.1109/22.910565
  7. WOODWARD, O. M. A dual-channel rotary joint for high average power operation. IEEE Transactions on Microwave Theory and Techniques, 1971, vol. 18, no. 12, p. 1072–1077. DOI: 10.1109/TMTT.1970.1127413
  8. BORONSKI, S. A multichannel waveguide rotating joint. Microwaves, 1965, vol. 8, p. 102–105.
  9. MUENZER, P. J. Broadbanding coaxial-to-ridged-wave-guide transitions. Microwaves, 1964, vol. 3, p. 92–96.
  10. SMITH, P. H., MONGOLD, G. H. A high-power rotary waveguide joint.IEEE Transactions on Microwave Theory and Techniques, 1964, vol. 12, p. 55–58. DOI: 10.1109/TMTT.1964.1125751
  11. TOMIYASU, K. A new annular waveguide rotary joint. Proceedings of the IRE, 1956, vol. 44, no. 4, p. 548–553. DOI: 10.1109/JRPROC.1956.274939
  12. RAABE, H. A rotary joint for two microwave transmission channels of the same frequency band. IRE Transactions on Microwave Theory and Techniques, 1952, vol. PGAP-4, p. 136–136. DOI: 10.1109/TPGAP.1952.237413
  13. ZURCHER, J.-F. A 6.5 – 50 GHz battery-powered compact rotary joint for polarization elipticity measurement. Microwave and Optical Technology Letters, 2011, vol. 53, no. 2, p. 375–379. DOI: 10.1002/mop.25692
  14. MALLAHZADEH, A., AHMADABADI, H. Design of N-channel rotary joint using curved double ridged waveguide and concentric coaxial lines. Applied Computational Electromagnetics Society Journal, 2012, vol. 27, no. 1, p. 50–58.
  15. KING, H. E. Broad-band coaxial choke coupling design. IRE Transactions on Microwave Theory and Techniques, 1960, vol. 8, no. 2, p. 132–135. DOI: 10.1109/TMTT.1960.1124711
  16. YEVDOKYMOV, A., KRYZHANOVSKIY, V., PAZYNIN, V., et al. Ka-band waveguide rotary joint. IET Microwaves, Antennas & Propagation, 2013, vol. 7, no. 5, p. 365–369. DOI:10.1049/ietmap.2012.0326
  17. POZAR, D. M. Microwave Engineering. 3rd ed. NY, USA: John Wiley & Sons Inc, 2010.
  18. HOEFER, W. J. R., BURTON, M. N. Analytical expressions for the parameters of finned and ridged waveguides. In IEEE MTT-S International Microwave Symposium Digest. 1982, p. 311–313. DOI: 10.1109/MWSYM.1982.1130702
  19. MARCUVITZ, N. Waveguide Handbook. Boston Technical Publishers, 1964.
  20. HELSZAJN, J. Ridge Waveguides and Passive Microwave Components. IET, 2000. ISBN: 978-0852967942
  21. UHER, J., BORNEMANN, J., ROSENBERG, U. Waveguide Components for Antenna Feed Systems: Theory and CAD. Artech House, 1993. ISBN: 978-0890065822
  22. BOSTAN, S. M. KU Band Waveguide Component Design for SNG Vehicles. MSc Thesis. Istanbul (Turkey): Yıldız Technical University, 2011.

Keywords: Ku-band, rotary joint, ridge waveguide, SNG vehicle, quarter-wave transformer

Feifei Yan, Wenge Chang, Xiangyang Li [references] [full-text] [DOI: 10.13164/re.2015.0917] [Download Citations]
Efficient Simulation for Fixed-Receiver Bistatic SAR with Time and Frequency Synchronization Errors

Time and frequency synchronization is the key technique of bistatic synthetic aperture radar (BiSAR) system, and raw data simulation is an effective tool for verifying the time and frequency synchronization techniques. According to the two-dimensional (2-D) frequency spectrum of fixed-receiver BiSAR with time and frequency synchronization errors, a rapid raw data simulation method is proposed in this paper. Through 2-D inverse Stolt transform in 2-D frequency domain and phase compensation in Range-Doppler frequency domain, this method can realize two-dimensional spatial variation simulation for fixed-receiver BiSAR with time and frequency synchronization errors in a reasonable time consumption. Then the simulation efficiency of scene raw data can be significantly improved. Simulation results of point targets and extended scene are presented to validate the feasibility and efficiency of the proposed simulation method.

  1. WANG, W. Q., DING, C. B., LIANG, X. D. Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems. IET Radar, Sonar & Navigation, 2008, vol. 2, no. 1, p. 1–11. ISSN: 1751-8784. DOI: 10.1049/iet-rsn:2006 0097
  2. QIU, X. L., HU, D. H., ZHOU, L., et al. A bistatic SAR raw data simulator based on inverse omega-k algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2010, vol. 48, no. 3, p. 1540–1547. ISSN: 0196-2892. DOI: 10.1109/TGRS.2009.2032776
  3. ZHANG, Q. L., CHANG, W. G., LI, X. Y. An extended NLCS algorithm for bistatic fixed-receiver SAR imaging. In Proceedings of the 7th European Radar Conference. Paris (France), 2010, p. 252–255. DOI: 10.1109/EuR.2010.843
  4. ZHANG, F., HU, C., LI, W., et al. Accelerating time-domain SAR raw data simulation for large areas using multi-GPUs. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, vol. 7, no. 9, p. 3956–3966. ISSN: 1939-1404. DOI: 10.1109/JSTARS.2014.2330333
  5. FRANCESCHETTI, G., IODICE, A., PERNA, S., et al. Efficient simulation of airborne SAR raw data of extended scenes. IEEE Transactions on Geoscience and Remote Sensing, 2006, vol. 44, no. 10, p. 2851–2860. ISSN: 0196-2892. DOI: 10.1109/TGRS.2006.875786
  6. PERNA, S., FRANCESCHETTI, G., IODICE, A., et al. SAR sensor trajectory deviations Fourier domain formulation and extended scene simulation of raw signal. IEEE Trans on Geoscience and Remote Sensing, 2006, vol. 44, no. 9, p. 2323–2334. ISSN: 0196-2892. DOI: 10.1109/TGRS.2006.873206
  7. FRANCESCHETTI, G., GUIDA, R., INDICE, A., et al. Simulation tools for interpretation of high resolution SAR images of urban areas. In IEEE Urban Remote Sensing Joint Event. Paris (France), 2007, p. 1–5. DOI: 10.1109/URS.2007.371841
  8. FRANCESCHETTI, G., INDICE, A., NATALE, A., et al. Bistatic SAR simulation: Time and frequency domain approaches. In IEEE International Conference on Digital Signal Processing. Corfu (Greece), 2011, p. 1–7. DOI: 10.1109/ICDSP.2011.6005021
  9. QIU, X. L., HU, D. H., DING, C. B. Bistatic synthetic aperture radar imaging and processing. 1st ed. Beijing (China): Science Press, 2010. ISBN: 9787030270856
  10. TIAN, W. M., LONG, T., YANG, J., et al. Combined analysis of time and frequency synchronization errors for BiSAR. In IEEE CIE International Conference on Radar. Chengdu (China), 2011, p. 388–392. DOI: 10.1109/CIE-Radar.2011.6159559
  11. ZHOU, P., LIN, L. J., DAI, Y. S., et al. Influence of frequency synchronization errors on hybrid bistatic SAR system. In International Conference on Information Science, Electronics and Electrical Engineering. Sapporo (Japan), 2014, p. 1358–1362. DOI: 10.1109/InfoSEEE.2014.6947898
  12. GERHARD, K., MARWAN, Y. Impact of oscillator noise in bistatic and multistatic SAR. IEEE Geoscience and Remote Sensing Letters, 2006, vol. 3, no. 3, p. 424–428. ISSN: 1545-598X. DOI: 10.1109/LGRS.2006.874164
  13. REN, S. H., CHANG, W. G., LI, J. Y. Raw signal simulation research of three-dimensional scene with undulate characteristics. Radar Science and Technology, 2007, vol. 5, no. 5, p. 324–328. ISSN: 1672- 2337. DOI: 10.3969/j.issn.1672-2337.2007.05.006
  14. SUN, H. W., ZENG, T., YANG, J. Improvements on SAR simulation of three-dimensional forest canopies. In IET International Radar conference. Xi’an (China), 2013, p. 1–5. DOI: 10.1049/cp.2013.0507
  15. HU, G. S. Digital Signal Processing: Theory. 1st ed. Beijing (China): Tsinghua University Press, 2003. ISBN: 9787302065067
  16. PACO, L. D., JORDI, J. M., PAU, S. M., et al. Phase synchronization and Doppler centroid estimation in fixed receiver bistatic SAR systems. IEEE Transactions on Geoscience and Remote Sensing, 2008, vol. 46, no. 11, p. 3459–3471. ISSN: 0196-2892. DOI: 10.1109/TGRS.2008.923322
  17. QIU, X. L., HU, D. H., DING, C. B. An improved NLCS algorithm with capability analysis for one-stationary BiSAR. IEEE Transactions on Geoscience and Remote Sensing, 2008, vol. 46, no. 10, p. 3179– 3186. ISSN: 0196-2892. DOI: 10.1109/TGRS.2008.921569

Keywords: Simulation, BiSAR, fixed-receiver, inver Stolt transform, time and frequency synchronization errors

Sensong An, Badar Muneer, Qi Zhu [references] [full-text] [DOI: 10.13164/re.2015.0927] [Download Citations]
Generalized Analysis Method for a Class of Novel Wideband Loaded-Stub Phase Shifters

In this paper, an analysis method of wideband loaded-stub phase shifters and a fast designing procedure is presented. These kinds of phase shifters use a transmission line loaded with one or two open stubs and a reference line to achieve up to 135° phase shift. Analysis results shows that lower than -10dB return loss and precise phase shift can be achieved over a 100% bandwidth employing the ideal open stubs. To approach the ideal impedance value of the open stubs, an arrow-shaped stub and several means to control its impedance is proposed. As verification of the analysis method, a 90° two-stub loaded phase shifter is easily designed and fabricated. Measured results show the design achieves better than ±4° phase ripple, less than 0.5dB insertion loss, and better than 10dB return loss over an 85% wideband.

  1. SCHIFFMAN, B. M. A new class of broad-band microwave 90- degree phase shifters. IEEE Transactions on Microwave Theory and Techniques, Apr. 1958, vol. 6, no. 2, p. 232–237. DOI: 10.1109/TMTT.1958.1124543
  2. QUIRARTE, J. L. R., STARSKI, J. P. Novel Schiffman phase shifters. IEEE Transactions on Microwave Theory and Techniques, 1993, vol. 41, no. 1, p. 9–14. DOI: 10.1109/22.210223
  3. GUO, Y. X., ZHANG, Z. Y., ONG, L. C. Improved wide-band Schiffman phase shifter. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 3, p. 1196–1199. DOI: 10.1109/TMTT.2005.864105
  4. ABBOSH, A. M. Ultra-wideband phase shifters. IEEE Transactions on Microwave Theory and Techniques, Sep. 2007, vol. 55, no. 9, p. 1935–1941. DOI: 10.1109/TMTT.2007.904051
  5. WANG, Y., BIALKOWSKI, M. E., ABBOSH, A. M. Double microstrip-slot transitions for broadband ±90° microstrip phase shifters. IEEE Microwave Wireless. Components Letters, Feb. 2012, vol. 22, no. 2, p. 58–60. DOI: 10.1109/LMWC.2011.2181348
  6. ZHENG, S. Y., YEUNG, S. H., CHAN, W. S., MAN, K. F., LEUNG, S. H. Improved broadband dumb-bell-shaped phase shifter using multi-section stubs. Electronics Letters, 2008, vol. 44, no. 7, p. 478. DOI: 10.1049/el:20083364
  7. TANG, X., MOUTHAAN, K. Design of a UWB phase shifter using shunt lambda/4 stubs. In IEEE MTT-S International Microwave Symposium Digest, 2009, p. 1021–1024. DOI: 10.1109/MWSYM.2009.5165873
  8. ZHENG, S. Y., CHAN, W. S., MAN, K. F. Broadband phase shifter using loaded transmission line. IEEE Microwave Wireless Components Letters, 2010, vol. 20, no. 9, p. 498–500. DOI: 10.1109/LMWC.2010.2050868
  9. POZAR, D. M. Microwave Engineering. 3rd ed. John Wiley & Sons, 2005, p. 728. ISBN: 8126510498

Keywords: Wideband, phase shifters, analysis method

I. Pasya, H. Kato, T. Kobayashi [references] [full-text] [DOI: 10.13164/re.2015.0932] [Download Citations]
Interference Suppression Performance of Automotive UWB Radars Using Pseudo Random Sequences

Ultra wideband (UWB) automotive radars have attracted attention from the viewpoint of reducing traffic accidents. The performance of automotive radars may be degraded by interference from nearby radars using the same frequency. In this study, a scenario where two cars pass each other on a road was considered. Considering the utilization of cross-polarization, the desired-to-undesired signal power ratio (DUR) was found to vary approximately from -10 to 30 dB. Different pseudo random sequences were employed for spectrum spreading the different radar signals to mitigate the interference effects. This paper evaluates the interference suppression provided by maximum length sequence (MLS) and Gold sequence (GS) through numerical simulations of the radar’s performance in terms of probability of false alarm and probability of detection. It was found that MLS and GS yielded nearly the same performance when the DUR is -10 dB (worst case); for example when fixing the probability of false alarm to 0.0001, the probabilities of detection were 0.964 and 0.946 respectively. The GS are more advantageous than MLS due to larger number of different sequences having the same length in GS than in MLS.

  1. GRESHAM, I., JENKINS, A., EGRI, R., et al. Ultra-wideband radar sensor for short-range vehicular applications. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 9, p. 2105–2120. DOI: 10.1109/TMTT.2004.834185
  2. KOBAYASHI, T., TAKAHASHI, N., YOSHIKAWA, M., et al. Measurement of automobile UWB radar cross sections at Ka band. In Ultra-Wideband, Short-Pulse Electromagnetics 7, New York (United States), Springer, 2007, p. 586–592. ISBN: 978-0-387- 37728-5
  3. GAMBI, E., SPINSANTE, S. Chaos-based radars for automotive applications: theoretical issues and numerical simulation. IEEE Transactions on Vehicular Technology, Nov. 2008, vol. 57, no. 6, p. 3858–3863. DOI: 10.1109/TVT.2008.921632
  4. WEI, Y., LIU, L., ZHANG, J. Blind estimation of PN sequence of DS-CDMA signal in multipath. In Proceedings of the 2nd International Conference on Communications and Networks. Yichang (China), 2012, p. 1695–1699. DOI: 10.1109/CECNet.2012. 6201645
  5. FISH, A., GUREVICH, S. Performance estimates of the pseudorandom method for radar detection. In Proceedings of the 2014 IEEE International Symposium of Information Theory. Honolulu (United States), 2014, p. 3102–3106, DOI: 10.1109/ISIT.2014. 6875405
  6. KATO, H., KOBAYASHI, T. Detection probability of automotive radars using maximum length sequences to suppress interference from nearby radars. In Proceedings of the IEEE International Aerospace and Electronics Conference. Dayton (United States), 2014, p. 396–400. DOI: 10.1109/NAECON.2014.7045843
  7. SATO, S., KOBAYASHI, T. Path-loss exponents of ultra wideband signals in line-of-sight environments. In Proceedings of the 2004 IEEE Eighth International Symposium on Spread Spectrum Techniques and Applications. Sydney (Australia), 2004, p. 488–492. DOI: 10.1109/ISSSTA.2004.1371748
  8. KARL, I., BERG, G., RUGER, F., et al. Driving behavior and simulator sickness while driving the vehicle in the loop: validation of longitudinal driving behavior. IEEE Intelligent Transportation Systems Magazine, 2013, vol. 5, no. 1, p. 42–57, ISSN: 1939-1390. DOI: 10.1109/MITS.2012.2217995
  9. CHEN, X. H., LANG, T., OKSMAN, J. Multiple chip-rate DS/CDMA system and its spreading code dependent performance analysis. IEE Proceedings- Communication, 1998, vol. 145, no. 5, p. 371–377. DOI: 10.1049/ip-com:19982289
  10. YANG, C., LI, W., ZENG, Y., et al. Impulse response measurements using Gold sequences. In Proceedings of the 2006 8th International Conference on Signal Processing. Beijing (China), 2006, p. 1–4. DOI: 10.1109/ICOSP.2006.346070

Keywords: UWB, radar, maximum length sequences, gold sequences, interference, detection probability

M. T. Kawser, M. R. Islam, K. I. Ahmed, M. R. Karim, J. B. Saif [references] [full-text] [DOI: 10.13164/re.2015.0940] [Download Citations]
Efficient Resource Allocation and Sectorization for Fractional Frequency Reuse (FFR) in LTE Femtocell Systems

The Fractional Frequency Reuse (FFR) is a resource allocation technique that can effectively mitigate inter-cell interference (ICI) in LTE based HetNets and it is a promising solution. Various FFR schemes have been suggested to address the challenge of interference in femtocell systems. In this paper, we study the scopes of interference mitigation and capacity improvement. We propose a resource allocation scheme that gradually varies frequency resource share with distance from the eNodeB for both macrocells and femtocells in order to attain better utilization of the resources. This is performed effectively using three layers in the cell. The proposal also employs high number sectors in a cell, low interference and good frequency reuse. Monte-Carlo simulations are performed, which show that the proposed scheme achieves significantly better throughput compared to the existing FFR schemes.

  1. KAWSER, M. T. LTE Air Interface Protocols. Artech House, 2011, ISBN: 978-1-60807-201-9
  2. BENDLIN, R., CHANDRASEKHAR, V., CHEN, R., et al. From homogeneous to heterogeneous networks: A 3GPP Long Term Evolution. Rel. 8/9 case study. In Proc. of 45th Annual Conference on Information Sciences and Systems (CISS). Baltimore (MD, USA), Mar. 2011, 5 p. DOI: 10.1109/CISS.2011.5766247
  3. SHI, Y., MACKENZIE, A. B., DASILVA, L. A., et al. On resource reuse for cellular networks with femto and macrocell coexistence. In Proc. of the IEEE Global Telecommunication Conference (Globecom). Miami (FL, USA), Dec. 2010, 6 p. DOI: 10.1109/GLOCOM.2010.5683443
  4. FUJITSU NETWORK COMMUNICATIONS. 4G Femtocell for the Dense Metropolitan Environment, 2013. Available at:
  5. NECKER, M. C. Local interference coordination in cellular OFDMA networks. In IEEE 66th Vehicular Technology Conference (VTC 2007 Fall). Baltimore (MD, USA), Sept. 2007, p. 1741–1746. DOI: 10.1109/VETECF.2007.368
  6. LEI, H., ZHANG, L., ZHANG, X., et al. A novel multi-cell OFDMA system structure using fractional frequency reuse. In IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Athens (Greece), Sept. 2007, 5 p. DOI: 10.1109/PIMRC.2007.4394228
  7. ASSAAD, M. Optimal Fractional Frequency Reuse (FFR) in multicellular OFDMA system. In IEEE Vehicular Technology Conference (VTC 2008 Fall). Calgary (BC), Sept. 2008, 5 p. DOI: 10.1109/VETECF.2008.381
  8. HASSAN, N. U. L., ASSAAD, M. Optimal fractional frequency reuse (FFR) and resource allocation in multiuser OFDMA system. In Proceedings of International Conference on Information and Communication Technologies (ICICT 2009). Karachi (Pakistan), Aug. 2009, p. 88–92. DOI: 10.1109/ICICT.2009.5267207
  9. 3GPP, R1-050507, Huawei. Soft frequency reuse scheme for LTE, 2005.
  10. LEE, P., LEE, T., JEONG, J. et al. Interference management in LTE femtocell systems using fractional frequency reuse. In Proc. of 12th International Conference on Advanced Communication Technology (ICACT). Phoenix Park, Feb. 2010, vol. 2, p. 1047 to 1051. ISBN: 978-1-4244-5427-3
  11. SAQUIB, N., HOSSAIN, E., KIM, D. I. Fractional frequency reuse for interference management in LTE-advanced HetNets. IEEE Wireless Communications, April 2013, vol. 20, no. 2, p. 113–122. DOI: 10.1109/MWC.2013.6507402
  12. FRADI, N., NAJEH, S., BOUJEMAA, H. Resource allocation in OFDMA networks with femto and macro-cells coexistence using Fractional Frequency Reuse (FFR). In International Conference on Communications and Networking (ComNet). Hammamet (Tunisia), March, 2014, 5 p. DOI: 10.1109/COMNET.2014.6840931
  13. CHANG, R. Y., TAO, Z., ZHANG, J., et al. A graph approach to dynamic fractional frequency reuse (FFR) in multi-cell OFDMA networks. In Proceedings of IEEE International Conference on Communications (ICC 2009). Dresden (Germany), June 2009, 6 p. DOI: 10.1109/ICC.2009.5198612
  14. FANG, L., ZHANG, X. Optimal fractional frequency reuse in OFDMA based wireless networks. In Proceedings of 4th International Conference on Wireless Communications, Networking and Mobile Computing, (WiCOM’08). Dalian (China), 4 p. DOI: 10.1109/WICOM.2008.166
  15. NOVLAN, T., ANDREWS, J. G., ILLSOO SOHN, et al. Comparison of fractional frequency reuse approaches in the OFDMA cellular downlink. In Proc. of the IEEE Global Telecommunication Conference GLOBECOM 2010. Miami (FL, USA), Dec. 2010, 5 p. DOI: 10.1109/GLOCOM.2010.5683973
  16. LEE, T., YOON, J., LEE, S., et al. Resource allocation analysis in OFDMA femtocells using fractional frequency reuse. In IEEE 21st International Symposium on Personal, Indoor and Mobile Radio Communication (PIMRC). Istanbul (Turkey), 2010, p. 1224–1229. DOI: 10.1109/PIMRC.2010.5672042
  17. KUMAR, S., KOVACS, I. Z., MONGHAL, G., et al. Performance evaluation of a 6-sector-site deployment for downlink UTRAN long term evolution. In IEEE Vehicular Technology Conference (VTC 2008 Fall). Calgary (BC), Sept. 2008, 5 p. DOI: 10.1109/VETECF.2008.384
  18. SCANFERLA, D. Studies on 6-Sector-Site Deployment in Downlink LTE. Technische Universiteit Eindhoven (TUE), 2012. ISBN: 978-90-444-1128-7

Keywords: LTE, Fractional Frequency Reuse (FFR), femtocells, resource allocation

G. Hacioglu [references] [full-text] [DOI: 10.13164/re.2015.0948] [Download Citations]
Space-Time-Frequency Diversity for OFDM-Based Indoor Power Line Communication

In this paper, full rate space-time-frequency coding applied to orthogonal frequency division multiplexing based power line communication systems. The proposed systems yield both time and frequency diversity and keep transmission rate full. Performances of the systems are evaluated for three conductors of low voltage indoor cables and are compared with space-frequency and space-time-frequency coding applied power line communication systems in the literature. Owing to the higher order diversity level the proposed full rate space-time-frequency systems have an increasing advantage over space-frequency systems as the SNR level above 12.5dB. On the other hand owing to transmission rate advantage the proposed full rate space-time-frequency systems can have more than 6dB gain over the other space-time-frequency coding applied power line communication systems in the literature.

  1. ZIMMERMANN, M., DOSTERT, K. A., et al. Multipath model for the powerline channel. IEEE Transactions on Communications, 2002, vol. 50, no. 4, p. 553–559. DOI: 10.1109/26.996069
  2. WEINSTEIN, S. B., EBERT, P. M., et al. Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Transactions on Communication Technology, 1971, vol. 19, no. 5, p. 628–634. DOI: 10.1109/TCOM.1971.1090705
  3. ZIMMERMANN, M., DOSTERT, K. A. Analysis and modeling of impulsive noise in broad-band powerline communications. IEEE Transactions on Electromagnetic Compatibility, 2002, vol. 44, no. 1, p. 249–258. DOI: 10.1109/15.990732
  4. PROAKIS, J. G., SALEHI, M. Digital Communications. 5th ed. New York: McGraw-Hill, 2007. ISBN: 9780072957167
  5. GIOVANELI, C. L., YAZDANI, J., FARRELL, P., HONARY, B. Application of space-time diversity/coding for power line channels. In Proceedings International Symposium on Power Line Communications Applications. Athens (Greece), 2002, p. 101–105
  6. VERONESI, D., RIVA, R., BISAGLIA, P., et al. Characterization of in-home MIMO power line channels. In IEEE International Symposium on Power Line Communication and Its Application. Udine (Italy), 2011, p. 42–47. DOI: 10.1109/ISPLC.2011.5764435
  7. GIOVANELI, C. L., HONARY, H., FARRELL, P. Spacefrequency coded OFDM system for multi-wire power line communication. In Proceedings of IEEE Power Line Communication and Its Application ISPLC 2005. Vancouver (Canada), 2005, p. 191–195. DOI: 10.1109/ISPLC.2005.1430494
  8. ADEBISI, B., ALI, S., HONARY, B. Space-frequency and spacetime-frequency M3FSK for indoor multiwire communications. IEEE Transactions on Power Delivery, 2009, vol. 24, no. 4, p. 2361–2367. DOI: 10.1109/TPWRD.2009.2028495
  9. TAROKH, V., JAFARKHANI, H., CALDERBANK, A. R. Space time block codes from orthogonal designs. IEEE Transaction on Information Theory, 1999, vol. 45, no. 5, p. 1456–1467. DOI: 10.1109/18.771146
  10. JAFARKHANI, H. A quasi-orthogonal space-time block code. IEEE Transaction on Communications, 2001, vol. 49, no. 1, p. 1 to 4. DOI: 10.1109/26.898239
  11. ALAMOUTI, S. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 1998, vol. 16, no. 8, p. 1451–1458. DOI: 10.1109/49.730453
  12. HACIOGLU, G., GANGAL, A. A rate-1 space-time diversity method for rotated 4-qam constellations. Wireless Personal Communications, 2012, p. 211–223. DOI: 10.1007/s11277-010-0180-8
  13. HACIOGLU, G., GANGAL, A. A transmit diversity method for DVB-H and IEEE 802.20. IEEE Communications Letters, 2011, vol. 15, no. 12, p. 1356–1358. DOI: 10.1109/LCOMM.2011. 101911.111768
  14. CHOE, S., YOO, J. Space-time/space-time-frequency-coding based MIMO-OFDM over power line channels. IEEE Electronics Letters, 2012, vol. 48, no. 16, p. 999–1000. DOI: 10.1049/el.2012.1786
  15. MENG, H., GUAN, Y. L., LAW, C. L., et al. Modeling of transfer characteristics for the broadband power line communication channel. IEEE Transactions on Power Delivery, 2004, vol. 19, no. 3, p. 1057–1064. DOI: 10.1109/TPWRD.2004.824430
  16. GALLI, S., BANWELL, T. C. A deterministic frequency-domain model for the indoor power line transfer function. IEEE Journal on Selected Areas in Communications, 2006, vol. 24, no. 7, p. 1304 to 1316. DOI: 10.1109/JSAC.2006.874428
  17. TONELLO, A. M., VERSOLATTO, F., BEJAR, B., ZAZO, S. A fitting algorithm for random modelling the PLC channel. IEEE Transactions on Power Delivery, 2012, vol. 27, no. 3, p. 1477 to 1484. DOI: 10.1109/TPWRD.2012.2196714
  18. TLICH, M., ZEDDAM, A., MOULIN, F., GAUTHIER, F. Indoor power-line communications channel characterization up to 100 MHz. Part I: One-parameter deterministic model. IEEE Transactions on Power Delivery, 2008, vol. 23, no. 3, p. 1392–1401. DOI: 10.1109/TPWRD.2008.919397
  19. MIDDLETON, D. Statistical-physical model of electromagnetic interference. IEEE Transactions on Electromagnetic Compatibility. 1977, vol. 19, no. 3, p. 106–126. DOI: 10.1109/TEMC.1977. 303527
  20. TRANTER, W. H., SHANMUGAN, K. S., RAPPAPORT, T. S., KOSBAR, K. L. Principles of Communication Systems Simulation with Wireless Applications. 1st ed. New Jersey: Prentice Hall, 2004. ISBN: 9780134947907

Keywords: Power line communication, constellation rotation, space-time-frequency (STF) diversity

B. Dimitrijevic, V. Krstic, B. Nikolic [references] [full-text] [DOI: 10.13164/re.2015.0956] [Download Citations]
A Novel Diversity Receiver Structure for Severe Fading and Frequency Offset Conditions

This paper presents a novel diversity receiver of MPSK signal in fading channel in the presence of the carrier frequency offset. As a part of this receiver, a new algorithm for the estimation of the combining coefficients (ECC algorithm) is introduced. Having in mind that the QPSK modulation is one of the most used modulation formats in many wireless communication standards (LTE, WiFi, WiMax), the performance of the proposed receiver is analyzed in more detail for the QPSK modulation. In the presence of Rayleigh fading, representing the most severe fading condition, this algorithm shows significantly better performance comparing to the same receiver structure that uses conventional constant modulus algorithm (CMA1 or CMA2). The proposed diversity receiver structure with ECC algorithm operates within a wide carrier frequency offset range with a very small variation of the performance. For this reason, it can be applied in 4G mobile communication systems.

  1. SIMON, M. K., ALOUINI, M. S. Digital Communication over Fading Channels: A Unified Approach to Performance Analysis. New York (USA): Wiley, 2005. ISBN: 0-471-64953-8
  2. PROAKIS, J. G. Digital Communications. 4th ed., New York (USA): McGraw-Hill, 2001. ISBN: 0072321113.
  3. KWOK, Y. -K. R., LAU, V. K. N. Wireless Internet and Mobile Computing: Interoperability and Performance. Hoboken (New Jersey, USA): John Wiley & Sons, Inc., 2007. ISBN: 9780471679684
  4. PATTERH, M. S., KAMAL, T. S., SOHI, B. S. BER performance of MQAM with L-branch MRC diversity reception over correlated Nakagami-m fading channels. Wireless Communications and Mobile Computing, 2003, vol. 3, no. 3, p. 397–406. DOI: 10.1002/wcm.93
  5. NIKOLIC, B. Z., DJORDJEVIC, G. T., KARAGIANNIDIS, G. K. On the effect of imperfect cophasing in MRC and EGC receivers over correlated Weibull fading. Wireless Personal Communications, 2012, vol. 62, no. 1, p. 31–39. DOI: 10.1007/s11277-010-0036-2
  6. NAJIB, M. A., PRABHU, V. K. Analysis of equal-gain diversity with partially coherent fading signals. IEEE Transactions on Vehicular Technology, 2000, vol. 49, no. 3, p. 783–791. DOI: 10.1109/25.845098
  7. SAGIAS, N. C., KARAGIANNIDIS, G. K. Effects of carrier phase error on EGC receivers in correlated Nakagami-m fading. IEEE Communications Letters, 2005, vol. 9, no. 7, p. 580–582. DOI: 10.1109/LCOMM.2005.07006
  8. TREICHLER, J. R., AGEE, B. G. A new approach to multipath correction of constant modulus signals. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, vol. ASSP-28, p. 459–472. DOI: 10.1109/TASSP.1983.1164062
  9. GODARD, D. N. Self recovering equalization and carrier tracking in two dimensional data communication systems. IEEE Transactions on Communications, 1980, vol. 28, no. 11, p. 1867–1875. DOI: 10.1109/TCOM.1980.1094608
  10. JONES, D. L. A normalized constant modulus algorithm. In Conference Record of the 29th Asilomar Conference on Signals, Systems and Computers. Pacific Grove (USA), 1995, vol. 1, p. 694–697. DOI: 10.1109/ACSSC.1995.540639
  11. CHAHED, I., BELZILE, J., KOUKI, A. B. Blind decision feedback equalizer based on high order MCMA. In Proceedings of the 18th Canadian Conference on Electrical and Computer Engineering. Niagara Falls (Canada), 2004, vol. 4, p. 2111–2114. DOI: 10.1109/CCECE.2004.1347658
  12. DEMIR, M. A., OZEN, A. A novel variable step size adjustment method based on autocorrelation of error signal for the constant modulus blind equalization algorithm. In Proceedings of the International Conference on Telecommunications and Signal Processing. Budapest (Hungary), 2011, p. 500–504. DOI: 10.1109/TSP.2011.6043680
  13. DE LAMARE, R.C., SAMPAIO-NETO, R. Low-complexity variable step-size mechanisms for stochastic gradient algorithms in minimum variance CDMA receivers. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 6, p. 2302–2317. DOI: 10.1109/TSP.2006.873651
  14. WANG, L., CAI, Y., DE LAMARE, R. C. Low-complexity adaptive step size constrained constant modulus SG-based algorithms for blind adaptive beamforming. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas (NV, USA), 2008, p. 2593–2596. DOI: 10.1109/ICASSP.2008.4518179
  15. CAI, Y., DE LAMARE, R. C. Low-complexity variable step-size mechanism for code-constrained constant modulus stochastic gradient algorithms applied to CDMA interference suppression. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 1, p. 313–323. DOI: 10.1109/TSP.2008.2005861
  16. DIMITRIJEVIĆ, B. R., MILOSEVIĆ, N., MARSALEK, R., NIKOLIĆ, Z. B. BPSK receiver based on recursive adaptive filter with remodulation. Radioengineering, vol. 20, no. 4, 2011, p. 932 to 936, ISSN: 1210-2512.
  17. DIMITRIJEVIĆ, B. R., NIKOLIĆ, Z. B., MILOSEVIĆ, N. Performance improvement of MDPSK signal reception in the presence of carrier frequency offset. IEEE Transactions on Vehicular Technology, vol. 61, no. 1, 2012, p. 381–385. DOI: 10.1109/TVT.2011.2177105
  18. HAYKIN, S., MOHER, M. Modern Wireless Communications. New Jersey: Pearson Education, Inc., 2005. ISBN:0-13-124647-6
  19. NWALOZIE, C., OKOROGU, N., UMEH, C., ORAETUE, D. Performance analysis of constant modulus algorithm (CMA) blind adaptive algorithm for smart antennas in a W-CDMA network. International Journal of Engineering Science and Innovative Technology, 2012, vol. 1, no. 2, p. 246–254. ISSN: 2319-5967.
  20. SLOCK, D. T. M. On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Transactions on Signal Processing, 1993, vol. 41, no. 9, p. 2811–2825. DOI: 10.1109/78.236504
  21. DOUGLAS, S. C. A family of normalized LMS algorithms. IEEE Signal Processing Letters, 1994, vol. 1, no. 3, p. 49–51. DOI: 10.1109/97.295321

Keywords: Fading, constant modulus algorithm, adaptive filtering, frequency offset, diversity receiver

Z. Biolek, D. Biolek, V. Biolkova, Z. Kolka [references] [full-text] [DOI: 10.13164/re.2015.0962] [Download Citations]
Comments on Pinched Hysteresis Loops of Memristive Elements

The hysteresis loops pinched in the v-i origin belong to well-known fingerprints of memristive elements driven by bipolar periodical signals. Some element properties follow from the loop behavior in the close neighborhood of the origin. The paper analyzes this behavior of the memristive elements that produce steady-state hysteresis loops under harmonic excitation. It is shown that there is a connection between the frequency content of the state variable waveform and the type of the loop being pinched.

  1. CHUA, L. O., KANG, S. M. Memristive devices and systems. Proceedings of the IEEE, 1976, vol. 64, no. 2, p. 209–223. DOI: 10.1109/PROC.1976.10092
  2. PERSHIN, Y. V., LA FONTAINE, S., DI VENTRA, M. Memristive model of amoeba's learning. Physical Review E, 2009, vol. 80, no. 2, p. 1–6. DOI: 10.1103/PhysRevE.80.021926
  3. PERSHIN, Y. V., DI VENTRA, M. Memory effects in complex materials and nanoscale systems. Advances in Physics, 2011, vol. 60, no. 2, p. 145–227. DOI: 10.1080/00018732.2010.544961
  4. MARTINSEN, Ø. G., GRIMNES, S., LUTKEN, C. A., JOHNSEN, G. K. Memristance in human skin. Journal of Physics: Conference Series, 2010, vol. 224, no. 1, 012071. DOI: 10.1088/1742-6596/224/1/012071
  5. VOLKOV, A. G., TUCKET, C., REEDUS, J., VOLKOVA, M. I., MARKIN, V. S., CHUA, L. O. Memristors in plants. Plant Signaling & Behavior, 2014, vol. 9, no. 3, p. 1–8. DOI: 10.4161/psb.28152
  6. CHUA, L. O. Memristor – The missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. CT-18, no. 5, p. 507 to 519. DOI: 10.1109/TCT.1971.1083337
  7. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., WILLIAMS, R. S. The missing memristor found. Nature, 2008, vol. 453, p. 80–83. DOI: 10.1038/nature06932
  8. CHUA, L. O. If it’s pinched it’s a memristor. Semiconductor Science and Technology, 2014, vol. 29, no. 10, p. 1–42. DOI: 10.1088/0268-1242/29/10/104001
  9. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. Pinched hysteresis loops of ideal memristors, memcapacitors and meminductors must be ‘self-crossing’. Electronics Letters, 2011, vol. 47, no. 25, p. 1385–1387. DOI: 10.1049/el.2011.2913
  10. PRODROMAKIS, T., TOUMAZOU, CH., CHUA, L. O. Two centuries of memristors. Nature Materials, 2012, vol. 11, p. 478 to 481. DOI: 10.1038/nmat3338
  11. BIOLEK, Z., BIOLEK, D. How can the hysteresis loop of the ideal memristor be pinched? Circuits and Systems II: Express Briefs, 2014, vol. 61, no. 7, p. 491–495. DOI: 10.1109/TCSII.2014. 2327303
  12. BIOLEK, Z., BIOLEK, D., VAVRA, J., BIOLKOVA, V., KOLKA, Z. The simplest memristor in the world. Submitted to International Conference on Circuits and Systems (ISCAS 2016). Montreal (Canada), 2016.

Keywords: Memristive element, memristance, pinched hysteresis loop, crossing-type, tangential pinching

M. E. Fouda, A. G. Radwan [references] [full-text] [DOI: 10.13164/re.2015.0968] [Download Citations]
Power Dissipation of Memristor-Based Relaxation Oscillators

Recently, many reactance-less memristive relaxation oscillators were introduced, where the charging and discharging processes depend on memristors. In this paper, we investigate the power dissipation in different memristor based relaxation oscillators. General expressions for these memristive circuits as well as the power dissipation formulas for three different topologies are derived analytically. In addition, general expressions for the maximum and minimum power dissipation are calculated. Finally, the calculated expressions are verified using PSPICE simulations showing very good matching.

  1. CHUA, L. Memristor – the missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. 18, no. 5, p. 507–519. DOI: 10.1109/TCT.1971.1083337
  2. STRUKOV, D., SNIDER, G., STEWART, D., WILLIAMS, R. The missing memristor found. Nature, 2008, vol. 453, p. 80–83. DOI:10.1038/nature06932
  3. KOZMA, R., PINO, R. E., PAZIENZA, G. E. Advances in Neuromorphic Nemristor Science and Applications, vol. 4. Springer, 2012. DOI:10.1007/978-94-007-4491-2
  4. RADWAN, A. G., FOUDA, M. E. On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor. Springer, 2015. DOI: 10.1007/978-3-319-17491-4
  5. KIM, H., SAH, M., YANG, C., CHO, S., CHUA, L. Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, vol. 59, no. 10, p. 2422–2431. DOI:10.1109/TCSI.2012.2188957
  6. ELWAKIL, A., FOUDA, M., RADWAN, A. A simple model of double-loop hysteresis behavior in memristive elements. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, vol. 60, no. 8, p. 487–491. DOI:10.1109/TCSII.2013.2268376
  7. HUSSEIN, A., FOUDA, M. A simple MOS realization of current controlled memristor emulator. In 25th IEEE International Conference on Microelectronics (ICM). Beirut (Lebanon), 2013, p. 1–4. DOI:10.1109/ICM.2013.6734969
  8. FOUDA, M., RADWAN, A. simple floating voltage-controlled memductor emulator for analog applications. Radioengineering, 2014, vol. 23, no. 3., p. 944–948.
  9. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, vol. 18, no. 2, p. 210–214.
  10. PERSHIN, Y. V., DI VENTRA, M. SPICE model of memristive devices with threshold. Radioengineering, 2013, vol. 22, no. 2., p. 485–489.
  11. BIOLEK, D., DI VENTRA, M., PERSHIN, Y. Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering, 2013, vol. 22 , no. 4, p. 945–968.
  12. TALUKDAR, A., RADWAN, A., SALAMA, K. Generalized model for memristor-based Wien family oscillators. Microelectronics Journal, 2011, vol. 42, no. 9, p. 1032–1038. DOI:10.1016/j.mejo.2011.07.001
  13. FOUDA, M., RADWAN, A. Memristor-based voltage-controlled relaxation oscillators. International Journal of Circuit Theory and Applications, 2014, vol. 42, no. 10, p. 1092–1102. DOI:10.1002/cta.1907
  14. ZIDAN, M., OMRAN, H., SMITH, C., SYED, A., RADWAN, A., SALAMA, K. A family of memristor-based reactance-less oscillators. International Journal of Circuit Theory and Applications, 2014, vol. 42, no. 11, p. 1103–1122. DOI:10.1002/cta.1908
  15. FOUDA, M. E., KHATIB, M., MOSAD, A., RADWAN, A. Generalized analysis of symmetric and asymmetric memristive twogate relaxation oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, vol. 60, no. 10, p. 2701–2708. DOI:10.1109/TCSI.2013.2249172

Keywords: Memristor, power, reactance-less, memristive circuits, oscillators.

T. Kunto, P. Prommee, M. T. Abuelma'atti [references] [full-text] [DOI: 10.13164/re.2015.0974] [Download Citations]
Electronically Tunable Current-mode High-order Ladder Low-pass Filters Based on CMOS Technology

This paper describes the design of current mode low-pass ladder filters based on CMOS technology. The filters are derived from passive RLC ladder filter prototypes using new CMOS lossy and lossless integrators. The all-pole and Elliptic approximations are used in the proposed low-pass filter realizations. The proposed two types of filter can be electronically tuned between 10kHz and 100MHz through bias current from 0.03µA to 300µA. The proposed filters use 1.5 V power supply with 3 mW power consumption at 300 µA bias current. The proposed filters are resistorless, use grounded capacitors and are suitable for further integration. The total harmonic distortion (THD) of the low-pass filters is less than 1% over the operating frequency range. PSPICE simulation results, obtained by using TSMC 0.18µm technology, confirm the presented theory.

  1. RAUT, R., SWAMY, M. N. S. Modern Analog Filter Analysis and Design. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. KGaA, 2010. ISBN: 9783527407668
  2. RAUT, R., GUO, N. Low power wideband voltage and current mode second-order filters using wideband CMOS transimpedance network. In Proceedings of the 40th Midwest Symposium on Circuits and Systems MWSCAS. Aug. 1997, vol. 1, p. 241–244. DOI: 10.1109/MWSCAS.1997.666078
  3. FABRE, A., DAYOUB, F., DURUISSEAU, L., KAMOUN, M. High input impedance insensitive second-order filters implemented from current conveyors. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Dec. 1994, vol. 41, no.12, p. 918–921. DOI: 10.1109/81.340859
  4. LUCK, J., SWANSON, J. G. First-order, switched-capacitor, lowpass filter implemented with GaAs insulated-gate FET switches. Electronics Letters, Oct. 1990, vol. 26, no. 22, p. 1843–1845. DOI:10.1049/el:19901186
  5. BANERJEE, K., RANJAN, A., PAUL, S. K. New first order multifunction filter employing operational transresistance amplifier. In Proceedings of 5th International Conference on Computers and Devices for Communication (CODEC 2012). Dec. 2012, p. 1–3. DOI: 10.1109/CODEC.2012.6509218
  6. CHEN, W. K. The Circuits and Filters Handbook. A CRC Handbook Published in Cooperation with IEEE Press, 1995. ISBN: 9781420055276
  7. SA-AD, S., CHAYTHONG, D. A high frequency current-mode ladder filter using multiple output lossless integrator. In Proceedings of International Symposium on Intelligent Signal Processing and Communications Systems, ISPACS 2008. Feb. 2009, p. 1–4. DOI:10.1109/ISPACS.2009.4806743
  8. JIRASEREE-AMORNKUN, A., FUJII, N., SURAKAMPONTORN, W., Realization of electronically tunable ladder filters using multi-output current controlled conveyors. In Proceedings of the International Symposium on Circuits and Systems 2003, ISCAS’03. May 2003, vol. 1, p. 541–544. DOI:10.1109/ ISCAS.2003.1205620
  9. ZELE, R. H., ALLSTOT, D. J., FIEZ, T. S. Fully balanced CMOS current-mode circuits. IEEE Journal of Solid-State Circuits, 1993, vol. 28, no. 5, p. 569–575. DOI: 10.1109/4.229398
  10. ORALKAN, O., KARSILAYAN, A. I., TAN, M. A. Design of allpole low-pass ladder filters using current-mode damped integrators. In Proceedings of the International Symposium on Circuits and Systems, ISCAS’96. May 1996, vol. 1, p. 266–269. DOI: 10.1109/ISCAS.1996.539880
  11. WU, J., EL-MASRY, E. A new approach of design of currentmode filters. In Proceedings of International Symposium on Circuits and Systems, ISCAS’97. Jun. 1997, vol. 1, p. 317–320. DOI: 10.1109/ISCAS.1997.608721
  12. WU, J., EL-MASRY, E. Design of current-mode ladder filters using coupled-biquads. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Nov. 1998, vol. 45, no. 11, p. 1445–1454. DOI: 10.1109/82.735356
  13. TANGSRIRAT, W., FUJII, N., SURAKAMPONTORN W. Current-mode leapfrog ladder filters using CDBAs. In Proceedings of International Symposium on Circuits and Systems, ISCAS 2002. 2002, vol. 5, p. 57–60. DOI: 10.1109/ISCAS. 2002.1010639
  14. YAN-HUI, X., XUE, L. Active simulation of passive leapfrog ladder filters using DVCCs. In Proceedings of International Conference on Industrial Technology, ICIT 2008. Apr. 2008, p. 1–5. DOI:10.1109/ICIT.2008.4608606
  15. YAN-HUI, X., PENG, H. Realization of low-pass and band-pass leapfrog filters using OAs and CCCIIs. In Proceedings of International Conference Management and Service Science, MASS’09. Sep. 2009, p. 1–4. DOI: 10.1109/ICMSS.2009.5303743
  16. WU, J., EL-MASRY, E. Current-mode ladder filters using multiple output current conveyors. IEE Circuits, Devices and Systems, 1996, vol. 143, no. 4, p. 218–222. DOI: 10.1049/ipcds:19960490
  17. YUCE, E., MINAEI, S. On the realization of high-order currentmode filter employing current controlled conveyors. Computers and Electrical Engineering, May 2008, vol. 34, no. 3, p. 165–172. DOI:10.1016/j.compeleceng.2007.04.001
  18. YUCE, E., MINAEI, S. ICCII-based universal current-mode analog filter employing only grounded passive components. Analog Integrated Circuits and Signal Processing, Feb. 2009, vol. 58, no. 2, p. 161–169. DOI: 10.1007/s10470-008-9225-2
  19. SINHA, P. K., SAINI, A., KUMAR, P., MISHRA, S., CFOA based low pass and high pass ladder filter—a new configuration. Circuits and Systems, 2014, vol. 5, no. 12, p. 293–300. DOI: 10.4236/cs.2014.512030
  20. PROMMEE, P., WONGPROMMOON, N. Tunable CMOS-based current mode fifth-order ladder low-pass filter. In Proceedings of the 36th International Conference on Telecommunications and Signal Processing (TSP). Jul. 2013, p. 397–401. DOI: 10.1109 /TSP.2013.6613961
  21. ANANDA MOHAN, P. V. Current-Mode VLSI Analog Filters: Design and Applications. Birkhauser Boston, 2003. ISBN: 9781461200338
  22. DELIYANNIS, T., SUN, Y., FIDLER, J. K. Continuous-Time Active Filter Design. London (UK): CRC Press, 1999. ISBN: 9780849325731
  23. SCHAUMANN, R., GHAUSI, M. S., LAKER, K. R. Design of Analog Filters: Passive, Active RC and Switched Capacitor. Prentice Hall, 1995. ISBN: 9780132002882
  24. ALLSTOT, D. J., BRODERSEN, R. W., GRAY, P. R. Fullyintegrated high-order NMOS sampled-data ladder filters. In Proceedings of IEEE Intl. Solid-State Circuits Conf. New York, 1978, vol. 21, p. 82–83. DOI. 10.1109/ISSCC.1978.1155789
  25. PENNEY, W. M., LAU, L. MOS Integrated Circuits, Theory, Fabrication, Design, and Systems Applications of MOS LSI. American Micro-Systems Inc., 1972. ISBN: 9780442203528
  26. BAKER, R. J. CMOS Circuit Design, Layout, and Simulation. Wiley - Interscience. 2008. ISBN: 9780470881323
  27. HUELSMAN, L. P. Active and Passive Analog Filter Design. McGraw-Hill Inc., International Edition, 1993. ISBN: 9780070308602

Keywords: CMOS, current mode, ladder filters, all-pole, elliptic, low-pass filter

M. Drinovsky, J. Hospodka [references] [full-text] [DOI: 10.13164/re.2015.0988] [Download Citations]
High Voltage Coil Current Sensor for DC-DC Converters Employing DDCC

Current sensor is an integral part of every switching converter. It is used for over-current protection, regulation and in case of multiphase converters for balancing. A new high voltage current sensor for coil-based current sensing in DC-DC converters is presented. The sensor employs DDCC with high voltage input stage and gain trimming. The circuit has been simulated and implemented in 0.35 um BCD technology as part of a multiphase DC-DC converter where its function has been verified. The circuit is able to sustain common mode voltage on the input up to 40 V, it occupies 0.387*0.345 mm2 and consumes 3.2 mW typically.

  1. PATEL, A., FERDOWSI, M. Current sensing for automotive electronics – a survey. IEEE Transactions on Vehicular Technology, 2009, vol. 58, no. 8, p. 4108–4119. DOI: 10.1109/TVT.2009.2022081
  2. FORGHANI-ZADEH, H. P., RINCON-MORA, G. A. Currentsensing techniques for DC-DC converters. In The 2002 45th Midwest Symposium on Circuits and Systems (MWSCAS). 2002, vol. 2, p. II-577–II-580. DOI: 10.1109/MWSCAS.2002.1186927
  3. DU, M., LEE, H. An integrated speed- and accuracy-enhanced CMOS current sensor with dynamically biased shunt feedback for current-mode buck regulators. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, vol. 57, no. 10, p. 2804–2814. DOI: 10.1109/TCSI.2010.2046258
  4. LEE, C. F., MOK, K. T. A monolithic current-mode CMOS DCDC converter with on-chip current-sensing technique. IEEE Journal of Solid-State Circuits, 2004, vol. 39, no. 1, p. 3–14. DOI: 10.1109/JSSC.2003.820870
  5. YUAN, B., LAI, X. On-chip CMOS current-sensing circuit for DCDC buck converter. Electronics Letters, 2009, vol. 45, no. 2, p. 102– 103. DOI: 10.1049/el:20092855
  6. WANG, S. W., CHO, GYU-HA, CHO, GYU-HYEONG A highstability emulated absolute current hysteretic control single-inductor 5-output switching DC-DC converter with energy sharing and balancing. In IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 2012, p. 276–278. DOI: 10.1109/ISSCC.2012.6177002
  7. SUN, J., ZHOU, J., XU, M., LEE, F. C. A novel input-side current sensing method to achieve AVP for future VRs. IEEE Transactions on Power Electronics, 2006, vol. 21, no. 5, p. 1235–1242. DOI: 10.1109/TPEL.2006.880347
  8. HWU, K. I., CHEN, Y. H. Current sharing control strategy based on phase link. IEEE Transactions on Industrial Electronics, 2012, vol. 59, no. 2, p. 701–713. DOI: 10.1109/TIE.2011.2151820
  9. SIMON-MUELA, A., PETIBON, S., ALONSO, C., CHAPTAL, J.-L. Practical implementation of a high-frequency current-sense technique for VRM. IEEE Transactions on Industrial Electronics, 2008, vol. 55, no. 9, p. 3221–3230. DOI: 10.1109/TIE.2008.927968
  10. WICHT, B., KULHARNI, S. P., HERZER, S., NEIDHARDT, J. Switched Mode Power Supply with Current Sensing, US Patent 8,203,323. June 19, 2012.
  11. CHIU, W., LIU, S.-I., TSAO, H.-W., CHEN, J.-J. CMOS differential difference current conveyors and their applications. IEE Proceedings – Circuits, Devices and Systems, 1996, vol. 143, no. 2, p. 91–96. DOI: 10.1049/ip-cds:19960223
  12. ENZ, C. C., KRUMMENACHER, F., VITTOZ, E. A. An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integrated Circuits and Signal Processing, 1995, vol. 8, no. 1, p. 83–114. DOI: 10.1007/BF01239381

Keywords: Current sensor, current conveyor, DDCC, DC-DC converter

A. Diet, G. Baudoin, S. Lasaulce [references] [full-text] [DOI: 10.13164/re.2015.0993] [Download Citations]
Envelope Factorization with Partial Elimination and Recombination, EF-PER, a New Linear RF Architecture

In this paper, a new architecture for efficient linear radio frequency transmitters is proposed; it includes envelope-tracking (ET) and envelope-elimination-and-restoration (EER) architectures as special instances. The proposed technique is referred to as Envelope Factorization with Partial Elimination and Recombination (EF-PER). It relies on a decomposition of the RF signal before power amplification as a product of two signals, one of them being the envelope signal elevated to an exponent “α”. Compared to ET or EER architectures, the parameter “α” constitutes a new degree of freedom. This allows one to realize good tradeoffs between different performance criteria such as spectrum use, power efficiency, and transmitter linearity. An intuitive aggregate cost function is introduced to capture the desired tradeoff and turns out to be maximized in α=0.5. The full relevance of EF-PER is sustained both by analytical results and realistic simulations performed for OFDM signals. The EF-PER architecture (with α=0.5) has been simulated under Agilent-ADS with a non-linear transistor model from Avago (E-PHEMT) and compared with ET and EER.

  1. JINGON JOUNG, CHIN KEONG HO, KOICHI ADACHI, SUMEI SUN. A survey on power-amplifier-centric techniques for spectrum- and energy-efficient wireless communications. IEEE Communication Surveys and Tutorials, 2015, vol. 17, no. 1, p. 315–333. DOI: 10.1109/COMST.2014.2350018
  2. DIET, A., VILLEGAS, M., BAUDOIN, G. EER-LINC RF transmitter architecture for high PAPR signals using SW power amplifiers. Physical Communication, Dec. 2008, vol. 1, no. 4, p. 248–254. DOI: 10.1016/j.phycom.2008.11.001
  3. GROE, J. A multimode cellular radio. IEEE Transactions on Circuits and Systems—II: Express Briefs, 2008, vol. 55, no. 3, p. 269–273. DOI: 10.1109/TCSII.2008.918997
  4. DIET, A., et al. RF transmitter architectures for nomadic multiradio: A review of the evolution towards fully digital solutions. Recent Patents on Electrical Engineering, 2013, vol. 6, no. 2, p. 79–94. DOI: 10.2174/22131116113069990006
  5. MORGAN, D. R., ZHENGXIANG MA, JAEHYEONG KIM, ZIERDT, M.G., PASTALAN, J. A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 10, p. 3852–3860. DOI: 10.1109/TSP.2006.879264
  6. WANG, F., OJO, A., KIMBALL, D., ASBECK, P., LARSON, L. Envelope tracking power amplifier with pre-distortion linearization for WLAN 802.11g. In IEEE MTT-S International Microwave Symposium Digest, 2004, vol. 3, p. 543–1546. DOI: 10.1109/MWSYM.2004.1338872
  7. RAAB, F.H. Efficiency of Doherty RF power-amplifier systems. IEEE Transactions on Broadcasting, 1987, vol. BC-33, no. 3, p. 77–83. DOI: 10.1109/TBC.1987.266625
  8. RAAB, F. H., et al. Power amplifiers and transmitters for RF and microwave. IEEE Transactions on Microwave Theory and Techniques, 2002, vol. 50, no. 3, p 814–826. DOI: 10.1109/22.989965
  9. AMIRI, M. V., HELAOUI, M., GHANNOUCHI, F. M. On the estimation of power amplifier efficiency for modulated signals. In 2015 IEEE Topical Conference on Wireless and Radio Applications (PAWR). San Diego (CA, USA), Jan. 2015, p 1-4, DOI: 10.1109/PAWR.2015.7139203
  10. HANNIGTON, G., CHEN, P. F., ASBECK, P. M, LARSON, L. E. High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications. IEEE Transactions on Microwave Theory and Techniques, 1999, vol. 47, no. 8, p. 1471–1476. DOI: 10.1109/22.780397
  11. NIELSEN, M., LARSEN, T. Transmitter architecture based on ΔΣ modulation and SW power amplification. IEEE Transactions on Circuits and Systems II, 2007, vol. 54, no. 8, p. 735–739. DOI: 10.1109/TCSII.2007.899457
  12. CHOI, J., YIM, J., YANG, J., KIM, J., CHA, J., KANG, D., KIM, D., KIM, B. A ΔΣ digitized polar RF transmitter. IEEE Transactions on Microwave Theory and Techniques, 2007, vol. 55, no. 12, p. 2679–2690. DOI: 10.1109/TMTT.2007.907137
  13. COX, D. C. Linear amplification with non-linear components, LINC method. IEEE Transactions on Communications, 1974, vol. COM-23, no. 10, p. 1942–1945. DOI: 10.5815/ijisa.2013.10.08
  14. COX, D. C. A high-efficiency RF transmitter using VCO-derived synthesis: CALLUM. In Proceedings of IEEE Radio and Wireless Conference RAWCON. Colorado Springs (CO,USA), 1998, p. 137–140. DOI: 10.1109/RAWCON.1998.709155
  15. JHENG, K.Y., CHEN, Y.J., WU, A.Y. Multilevel LINC system designs for power efficiency enhancement of transmitters. IEEE Journal of Selected Topics in Signal Processing, 2009, vol. 3, no. 3, p. 523–532. DOI: 10.1109/JSTSP.2009.2020949
  16. KAHN, R. Single sideband transmission by envelope elimination and restoration. Proceedings of the I.R.E., 1952, vol. 40, no. 7, p. 803–806. DOI: 10.1109/JRPROC.1952.273844
  17. NESIMOGLU, T., PARKER, S. C. J., MORRIS, K.A., MCGEEHAN, J. P. The performance and efficiency of envelope elimination and restoration transmitters for future multiple-input multiple-output wireless local area networks. IET Communications, March 2008, vol. 2, no. 3, p. 473–483. DOI: 10.1049/ietcom:20070171
  18. RAAB, F. L-band transmitter using Kahn EER technique. IEEE Transactions on Microwave Theory and Techniques, 1998, vol. 46, no. 12, p. 2220–2224. DOI: 10.1109/22.739200
  19. OISHI, K. et al. A 1.95 GHz fully integrated EER CMOS power amplifier with envelope/phase generator and timing aligner for WCDMA and LTE. In IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco (CA, USA), 2014, p. 60–61. DOI: 10.1109/ISSCC.2014.6757337
  20. BAUDOIN, G., BERLAND, C., VILLEGAS, M., DIET, A. Influence of time and processing mismatches between phase and envelope signals in linearization systems using EER. In IEEE MTT-S International Microwave Symposium Digest. Philadelphia (PA, USA), 2003, vol. 3, p. 2149–2152. DOI: 10.1109/MWSYM.2003.1210588
  21. JIN, S. et al. A highly efficient CMOS envelope tracking power amplifier using all bias node controls. IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 8, p. 517–519. DOI: 10.1109/LMWC.2015.2440652
  22. Handset PA Linearization using Envelope Tracking. Nujira white paper.
  23. ANDERSON, D. R., CANTRELL, W. H. High-efficiency highlevel modulator for use in dynamic ET CDMA RF power amplifiers. In IEEE MTT-S International Microwave Symposium Digest. Phoenix (AZ, USA), 2001, vol. 3, p. 1509–1512. DOI: 10.1109/MWSYM.2001.967189
  24. CIDRONALI, A., MANES, G., GIOVANNELLI, N., VLASITS, T., HERNAMAN, R. Efficiency and linearity enhancements with envelope shaping control in dual-band envelope tracking GaAs PA. In Proceedings of the European Microwave Integrated Circuits Conference. Manchestr (UK), 2011, p. 308–311.
  25. HOVERSTEN, J., SCHAFER, S., ROBERG, M., NORRIS, M., MAKSIMOVIC, D., POPOVIC, Z. Codesign of PA, supply, and signal processing for linear supply-modulated RF transmitters. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 6, p. 2010 2020. DOI: 10.1109/TMTT.2012.2187920
  26. LIE, D. Y. C., et al. Design of highly-efficient wideband RF polar transmitters using Envelope-Tracking (ET) for mobile WiMAX/Wibro applications. In Proceedings of the IEEE 8th International Conference on ASIC (ASICON '09). Changsha, (Hunan, China), Oct. 2009, p. 347–350. DOI: 10.1109/ASICON.2009.5351425
  27. GARCIA DOBLADO, J., et al. Cubic Metric Reduction for DCOOFDM visible light communication systems. Journal of Lightwave Technology, 2015, vol. 33, no. 10, p. 1971–1978. DOI: 10.1109/JLT.2015.2402755

Keywords: EER, ET, linearization techniques, power efficiency, PAPR, RF architecture, RF linear transmitter.

P. Soontornwong, S. Chivapreecha [references] [full-text] [DOI: 10.13164/re.2015.1002] [Download Citations]
Pascal-Interpolation-Based Noninteger Delay Filter and Low-Complexity Realization

This paper proposes a new method for designing the polynomial-interpolation-type noninteger-delay filter with a new structure formulation. Since the design formulation and the new realization structure are based on the discrete Pascal transform (DPT) and Pascal interpolation, we call the resulting filter Pascal noninteger-delay filter. The kth-order Pascal polynomial is used to pass through the given (k+1) data points in achieving the kth-order Pascal filter. The Pascal noninteger-delay filter is a real-time filter that consists of two sections, which can be realized into the front-section and the back-section. The front-section contains multiplication-free digital filters, and the number of multiplications in the back-section just linearly increases as order becomes high. Since the new Pascal filter has low complexity and structure can adjust non-integer delay online, it is more suited for fast delay tuning. Consequently, the polynomial-interpolation-type delay filter can be achieved by using the Pascal approach with high efficiency and low-complexity structure.

  1. FARROW, C. W. A continuously variable digital delay element. In Proceedings of IEEE International Symposium on Circuits Systems (ISCAS). Espoo (Finland), 1988, vol. 3, p. 2641–2645. DOI: 10.1109/ISCAS.1988.15483
  2. DENG, T.-B. Discretization-free design of variable fractionaldelay FIR digital filters. IEEE Transactions on Circuits and System II: Analog Digital Signal Processing, 2001, vol. 48, no. 6, p. 637–644. DOI: 10.1109/82.943337
  3. ZHAO, H., YU, J.-B. A simple and efficient design of variable fractional delay FIR filters. IEEE Transactions on Circuits and System II: Express Briefs, 2006, vol. 53, no. 2, p. 157–160. DOI: 10.1109/TCSII.2005.856673
  4. TSENG, C.-C. Design of variable fractional delay FIR filters using differentiator bank. In Proceedings of IEEE International Symposium on Circuits Systems (ISCAS 2002). Phoenix (Arizona, USA), 2002, vol. 4, p. 421–424. DOI: 10.1109/ISCAS.2002.1010481
  5. DENG, T.-B., NAKAGAWA, Y. SVD-based design and new structure for variable fractional-delay digital filters. IEEE Transactions on Signal Processing, 2004, vol. 52, no. 9, p. 2513–2527. DOI: 10.1109/TSP.2004.831922
  6. DENG, T.-B., LIAN, Y. Weighted-least-squares design of variable fractional-delay FIR filters using coefficient symmetry. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 8, p. 3023– 3038. DOI: 10.1109/TSP.2006.875385
  7. DENG, T.-B., QIN, W. Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters. Signal Processing, 2013, vol. 93, no. 4, p. 923–932. DOI: 10.1016/j.sigpro.2012.11.004
  8. DENG, T.-B., QIN, W. Improved bi-equiripple variable fractionaldelay filters. Signal Processing, 2014, vol. 94, no. 1, p. 300–307. DOI: 10.1016/j.sigpro.2013.07.004
  9. LIU, G.-S., WEI, C.-W. A new variable fractional sample delay filter with nonlinear interpolation. IEEE Transactions on Circuits and System II: Analog Digital Signal Processing, 1992, vol. 39, no. 2, p. 123–126. DOI: 10.1109/82.205818
  10. DENG, T.-B. Coefficient-symmetries for implementing arbitraryorder Lagrange-type variable fractional-delay digital filters. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 8, p. 4078 to 4090. DOI: 10.1109/TSP.2007.893967
  11. DENG, T.-B. Symmetric structures for odd-order maximally flat and weighted-least-squares variable fractional-delay filters. IEEE Transactions on Circuits and System I: Regular Papers, 2007, vol. 54, no. 12, p. 2718–2732. DOI: 10.1109/TCSI.2007.905649
  12. DENG, T.-B. Transformation matrix for odd-order Lagrange-type variable fractional-delay filters. In Proceedings of 6th International Conference on Information Communications and Signal Processing (ICICS 2007). Singapore, 2007, p. 1–5. DOI: 10.1109/ICICS.2007.4449557
  13. DENG, T.-B. Transformation matrix for even-order Lagrange-type variable fractional-delay digital filters. In Proceedings of International Conference on Intelligent and Automation Systems (ICIAS 2007). Kuala Lumpur (Malaysia), 2007, p. 1179–1182. DOI: 10.1109/ICIAS.2007.4658570
  14. PEI, S.-C., TSENG, C.-C. A comb filter design using fractionalsample delay. IEEE Transactions on Circuits and System II: Analog Digital Signal Processing, 1998, vol. 45, no. 6, p. 649–653. DOI: 10.1109/82.673650
  15. DENG, T.-B. High-resolution image interpolation using twodimensional Lagrange-type variable fractional-delay filter. In Proceedings of International Symposium on Nonlinear Theory and Applications (NOLTA 2005). Bruges (Belgium), 2005, p. 214–217.
  16. SHYU, J.-J., PEI, S.-C., CHAN, C.-H. Minimax phase error design of allpass variable fractional-delay digital filters by iterative weighted least-squares method. Signal Processing, 2009, vol. 89, no. 9, p. 1774–1781. DOI: 10.1016/j.sigpro.2009.03.021
  17. TSENG, C.-C. Closed-form design of digital IIR integrators using numerical integration rules and fractional sample delays. IEEE Transactions on Circuits and System I: Regular Papers, 2007, vol. 54, no. 3, p. 643–655. DOI: 10.1109/TCSI.2006.887641
  18. SHYU, J.-J., PEI, S.-C., HUANG, Y.-D. Two-dimensional Farrow structure and the design of variable fractional delay 2-D FIR digital filters. IEEE Transactions on Circuits and System I: Regular Papers, 2009, vol. 56, no. 2, p. 395–404. DOI: 10.1109/TCSI.2008.2001828
  19. TSENG, C.-C. Design of 1-D and 2-D variable fractional delay allpass filters using weighted least-squares method. IEEE Transactions on Circuits and System I: Fundamental Theory Applications, 2002, vol. 49, no. 10, p. 1413–1422. DOI: 10.1109/TCSI.2002.803361
  20. ABURDENE, M. F., GOODMAN, T. J. The discrete Pascal transform and its applications. IEEE Signal Processing Letters, 2005, vol. 12, no. 7, p. 493–495. DOI: 10.1109/LSP.2005.849498
  21. GOODMAN, T. J., ABURDENE, M. F. Interpolation using the discrete Pascal transform. In Proceedings of 40th Annual Conference on Information Sciences and Systems (CISS 2006). New Jersey (USA), 2006, p. 1079–1083. DOI: 10.1109/CISS.2006.286626
  22. SKODRAS, A. N. Efficient computation of the discrete Pascal transform. In Proceedings of 14th European Signal Processing Conference (EUSIPCO 2006). Florence (Italy), 2006, p. 1–4. DOI: 10.1109/CISS.2006.286626
  23. EDELMAN, A., STRANG, G., USA. Pascal Matrices. 12 pages. [Online] Cited 2014-05-19. Available at:

Keywords: Low-complexity filter structure, noninteger-delay filter, discrete Pascal transform (DPT), polynomial-interpolation-type delay filter, Pascal noninteger-delay filter.

N. Tai, Y. J. Pan, N. C. Yuan [references] [full-text] [DOI: 10.13164/re.2015.1013] [Download Citations]
Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM) signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM), the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction will be formed when jamming signal passes through the matched filter. By flexible controlling the parameters of interrupted-sampling pulse and pseudo-random sequence, different covering distances and jamming effects will be achieved. When the jamming power is equivalent, this jamming obtains higher process gain compared with non-coherent jamming. The jamming signal enhances the detection threshold and the real target avoids being detected. Simulation results and circuit engineering implementation validate that the jamming signal covers real target effectively.

  1. MOHAMMADPOOR, M., ABDULLAH, R., ISMAIL, A., et al. A linear frequency modulated bistatic radar for on-the-ground object detection. In Proceedings of 2011 IEEE CIE International Conference on Radar Chengdu (China), 2011, p. 63–66. DOI: 10.1109/CIERadar.2011.6159476
  2. PAN, X. Y., WANG, W., FENG, D. J., et al. On deception jamming for countering bistatic ISAR based on sub-Nyquist sampling. IET Radar, Sonar & Navigation, 2014, vol. 8, no. 3, p. 173–179. DOI:10.1049/iet-rsn.2013.0020
  3. YEH, C. M., YANG, J., SHAN, X. M., et al. Simultaneous range and radial velocity estimation with a single narrowband LFM pulse. Journal of Systems Engineering and Electronics, 2012, vol. 23, no. 3, p. 372–377. DOI: 10.1109/JSEE.2012.00046
  4. SHABANI, M., AKBARI, M. Non-linear effects of intensitymodulated and directly detected optical links on receiving a linear frequency-modulated waveform. IET Optoelectronics, 2011, vol. 5, no. 6, p. 255–260. DOI: 10.1049/iet-opt.2010.0082
  5. OlIVIER, K., CILLIERS, J. E., PLESSIS, M. Design and performance of wideband DRFM for radar test and evaluation. Electronics Letters, 2011, vol. 47, no. 14, p. 824–825. DOI: 10.1049/el.2011.0362
  6. TANG, P. F., GUO, S. J., CHEN, Z. P. Design and simulation of DRFM system based on digital channelized receiver and transmitter. In Proceedings of IEEE International Conference on Mechatronic Science, Electric Engineering and Computer (MEC). Jilin (China), 2011, p. 270–273. DOI: 10.1109/MEC.2011.6025453
  7. LI, Q. H., YANG, D., MU, X. H., et al. Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication. In Proceedings of IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT). Shenzhen (China), 2012, p. 1–4. DOI: 10.1109/ICMMT.2012.6230321
  8. YANG, Y., ZHANG, W. M., YANG, J. C. Study on frequency-shifting jamming to linear frequency modulation pulse compression radar. Proceedings of International Conference on Wireless Communications & Signal Processing (WCSP). Nanjing (China), 2009, p. 1–5. DOI: 10.1109/WCSP.2009.5371387
  9. FITZGERLD, R. J. Effect of range-Doppler coupling on chirp radar tracking accuracy. IEEE Transactions on Aerospace and Electronic Systems, 1974, vol. 10, no. 4, p. 528–532. DOI: 10.1109/TAES.1974.307809
  10. CAI, X. F. SONG, J. S. ZHANG, X. M. et al. A jamming technique against SAR based on inter-pulse subsection randomly-shiftfrequency and its application. In Proceedings of IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP). Xi’an (China), 2014, p. 785–789. DOI: 10.1109/ChinaSIP.2014.6889352
  11. WANG, Y. J., ZHAO, G.Q., HU, X.M. Method of shift-frequency Jamming to LFM Radar Based on Delay Invariance. Systems Engineering and Electronics, 2009, vol. 31, no. 8, p. 1861–1863.(in Chinese). DOI: 10.3321/j.issn:1001-506X.2009.08.018
  12. WANG, Y. J., ZHAO, G. Q. Blind Nth-order SSC shift-frequency jamming to LFM radar (in Chinese). Journal of Circuits and Systems, 2011, vol. 16, no. 4, p. 70–74. DOI: 10.3969/j.issn.1007- 0249.2011.04.014
  13. FENG, D. J., TAO, H. M., YANG, Y. Jamming de-chirping radar using interrupted-sampling repeater. Science China Information Sciences, 2011, vol. 54, no. 10, p. 2138–2146. DOI: 10.1007/s11432- 011-4431-4
  14. WANG, X. S., LIU, J. C., ZHANG, W. M., et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ). Science in China Series F: Information Sciences, 2007, vol. 50, no. 1, p. 113–123. DOI: 10.1007/s11432-007-2017-y
  15. LIU, Z., WANG, X. S., LIU, J. C. Jamming technique of interruptedsampling and periodic repeater based on digital radio frequency memory (in Chinese). Acta Armamentaii, 2008, vol. 29, no. 5, p. 405–410. DOI: 10.3321/j.issn:1000-1093.2008.04.005
  16. FENG, D. J., XU, L. T., WANG, W., et al. Radar echo cancellation using interrupted-sampling repeater. IEICE Electronics Letters, 2014, vol. 11, no. 8, p. 1–6. DOI: 10.1587/elex.11.20130997
  17. XU, L. T., FENG, D. J., LIU, Y. C., et al. A three-stage active cancellation method against synthetic aperture radar. IEEE Sensors Journal, 2015, vol. 15, no. 11, p. 6173–6178. DOI: 10.1109/JSEN.2015.2453396
  18. WANG, W. Q., CAI, J. Y. A technique for jamming bi- and multistatic SAR systems. IEEE Geoscience and Remote Sensing Letters, 2007, vol. 4, no. 1, p. 80–82. DOI: 10.1109/LGRS.2006.886036
  19. PACE, P. E., FOUTS, D. J., EKESTORM, S., et al. Digital falsetarget image synthesiser for countering ISAR.IEE Proceedings Radar Sonar Navigation, 2002, vol. 149, no. 5, p. 248–257. DOI: 10.1049/iprsn:20020635
  20. FOUTS, D. J., PACE, P. E., KAROW, C., et al. A single-chip false target radar image generator for countering wideband imaging radars. IEEE Journal of Solid-State Circuits, 2002, vol. 37, no. 6, p. 751–759. DOI: 10.1109/JSSC.2002.1004579
  21. XU, L. T., FENG, D. J., PAN, X. Y., et al. An improved digital false-target image synthesizer method for countering inverse synthetic aperture radar. IEEE Sensors Journal, 2015, vol. 15, no. 10, p. 5870–5877. DOI: 10.1109/JSEN.2015.2453163
  22. ZHAO, B., ZHOU, F., SHI, X. R., et al. Multiple targets deception jamming against ISAR using electromagnetic properties. IEEE Sensors Journal, 2015, vol. 15, no. 4, p. 2031–2038. DOI: 10.1109/JSEN.2014.2368985
  23. GONG, S. X., WEI, X. Z. Noise jamming to ISAR based on multiplacation modulation. In Proceedings of 2013 IET International Radar Conference. Xi’an(China), 2013, p. 1–5. DOI: 10.1049/cp.2013.0398
  24. GONG, S. X., WEI, X. Z., LI, X., et al. Mathematic principle of active jamming against wideband LFM radar. Journal of Systems Engineering and Electronics, 2015, vol. 26, no. 1, p. 50–60. ISSN: 1004-4132. DOI:10.1109/JSEE.2015.00008
  25. ZHANG, Y. B. Technology of smart noise jamming based on multi-plication modulation (in Chinese). In Proceedings of International Conference on Electric Information and Control Engineering(ICEICE). Wuhan(China), 2011, p. 4557–4559. DOI: 10.1109/ICEICE.2011.5777633
  26. GUO, J. J., WANG, X. H., WANG, X., et al. New smart noise jamming of radar signal frequency modulation (in Chinese). Journal of Xidian University, 2013, vol. 40, no. 4, p. 155–160. DOI:10.1109/JSEE.2015.00008

Keywords: LFM, electronic countermeasure, DRFM, pseudo-random sequence, interrupted-sampling

L. Laur, P. Rasti, M. Agoyi, G. Anbarjafari [references] [full-text] [DOI: 10.13164/re.2015.1025] [Download Citations]
A Robust Color Image Watermarking Scheme Using Entropy and QR Decomposition

Internet has affected our everyday life drastically. Expansive volumes of information are exchanged over the Internet consistently which causes numerous security concerns. Issues like content identification, document and image security, audience measurement, ownership, copyrights and others can be settled by using digital watermarking. In this work, robust and imperceptible non-blind color image watermarking algorithm is proposed, which benefit from the fact that watermark can be hidden in different color channel which results into further robustness of the proposed technique to attacks. Given method uses some algorithms such as entropy, discrete wavelet transform, Chirp z-transform, orthogonal-triangular decomposition and Singular value decomposition in order to embed the watermark in a color image. Many experiments are performed using well-known signal processing attacks such as histogram equalization, adding noise and compression. Experimental results show that proposed scheme is imperceptible and robust against common signal processing attacks.

  1. DUTTA, M. K., SINGH, A., ZIA, T. A. An efficient and secure digital image watermarking using features from iris image. In International Conf. on Control Communication and Computing (ICCC). 2013, p. 451–456. DOI: 10.1109/ICCC.2013.6731697
  2. FARFOURA, M. E., HORNG, S.-J. A novel blind reversible method for watermarking relational databases. In International Symposium on Parallel and Distributed Processing with Applications (ISPA). Taipei (Taiwan), 2010, p. 563–569. DOI: 10.1109/ISPA.2010.63
  3. MANJUNATH, M., SIDDAPPAJI, S. A new robust semi blind watermarking using block DCT and SVD. In IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT). 2012, p. 193–197. DOI: 10.1109/ICACCCT.2012.6320769
  4. DORAIRANGASWAMY, M. A., PADHMAVATHI, B. An effective blind watermarking scheme for protecting rightful ownership of digital images. In IEEE Region 10 Conference TENCON. 2009, p. 1 - 6. DOI: 10.1109/TENCON.2009.5395812
  5. KHALIFA, O. O., YUSOF, Y. B., ABDALLA, A.-H., OLANREWAJU, R. F. State-of-the-art digital watermarking attacks. In International Conf. on Computer and Communication Engineering (ICCCE). 2012, p. 744–750. DOI: 10.1109/ICCCE.2012.6271316
  6. RIDZOŃ, R., LEVICKY, D. Robust digital watermarking based on the log-polar mapping. Radioengineering, 2007, vol. 16, no. 4, p. 76–81.
  7. NYEEM, H., BOLES, W., BOYD, C. On the robustness and security of digital image watermarking. In International Conference on Informatics, Electronics & Vision (ICIEV). 2012, p. 1136–1141. DOI: 10.1109/ICIEV.2012.6317496
  8. YUSOF, Y., KHALIFA, O. O. Imperceptibility and robustness analysis of DWT-based digital image watermarking. In International Conference on Computer and Communication Engineering. 2008, p. 1325–1330. DOI: 10.1109/ICCCE.2008.4580820
  9. KORHONEN, J., YOU, J. Peak signal-to-noise ratio revisited: Is simple, is beautiful? In Fourth International Workshop on Quality of Multimedia Experience (QoMEX). 2012, p. 37–38. DOI: 10.1109/QoMEX.2012.6263880
  10. NA, T., KIM, M. A novel no-reference PSNR estimation method with regard to deblocking filtering effect in H.264/AVC bitstreams. IEEE Transactions on Circuits and Systems for Video Technology, 2013, vol. 24, no. 2, p. 320–330. DOI: 10.1109/TCSVT.2013.2255425
  11. NAN, J., JIAN, W., XINXIN, N., YIXIAN, Y. The quantificational relation of imperceptibility, robustness and hiding rate in digital watermarking. In Proceedings of the International Conference on Communications, Circuits and Systems. 2006, vol. 1, p. 11–14. DOI: 10.1109/ICCCAS.2006.284575
  12. XU, W., CHANG, C., HUNG, Y. S., KWAN, S. K., FUNG, P. C. W. Order statistics correlation coefficient as a novel association measurement with applications to biosignal analysis. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 12, p. 5552 to 5563. DOI: 10.1109/TSP.2007.899374
  13. MAHMOOD, A., KHAN, S. Correlation-coefficient-based fast template matching through partial elimination. IEEE Transactions on Image Processing, 2011, vol. 4, no. 21, p. 2099–2108. DOI: 10.1109/TIP.2011.2171696
  14. TAYLOR, R. Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 1990, vol. 6, p. 35–39. DOI: 10.1177/875647939000600106
  15. LARIJANI, H. H., RAD, G. R. A new spatial domain algorithm for gray scale images watermarking. In International Conference on Computer and Communication Engineering, 2008, p. 157–161. DOI: 10.1109/ICCCE.2008.4580587
  16. GHAFOOR, A., IMRAN, M. A non-blind color image watermarking scheme resistant against geometric attacks. Radioengineering, 2012, vol. 21, no. 4, p. 1246–1251.
  17. MEGALINGAM, R. K., NAIR, M. M., SRIKUMAR, R., BALASUBRAMANIAN, V. K. Performance comparison of novel, robust spatial domain digital image watermarking with the conventional frequency domain watermarking techniques. In International Conference on Signal Acquisition and Processing, 2010, p. 349 - 353. DOI: 10.1109/ICSAP.2010.79
  18. LEVICKY, D., FORIS, P. Human visual system models in digital image watermarking. Radioengineering, 2004, vol. 13, no. 4, p. 38–43.
  19. DEJEY, D., RAJESH, R. S. Robust discrete wavelet-fan beam transforms-based colour image watermarking. IET Image Processing, 2011, vol. 5, no. 4, p. 315–322. DOI: 10.1049/ietipr.2009.0239
  20. YANG, Q., ZHANG, Y., YANG, C., LI, W. Information entropy used in digital watermarking. In Symposium on Photonics and Optoelectronics (SOPO). 2012, p. 1–4. DOI: 10.1109/SOPO.2012.6270549
  21. MITRA, P., GUNJAN, R., GAUR, M. S. A multi-resolution watermarking based on contourlet transform using SVD and QR decomposition. In International Conference on Recent Advances in Computing and Software Systems (RACSS), 2012, p. 135–140. DOI: 10.1109/RACSS.2012.6212712
  22. AGOYI, M., ÇELEBI, E., ANBARJAFARI, G. A watermarking algorithm based on chirp z-transform, discrete wavelet transform, and singular value decomposition. Signal, Image and Video Processing, 2014, p. 1–11. DOI: 10.1007/s11760-014-0624-9
  23. GHAZY, R. A., EL-FISHAWY, N. A., HADHOUD, M. M., DESSOUKY, M. I., EL-SAMIE, F. E. A. An efficient block-byblock SVD-based image watermarking scheme. In National Radio Science Conference, NRSC. Cairo (Egypt), 2007, p. 1–9. DOI: 10.1109/NRSC.2007.371376
  24. SINGH, A. K., SHARMA, N., DAVE, M., MOHAN, A. A novel technique for digital image watermarking in spatial domain. In 2nd IEEE Internat. Conf. on Parallel Distributed and Grid Computing (PDGC), 2012, p. 497–501. DOI: 10.1109/PDGC.2012.6449871
  25. LAI, C.-C., TSAI, C.-C. Digital image watermarking using discrete wavelet transform and singular value decomposition. IEEE Transactions on Instrumentation and Measurement, 2010, vol. 59, no. 11, p. 3060–3063. DOI: 10.1109/TIM.2010.2066770
  26. GHOUTI, L., ANDALUSI, A. M. High-capacity colour image watermarking using multi-dimensional Fourier transforms and semi-random LDPC codes. In IET Conference on Image Processing (IPR 2012). London (UK), 2012, p. 1–5. DOI: 10.1049/cp.2012.0456
  27. SCHAEFER, G., STICH, M. UCID - An Uncompressed Colour Image Database. Storage and Retrieval Methods and Applications for Multimedia, 2004, p. 472–480. DOI: 10.1117/12.525375
  28. KIM, T.-H., ADELI, H. Advances in Computer Science and Information Technology. Berlin Heidelberg: Springer, 2010. ISSN: 0302-9743.

Keywords: Chirp Z transform, color image watermarking, discrete wavelet transform, entropy, orthogonal-triangular decomposition, QR decomposition, singular value decomposition

A. Laucka, D. Andriukaitis [references] [full-text] [DOI: 10.13164/re.2015.1033] [Download Citations]
Research of the Defects in Anesthetic Masks

The article concerns the computer-assisted vision system created for the detection of the disposable anesthetic respiratory masks. This article provides the classification of defects which may be common to both rubber and plastic parts of the masks. The defects were divided into groups and the nature of them was investigated. The algorithms and methods for the detection of defective products were based on the segmentation of image and the detection of uneven contours. The experiment results are presented in this work. With reference to the results, the most effective masks’ filters were identified. The achieved specificity of the computer vision system is 100 % and the sensitivity is 100 %.

  1. SEZGIN, M., SANKUR, B. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, Jan. 2004, vol. 13, p. 146–165. DOI: 10.1117/1.16313161
  2. ZHANG, Y. Image processing using spatial transform. In Proceedings of the International Conference on Image Analysis and Signal Processing. China. 2009, p. 282–285. ISBN: 978-1-4244-3986-7. Available at: arnumber=5054663
  3. ZHANG, R., ZHAO, G., SU, L. A new edge detection method in image processing. In Proceedings of the International Symposium on Communications and Information Technology. China, 2005, vol. 1, p. 430–433. ISBN: 0-7803-9538-7. Available at: http: //
  4. ZHAI, H., HUANG, H., HE, S., LIU, W. Rice paper classification study based on signal processing and statistical methods in image texture analysis. In Proceedings of the IEEE International Conference on Computer and Information Science. 2014, p. 189–194. DOI: 10.1109/ICIS.2014.6912132
  5. ZHENGYU, X., LIMIN, J., YONG, Q., LI, W. Passenger flow detection of video surveillance: A case study of high-speed railway transport hub in China. Elektronika ir elektrotechnika, 2015, vol. 21, no. 1, p. 48–53. DOI: 10.5755/j01.eee.21.1.9805
  6. SURGAILIS, T., VALINEVICIUS, A., MARKEVICIUS, V., NAVIKAS, D., ANDRIUKAITIS, D. Avoiding forward car collision using stereo vision system. Elektronika ir elektrotechnika, 2012, vol. 18, no. 8, p. 37–40. DOI: 10.5755/j01.eee.18.8.2609
  7. KEKRT, D., LUKES, T., KLIMA, M., FLIEGEL, K. 2D iterative MAP detection: Principles and applications in image restoration. Radioengineering, 2014, vol. 23, no. 2, p. 618–631.
  8. ZUKAL, M., MEKYSKA, J., CIKA, P., SMEKAL, Z. Interest points as a focus measure in multi-spectral imaging. Radioengineering, 2013, vol. 22, no. 1, p. 68–81.
  9. SINKEVICIUS, S., LIPNICKAS, A., SINKEVICIUS, V., RIMKUS, K. Orientation invariant surface classification using uncertainty level estimation. Elektronika ir elektrotechnika, 2012, vol. 19, no. 10, p. 9–12. DOI: 10.5755/j01.eee.19.10.5885
  10. SHUANGYANG, Z. Fast inspection of food packing seals using machine vision. In Proceedings of the International Conference on Digital Manufacturing and Automation. 2010, vol. 1, p. 724–726, DOI: 10.1109/ICDMA.2010.214
  11. MU, H., QI, D., ZHANG, M., ZHANG, P. Study of wood defects detection based on image processing. In Proceedings of the 7th International Conference on Fuzzy Systems and Knowledge Discovery. Aug. 2010, vol. 2, p. 607–611. DOI: 10.1109/FSKD.2010.5569454
  12. RAMIREZ, G., RINCON, V., PARADA, L. Liquid level control of coca-cola bottles using an automated system. In Proceedings of the International Conference on Electronics, Communications and Computers. Mexico, 2014, p. 148–154. DOI: 10.1109/CONIELECOMP.2014.6808582
  13. ZHU, A., YANG, L. An improved FCM algorithm for ripe fruit image segmentation. In Proceedings of the IEEE International Conf. on Information and Automation. 2013, China, p. 436–441. DOI: 10.1109/ICInfA.2013.6720338
  14. NGAMPAK, D., PIAMSA-NGA, P. Image analysis of broken rice grains of Khao Dawk Mali Rice. In Proceedings of the 7th Int. Conf. on Knowledge and Smart Technology. Jan. 2015, p. 115– 120. DOI: 10.1109/KST.2015. 7051471
  15. SINGH CHANDEL, G., KUMAR, R., KHARE, D., VERMA, S. Analysis of image segmentation algorithms using MATLAB. International Journal of Engineering Innovation & Research, 2012, vol. 1, p. 51–55. ISSN 2277 – 5668.
  16. PASTOR-LOPEZ, I., SANTOS, I., SANTAMARIA-IBIRIKA, A., SALAZAR, M., DE-LA-PENA-SORDO, J., G. BRINGAS, P. Machine-learning-based surface defect detection and categorisation in high-precision foundry. In Proceedings of the International Conference on Industrial Electronics and Applications. 2012, p. 1359 to 1364. DOI: 10.1109/ICIEA.2012. 6360934
  17. LUKAC, R., PLATANIOTIS, N. K. Color Image Processing: Methods and Applications. USA: Taylor & Francis Group, 2007. ISBN: 978-0-8493-9774-5.
  18. GOWTHAMAN, R. Automatic identification and classification of microaneurysms for detection of diabetic retinopathy. International Journal of Research in Engineering and Technology, 2014, vol. 3, no. 3, p. 464–473. DOI: 10.15623/ijret.2014.0302081
  19. VARGIN, G. R., KRISHNA, V. V. R. Noise tolerant color image segmentation using support vector machine. International Journal of Research in Engineering and Technology, 2014, vol. 3, no. 4, p. 29–34. DOI: 10.15623/ijret. 2014.0316006
  20. RASHMI, KUMAR, M., SAXENA, R. Algorithm and technique on various edge detection: A survey. International Journal of Signal & Image Processing, 2013, vol. 4, p. 65–75. DOI: 10.5121/sipij.2013.4306
  21. PETKOVIC, T., KRAPAC, J., LONCARIC, S., SERCER, M. Automated visual inspection of plastic products. In Proceedings of ERK. 2002, p. 283–286. Available at:
  22. LIU, B., WU, S., ZOU, S. Automatic detection technology of surface defects on plastic products based on machine vision. In Proceedings of the International Conference on Mechanic Automation and Control Engineering. Jun. 2010, p. 2213–2216. DOI: 10.1109/MACE.2010.5536470
  23. JAIN, N. K., KHANNA, S. O., JAIN, K. R. Development of a classification system for quality evaluation of Oryza Sativa L. (Rice) using computer vision. In Proceedings of the 4th International Conference on Communication Systems and Network Technologies. 2014, p. 1088–1092. DOI: 10.1109/CSNT.2014.222
  24. SIVABALAN, K. N., GNANADURAI, D. Fast and efficient detection of crack like defects in digital images. Journal on Image and Video Processing, May 2011, vol. 1, p. 224–228. ISSN: 0976- 9102. Available at: 228.pdf
  25. CANNY, J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, p. 679–698. DOI: 10.1109/TPAMI.1986.4767851
  26. EcoMask™ anaesthetic masks. Available at:
  27. QuadraLite™ anaesthetic masks. Available at:

Keywords: Image processing, computer vision, image segmentation, smoothing methods

J. Zeleny, F. Perez-Fontan, P. Pechac [references] [full-text] [DOI: 10.13164/re.2015.1044] [Download Citations]
Generalized Propagation Channel Model for 2GHz Low Elevation Links Using a Ray-tracing Method

Unmanned Aerial Vehicles (UAV) will increasingly be used for responding to emergencies or for law enforcement in civil surveillance applications. Transferring the enormous amounts of information from UAV-mounted cameras or sensors will require large bandwidths, unlike the information required for remotely controlling a UAV, thus necessitating higher frequency bands typically in the vicinity of 2 or 5 GHz. Novel hardware developments will need to rely on a versatile propagation channel model for the envisaged scenarios ranging from deep shadow urban areas to open fields. This paper studies more complex intermediate scenarios, which fall between the aforementioned ones, and which are more difficult to model. A semi-deterministic model, first developed for open, flat areas, has been generalized to accommodate any possible operational scenario and was tested in built-up areas. The model involves a stochastic part and a determinist which is a ray-tracing based part used to compute the long term mean (LTM) of the signal's coherent component.

  1. SAUNDERS, S., ARAGON-ZAVALA, A. Antennas and Propagation for Wireless Communication Systems. Wiley, 2007. ISBN: 978-0-470-84879-1
  2. PEREZ-FONTAN, F., MAYO, A., MAROTE, D., PRIETO-CARDEIRA, R., MARINO-ESPINEIRA, P., MACHADO, F., RIERA, N. Review of generative models for the narrowband land mobile satellite propagation channel. International Journal on Satellite Communications, 2008, no. 26, p. 291–316. DOI: 10.1002/sat.914
  3. BARSOCCHI, P. Channel models for terrestrial wireless communications: a survey. CNR-ISTI Technical Report, April 2006.
  4. FENG, Q., MC GEEHAN, J, TAMEH, E. K., NIX, A. R. Path loss models for air-to-ground radio channels in urban environments. In Proc. of the 63rd IEEE Vehicular Technology Conference (VTC 06-Spring). Melbourne (Australia), May 2006, vol. 6, p. 2901 to 2905. DOI: 10.1109/VETECS.2006.1683399
  5. CERASOLI, C. An analysis of unmanned aerial vehicle relay coverage in urban environment. In Proc. of the IEEE Military Communications Conference (MILCOM 2007). Orlando (FL, USA), Oct. 2007, 7 p. DOI: 10.1109/MILCOM.2007.4455127
  6. FREW, E. W., BROWN, T. X. Airborne communication networks for small unmanned aircraft systems. Proceedings of the IEEE, Dec. 2008, vol. 96, no. 12, p. 2008–2027. DOI: 10.1109/JPROC.2008.2006127
  7. ZELENY, J., PEREZ-FONTAN, F., PECHAC, P., MARINOESPINEIRA, P. Open area 2×2 MIMO channel model for 2GHz low elevation links with diversity and capacity applications. IEEE Transactions on Antennas and Propagation (submitted).
  8. SIMUNEK, M, PEREZ-FONTAN, F., PECHAC, P. The UAV low elevation propagation channel in urban areas: Statistical analysis and time-series generator. IEEE Transactions on Antennas and Propagation, July 2013, vol. 61, no. 7, p. 3850–3858 DOI: 10.1109/TAP.2013.2256098
  9. KAREDAL, J., TUFVESSON, F., CZINK, N., PAIER, A., DUMARD, C., ZEMEN, T., MECKLENBRAUKER, C. F., MOLISH, A. F. A geometry-based stochastic MIMO model for vehicle-to-vehicle communications. IEEE Transactions on Wireless Communications, July 2009, vol. 8, no. 7, p. 3646–3657. DOI: 10.1109/TWC.2009.080753
  10. ZELENY, J., PEREZ-FONTAN, F., PECHAC, P. Initial results from a measurement campaign for low elevation angle links in different environments. In Proceedings of the 9-th European Conference on Antennas and Propagation (EuCAP). Lisbon (Portugal), April 2015, 4 p.
  11. LACOSTE, F., CARVALHO, F., PEREZ-FONTAN, F., NUNEZFERNANDEZ, A., FABBRO, V., SCOT, G. MISO and SIMO measurements of the Land Mobile Satellite propagation channel at S-band. In Proceedings of the 4th European Conference on Antennas and Propagation (EuCAP). Barcelona (Spain), 2010, 5 p.
  12. GREENSTEIN, L. J., GHASSEMZADEH, S. S., ERCEG, V., MICHELSON, D. G. Ricean K-factors in narrowband fixed wireless channels: Theory, experiments, and statistical models. IEEE Transactions on Vehicular Technology, Oct. 2009, vol. 58, p. 4000–4012. DOI: 10.1109/TVT.2009.2018549
  13. ITU recommendation ITU-R P.526-11. [Online] Available at:

Keywords: Low elevation links, nomadic user, statistical channel models, ray-tracing

P. Ivanis, D. Drajic, S. Brkic [references] [full-text] [DOI: 10.13164/re.2015.1050] [Download Citations]
Cross-Layer Combining of Adaptive Modulation and Truncated ARQ in Multichannel Beamforming MIMO Systems

In this study the authors provide a cross-layer design of multiple-input-multiple-output (MIMO) systems, with the aim to maximize spectral efficiency. We consider MIMO systems based on a multichannel beamforming technique that combines an adaptive modulation and truncated automatic repeat request procedures, for the case of Rayleigh fading propagation and imperfect channel state information. Closed-form expressions for the average spectral efficiency and the packet loss rate are derived for arbitrary eigenchannel of multichannel beamforming systems, with any number of receiving and transmitting antennas. An analytical expression for the average time during which a particular constellation is used continuously, is also derived. We propose the method based on the optimization of the target packet error rate and the maximum number of retransmissions that outperforms the existing cross-layer combining procedures. Furthermore, we develop the numerical algorithm for optimization of the eigenchannel power allocation. The proposed cross-layer design results in higher average spectral efficiency, reduced maximum delay and increased energy efficiency. The analytical results are validated by Monte Carlo simulation.

  1. TELATAR, I. E. Capacity of the multi antenna Gaussian channels. European Transactions on Telecommunications, 1999, vol. 10, p. 585–595. DOI: 10.1002/ett.4460100604
  2. GARTH, L. M., SMITH, P. J., SHAFI, M. Exact symbol error probabilities for SVD transmission of BPSK data over fading channels. In Proceedings of IEEE International Conference on Communications (ICC 2005). Seoul (South Korea), 2005, p. 2271–2276. ISBN: 0-7803-8938-7 DOI: 10.1109/ICC.2005.1494740
  3. ZHOU, Z., VUCETIC, B. Design of adaptive modulation using imperfect CSI in MIMO systems. IEE Electronic Letters, 2004, vol. 40, no. 17, p. 1073–1075. ISSN: 0013-5194 DOI: 10.1049/el:20045077
  4. ZHOU, Z., VUCETIC, B., DOHLER, M., LI, Y. MIMO systems with adaptive modulation. IEEE Transactions on Vechicular Technology, 2005, vol. 54, no. 5, p. 1828–1842. ISSN: 0018-9545 DOI: 10.1109/TVT.2005.853886
  5. IVANIS, P., DRAJIC, D. Combined optimal power allocation and adaptive modulation for MIMO systems with imperfect CSI. In Proceedings of Telecommunications in Modern Satellite, Cable and Broadcasting Service (TELSIKS 2003). Nis (Serbia), 2004, p. 167– 170. ISBN: 0-7803-7963-2 DOI: 10.1109/TELSKS.2003.1246208
  6. NIKOLIC, B., DIMITRIJEVIC, B., MILOSEVIC, N., DJORDEVIC, G. T. Performance improvement of QPSK signal predetection EGC diversity receiver. Radioengineering, 2012, vol. 21, no. 3, p. 831–837.
  7. KANG, M, ALOUINI, MS. Largest Eigenvalue of Complex Wishart Matrices and Performance Analysis of MIMO MRC Systems. IEEE Journal of Selected Areas in Communications, 2003, vol. 21, no. 3, p. 418–431. ISSN: 0733-8716 DOI: 10.1109/JSAC.2003.809720
  8. ZHOU, S., GIANNAKIS, G.B. How Accurate Channel Prediction Needs to be for Transmit-Beamforming with Adaptive Modulation over Rayleigh MIMO Channels? IEEE Transactions on Wireless Communications, 2004, vol 3, no. 4, p. 1285–1294. ISSN: 536-1276 DOI: 10.1109/TWC.2004.830842
  9. IVANIS, P., DRAJIC, D., VUCETIC, B. Performance Evaluation of Adaptive MIMO-MRC Systems with Imperfect CSI by a Markov Model. In Proceedings of 65th IEEE Vechicular Technology Conference, VTC 2007, Dublin (Ireland), 2007, p. 1496–1500. ISSN: 1550-2252 DOI: 10.1109/VETECS.2007.312
  10. JIN, S, MCKAY, M.R., GAO, X., COLLINGS, I.B. MIMO multichannel beamforming: SER and outage using new eigenvalue distributions of complex noncentral Wishart matrices. IEEE Transactions on Communications, 2008, vol. 56, no. 3, p. 424–434. ISSN: 0090– 6778 DOI: 10.1109/TCOMM.2008.060115
  11. IVANIS, P., DRAJIC, D., VUCETIC, B. Level crossing rates of Ricean MIMO channel eigenvalues for imperfect and outdated CSI. IEEE Communications Letters, 2007, vol. 11, no. 10, p. 775–777. ISSN: 1089-7798 DOI: 10.1109/LCOMM.2007.070894
  12. LIU, Q, ZHOU, S, GIANNAKIS, G.B. Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links. IEEE Transactions on Wireless Communications, 2004, vol. 3, no. 5, p. 1746–1755. ISSN: 1536-1276 DOI: 10.1109/TWC.2004.833474
  13. MAAREF, A., AISSA, S. Combined Adaptive Modulation and Truncated ARQ for Packet Data Transmission in MIMO Systems. In Proceedings of IEEE Global Telecommunications Conference, Globecom 2004, Dallas (USA), 2004 p. 3818-38-22. ISBN: 0-7803-8794-5 DOI: 10.1109/GLOCOM.2004.1379083
  14. DANG, X., LIU, Y., YU, X. Performance analysis of cross-layer design with average PER constraint over MIMO fading channels. Taylor & Francis International Journal of Electronics, 2015, vol. 102, no. 12, p. 2031–2045. DOI: 10.1080/00207217.2015.1018339
  15. YU, X., LIU, Y., LI, Y. ZHU, Q., YIN X., QIAN, K. Performance of cross-layer design with multiple outdated estimates in multiuser MIMO system. Radioengineering, 2014, vol. 23, no. 3, p. 863–871.
  16. FU, B., XIAO, Y., DENG, H., ZENG, H. A. Survey of cross-layer designs in wireless networks. IEEE Communications Surveys & Tutorials, 2014, vol. 16, no. 1, p. 110–126. ISSN: 1553-877X DOI: 10.1109/SURV.2013.081313.00231
  17. JAFARI, A., MOHAMMADI, A. Cross layer design based on adaptive modulation and truncated ARQ in MIMO Rician channels. In Proceedings of International Symposium on Telecommunications (IST 2010). Tehran (Iran), 2010, p. 318–323. ISBN: 978-1-4244- 8183-5 DOI: 10.1109/ISTEL.2010.5734044
  18. IVANIS, P. N., STOJNIC, M. M., DRAJIC, D. B. Exact bit error probabilities and packet error statistics for SVD transmission over timevarying dual-branch MIMO systems obtained by a Markov model. AEU - International Journal of Electronics and Communications, 2013, vol. 67, no. 2, p. 113–122. ISSN: 1434-8411
  19. ZANELLA, A., CHIANI, M. The PDF of the lth largest eigenvalue of central Wishart matrices and its application to the performance analysis of MIMO systems. In Proceedings of Global Telecommunications Conference (Globecom 2008). New Orleans (USA), 2008, p. 1063– 1068. ISSN: 1930-529X DOI: 10.1109/GLOCOM.2008.ECP.210
  20. ABRAMOWITZ, M., STEGUN, I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications, 1972. ISBN: 0-486-61272-4
  21. GOLDSMITH, A. J., CHUA, S. Variable-rate variable-power MQAM for fading channels. IEEE Transactions on Communications, 1997, vol. 45, no. 10, p. 1218–1230. ISSN: 0090-6778 DOI: 10.1109/26.634685
  22. BAZARAA, M. S., SHERALI, H. D., SHETTY, C. M. Nonlinear Programming Theory and Algorithms. New York: John Wiley, 2006. ISBN: 978-0-471-48600-8
  23. LI, Y., HUANG, X. The simulation of independent Rayleigh faders. IEEE Transactions on Communications, 2002, vol. 50, no. 9, p. 1503– 1514. ISSN: 0090-6778 DOI: 10.1109/TCOMM.2002.802562
  24. YERUCHIM, M. C., BALABAN, P., SHANMUGAN, K. S. Simulation of Communication Systems. Dordrecht: Kluwer Academic Publishers, 2000. ISBN: 978-0-306-46971-8

Keywords: Adaptive modulation, automatic repeat request, crosslayer design, MIMO systems, Rayleigh channels

K. Ulovec [references] [full-text] [DOI: 10.13164/re.2015.1060] [Download Citations]
Analysis of Coexistence of DRM Plus and FM Broadcasting Systems

This paper deals with DRM (Digital Radio Mondiale) Plus and FM (Frequency Modulation) radio broadcasting systems coexistence. It brings results based on measurement of mutual interferences of each to other. Minimal necessary value of the signal to interference power ratio is measured under the given reception criteria. Results are useful for broadcasting networks planning. Different DRM Plus modes (i.e. combinations of various protection levels and data carriers modulations) are assumed in the case of DRM Plus reception interfered with by FM broadcasting. The differences for various modes are crucial for coverage design of DRM Plus system, while protection ratios have been recommended for only two of eight modes until now. Corrections of protection ratios for other modes are proposed in this paper. Different waveforms types of modulating signal for interfering FM signal are tested. The both mono and stereo FM mode and various sound quality criteria are considered in the case of FM broadcasting reception interfered with by DRM Plus. The influence of peak to average power ratio reduction of interfering DRM Plus signal is observed.

  1. DEUTSCHES DRM-FORUM. Considerations for the digital transition of local and regional terrestrial broadcast radio in Germany. At Symposium The Way to Digital Broadcast by DAB and DRM+ for Local Radio and Community Media – Milestones in Rhineland-Palatinate, Germany and Europe. Kaiserslautern (Germany), 2014
  2. EUROPEAN CONFERENCE OF POSTAL AND TELECOMMUNICATIONS ADMINISTRATIONS. Future possibilities for the digitalisation of band II (87.5-108 MHz). Technical supplement to ECC Report 141, 2012
  3. LENHERT, J. Leaving the dead-end street: New ways for the digitisation of the VHF-FM sound broadcasting with DRM+. Part II: First results on compatibility planning of DRM+ and HDRadioTM in the VHF band. In Proceedings of the 9th Workshop Digital Broadcasting. Fraunhofer Institute for Integrated Circuits IIS Erlangen, Germany, Heinz Gerhauser (Ed.), 2008
  4. DOBES, J., ZALUD, V. Modern Radio Engineering. (in Czech) Prague: BEN, 2006. ISBN 80-7300-132-2
  5. EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE. Digital Radio Mondiale (DRM); System Specification. ETSI ES 201 980 V4.1.1, 2014
  6. DVORSKY, M. Modern digital technologies alternatively used beside Digital Audio Broadcasting system. In Wofex 2006. Ostrava (Czech Rep.), 2006, p. 446–450. ISBN 80-248-1152-9
  7. DIGITAL RADIO MONDIALE CONSORTIUM. DRM Introduction and Implementation Guide. Rev. 2, 2013
  8. KIM, J. S., BAEK, M. S., LEE, Y. T., KIM, K. S. The optimal placement of radio stations in coexisting DRM+ and analog FM systems. IEEE Transactions on Consumer Electronics, 2013, vol. 59, no. 4, p. 738–746. DOI: 10.1109/TCE.2013.6689684
  9. STEIL, A., KREUTZER, M., FEILEN, M., LEHNERT, J., URBANSKY, R., SAUER-GREFF, W. Technical feasibility study and field trial concept for DRM-based digital radio in the VHF-FM radio band. In Proceedings of the 7th Workshop Digital Broadcasting. Fraunhofer Institute for Integrated Circuits IIS Erlangen, Germany, Heinz Gerhauser (Ed.), 2006, p. 67–72.
  10. HASENPUSCH, T., SCHAD, F., EFFINGER, R. Documentation G531/00328/07, Compatibility Measurements DRM120, DRM and HD Radio interfering with FM Broadcast, Narrowband FM (BOS) and Aeronautical Radionavigation. German Network Agency and University of Applied Science of Kaiserslautern, 2007
  11. STEIL, A., SCHAD, F., FEILEN, M., KOHLER, M., LEHNERT, J., HEDRICH, E., KILIAN, G. Digitizing VHF sound broadcasting with DRM+ (Mode E). In Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcast. Bilbao, Spain, 2009. ISBN 978-1-244-2591-4, DOI: 10.1109/ISBMSB.2009.5133727
  12. STEIL, A., SCHAD, F., FEILEN, M., HEDRICH, E. Leaving the dead-end street: New ways for the digitisation of the VHF-FM sound broadcasting with DRM+. Part I DRM+ field trial: Concept, setup and first results. In Proceedings of the 9th Workshop Digital Broadcasting. Fraunhofer Institute for Integrated Circuits IIS Erlangen, Germany, Heinz Gerhauser (Ed.), 2008
  13. STEIL, A., LEHNERT, J., SCHAD, F., KOHLER, M. Leaving the dead-end street: New ways for the digitisation of the VHF-FM sound broadcasting with DRM+. In Proceedings of the 10th Workshop Digital Broadcasting. Fraunhofer Institute for Integrated Circuits IIS Erlangen, Germany, Heinz Gerhauser (Ed.), 2009, p. 8–22
  14. UNIVERSITY OF APPLIED SCIENCES OF KAISERSLAUTERN. Protection ratios for FM interfered with by digital broadcasting signals, compilation of results of present investigations, thoughts on protection ratio values and on appropriate measurement concepts. Report for ECC FM PT45, 2010
  15. GERMAN DRM PLATFORM. Planning Parameters for DRM Mode E (‘DRM+’) Concerning the Use in VHF Bands I, II and III, (V 3.0). 2011
  16. EUROPEAN BROADCASTING UNION. Case studies on the implementation of DRM+ in band II. EBU Technical Report 3357, Geneva, 2013
  17. ULOVEC, K.: Measurement of interactions between DRMplus and FM radio broadcasting systems in VHF band II. In Proc. of 25th International Conf. Radioelektronika. Pardubice (Czech Rep.), 2015, p. 369–372. DOI: 10.1109/RADIOELEK.2015.7129046
  18. INTERNATIONAL ELECTROTECHNICAL COMMISSION. Mobile and portable DVB-T/H radio access - Part 1: Interface specification. IEC Standard 62002-1, 2008. DOI:10.3403/30185068
  19. INTERNATIONAL ELECTROTECHNICAL COMMISSION. Methods of measurement on radio receivers for various classes of emission - Part 4: Receivers for frequency-modulated sound broadcasting emissions. IEC Standard 60315-4, 1998. DOI:10.3403/01312783
  20. FEILEN, M. DRM transmitter Spark. IMPRESSUM. Spark [Online] Cited 2015-06-13. Available at:
  21. EUROPEAN CONFERENCE OF POSTAL AND TELECOMMUNICATIONS ADMINISTRATIONS. Method of measuring the maximum frequency deviation of FM broadcast emissions in the band 87.5 to 108 MHz at monitoring stations. ERC Recommendation 54-01, 1998 (revised 2015)
  22. USRP1. ETTUS RESEARCH A NATIONAL INSTRUMENTS COMPANY. Ettus Research [Online] Cited 2015-06-13. Available at:
  23. MATTHES, A. SoDiRa Software Radio. Eingangsseite Bernd Reiser [Online] Cited 2015-06-13. Available at:

Keywords: Digital Radio Mondilale Plus (DRM+), FM radio broadcasting, coexistence, measurement, signal to interference power ratio, protection ratio

E. B. Solovyeva [references] [full-text] [DOI: 10.13164/re.2015.1071] [Download Citations]
Cascade Structure of Digital Predistorter for Power Amplifier Linearization

In this paper, a cascade structure of nonlinear digital predistorter (DPD) synthesized by the direct learning adaptive algorithm is represented. DPD is used for linearization of power amplifier (PA) characteristic, namely for compensation of PA nonlinear distortion. Blocks of the cascade DPD are described by different models: the functional link artificial neural network (FLANN), the polynomial perceptron network (PPN) and the radially pruned Volterra model (RPVM). At synthesis of the cascade DPD there is possibility to overcome the ill conditionality problem due to reducing the dimension of DPD nonlinear operator approximation. Results of compensating nonlinear distortion in Wiener–Hammerstein model of PA at the GSM–signal with four carriers are shown. The highest accuracy of PA linearization is produced by the cascade DPD containing PPN and RPVM.

  1. LEGARDA, J. Feedforward Amplifiers for Wideband Communication Systems. Dordrecht: Springer, 2006.
  2. LI, M., LIU, J., JIANG, Y., FENG, W. Complex-Chebyshev functional link neural network behavioral model for broadband wireless power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 6, part 2, p. 1979–1989. DOI: 10.1109/TMTT.2012.218923
  3. PATRA, J. C., PAL, R. N., CHATTERJI, B. N., PANDA G. Identification of nonlinear dynamic systems using functional link artificial neural networks. IEEE Transactions on Systems, Man and Cybernetics – Part B: Cybernetics, 1999, vol. 29, no. 2, p. 254 to 262. DOI: 10.1109/3477.752797
  4. PATRA, J. C., PAL, R. N., BALIARSINGH, R., PANDA G. Nonlinear channel equalization for QAM signal constellation using artificial neural networks. IEEE Transactions on Systems, Man and Cybernetics – Part B: Cybernetics, 1999, vol. 29, no. 2, p. 262 to 271. DOI: 10.1109/3477.752798
  5. XIANG, Z., BI, G., LE-NGOC, T. Polynomial-perceptrons and their applications to fading channel equalization and co-channel interference suppression. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 9, p. 2470–2480. DOI: 10.1109/78.317868
  6. ZHOU, D., DEBRUNNER, V. E. Novel adaptive nonlinear predistorters based on the direct learning algorithm. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 1, p. 120–133. DOI: 10.1109/TSP.2006.882058
  7. LEE, T. T., JIANG, J. T. The Chebyshev polynomial based unified model neural networks for function approximations. IEEE Transactions on Systems, Man and Cybernetics – Part B: Cybernetics, 1998, vol. 28, no. 6, p. 925–935. DOI: 10.1109/3477.735405
  8. ZHOU, G. T., QIAN, H., DING, L., RAICH, R. On the baseband representation of a bandpass nonlinearity. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 8, p. 2953–2957. DOI: 10.1109/TSP.2005.850383
  9. SOLOVYEVA, E. B. Dynamic deviation Volterra predistorter designed for linearizing power amplifiers. Radioelectronics and Communications Systems, 2011, vol. 54, no. 10, p. 546–553. DOI: 10.3103/S0735272711100049
  10. CRESPO-CADENAS, C., REINA-TOSINA, J., MADEROAYORA, M. J., MUNOZ-CRUZADO, J. A new approach to pruning Volterra models for power amplifiers. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 4, p. 2113–2120. DOI: 10.1109/TSP.2009.2039815
  11. DING, L., ZHOU, G. T., MORGAN, D. R., MA, Z., KENNEY, J. S., KIM, J., GIARDINA, C. R. A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 2004, vol. 52, no. 1, p. 159–165. DOI: 10.1109/TCOMM.2003.822188

Keywords: Digital predistorter, nonlinear compensation, nonlinear distortion, power amplifier, neural networks

Ying Wang, Xiangbin Yu, Yang Li, Binbin Wu [references] [full-text] [DOI: 10.13164/re.2015.1077] [Download Citations]
Energy Efficient Power Allocation for Distributed Antenna System over Shadowed Nakagami Fading Channel

In this paper, the energy efficiency (EE) of downlink distributed antenna system (DAS) with multiple receive antennas is investigated over composite fading channel that takes the path loss, shadow fading and Nakagami-m fading into account. Our aim is to maximize EE which is defined as the ratio of the transmission rate to the total consumed power under the constraints of maximum transmit power of each remote antenna. According to the definition of EE and using the upper bound of average EE, the optimized objective function is provided. Based on this, utilizing Karush-Kuhn-Tucker (KKT) conditions and mathematical derivation, a suboptimal energy efficient power allocation (PA) scheme is developed, and closed-form PA coefficients are obtained. The developed scheme has the EE performance close to the existing optimal scheme. Moreover, it has relatively lower complexity than the existing scheme because only the statistic channel information and less iteration are required. Besides, it includes the scheme in composite Rayleigh channel as a special case. Simulation results show the effectiveness of the developed scheme.

  1. HEATH, R., PETERS, S., WANG, Y., ZHANG, J. A current perspective on distributed antenna systems for the downlink of cellular systems. IEEE Communications Magazine, 2013, vol. 51, no. 4, p. 161–167. DOI: 10.1109/MCOM.2013.6495775
  2. PARK, E., LEE, S. R., LEE, I. Antenna placement optimization for distributed antenna systems. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 7, p. 2468–2477. DOI: 10.1109/TWC.2012.051712.110670
  3. KIM, H., LEE, S. R., LEE, K. J., LEE, I. Transmission schemes based on sum rate analysis in distributed antenna systems. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 3, p. 1201–1209. DOI: 10.1109/TWC.2012.011812.111008
  4. FENG, D., JIANG, C., LIM, G. A survey of energy-efficient wireless communications. IEEE Communications Surveys & Tutorials, 2013, vol. 15, no. 1, p. 167–178. DOI: 10.1109/SURV.2012. 020212.00049
  5. HELIOT, F., IMRAN, M. A., TAFAZOLLI, R. On the energy efficiency-spectral efficiency trade-off over the MIMO Rayleigh fading channel. IEEE Transactions on Communications, 2012, vol. 60, no. 5, p. 1345–1356. DOI: 10.1109/TCOMM.2012. 031712.110215
  6. LI, G. Y., XU, Z., XIONG, C., YANG, C., ZHANG, S., CHEN, Y., XU, S. Energy-efficient wireless communications: tutorial, survey, and open issues. IEEE Wireless Communications, 2011, vol. 18, no. 6, p. 28–35. DOI: 10.1109/MWC.2011.6108331
  7. CHEN, X., XU, X., TAO, X. Energy efficient power allocation in generalized distributed antenna system. IEEE Communications Letters, 2012, vol. 16, no. 7, p. 1022–1025. DOI: 10.1109/LCOMM.2012.051512.120241
  8. HE, C., LI, G. Y., ZHENG, F. C., YOU, X. H. Energy-efficient resource allocation in OFDM systems with distributed antennas. IEEE Transactions on Vehicular and Technology, 2014, vol. 63, no. 3, p. 1223–1231. DOI: 10.1109/TVT.2013.2282373
  9. HE, C., SHENG, B., ZHU, P. C., YOU, X. H. Energy efficiency and spectral efficiency tradeoff in downlink distributed antenna systems. IEEE Wireless Communications Letters, 2012, vol. 1, no. 3, p. 153–156. DOI: 10.1109/WCL.2012.022812.1200 48
  10. KIM, H., LEE, S. R., SONG, C., LEE, I. Optimal power allocation for energy efficiency maximization in distributed antenna systems. In Proceedings of IEEE International Conference on Communications (ICC). Budapest (Hungary), 2013, p. 5769–5773. DOI: 10.1109/ICC.2013.6655516
  11. CHEN, H. M., CHEN, M. Capacity of the distributed antenna systems over shadowed fading channels. In Proceedings of the 69th IEEE International Conference on Vehicular Technology (VTC). Barcelona (Spain), 2009, p. 1-4. DOI: 10.1109/VETECS.2009.5073432
  12. RAPPAPORT, T. S. Wireless Communications: Principles and Practice. 2nd ed. Prentice Hall PTR, 2001. ISBN: 0130422320.
  13. GOLDSMITH, A. Wireless Communications. Cambridge University Press, 2005. ISBN: 0521837162
  14. SIMON, M. K., ALOUINI, M. S. Digital Communication over Fading Channels. 2nd ed. New York: Wiley, 2005. ISBN: 0471649538
  15. XU, J., QIU, L. Energy efficiency optimization for MIMO broadcast channels. IEEE Transactions on Wireless Communications, 2013, vol. 12, no. 2, p. 690–701. DOI: 10.1109/TWC.2012.12.120086
  16. BOYD, S., VANDENBERGHE, L. Convex Optimization. Cambridge University Press, 2004. ISBN: 9780521833783
  17. CORLESS, R. M., GONNET, G. H., HARE, D. E., JEFFREY, D. J., KNUTH, D. E. On the Lambert W function. Advances in Computational Mathematics, 1996, vol. 5, no. 2, p. 329–359. ISSN: 1019-7168
  18. LOMBARDO, P., FEDELE, G., RAO, M. M. MRC performance for binary signals in Nakagami fading with general branch correlation. IEEE Transactions on Communications, 1999, vol. 47, no. 1, p. 44–52. DOI: 10.1109/26.747812.

Keywords: Distributed antenna system, energy efficiency, power allocation, path loss, Nakagami channel

C. F. Gu, W. G. Chang, X. Y. Li, Z. H. Liu [references] [full-text] [DOI: 10.13164/re.2015.1084] [Download Citations]
Multi-Core DSP Based Parallel Architecture for FMCW SAR Real-Time Imaging

This paper presents an efficient parallel processing architecture using multi-core Digital Signal Processor (DSP) to improve the capability of real-time imaging for Frequency Modulated Continuous Wave Synthetic Aperture Radar (FMCW SAR). With the application of the proposed processing architecture, the imaging algorithm is modularized, and each module is efficiently realized by the proposed processing architecture. In each module, the data processing of different cores is executed in parallel, also the data transmission and data processing of each core are synchronously carried out, so that the processing time for SAR imaging is reduced significantly. Specifically, the time of corner turning operation, which is very time-consuming, is ignored under computationally intensive case. The proposed parallel architecture is applied to a compact Ku-band FMCW SAR prototype to achieve real-time imageries with 34 cm x 51 cm (range x azimuth) resolution.

  1. META, A., HOOGEBOOM, P., LIGTHART, L. P., et al. Signal processing for FMCW SAR. IEEE Transactions on Geoscience Remote Sensing, 2007, vol. 45, no. 11, p. 3519–3532. ISSN: 0196-2892. DOI: 10.1109/TGRS.2007.906140
  2. JIA, G. W., CHANG, W. G. Study on the improvements for the high resolution FMCW SAR imaging. Radar, Sonar and Navigation, 2014, vol. 8, no. 9, p. 1203–1214. ISSN: 1751-8784. DOI: 10.1049/iet-rsn.2013.0383
  3. AN, D. X., HUANG, X. T., JIN, T., et al. Extended two-step focusing approach for squinted spotlight SAR imaging. IEEE Transactions on Geoscience Remote Sensing, 2012, vol. 50, no. 7, p. 2889–2900. ISSN: 0196-2892. DOI: 10.1109/TGRS.2011.2174460
  4. MITTERMAYER, J., MOREIRA, A., LOFFELD, O. Spotlight SAR data processing using the frequency scaling algorithm. IEEE Transactions on Geoscience Remote Sensing, 1999, vol. 37, no. 5, p. 2198– 2214. ISSN: 0196-2892. DOI: 10.1109/36.789617
  5. PALM, S., WAHLEN, A., STANKO, S., et al. Real-time onboard processing and ground based monitoring of FMCW-SAR videos. In Proceedings of the 10th European Conference on Synthetic Aperture Radar (EuSAR). Berlin (Germany), 2014, p. 1–4. ISBN: 9783800736072.
  6. JOHANNES, W., STANKO, S., WAHLEN, A., et al. Implementation of a 35 GHz SAR sensor and a high resolution camera to enable real-time observation. In Proceedings of the 10th European Conference on Synthetic Aperture Radar (EuSAR). Berlin (Germany), 2014, p. 315–318. ISBN: 9783800736072.
  7. WANG, D., ALI, M. Synthetic aperture radar on low power multicore digital signal processor. In Proceedings of the High Performance Extreme Computing (HPEC). Waltham (MA, USA), 2012, p. 1–6. ISBN: 9781467315777. DOI: 10.1109/HPEC.2012.6408665
  8. Texas Instruments Incorporated. TMS320C6678 Multicore Fixed and Floating-Point Digital Signal Processor (data manual). 217 pages. [Online] Cited 2011-08-23. Available at:
  9. Texas Instruments Incorporated. Enhanced Direct Memory Access (EDMA3) Controller (user guide). 175 pages. [Online] Cited 2011-03-23. Available at:
  10. GU, C. F., LI, X. Y., CHANG, W. G., et al. Matrix transposition based on TMS320C6678. In Proceedings of the 5th Global Symposium on Millimeter Waves (GSMM). Harbin (China), 2012, p. 29–32. ISBN: 9781467313025. DOI: 10.1109/GSMM.2012.6314000
  11. FORNARO, G. Trajectory deviations in airborne SAR: Analysis and compensation. IEEE Transactions on Aerospace and Electronic Systems, 1999, vol. 35, no. 3, p. 997–1009. ISSN: 0018-9251. DOI: 10.1109/7.784069
  12. CHO, B. L., KONG, Y. K., PARK, H. G., et al. Automobilebased SAR/InSAR system for ground experiments. IEEE Geoscience Remote Sensing Letters, 2006, vol. 3, no. 3, p. 401–405. ISSN: 1545-598X. DOI: 10.1109/LGRS.2006.873358

Keywords: parallel processing, multi-core DSP, real-time imaging, FMCW SAR

A. G. Pakfiliz [references] [full-text] [DOI: 10.13164/re.2015.1091] [Download Citations]
Video Tracking for Visual Degraded Aerial Vehicle with H-PMHT

The work presented in this paper describes a novel approach for automatic video tracking of visual degraded air vehicles in daylight with sky background. The offered and applied video object tracking method is based on Histogram Probabilistic Multi Hypothesis Tracker algorithm. The H-PMHT is an expectation maximization based algorithm developed for tracking objects in intense clutter environment by using intensity modulated data streams. Basically H-PMHT algorithm is suitable for linear-Gaussian point spread function case. However, recent studies have indicated that the algorithm is also applicable for non-linear and non-Gaussian target shapes. Thus H-PMHT becomes a suitable alternative for tracking applications with sonar, high resolution radars,IR, UV sensors and cameras. In this work H-PMHT algorithm is used for video tracking of visual degraded air vehicles. For this purpose RGB video data is processed by using a reciprocal pixel intensity measurement for meeting the requirements of the tracking process. A simulation study is conducted in order to demonstrate the video tracking performance of H-PMHT against visual degraded air vehicles. Also the results obtained with H-PMHT algorithm are compared with the results of amplitude information added Interacting Multi Model Probabilistic Data Association algorithm.

  1. BAR-SHALOM,Y., FORTMANN, T. E. Tracking and Data Association. New York: Academic Press, 1988. ISBN: 0120797607
  2. BAR-SHALOM, Y., LI, X. R. Multitarget-Multisensor Tracking: Principles and Techniques. Storrs (CT, USA): Yaakov Bar-Shalom, 1995. ISBN-13: 978-0964831209
  3. BLACKMAN, S. S., POPOLI, R. Design and Analysis of Modern Tracking Systems. Norwood (MA, USA): Artech House, 1999. ISBN- 13: 978-1580530064
  4. STREIT, R. L. Tracking on Intensity-Modulated Data Streams. NUWC-NPT Technical Report 11.221. Rhode Island (USA): Naval Undersea Warfare Center Division Newport, 2000. Available under PDF ID: ADA377255
  5. WALSH, M. J., GRAHAM, M. L., STREIT, R. L., LUGINBUHL, T. E., MATHEWS, L. E. Tracking on intensity-modulated data streams. In Proceedings of the 2001 IEEE Aerospace Conference. Big Sky (MT, USA), 2001. DOI: 10.1109/AERO.2001.931508
  6. STREIT, R. L., GRAHAM, M. L., WALSH, M. J. Tracking in hyperspectral data. In Information Fusion 2002. Annapolis (MD, USA), 2002, p. 852–859. DOI:10.1109/ICIF.2002.1020896
  7. PAKFILIZ, A. G., EFE, M. Multi-target tracking in clutter with histogram probabilistic multi-hypothesis tracker. In 18th International Conference on Systems Engineering. Las Vegas (USA), 2005, p. 137– 142. DOI: 10.1109/ICSENG.2005.55
  8. DAVEY, S. J. Histogram PMHT with particles. In Proceedings of the 14th International Conference on Information Fusion. Chicago (IL, USA), 2011, p. 1–8. ISBN: 978-1-4577-0267-9
  9. DAVEY, S J., WIENEKE, M. Tracking groups of people in video with histogram-PMHT. In Defense Applications of Signal Processing (DASP) Workshop. Coolum (Australia), 2011, p. 1–11.
  10. WIENEKE, M., DAVEY, S. J. Histogram PMHT with target extent estimates based on random matrices. In Proceedings of the 14th International Conference on Information Fusion. Chicago (IL, USA), 2011. ISBN: 978-1-4577-0267-9
  11. HEINLENDAY, F. Principles of Air Defence and Air Vehicle Penetration. Washington, D.C. (USA): CEEPrees Books, Continuing Engineering Education George Washington University, 1988. ISBN: 0-941-893-02-2
  12. LERRO, D., BAR-SHALOM, Y. IMM tracking with target amplitude feature. IEEE Transactions on Aerospace and Electronic Systems, 1993, vol. 29, no. 2, p. 494–509. DOI: 10.1109/7.210086
  13. BAR-SHALOM, Y., KIRUBARAJAN, T., LIN, X. Probabilistic data association techniques for target tracking with applications to sonar, radar and EO sensors. IEEE Aerospace and Electronic Systems Magazine, 2005, vol. 20, no. 8, p. 37–56. DOI: 10.1109/MAES.2005.1499275
  14. BOERS, Y., DRIESSEN, H., TORSTENSSON, J., TRIEB, M., KARLSSON, R., GUSTAFSSON, F. A Track Before Detect algorithm for tracking extended targets. IEE Proceedings Radar, Sonar and Navigation, 2006, vol. 153, no. 4, p. 345–351. DOI: 10.1049/iprsn:20050123
  15. STREIT, R. L., LUGINBUHL, T. E. Probabilistic Multi-Hypothesis Tracking. Technical Report 10,428. Rhode Island (USA): Naval Undersea Warfare Center, 1995. Available under PDF ID: ADA298501
  16. GIANNOPOULOS, E., STREIT, R. L., SWASZEK P. Probabilistic multi-hypothesis tracking in a multi-sensor multi-target environment. In First Australian Data Fusion Symposium (ADFS). Adelaide (Australia), 1996, p 184–189. DOI: 10.1109/ADFS.1996.581104

Keywords: Visual degraded air vehicles, Histogram PMHT (H-PMHT), video tracking, reciprocal pixel intensity