ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)



Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile

September 2016, Volume 25, Number 3 [DOI: 10.13164/re.2016-3]

Show all Hide all

D. Segovia-Vargas, J.L. Jimenez-Martin, A. Parra-Cerrada, E. Ugarte-Muñoz, L.F. Albarracin-Vargas, V. Gonzalez-Posadas [references] [full-text] [DOI: 10.13164/re.2016.0409] [Download Citations]
Stability Analysis and Design of Negative Impedance Converters: application to circuit and small antennas

Negative impedance converters (NICs) have been proposed as structures to improve the performance of RF circuits and electrically small antennas. However, NICs suffer from stability problems. This paper presents a compact procedure to analyze the stability of NICs. Then, the required and sufficient conditions to predict the stability of a negative impedance converter are given. These conditions can be evaluated using standard computer-aided-design software. Finally, a NIC prototype is given to validate and illustrate the presented design procedure, it is also integrated with a printed, blade-type, electrically small monopole in the VHF band.

  1. SUSSMAN-FORT, S.E., RUDISH, R.M. Non-foster impedance matching of electrically-small antennas. IEEE Transactions on Antennas and Propagation. 2009, vol. 57, no. 8, p. 2230–2241. ISSN 0018-926X, 1558-2221. DOI:10.1109/TAP.2009.2024494
  2. SUSSMAN-FORT, S.E., RUDISH, R.M. Non-foster impedance matching for transmit applications. In IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials. New York (USA), March 2006, p. 53–56. DOI: 10.1109/IWAT.2006.1608973
  3. SUSSMAN-FORT, S.E. Non-Foster vs. active matching of an electrically-small receive antenna. In 2010 IEEE Antennas and Propagation Society International Symposium. Toronto (ON, Canada), 2010, p. 1–4. DOI: 10.1109/APS.2010.5562052
  4. ABERLE, J.T. Two-port representation of an antenna with application to non-foster matching networks. IEEE Transactions on Antennas and Propagation. 2008, vol. 56, no. 5, p. 1218–1222. ISSN 0018-926X. DOI: 10.1109/TAP.2008.922173
  5. SUAREZ, A., QUERE, R. Stability Analysis of Nonlinear Microwave Circuits. Artech House, 2003. ISBN 978-1-58053-586-1.
  6. BROWNLIE, J.D. On the stability properties of a negative impedance converter. IEEE Transactions on Circuit Theory. 1966, vol. 13, no. 1, p. 98–99. ISSN 0018-9324. DOI: 10.1109/TCT.1966.1082542
  7. HOSKINS, R. F. Stability of negative-impedance convertors. Electronics Letters. 1966, vol. 2, no. 9, p. 341–341. ISSN 1350- 911X. DOI: 10.1049/el:19660287
  8. BROWNLIE, J. D. Small-signal responses realizable from d.c.- biased devices. Proceedings of the Institution of Electrical Engineers. 1963, vol. 110, no. 5, p. 823–829. ISSN 0020-3270. DOI: 10.1049/piee.1963.0111
  9. STERN, A. P. Stability and power gain of tuned transistor amplifiers. Proceedings of the IRE, 1957, vol. 45, no. 3, p. 335–343. ISSN 0096-8390. DOI: 10.1109/JRPROC.1957.278369
  10. DAVIES, A. Stability properties of a negative immittance converter. IEEE Transactions on Circuit Theory, 1968, vol. 15, no. 1, p. 80–81. ISSN 0018-9324. DOI: 10.1109/TCT.1968.1082775
  11. MIDDLEBROOK, R.D. Measurement of loop gain in feedback systems. International Journal of Electronics Theoretical and Experimental. 1975, vol. 38, no. 4, p. 485–512. ISSN 0020-7217. DOI: 10.1080/00207217508920421
  12. VENDELIN, G., PAVIO, A.M., ROHDE, U.L. Microwave Circuit Design using Linear and Nonlinear Techniques. 2nd ed. New York: John Wiley & Sons, 1990 [accessed 24th May, 2016]. ISBN 978- 0-471-41479-7.
  13. JACKSON, R.W. Rollett proviso in the stability of linear microwave circuits-a tutorial. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 3, p. 993–1000. ISSN 0018-9480. DOI: 10.1109/TMTT.2006.869719
  14. BODE, H. W. Network Analysis, Feedback Amplifier Design. New York, USA: Van Nostrand, 1945.
  15. ROLLETT, J. Stability and power-gain invariants of linear twoports. IRE Transactions on Circuit Theory, 1962, vol. 9, no. 1, p. 29–32. ISSN 0096-2007. DOI: 10.1109/TCT.1962.1086854
  16. EDWARDS, M. L., SINSKY, J.H. A new criterion for linear 2- port stability using a single geometrically derived parameter. IEEE Transactions on Microwave Theory and Techniques, 1992, vol. 40, no. 12, p. 2303–2311. ISSN 0018-9480. DOI: 10.1109/22.179894
  17. EDWARDS, M. L., CHENG, S., SINSKY, J.H. A deterministic approach for designing conditionally stable amplifiers. IEEE Transactions on Microwave Theory and Techniques, 1995, vol. 43, no. 7, p. 1567–1575. ISSN 0018-9480. DOI: 10.1109/22.392916
  18. KUROKAWA, K. Some basic characteristics of broadband negative resistance oscillator circuits. The Bell System Technical Journal, 1969, vol. 48, no. 6, p. 1937–1955. ISSN 0005-8580. DOI: 10.1002/j.1538-7305.1969.tb01158.x
  19. UGARTE-MUNOZ, E., HRABAR, S., SEGOVIA-VARGAS, D., et al. Stability of non-foster reactive elements for use in active metamaterials and antennas. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 7, p. 3490–3494. ISSN 0018- 926X. DOI: 10.1109/TAP.2012.2196957
  20. PLATZKER, A., STRUBLE, W., HETZLER, K.T. Instabilities diagnosis and the role of K in microwave circuits. In IEEE MTT-S International Microwave Symposium Digest. Atlanta (GA, USA), 1993, vol. 3, p. 1185–1188. DOI: 10.1109/MWSYM.1993.277082
  21. PLATZKER, A., STRUBLE, W. Rigorous determination of the stability of linear N-node circuits from network determinants and the appropriate role of the stability factor K of their reduced twoports. In The IEEE 3rd International Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits. Duisburg (Germany), 1994, p. 93–107. DOI: 10.1109/INMMC.1994.512515
  22. OHTOMO, M. Stability analysis and numerical simulation of multidevice amplifiers. IEEE Transactions on Microwave Theory and Techniques, 1993, vol. 41, no. 6, p. 983–991. ISSN 0018- 9480. DOI: 10.1109/22.238513
  23. NYQUIST, H. Regeneration theory. The Bell System Technical Journal, 1932, vol. 11, no. 1, p. 126–147. ISSN 0005-8580. DOI: 10.1002/j.1538-7305.1932.tb02344.x
  24. RANDALL, M., HOCK, T. General oscillator characterization using linear open-loop S-parameters. IEEE Transactions on Microwave Theory and Techniques, 2001, vol. 49, no. 6, p. 1094–1100. ISSN 0018-9480. DOI: 10.1109/22.925496
  25. JACKSON, R.W. Criteria for the onset of oscillation in microwave circuits. IEEE Transactions on Microwave Theory and Techniques, 1992, vol. 40, no. 3, p. 566–569. ISSN 0018-9480. DOI: 10.1109/22.121734
  26. STEARNS, S.D. Incorrect stability criteria for non-foster circuits. In Proceedings of IEEE 2012 International Symposium on Antennas and Propagation. Chicago (IL, USA), 2012, p. 1–2. DOI: 10.1109/APS.2012.6348832
  27. GONZALEZ-POSADAS, V., SEGOVIA-VARGAS, D., JIME- NEZ, J.L., et al. Study of the stability properties of negative impedance converters using the gain-loop method. In IEEE Antennas and Propagation Society International Symposium (APSURSI). Washington (USA), 2011.
  28. KOLEV, S., DELACRESSONNIERE, B., GAUTIER, J.-L. Using a negative capacitance to increase the tuning range of a varactor diode in MMIC technology. IEEE Transactions on Microwave Theory and Techniques, 2001, vol. 49, no. 12, p. 2425–2430. DOI: 10.1109/22.971631
  29. ALBARRACIN-VARGAS, F. Sensitivity analysis for active matched antennas with non-foster elements. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 12, p. 6040–6048. ISSN 0018-926X. DOI: 10.1109/TAP.2014.2364811
  30. HRABAR, S., KROIS, I., KIRICENKO, A. Towards active dispersion-less ENZ metamaterial for cloaking applications. Metamaterials, 2010, vol. 4, no. 2-3, p. 89–97. ISSN 1873-1988. DOI: 10.1016/j.metmat.2010.07.001

Keywords: Negative Impedance Converter (NIC), Stability, network Nyquist test. Electrically Small Antennas.

A. Cihangir, F. Sonnerat, F. Gianesello, D. Gloria, C. Luxey [references] [full-text] [DOI: 10.13164/re.2016.0419] [Download Citations]
Antenna Solutions for 4G Smartphones in Laser Direct Structuring Technology

Two antenna designs operating in the LTE/4G cellular frequency bands are proposed in this paper. Both designs consist of a driven strip which capacitively excites a parasitic grounded strip for a better matching response around 700 MHz. The antennas are realized using Laser Direct Structuring (LDS) technology on POCAN plastic material with a height of 5 mm above the system Printed Circuit Board. Passive matching circuits are necessary at each antenna’s feed, to match the input impedance to 50 Ohm at the desired operating bands (700-960 MHz and 1.7-2.2 GHz for the first design and 700-960 MHz and 1.7-2.7 GHz for the second). The simulation results are validated through s-parameter and total efficiency measurements. To form a basis for future studies, the effect of the hand and the head of the user are investigated upon the antenna performance.

  1. RAPPAPORT, T.S., SUN, S., MAYZUS, R., ZHAO, H., AZAR, Y., WANG, K., WONG, G.N., SCHULZ, J.K., SAMIMI, M., GUTIERREZ, F. Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 2013, vol. 1, p. 335–349. DOI: 10.1109/ACCESS.2013.2260813
  2. VILLANEN, J., ICHELN, C., VAINIKAINEN, P. A coupling element-based quad-band antenna structure for mobile terminals. Microwave and Optical Technology Letters, June 2007, vol. 49, no. 6, p. 1277–1282. DOI: 10.1002/mop.22463
  3. ANDUJAR, A., ANGUERA, J., PUENTE, C. Ground plane boosters as a compact antenna technology for wireless handheld devices. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 5, p. 1668–1677. DOI: 10.1109/TAP.2011.2122299
  4. VALKONEN, R., ILVONEN, J., VAINIKAINEN P. Naturally non-selective handset antennas with good robustness against impedance mistuning. In Proceedings of the 6th European Conference on Antennas and Propagation (EuCAP). Prague (Czech Republic), March 2012, p. 796–800. DOI: 10.1109/EuCAP.2012.6206473
  5. VALKONEN, R., ILVONEN, J., ICHELN, C., VAINIKAINEN, P. Inherently non-resonant multi-band mobile terminal antenna. IET Electronics Letters, 2013, vol. 49, no. 1, p. 11–13. DOI: 10.1049/el.2012.3427
  6. CHU, F.H., WONG, K.L. Internal coupled-fed loop antenna integrated with notched ground plane for wireless wide area network operation in the mobile handset. Microwave and Optical Technology Letters, March 2012, vol. 54, no. 3, p. 599–605. DOI: 10.1002/mop.26620
  7. YANG, C.W., JUNG, Y.B., JUNG, C.W. Octaband internal antenna for 4G mobile handset. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 817–819. DOI: 10.1109/LAWP.2011.2164049
  8. CHEN, S.C., WONG, K.L., Wideband monopole antenna coupled with a chip-inductor-loaded shorted strip for LTE/WWAN mobile handset. Microwave and Optical Technology Letters, June 2011, vol. 53, no. 6, p. 1293–1298. DOI: 10.1002/mop.25977
  9. CHEN, S.C., WONG, K.L. Small-size 11-band LTE/WWAN/WLAN internal mobile phone antenna. Microwave and Optical Technology Letters, November 2010, vol. 52, no. 11, p. 2603–2608. DOI: 10.1002/mop.25526
  10. CHU, F.H., WONG, K.L. On-board small-size printed LTE/WWAN mobile handset antenna closely integrated with system ground plane. Microwave and Optical Technology Letters, June 2011, vol. 53, no. 6, p. 1336–1343. DOI: 10.1002/mop.25961
  11. LEE, C.T., WONG, K.L. Planar monopole with a coupling feed and an inductive shorting strip for LTE/GSM/UMTS operation in the mobile phone. IEEE Transactions on Antennas and Propagation, July 2010, vol. 58, no. 7, p. 2479–2483. DOI: 10.1109/TAP.2010.2048878
  12. WONG, K.L., TU, M.F., WU, T.Y., LI, W.Y. Small-size coupledfed printed PIFA for internal eight-band LTE/GSM/UMTS mobile phone antenna. Microwave and Optical Technology Letters, September 2010, vol. 52, no. 9, p. 2123–2128. DOI: 10.1002/mop.25387
  13. WONG, K.L., CHEN, W.Y., WU, C.Y., LI, W.Y. Small-size internal eight-band LTE/WWAN mobile phone antenna with internal distributed LC matching circuit. Microwave and Optical Technology Letters, October 2010, vol. 52, no. 10, p. 2244–2250. DOI: 10.1002/mop.25431
  14. LANXESS. POCAN DP T 7140 LDS 000000 (datasheet). 3 pages. [Online] Cited 2016-08-01. Available at: LANXESS_Pocan_DP_T_7140_LDS_000000_ISO_EN.pdf?docI d=12449715
  15. LPKF. Three-Dimensional Circuits LPKF LDS: Laser Direct Structuring for 3D Molded Interconnect Devices. 16 pages. [Online] Cited 2016-08-01. Available at:
  16. SONNERAT, F., PILARD, R., GIANESELLO, F., LE PENNEC, F., PERSON, C., GLORIA, D., BRACHAT, P., LUXEY, C. Innovative 4G mobile phone LDS antenna module using plastronics integration scheme. In Proceedings of the IEEE Antennas and Propagation Conference (AP-S). Orlando (USA), July 2013. DOI: 10.1109/APS.2013.6711767
  17. Optenni Lab. General Website. [Online] Cited 2016-08-01. Available at:

Keywords: Mobile antennas, parasitic antennas, LTE, 4G, LDS, matching network.

V. Sharbati, P. Rezaei, M. M. Fakharian [references] [full-text] [DOI: 10.13164/re.2016.0429] [Download Citations]
A Planar UWB Antenna with Switchable Single/Double Band-Rejection Characteristics

In this Paper, a reconfigurable antenna with capability to operate in the ultrawideband (UWB) mode from 2.85 to 14.4 GHz with switchable notch bands of 3.25–4.26 GHz, 5.1–5.9 GHz or 7.1-7.8 GHz, is presented. The proposed antenna has a simple configuration and compact size of 17 × 14 mm2. To make the band-notches, three methods (methods of slot antenna, parasitic patches and backplane structure) are used. To achieve the reconfigurability, three PIN diode are placed on the proposed antenna. A PIN diode is inserted over the L-shaped parasitic element and the rectangular patch, another one is placed between the two parasitic elements on the ground plane, and other across the square ring-shaped slot, respectively. Antenna performance can be changed by adjusting the status of the PIN diodes that make the band-notches in applications bands (WLAN, WiMAX/C-band and X-band). Good group delay and monopole-like radiation pattern characteristics are achieved in the frequency band of interest. The antenna performance both by simulation and by experiment indicates that it is suitable and a good candidate for UWB applications.

  1. KALTEH, A.A., DADASH ZADEH, G.R., NASERMOGHADASI, M., et al. Ultra-wideband circular slot antenna with reconfigurable notch band function. IET Microwaves, Antennas and Propagation, 2012, vol. 6, no. 1, p. 108–112. DOI: 10.1049/iet-map.2011.0125
  2. FCC Spectrum Policy Task Force, Report of the Spectrum Efficiency Working Group. FCC, Tech. Rep., 2002.
  3. MIRMOSAEI, S. S., AFJEI, S. E., MEHRSHAHI, E., et al. A dual band-notched ultra-wideband monopole antenna with spiral-slots and folded SIR-DGS as notch band structures. International Journal of Microwave and Wireless Technologies, 2015, available on CJO2015. DOI: 10.1017/S175 9078715000719.
  4. SHARBATI, V., REZAEI, P., FAKHARIAN, M. M., et al. A switchable band-notched UWB antenna for cognitive radio applications. IETE Journal of Research, 2015, vol. 61, no. 4, p. 423–428. DOI: 10.1080/03772063.2015.1025108
  5. FAKHARIAN, M. M., REZAEI, P., AZADI, A. A planar UWB bat-shaped monopole antenna with dual band-notched for WiMAX/WLAN/DSRC. Wireless Personal Communications, 2015, vol. 81, no. 2, p 881–891. DOI: 10.1007/s11277-014-2162-8
  6. LEE, D.-H., YANG, H.-Y., CHO, Y.-K. Design and analysis of tapered slot antenna with 3.5/5.5 GHz band-notched characteristics. Progress In Electromagnetics Research B, 2013, vol. 56, p. 347–363. DOI: 10.2528/PIERB13092702
  7. LEE, D.-H., YANG, H.-Y., CHO, Y.-K. Tapered slot antenna with band-notched function for ultrawideband radios. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 682–685. DOI: 10.1109/LAWP.2012.2204718
  8. KOOHESTANI, M., PIRES, N., SKRIVERVIK, A.K., et al. Bandreject ultra-wideband monopole antenna using patch loading. Electronics Letters, 2012, vol. 48, no. 16, p. 974–975. DOI: 10.1049/el.2012.1771
  9. LIU, W. X., YIN, Y.-Z. Dual band-notched antenna with the parasitic strip for UWB. Progress in Electromagnetics Research Letters, 2011, vol. 25, p. 21–30. DOI: 10.2528/PIERL11052609
  10. SHARBATI, V., REZAEI, P., SHAHZADI, A., et al. A planar UWB antenna based on MB-OFDM applications with switchable dual band-notched for cognitive radio systems. International Journal of Microwave and Wireless Technologies, 2014, p. 1–8. DOI: 10.1017/S1759078714001317
  11. FAKHARIAN, M. M., REZAEI, P., OROUJI, A. A. A novel slot antenna with reconfigurable meander-slot DGS for cognitive radio applications. Applied Computational Electromagnetics Society Journal, 2015, vol. 30, no. 7, p. 748–753.
  12. ZHU, F.G., GAO, S., HO, A. T.S., et al. Multiple band-notched UWB antenna with band-rejected elements integrated in the feed line. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 8, p. 3952–3960. DOI: 10.1109/TAP.2013.2260119
  13. MA, T.G., JENG, S.K. Planar miniature tapered-slot-fed annular slot antennas for ultra-wideband radios. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 3, p. 1194–1202. DOI: 10.1109/TAP. 2004.842648
  14. KIM, J.-Y., KIM, N., LEE, S., et al. Triple band-notched UWB monopole antenna with two resonator structures. Microwave and Optical Technology Letters, 2013, vol. 55, no. 1, p. 4–6. DOI: 10.1002/ mop.27275
  15. MORADIKORDALIVAND, A., RAHMAN, T.A., EBRAHIMI, S., et al. An equivalent circuit model for broadband modified rectangular microstrip-fed monopole antenna. Wireless Personal Communications, 2014, vol. 77, no. 2, p. 1363–1375. DOI: 10.1007/s11277-013-1585-y

Keywords: Reconfigurable antenna; ultrawideband (UWB); band-rejection, single, double

Z. Zhang, X. Cao, J. Gao, S. Li [references] [full-text] [DOI: 10.13164/re.2016.0436] [Download Citations]
Broadband Metamaterial Reflectors for Polarization Manipulation Based on Cross/Ring Resonators

We presented the investigation of broadband metamaterial reflector for polarization manipulation based on cross/ring resonators. It is demonstrated that the meta¬material reflector can convert the linearly polarized inci¬dent wave to its cross polarized wave or circularly polar¬ized wave. Due to the multiple resonances at neighboring frequencies, the proposed reflector presents broadband property and high efficiency. The measured fraction band¬width of cross polarization conversion is 55.5% with effi¬ciency higher than 80%. Furthermore, a broadband circu¬lar polarizer is designed by adjusting the dimension para¬meters and the measured fraction bandwidth exceeds 30%.

  1. ZHAO, J., XIAO, B., HUANG, X., et al. Multiple-band reflective polarization converter based on complementary L-shaped metamaterial. Microwave and Optical Technology Letters, 2015, vol. 57, no. 4, p. 978–983. ISSN: 1098-2760. DOI: 10.1002/mop.29003
  2. BARBUTO, M., BILOTTI, F., TOSCANO, A. Novel waveguide components based on complementary electrically small resonators. Photonics and Nanostructures - Fundamentals and Applications, 2014, vol. 12, no. 4, p. 284–290. ISSN: 1569-4410. DOI: 10.1016/j.photonics.2014.03.005
  3. BARBUTO, M., TROTTA, F., BILOTTI, F., et al. A combined bandpass filter and polarization transformer for horn antennas. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 1065–1068. ISSN: 1536-1225. DOI: 10.1109/LAWP.2013.2280151
  4. SHI, H., ZHANG, A., ZHENG, S., et al. Dual-band polarization angle independent 90° polarization rotator using twisted electricfield-coupled resonators. Applied Physics Letters, 2014, vol. 104, no. 3. p. 034102. ISSN: 0003-6951. DOI: 10.1063/1.4863227
  5. CONG, L., CAO, W., ZHANG, X., et al. A perfect metamaterial polarization rotator. Applied Physics Letters, 2013, vol. 103, no. 17, p. 171107. ISSN: 0003-6951. DOI: 10.1063/1.4826536
  6. JIA, Y., ZHANG, Y., DONG, X., et al. Complementary chiral metasurface with strong broadband optical activity and enhanced transmission. Applied Physics Letters, 2014, vol. 104, no. 1, p. 011108. ISSN: 0003-6951. DOI: 10.1063/1.4861422
  7. PU, M., CHEN, P., WANG, Y., et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Applied Physics Letters, 2013, vol. 102, no. 13, p. 131906. ISSN: 0003- 6951. DOI: 10.1063/1.4799162
  8. DOUMANIS, E., GOUSSETIS, G., GOMEZ-TORNERO, J. L., et al. Anisotropic impedance surfaces for linear to circular polarization conversion. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 1, p. 212–219. ISSN: 0018926X. DOI: 10.1109/TAP.2011.2167920
  9. YAN, S., VANDENBOSCH, G. A. E. Compact circular polarizer based on chiral twisted double split-ring resonator. Applied Physics Letters, 2013, vol. 102, no. 10, p. 103503. ISSN: 0003- 6951. DOI: 10.1063/1.4794940
  10. MARTINEZ-LOPEZ, L., RODRIGUEZ-CUEVAS, J., MARTINEZ-LOPEZ, J. I., et al. A multilayer circular polarizer based on bisected split-ring frequency selective surfaces. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 153 to 156. ISSN: 1536-1225. DOI: 10.1109/LAWP.2014.2298393
  11. HUANG, X., YANG, D., YANG, H. Multiple-band reflective polarization converter using U-shaped metamaterial. Journal of Applied Physics, 2014, vol. 115, no. 10, p. 103505. ISSN: 0021- 8979. DOI: 10.1063/1.4868076
  12. MUTLU, M., AKOSMAN, A. E., SEREBRYANNIKOV, A. E., et al. Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. Optics Letters, 2011, vol. 36, no. 9, p. 1653–1655. ISSN: 0146-9592. DOI: 10.1364/OL.36.001653
  13. HAO, J., YUAN, Y., RAN, L., et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Physical Review Letters, 2007, vol. 99, no. 6, p. 063908. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.99.063908
  14. MA, X., HUANG, C., PU, M., et al. Multi-band circular polarizer using planar spiral metamaterial structure. Optics Express, 2012, vol. 20, no. 14, p. 16050–16058. ISSN: 1094-4087. DOI: 10.1364/OE.20.016050
  15. SHI, J., LIU, X., YU, S., et al. Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial. Applied Physics Letters, 2013, vol. 102, no. 19, p. 191905. ISSN: 0003- 6951. DOI: 10.1063/1.4805075
  16. XU, H., WANG, G., QI, M., et al. Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial. Optics Express, 2013, vol. 21, no. 21, p. 24912–24921. ISSN: 1094-4087. DOI: 10.1364/OE.21.024912
  17. ZHU, W., RUKHLENKO, I. D., XIAO, F., et al. Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking. Journal of Applied Physics, 2014, vol. 115, no. 14, p. 143101. ISSN: 0021-8979. DOI: 10.1063/1.4870862
  18. SONG, K., ZHAO, X., LIU, Y., et al. A frequency-tunable 90°- polarization rotation device using composite chiral metamaterials. Applied Physics Letters, 2013, vol. 103, no. 10, p. 101908. ISSN: 0003-6951. DOI: 10.1063/1.4820810
  19. RAJKUMAR, R., YOGESH, N., SUBRAMANIAN, V. Cross polarization converter formed by rotated-arm-square chiral metamaterial. Journal of Applied Physics, 2013, vol. 114, no. 22, p. 224506. ISSN: 0021-8979. DOI: 10.1063/1.4846096
  20. FENG, M., WANG, J., MA, H., et al. Broadband polarization rotator based on multi-order plasmon resonances and high impedance surfaces. Journal of Applied Physics, 2013, vol. 114, no. 7, p. 074508. ISSN: 0021-8979. DOI: 10.1063/1.4819017
  21. SHI, H., LI, J., ZHANG, A., et al. Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity. Optics Express, 2014, vol. 22, no. 17, p. 20973–20981. ISSN: 1094-4087. DOI:10.1364/OE.22.020973
  22. ZHANG, L., ZHOU, P., LU, H., et al. Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1157–1160. ISSN: 1536-1225. DOI: 10.1109/LAWP.2015.2393376
  23. STUTZMAN, W. L., THIELE, G. A. Antenna Theory and Design. 2nd ed. Wiley Publishing, 1998. ISBN: 0471025909

Keywords: Metamaterial reflector, polarization manipulation, multiple resonances, broadband

A. Ghosh, T. Mandal, S. Das [references] [full-text] [DOI: 10.13164/re.2016.0442] [Download Citations]
Design of Triple Band Slot-Patch Antenna with Improved Gain Using Triple Band Artificial Magnetic Conductor

A CPW-fed triple band slot-patch antenna is designed to resonate at 3.60 GHz, 5.86 GHz and 8.53 GHz. The structure makes use of two types of radiators. A slot structure is made which behaves like a half wave dipole at 3.60 GHz. The other two resonating frequencies are generated by two metallic structures inserted within the slot. All the three resonant frequencies are independent of each other. Moreover, to achieve better gain, a triple band artificial magnetic conductor (AMC) is designed and placed at a certain distance below the antenna structure. The AMC shows zero reflection phase at all the three resonating frequencies of the antenna. A detailed analysis of the AMC is presented. Significant improvement in gain is obtained at all the three resonating frequencies. Radiation patterns of the antenna are stable with considerably low cross polarization in both E and H planes in all the three frequencies. A prototype of the triple band antenna with AMC is fabricated and the measured results are in good agreement with the simulated results.

  1. ANSARI, J.A., SINGH, P., DUBEY, S.K., et al. H-shaped stacked patch antenna for dual band operation. Progress in Electromagnetics Research B, 2008, vol. 5, p. 291–302. DOI: 10.2528/PIERB08031203
  2. FALADE, O.P., REHMAN, M.U., GAO, Y., et al. Single feed stacked patch circular polarized antenna for triple band GPS receivers. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 10, p. 4479–4484. DOI: 10.1109/TAP.2012.2207354
  3. JOSEPH, S., PAUL, B., MRIDULA, S., MOHANAN, P. A novel planar fractal antenna with CPW-feed for multiband applications. Radioengineering, 2013, vol. 22, no. 4, p. 1262–1266.
  4. SINGH, A.K., GANGWAR, R.K., KANAUJIA, B.K. Orthogonal slot-loaded coaxially stacked annular ring antenna with circular patch for multiband applications. Journal of Electromagnetic Waves and Applications, 2015, vol. 29, no. 12, p. 1630–1643. DOI: 10.1080/09205071.2015.1054956
  5. LI, F., REN, L.S., ZHAO, G., JIAO, Y.C. Compact triple band monopole antenna with C-shaped and S-shaped meander strips for WLAN/WiMAX applications. Progress in Electromagnetics Research Letters, 2010, vol. 15, p. 117–126. DOI: 10.2528/PIERL10051704
  6. IDRIS, I.H., HAMID, M.R., JAMALUDDIN, M.H., et al. Single-, dual- and triple band frequency reconfigurable antenna. Radioengineering, 2014, vol. 23, no.3, p. 805–811.
  7. BAKARIYA, P.S., DWARI, S., SARKAR, M., MANDAL, M.K. Proximity-coupled multiband microstrip antenna for wireless applications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 646–649. DOI: 10.1109/LAWP.2014.2376693
  8. FERESIDIS, A.P., VARDAXOGLOU, J.C. High gain planar antenna using optimised partially reflecting surfaces. IEE Proceedings-Microwaves, Antennas and Propagation, 2001, vol. 148, no. 6, p. 345–350. DOI: 10.1049/ip-map:20010828
  9. YANG, W., CHE, W., WANG, H. High gain design of a patch antenna using stub-loaded artificial magnetic conductor. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 1172–1175. DOI: 10.1109/LAWP.2013.2280576
  10. PARK, I.Y., KIM, D. High gain antenna using an intelligent artificial magnetic conductor ground plane. Journal of Electromagnetic Waves and Applications, 2013, vol. 27, no. 13, p. 1602–1610. DOI: 10.1080/09205071.2013.817957
  11. BOUZOUAD, M., CHAKER, S.M., BENSAFIELDDINE, D., LAAMARI, E.M. Gain enhancement with near-zero-index metamaterial superstrate. Applied Physics A, Materials Science & Processing, 2015, vol. 121, no. 3, p. 1075–1080. DOI: 10.1007/s00339-015-9206-0
  12. KATIYAR, P., MAHADI, W.N.L.W. Impact analysis on distance variation between patch antenna and metamaterial. Microwave and Optical Technology Letters, 2015, vol. 57, no. 1, p. 178–183. DOI: 10.1002/mop.28809
  13. SIEVENPIPER, P., ZHANG, L., BROAS, R.F.J., et al. Highimpedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 1999, vol. 47, no. 11, p. 2059–2074. DOI: 10.1109/22.798001
  14. SAAD, R., FORD, K.L. Miniaturised dual-band artificial magnetic conductor with reduced mutual coupling. Electronics Letters, 2012, vol. 48, no. 8, p. 425–426. DOI: 10.1049/el.2012.0709
  15. ABBASI, N.A., LANGLEY, R.J. Multiband-integrated antenna/artificial magnetic conductor. IET Microwaves, Antennas and Propagation, 2011, vol. 5, no. 6, p. 711–717. DOI: 10.1049/iet-map.2010.0200
  16. ABU, M., RAHIM, M.K.A. Single-band and dual-band artificial magnetic conductor ground planes for multi-band dipole antenna. Radioengineering, 2012, vol. 21, no. 4, p. 999–1006.
  17. ABU, M., RAHIM, M.K.A., AYOP, O., et al. Design of tripleband dipole-type antenna with dual-band artificial magnetic conductor structure. In Proceedings of the 5th European Conference on Antennas and Propagation. Rome (Italy), 2011, p. 1514–1517. ISBN: 978-1-4577-0250-1
  18. DEWAN, R., RAHIM, M.K.A., HAMID, M.R., et al. Analysis of triple band artificial magnetic conductor (AMC) band conditions to wideband antenna performance. In IEEE Asia-Pacific Conference on Applied Electromagnetics. Johor Bahru (Malaysia), 2014, p. 167–170. DOI: 10.1109/APACE.2014.7043770
  19. IHSAN, R.R., MUNIR, A. Utilization of artificial magnetic conductor for bandwidth enhancement of square patch antenna. In 7th International Conference on Telecommunication Systems, Services and Applications. Bali (Indonesia), 2012, p. 192–195. DOI: 10.1109/TSSA.2012.6366049
  20. MAKIMOTO, M., YAMASHITA, S. Bandpass filters using parallel coupled stripline stepped impedance resonators. IEEE Transactions on Microwave Theory and Techniques, 1980, vol. 28, no. 12, p. 1413–1417. DOI: 10.1109/TMTT.1980.1130258
  21. SARRAZIN, J., LEPAGE, A.C., BEGAUD, X. Dual-band artificial magnetic conductor. Applied Physics A, Materials Science & Processing, 2012, vol. 109, no. 4, p. 1075–1080. DOI: 10.1007/s00339-012-7409-1
  22. POZAR, D.M. Microwave Engineering. 4th ed. John Wiley & Sons, Inc., 2012. ISBN: 978-0-470-63155-3
  23. KIRSCHNING, M., JANSEN, R.H., KOSTER, N.H.L. Accurate model for open end effect of microstrip lines. Electronics Letters, 1981, vol. 17, no. 3, p.123–125. DOI: 10.1049/el:19810088

Keywords: Triple band, slot-patch, gain, artificial magnetic conductor (AMC)

U. H. Khan, B. Aslam, M. A. Azam, Y. Amin, H. Tenhunen [references] [full-text] [DOI: 10.13164/re.2016.0449] [Download Citations]
Compact RFID Enabled Moisture Sensor

This research proposes a novel, low-cost RFID tag sensor antenna implemented using commercially available Kodak photo-paper. The aim of this paper is to investigate the possibility of stable, RFID centric communication under varying moisture levels. Variation in the frequency response of the RFID tag in presence of moisture is used to detect different moisture levels. Combination of unique jaw shaped contours and T-matching network is used for impedance matching which results in compact size and minimal ink consumption. Proposed tag is 1.4 × 9.4 cm2 in size and shows optimum results for various moisture levels upto 45% in FCC band with a bore sight read range of 12.1 m.

  1. GUBBI, J., BUYYA, R., MARUSIC, S., et al. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 2013, vol. 29, no. 7, p. 1645–1660. DOI: 10.1016/j.future.2013.01.010
  2. WANT, R., SCHILIT, B. N., JENSON, S. Enabling the internet of things. IEEE Journals and Magazines, 2015, vol. 48, no. 1, p. 28–35. DOI: 10.1109/MC.2015.12
  3. TRUONG, H. L., DUSTDAR, S. Principles for engineering IoT cloud systems. IEEE Cloud Computing, 2015, vol. 2, no. 2, p. 68–76. DOI: 10.1109/MCC.2015.23
  4. KHAN, M. S., ISLAM, M. S., DENG, H. Design of a reconfigurable RFID sensing tag as a generic sensing platform towards the future internet of things. IEEE Internet of Things Journal, 2014, vol. 1, no. 4, p. 300–310. DOI: 10.1109/JIOT.2014.2329189
  5. ABAD, E., PALACIO, F., NUIN, M., et al. RFID smart tag for traceability and cold chain monitoring of foods: Demonstration in an intercontinental fresh fish logistic chain. Journal of Food Engineering, 2009, vol. 93, no. 4, p. 394–399. DOI: 10.1016/j.jfoodeng.2009.02.004
  6. AMIN, Y., CHEN, Q., ZHENG, L. R., et al. Development and analysis of flexible UHF RFID antennas for ‘Green’ electronics. Progress In Electromagnetics Research, 2012, vol. 130, p. 1–15. DOI: 10.2528/PIER12060609
  7. OPREA, A., COURBAT, J., BARSAN, N., et al. Temperature, humidity and gas sensors integrated on plastic foil for low power applications. Sensors and Actuators B: Chemical, 2009, vol. 140, no. 1, p. 227–232. DOI: 10.1016/j.snb.2009.04.019
  8. JANKOWSKI P. M., KALITA W., SKOCZYLAS M., et al. Modelling and Design of HF RFID Passive Transponders with Additional Energy Harvester. International Journal of Antennas and Propagation, 2013, vol. 2013, p. 1–10. DOI: 10.1155/2013/242840
  9. TRABELSI, S., NELSON, S. O. Microwave sensing method for simultaneous and independent determination of bulk density and moisture content of shelled peanuts. IEEE Antennas and Propagation Society International Symposium, 2006, p. 3187–3190. DOI: 10.1109/APS.2006.1711288
  10. SIDEN, J., ZENG, X., UNANDER, T., et al. Remote moisture sensing utilizing ordinary RFID tags. Proceedings of IEEE Sensors, 2007, p. 308–311. DOI: 10.1109/ICSENS.2007.4388398
  11. KIM, S., LE, T., TENTZERIS, M. M., et al. An RFID-enabled inkjet-printed soil moisture sensor on paper for ‘smart’ agricultural applications. Proceedings of IEEE sensors, 2014, p. 1507–1510. DOI: 10.1109/ICSENS.2014.6985301
  12. MILNE, S. D., CONNOLLY, P., HAMAD, H. A., et al. Development of wearable sensors for tailored patient wound care. Proceedings of 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, p. 618–621. DOI: 10.1109/EMBC.2014.6943667
  13. SIDEN, J., KOPTIOUG, A., GULLIKSSON, M. The ‘smart’ diaper moisture detection system. Proceedings of IEEE MTT-S International Microwave Symposium Digest, 2004, p. 659–662. DOI: 10.1109/MWSYM.2004.1336073
  14. SGOUROPOULOS, D., SPYROU, E., SIANTIKOS, G. Counting and tracking people in a smart room: An IoT approach. Proceedings of 10th International Workshop on Semantic and Social Media Adaptation and Personalization, 2015, p. 1–5. DOI: 10.1109/SMAP.2015.7370087
  15. OLAODE, O. O., PALMER, W. D., JOINES, W. T. Characterization of meander dipole antennas with a geometry based, frequency independant lumped element model. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 346–349. DOI: 10.1109/LAWP.2012.2191380
  16. OLAODE, O. O., PALMER, W. D., JOINES, W. T. Effects of meandering on dipole antenna resonant frequency. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 122–125. DOI: 10.1109/LAWP.2012.2184255
  17. LAI, X. Z., XIE, Z. M., CEN, X. L. Design of dual circularly polarized antenna with high isolation for RFID applications. Progress In Electromagnetics Research, 2013, vol. 39, p. 25–39. DOI: 10.2528/PIER13030609
  18. SZARKA, G. D., BURROW, S. G., PROYNOV, P. P., et al. Maximum power transfer tracking for ultralow-power electromagnetic energy harvesters. IEEE Transactions on Power Electronics, 2014, vol. 29, no. 1, p. 201–212. DOI: 10.1109/TPEL.2013.2251427
  19. LOO, C. H., ELMAHGOUB, K., YANG, F. Chip impedance matching for UHF RFID tag antenna design. Progress In Electromagnetics Research, 2008, vol. 81, p. 359–370. DOI: 10.2528/PIER08011804
  20. LIU, C., ZHANG, L., PENG, J., et al. Temperature and moisture dependence of the dielectric properties of silica sand. Journal of Microwave Power and Electromagnetic Energy, 2013, vol. 47, no. 3, p. 199–209. DOI: 10.1080/08327823.2013.11689858
  21. MULEY, P. D., BOLDOR, D. Investigation of microwave dielectric properties of biodiesel components. Bioresource Technology, 2013, vol. 127, p. 165–174. DOI: 10.1016/j.biortech.2012.10.008
  22. CHENG, Y. L., LEON, K. W., HUANG, J. F., et al. Effect of moisture on electrical properties and reliability of low dielectric constant materials. Microelectronic Engineering, 2014, vol. 114, p. 12–16. DOI: 10.1016/j.mee.2013.08.018
  23. BHARGAVA, N., JAIN, R., JOSHI, I., et al. Effect of frequency and moisture variation on dielectric properties of pearl millet in powder form. Journal of Environmental Nanotechnology, 2013, vol. 2, p. 1–5. DOI: 10.13074/jent.2013.02.nciset31
  24. MARROCCO, G. The art of UHF RFID antenna design: impedance-matching and size-reduction techniques. IEEE Antennas and Propagation Magazine, 2008, vol. 50, no. 1, p. 66–79. DOI: 10.1109/MAP.2008.4494504
  25. JANKOWSKI P. M., KAWALEC D., WEGLARSKI M. Antenna Design for Semi-Passive UHF RFID Transponder with Energy Harvester. Radioengineering, 2015, vol. 24, no. 3, p. 722–728. DOI: 10.13164/re.2015.0722
  26. AMIN Y., CHEN Q., ZHENG, L.R, et al. ’Green’ wideband logspiral antenna for RFID sensing and wireless applications. Journal of Electromagnetic Waves and Applications, 2012, vol. 26, no. 14, p. 2043–2050. DOI: 10.1080/09205071.2012.724767
  27. JANKOWSKI P. M., PITERA G., WEGLARSKI M. The Impedance Measurement Problem in Antennas for RFID Technique. Metrology and Measurement Systems, 2014, vol. 21, no. 3, p. 509–520. DOI: 10.2478/mms-2014-0043
  28. AMIN, Y., CHEN Q., ZHENG L. R., et al. Design and fabrication of wideband archimedean spiral antenna based ultra-low cost ‘Green’ modules for RFID sensing and wireless applications. Progress in Electromagnetic Research, 2012, vol. 130, p. 241–256. DOI: 10.2528/PIER12070807
  29. JANKOWSKI, P. M., WEGLARSKI, M. A Method for Measuring the Radiation Pattern of UHF RFID Transponders. Metrology and Measurement Systems, 2016, vol. 23, no. 2, p. 163–172. DOI: 10.1515/mms-2016-0018 456 U. H. KHAN, B. A

Keywords: RFID, moisture sensor, T-matching

Z. Xu, Y. Yong, K. Wang, Y. Wu, W. Lu, J. Hua [references] [full-text] [DOI: 10.13164/re.2016.0457] [Download Citations]
Performance Analysis of Diversity Combining over Rayleigh Fading Channels with Impulsive Noise

This paper investigates the performance analysis of diversity combining over flat fading channels subject to additive impulsive noise. Specifically, the impulsive noise follows the symmetric α-stable (SαS) distribution. Tradi- tionally, this is a difficult problem since the analytical ex- pression for the probability density function of a general SαS distribution remains unknown. In order to tackle this diffi- culty, we adopt Fourier power transform to obtain an exact bit error rate (BER) expression for the Genie-aided receiver as well as a BER upper bound for the conventional linear matched filter receiver, without taking any approximation. Monte-Carlo simulations are performed to validate our ana- lytical results. The simulation results show that our proposed BER expressions are valid in the whole geometric signal- noise-ratio (GSNR) ranges, thus outperforming the previous results valid only at high GSNR values.

  1. LEE, J., TEPEDELENLIOĞLU, C. Space-time coding over fading channels with stable noise. In Proceedings International Workshop on Signal Processing Advances in Wireless Communications. Jun. 2011, p. 396–400. DOI: 10.1109/SPAWC.2011.5990438
  2. MIDDLETON, D. Statistical-physical models of electromagnetic interference. IEEE Transactions on Electromagnetic Compatibility, 1977, vol. EMC-19, no. 3, p. 106–127. DOI: 10.1109/TEMC.1977.303527
  3. WIN, M., PINTO, P., SHEPP, L. A mathematical theory of network interference and its applications. In Proceedings of the IEEE. 2009, vol. 97, no. 2, p. 205–230. DOI: 10.1109/JPROC.2008.2008764
  4. ANIRUDDHA, C., ANIRBAN, C., KALYAN, S., et al. Bit error rate of RS coded BFSK in broadband power line channels with background Nakagami and impulsive noise. Physical Communication, 2015, vol. 14, p. 14–23. DOI: 10.1016/j.phycom.2014.11.002
  5. SOUSA, E. Performance of a spread spectrum packet radio network link in a Poisson field of interferers. IEEE Transactions on Information Theory, 1992, vol. 38, no. 6, p. 1743–1754. DOI: 10.1109/18.165447
  6. YANG, X., PETROPULU, A. Co-channel interference modeling and analysis in a Poisson field of interferers in wireless communications. IEEE Transactions on Signal Processing, 2003, vol. 51, no. 1, p. 64– 76. DOI: 10.1109/TSP.2002.806591
  7. HUGHES, B. L. Alpha-stable models of multiuser interference. In Proceedings of IEEE International Symposium on Information Theory. Sorrento (Italy), 2000, p. 383. DOI: 10.1109/ISIT.2000.866681
  8. ILOW, J., HATZINAKOS, D. Analytic alpha-stable noise modeling in a Poisson field of interferers or scatterers. IEEE Transactions on Signal Processing, 1998, vol. 46, no. 6, p. 1601–1611. DOI: 10.1109/78.678475
  9. SALEH, T., MARSLAN, I., EI-TANANY, M. Suboptimal Detectors for Alpha-Stable Noise: Simplifying Design and Improving Performance. IEEE Transactions on Communications, 2012, vol. 60, no. 10, p. 2982–2989. DOI: 10.1109/TCOMM.2012.071812.100789
  10. SHAO, M., NIKIAS, C. Signal processing with fractional low order moments: stable processes and their applications. In Proceedings of IEEE. 1993, vol. 81, no. 7, p. 986–1010. DOI: 10.1109/5.231338
  11. IZZO, L., TANDA, M. Diversity reception of fading signals in spherically invariant noise. In IEEE Proceedings on Communications. 1998, vol. 145, no. 4, p. 272–276. DOI: 10.1049/ip-com:19982131
  12. NAKAGAWA, H., UMEHARA, D., DENNO, S., et al. A decoding for low density parity check codes over impulsive noise channels. In Proceedings International Symposium on Power Line Communnications and its Applications. Vancouver (Canada), 2005, p. 85–89. DOI: 10.1109/ISPLC.2005.1430471
  13. TEPEDELENLIOĞLU, C., GAO, P. On diversity reception over fading channels with impulsive noise. IEEE Transactions on Vehicular Technology, 2005, vol. 54, no. 6, p. 2037–2047. DOI: 10.1109/TVT.2005.853457
  14. NASRI, A., SCHOBER, R., MA, Y. Unified asymptotic analysis of linear modulated signals in fading non-Gaussian noise and interference. In Proceedings IEEE Globecom 2006. San Francisco (USA), 2006, p. 1–6. DOI: 10.1109/GLOCOM.2006.123
  15. NEZAMPOUR, A., NASRI, A., SCHOBER, R., et al. Asymptotic BEP and SEP of quadratic diversity combining receivers in correlated ricean fading, non-Gaussian noise, and interference. IEEE Transactions on Communications, 2009, vol. 57, no. 4, p. 1039–1049. DOI: 10.1109/TCOMM.2009.04.070085
  16. RAJAN, A., TEPEDELENLIOĞLU, C. Diversity Combining over Rayleigh Fading Channels with Symmetric Alpha-Stable Noise.IEEE Transactions on Wireless Communications, 2010, vol. 9, no. 9, p. 2968–2976. DOI: 10.1109/TWC.2010.071410.100194
  17. BRACEWELL, R. The Fourier Transform and Its Applications. 3rd ed. Singapore: McGraw-Hill, 2000. ISBN: 978-0073039381
  18. NIKIAS, C., SHAO, M. Signal Processing with Alpha-Stable Distributions and Applications. 1st ed. Wiley-Interscience, 1995. ISBN: 978-0471106470
  19. GONZALEZ, J., PAREDES, J., ARCE, G. Zero-order statistics: A mathematical framework for the processing and characteristization of very impulsive signal. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 10, p. 3839–3851. DOI: 10.1109/TSP.2006.880306
  20. SAMORODNITSKY, G., TAQQU, M. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. New York: Chapman & Hall, 1994. ISBN: 978-0412051715
  21. GOLDSMITH, G. Wireless Communications. New York: Cambridge University Press, 2005. ISBN: 978-0521837163
  22. UCHAIKIN, V., ZOLOTAREV, V. Chance and Stability, Stable Distributions and Their Applications. Berlin: VSP, 1999. ISBN: 978- 9067643016
  23. ARFKEN, G. B., WEBER H. J. Mathematical Methods for Physicists. 7th ed. Massachusetts (USA): Academic Press, 2012. ISBN: 978- 0123846549
  24. XU, J., WANG, K., WU, Y., et al. Minimum-error-based approximation model for symmetric alpha stable distribution. Circuits Systems and Signal Process, 2012, vol. 31, no. 6, p. 2195–2204. DOI: 10.1007/s00034-012-9423-0
  25. SUREKA, G., KIASALEH, K. Sub-optimum receiver architecture for AWGN channel with symmetric alpha-stable interference. IEEE Transactions on Communications, 2013, vol. 6, no. 5, p. 1926–1935. DOI: 10.1109/TCOMM.2013.022713.120490
  26. CHEN, Y., CHEN, M. Novel SαS PDF approximations and their applications in wireless signal detection. IEEE Transactions on Wireless Communications, 2015, vol. 14, p. 1080–1091. DOI: 10.1109/TWC.2014.2364181
  27. WAN ABDULLAH, W. R., CHUAH, T. C., ZAINAL ABIDIN, A. N., et al. Measurement and verification of the impact of electromagnetic interference from household appliances on digital subscriber loop systems. IET Science, Measurement Technology, 2009, vol. 3, no. 6, p. 384–394. DOI: 10.1049/iet-smt.2009.0002
  28. NASSAR, M., GULATI, K., SUJEETH, A., et al. Mitigating near-field interference in laptop embedded wireless transceivers. In Proceedings IEEE International Conference on Acoustics, Speech and Signal Processing. Nevada (USA), 2008, p. 1405–1408. DOI: 10.1109/ICASSP.2008.4517882
  29. VEILLETTE, M. MATLAB code Alpha-Stable distributions. [online] Cited 2010-06. Available at:

Keywords: Alpha Stable Distribution, Diversity Combining, Fourier Power Transform

J. Liu, H. Quan, P. Cui, H. Sun [references] [full-text] [DOI: 10.13164/re.2016.0466] [Download Citations]
Performance Limitations Analysis of Imperfect Attenuators for Adaptive Self-Interference Cancellation System

Radio frequency (RF) adaptive self-interference cancellation system (RFAICS) is extensively used to suppress the self-interference of radios operating in the same platform, such as military command vehicles, airplanes and navy vessels. RFAICS is generally consisted of couplers, attenuators, delay units, amplifiers, and filters and so on. However, RFAICS usually suffers severely from the imperfect attenuators. This paper firstly explores the RFAICS operation process in theory, and then thoroughly investigates and analyzes the negative effects of non-ideal attenuators on performance of RFAICS. The closed-form expressions fully describing the influences of attenuation bias and response-time respectively on the interference cancellation ratio (ICR) and system convergence time (SCT) are developed with this aim. Simulations are provided for the validity of the limitation analysis and obtained expressions. Results of simulations are in agreement with theoretical analysis, which is significant for component configuration in taking RFAICS into practice.

  1. KARAWAS, G., GOVERDHANAM, K., KOH J. Wideband active interference cancellation techniques for military applications. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP 2011), Rome (Italy), 2011, p. 390–392. ISSN: 2164-3342
  2. SAUTER, W., GHOSE, R. Active Interference Cancellation Systems. 1st ed. Defense Technical Inforamtion Center, 1969.
  3. WISMER, L. D., ABRAMS, B. S. High Power Broadband Cancellation System. 1st ed. Defense Technical Information Center, 1981.
  4. LUSTGARTEN, M., HENSLER, T., MAIUZZO, M. A cosite analysis capability for evaluating the EMC of frequency hopping and single channel radios. In Proceedings of the Challenges of the 1990’s Tactical Communications. Tactical Communications Conference. Fort Wayne (USA), 1990, p. 543–553. DOI: 10.1109/TCC.1990.177751
  5. MARTENS, S. M., MISCHI, M., OEI, S. G., et al. An improved adaptive power line interference canceller for electrocardiography. IEEE Transactions on Biomedical Engineering, 2006, vol. 53, no. 11, p. 2220–2231. DOI: 10.1109/TBME.2006.883631
  6. DEBAILLIE, B., BROEK, D. J., LAVIN, C., et al. Analog/RF solutions enabling compact full-duplex radios. IEEE Journal on Selected Areas in Communications, 2014, vol. 32, no. 9, p. 1662–1673. DOI: 10.1109/JSAC.2014.2330171
  7. ZHOU, J., CHUANG, T. H., DINC, T., et al. Integrated wideband self-interference cancellation in the RF domain for FDD and fullduplex wireless. IEEE Journal of Solid-State Circuits, 2015, vol. 50, no. 12, p. 3015–3031. DOI: 10.1109/JSSC.2015.2477043
  8. LIU, Y., QUAN, X., PAN, W., et al. Nonlinear distortion suppression for active analog self-interference cancellers in full duplex wireless communication. In Proceedings of the IEEE Globecom Workshops (GC Wkshps 2014). Austin (USA), 2014, p. 948–953. DOI: 10.1109/GLOCOMW.2014.7063555
  9. DUARTE, M., DICK, C., SABHARWAL, A. Experiment-driven characterization of full-duplex wireless systems. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 12, p. 4296–4307. DOI: 10.1109/TWC.2012.102612.111278
  10. KAUFMAN, B., LILLEBERG, J., AAZHANG, B. An analog baseband approach for designing full-duplex radios. In Proceedings of the Conference on Signals, Systems and Computers, Asilomar 2013. Pacific Grove (USA), 2013, p. 987–991. DOI: 10.1109/ACSSC.2013.6810438
  11. BHARADIA, D., MCMILIN, E., KATTI, S. Full duplex radios. In Proceedings of the Conference ACM SIGCOMM 2013. Hong Kong (China), 2013, p. 375–386. DOI: 10.1145/2486001.2486033
  12. WENLU, L., ZHIHUA, Z., JIAN, T., et al. Performance analysis and optimal design of the adaptive interference cancellation system. IEEE Transactions on Electromagnetic Compatibility, 2013, vol. 55, no. 6, p. 1068–1075. DOI: 10.1109/TEMC.2013.2265803
  13. WENLU, L., ZHIHUA, Z., YI, L., et al. Time-domain analysis of adaptive interference cancellation system with the desired signal. Journal of China Institute of Communications, 2012, vol. 33, no. 10, p. 183–190. DOI: 10.3969/j.issn.1000-436X.2012.10.024
  14. JOSEPH, G. M., KENNETH, E. K. Optimal tuning of analog self-interference cancellers for full-duplex wireless communication. In Proceedings of the 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2012. IIIinois (USA), 2012, p. 246–251. DOI: 10.1109/Allerton.2012.6483225
  15. HUUSARI, T., CHOI, Y. S., LIIKKANEN, P., et al. Wideband selfadaptive RF cancellation circuit for full-duplex radio: operating principle and measurements. In Proceedings of the 81st IEEE Vehicular Technology Conference (VTC Spring). Glasgow (UK), 2015, p. 1–7. DOI: 10.1109/VTCSpring.2015.7146163
  16. HAYKIN, S. S. Adaptive Filter Theory. 4th ed. Pearson Education, 2008. ISBN: 9788131708699
  17. DOGAN, H., MEYER, R. G., NIKNEJAD, A. M. Analysis and design of RF CMOS attenuators. IEEE Journal of Solid-State Circuits, 2008, vol. 43, no. 10, p. 2269–2283. DOI: 10.1109/JSSC.2008.2004325
  18. PEREGRINE SEMICONDUCTOR. A HaRPTM-enhanced, high linearity, 6-bit RF digital step attenuator (DSA) (PE43601). Product Specification. 13 pages. [Online] Cited 2016-03-11. Available at:

Keywords: self-interference, adaptive interference cancellation, interference cancellation ratio, system convergence time

C. K. De, S. Kundu [references] [full-text] [DOI: 10.13164/re.2016.0474] [Download Citations]
Proactive and Reactive DF Relaying for Cognitive Network with Multiple Primary Users

In this paper, the outage performance of a cognitive radio network with a pair of secondary transmitter and receiver is investigated in the presence multiple primary users over a number of licensed frequency band and multiple secondary relays (SRs). Two decode and forward (DF) schemes are considered for the relays, namely proactive and reactive DF schemes. An adaptive power allocation scheme for secondary transmitter and secondary relays is formulated under the joint constraints of the primary user outage and peak transmit power of the secondary users. Based on these strategies, analytical expressions for the outage probability of proactive and reactive DF schemes are derived. More precisely, our results demonstrate the impact of number of the active primary users (PUs) over a number of available licensed frequency bands on the outage performance of secondary network. Further, it is observed that the performance of the secondary network can be improved by extending the bandwidth of the primary users.

  1. MITOLA, J., MAGUIRE, G. Q. Cognitive radio: making software radios more personal. IEEE Personal Communications, 1999, vol. 6, no. 4, p. 13–18. DOI: 10.1109/98.788210
  2. GHASEMI, A., SOUSA, E. Fundamental limits of spectrumsharing in fading environments. IEEE Transactions on Wireless Communications, 2007, vol. 6, no. 2, p. 649–658. DOI: 10.1109/TWC.2007.05447
  3. LANEMAN, J., TSE, D., WORNELL, G. W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 2004, vol. 50, no. 12, p. 3062– 3080. DOI: 10.1109/TIT.2004.838089
  4. DE, C. K., KUNDU, S. Adaptive decode-and-forward protocol-based cooperative spectrum sensing in cognitive radio. Inderscience International Journal of Communication Networks and Distributed Systems, 2015, vol. 14, no. 2, p. 117–133. DOI: 10.1504/IJCNDS.2015.067653
  5. DE, C. K., KUNDU, S. Adaptive decode-and-forward protocol based cooperative spectrum sensing in cognitive radio with interference at the secondary users. Wireless Personal Communication, 2014, vol. 79, no. 2, p. 1417–1434 . DOI: 10.1007/s11277-014-1937-2
  6. DE, C. K., SINHA, R., KUNDU, S. Adaptive decode-and-forward protocol based cooperative spectrum sensing in cognitive radio with interference at the secondary users. In Proceedings of the Annual IEEE India Conference (INDICON). (India), 2014, p. 1–6. DOI: 10.1109/INDICON.2014.7030376
  7. BAO, V. N. Q., DUONG, T., BENEVIDES DA COSTA, D., et al. Cognitive amplify-and-forward relaying with best relay selection in non-identical Rayleigh fading. IEEE Communications Letters, 2013, vol. 17, no. 3, p. 475–478. DOI: 10.1109/LCOMM.2013.011513.122213
  8. DING, H., GE, J., DA COSTA, D., et al. Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario . IEEE Transactions on Vehicular Technology, 2011, vol. 60, no. 2, p. 457–472. DOI: 10.1109/TVT.2010.2100053
  9. KIM, K. J., DUONG, T., TRAN, X.-N. Performance analysis of cognitive spectrum-sharing single-carrier systems with relay selection. IEEE Transactions on Signal Preprocessing, 2012, vol. 60, no. 12, p. 6435–6449. DOI: 10.1109/TSP.2012.2218242
  10. TRAN, H., ZEPERNICK, H.-J., PHAN, H. Cognitive proactive and reactive DF relaying schemes under joint outage and peak transmit power constraints.IEEE Communications Letters, 2013, vol. 17, no. 8, p. 1548–1551. DOI: 10.1109/LCOMM.2013.062113.130573
  11. FAN, Z., GUO, D., ZHANG, B. Outage probability and power allocation for two-way DF relay networks with relay selection. Radioengineering, 2012, vol. 21, no. 3, p. 795–801. ISSN: 1210-2512
  12. ZHONG, C., RATNARAJAH, T., WONG, K.-K. Outage analysis of decode-and-forward cognitive dual-hop systems with the interference constraint in Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 2011, vol. 60, no. 6, p. 2875–2879. DOI: 10.1109/TVT.2011.2159256
  13. LEE, J., WANG, H., ANDREWS, J., et al. Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 2010, vol. 10, no. 2, p. 390–395. DOI: 10.1109/TWC.2010.120310.090852
  14. GUIMARAES, F., DA COSTA, D., TSIFTSIS, T., et al. Multiuser and multirelay cognitive radio networks under spectrum-sharing constraints. IEEE Transactions on Vehicular Technology, 2014, vol. 63, no. 1, p. 433–439. DOI: 10.1109/TVT.2013.2275201
  15. ZHANG, Z., WU, Q., WANG, J. ARQ protocols in cognitive decodeand-forward relay networks: Opportunities gain. Radioengineering, 2015, vol. 24, no. 1, p. 296–304. DOI: 10.13164/re.2015.0296
  16. LUO, L., ZHANG, P., ZHANG, G., et al. Outage performance for cognitive relay networks with underlay spectrum sharing. IEEE Communications Letters, 2011, vol. 15, no. 7, p. 710–712. DOI: 10.1109/LCOMM.2011.051011.110426
  17. YANG, P., LUO, L., QIN, J. Outage performance of cognitive relay networks with interference from primary user. IEEE Communications Letters, 2012, vol. 16, no. 10, p. 1695–1698. DOI: 10.1109/LCOMM.2012.081612.121086
  18. YANG, P., ZHANG, Q., QIN, J. Exact outage probability of nth best multicast relay networks with co-channel interference. IEEE Communications Letters, 2013, vol. 2, no. 6, p. 595–598. DOI: 10.1109/WCL.2013.081413.130438
  19. YANG, P., ZHANG, Q., LUO, L., et al. Outage performance of underlay cognitive opportunistic multi-relay networks in the presence of interference from primary user. Wireless Personal Communications, 2014, vol. 74, no. 2, p. 343–358. DOI: 10.1007/s11277-013-1288-4
  20. TRAN, H., DUONG, T., ZEPERNICK, H. Performance analysis of cognitive relay networks under power constraint of multiple primary users. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM). (USA), 2011, p. 1–6. DOI: 10.1109/GLOCOM.2011.6133587
  21. DUONG, T., YEOH, P. L., BAO, V. N. Q., et al. Cognitive relay networks with multiple primary transceivers under spectrum-sharing. IEEE Signal Processing Letters, 2012, vol. 19, no. 11, p. 741–744. DOI: 10.1109/LSP.2012.2217327
  22. DUONG, T., KIM, K. J., ZEPERNICK, H.-J., et al. Opportunistic relaying for cognitive network with multiple primary users over Nakagami-m fading. In Proceedings of the IEEE International Conference on Communications (ICC). 2013, p. 5668–5673. DOI: 10.1109/ICC.2013.6655497
  23. BENEVIDES DA COSTA, D., ELKASHLAN, M., YEOH, P. L., et al. Dual-hop cooperative spectrum sharing systems with multiprimary users and multi-secondary destinations over Nakagami-m fading. In Proceedings of the 23rd IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). 2012, p. 1577–1581. DOI: 10.1109/PIMRC.2012.6362599
  24. TRAN, H., ZEPERNICK, H.-J., THAI, C. D. T. Outage performance of cognitive radio networks under outage constraint of multiple primary users and transmit power constraint of secondary user. In Proceedings of the Fifth International Conference on Ubiquitous and Future Networks (ICUFN). 2013, p. 631–635. DOI: 10.1109/ICUFN.2013.6614895
  25. FCC. Spectrum policy task force report, TR 02-155, Federal Communications Commission, 2002.

Keywords: Cognitive Radio Network, Proactive and Reactive DF, Secondary User (SU), Peak Transmit Power

T. Soliman , F. Yang [references] [full-text] [DOI: 10.13164/re.2016.0482] [Download Citations]
Cooperative Punctured Polar Coding (CPPC) Scheme Based on Plotkin’s Construction

A new cooperative punctured polar coding (CPPC) scheme with multi joint successive cancellation (MJSC) decoding at the destination is proposed, which may be obtained by applying puncturing algorithm to cooperative polar coding scenario. In this proposed algorithm we generate a cooperative scheme for punctured polar codes with various code lengths by employing the reduction of the general polarizing matrix combined with the cooperative construction to match the multilevel characteristics of polar codes. Punctured polar codes which are a class of polar codes can support a wide range of lengths for a given rate. Hence in our CPPC scheme, the punctured polar codes can be first constructed by eliminating some of the frozen bits such that the values of the punctured bits are known to the decoder. Then the proposed coded cooperative construction is employed to match the Plotkin’s construction between the two relay nodes. This scheme has low encoding and decoding complexity since it can be encoded and decoded in a similar way as a classical polar code. The CPPC scheme offers a cooperative coding which not only improves the data rate of the cooperative system, but also improves the overall bit error rate performance. Numerical results show that cooperative punctured polar codes constructed by our approach perform much better than those by the conventional direct approach.

  1. VAN DER MEULEN, E. C. Three-terminal communication channels. Advances in Applied Probability, 1971, vol. 3, no. 1, p. 120–154. DOI: 10.1017/S0001867800037605
  2. SOLIMAN, T. H. M., YANG, F., EJAZ, S. Interleaving gains for receive diversity schemes of distributed turbo codes in wireless half–duplex relay channels. Radioengineering, 2015, vol. 24, no. 2, p. 481–488. DOI: 10.13164/re.2015.0481
  3. ZHAO, B., VALENTI, M. Distributed turbo coded diversity for relay channel. Electronics Letters, 2003, vol. 39, no. 10, p. 786 to 787. DOI: 10.1049/el:20030526
  4. SOLIMAN, T. H. M., YANG, F., EJAZ, S. A proposed chaoticswitched turbo coding design and its application for half-duplex relay channel. Discrete Dynamics in Nature and Society, 2015, vol. 2015. DOI: 10.1155/2015/818421
  5. CHAKRABARTI, A., De BAYNAST, A., SABHARWAL, A., et al. Low density parity check codes for the relay channel. IEEE Journal on Selected Areas in Communications, 2007, vol. 25, no. 2, p. 280–291. DOI: 10.1109/JSAC.2007.070205
  6. HU, J., DUMAN, T. Low density parity check codes over wireless relay channels. IEEE Transactions on Wireless Communications, 2007, vol. 6, no. 9, p. 3384–3394. DOI: 10.1109/TWC.2007.06083
  7. ARIKAN, E. Channel polarization: a method for constructing capacity achieving codes for symmetric binary-input memoryless channels. IEEE Transactions on Information Theory, 2009, vol. 55, no. 7, p. 3051–3073. DOI: 10.1109/TIT.2009.2021379
  8. ESLAMI, A., PISHRONIK, H. A practical approach to polar codes. In Proceedings of the IEEE International Symposium on Information Theory (ISIT). St. Petersburg (Russia), 2011, p. 16– 20, DOI: 10.1109/ISIT.2011.6033837
  9. SHIN, D.M., LIM, S.C., YANG, K. Design of length-compatible polar codes based on the reduction of polarizing matrices. IEEE Transactions on Communications, 2013, vol. 61, no. 7, p. 2593 to 2599. DOI: 10.1109/TCOMM.2013.052013.120543
  10. NIU, K., CHEN, K., LIN, J. Beyond turbo codes: Rate-compatible punctured polar codes. In Proceedings of the IEEE International Conference on Communications (ICC). Budapest (Hungary), 2013, p. 3423–3427. DOI: 10.1109/ICC.2013.6655078
  11. EJAZ, S., YANG, F., SOLIMAN, T. H. M. Network polar coded cooperation with joint SC decoding. Electronics Letters, 2015, vol. 51, no. 9, p. 695–697. DOI: 10.1049/el.2015.0037
  12. PLOTKIN, M. Binary codes with specified minimum distance. IRE Transactions on Information Theory, 1960, vol. 6, no. 4, p. 445–450. DOI: 10.1109/TIT.1960.1057584
  13. EJAZ, S., YANG, F., SOLIMAN, T. H. M. Multi-level construction of polar codes for half-duplex wireless codedcooperative networks. Frequenz Journal of RF/microwave Engineering, Photonics and Communications, 2015, vol. 69, no. 11-12, p. 509–517. DOI: 10.1515/freq-2015-0035
  14. NIU, K., CHEN, K., LIN, J., ZHANG, Q. T. Polar codes: Primary concepts and practical decoding algorithms. IEEE Communications Magazine, 2014, vol. 52, no. 7, p. 192–203. DOI: 10.1109/MCOM.2014.6852102
  15. KORADA, S., SASOGLU, E., URBANKE, R. Polar codes: Characterization of exponent, bounds, and constructions. IEEE Transactions on Information Theory, 2010, vol. 56, no. 12, p. 6253–6264. DOI: 10.1109/TIT.2010.2080990
  16. ZHAN, Q., DU, M., WANG, Y., ZHOU, F., et al. Half-duplex relay systems based on polar codes. IET Communications, 2014, vol. 8, no. 4, p. 433–440. DOI: 10.1049/iet-com.2013.0521
  17. ALVI, S., WYNE, S. On amplify-and-forward relaying over hyper-Rayleigh fading channels. Radioengineering, 2014, vol. 23, no. 4, p. 1226–1232.
  18. KRAMER, G., GASTPAR, M., GUPTA, P. Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 2005, vol. 51, no. 9, p. 3037–3063. DOI: 10.1109/TIT. 2005.853304

Keywords: Channel polarization, half-duplex relay, multilevel, multi joint successive cancellation (MJSC), Plotkin’s construction, punctured polar codes

F. Gunes, M. A. Belen, P. Mahouti, S. Demirel [references] [full-text] [DOI: 10.13164/re.2016.0490] [Download Citations]
Signal and Noise Modeling of Microwave Transistors Using Characteristic Support Vector-based Sparse Regression

In this work, an accurate and reliable S- and Noise (N) - parameter black-box models for a microwave transistor are constructed based on the sparse regression using the Support Vector Regression Machine (SVRM) as a nonlinear extrapolator trained by the data measured at the typical bias currents belonging to only a single bias voltage in the middle region of the device operation domain of (VDS/VCE, IDS/IC, f). SVRMs are novel learning machines combining the convex optimization theory with the generalization and therefore they guarantee the global minimum and the sparse solution which can be expressed as a continuous function of the input variables using a subset of the training data so called Support Vector (SV)s. Thus magnitude and phase of each S- or N- parameter are expressed analytically valid in the wide range of device operation domain in terms of the Characteristic SVs obtained from the substantially reduced measured data. The proposed method is implemented successfully to modelling of the two LNA transistors ATF-551M4 and VMMK 1225 with their large operation domains and the comparative error-metric analysis is given in details with the counterpart method Generalized Regression Neural Network GRNN. It can be concluded that the Characteristic Support Vector based-sparse regression is an accurate and reliable method for the black-box signal and noise modelling of microwave transistors that extrapolates a reduced amount of training data consisting of the S- and N- data measured at the typical bias currents belonging to only a middle bias voltage in the form of continuous functions into the wide operation range.

  1. ZHANG, Q. J., GUPTA, K. C. Neural Networks for RF and Microwave Design. Artech House Publishers, 2000. ISBN-10: 1580531008
  2. GUNEŞ, F., GURGEN, F., TORPI, H. Signal – noise neural network model for active microwave devices. IEE Proceedings Circuits, Devices and Systems, 1996, vol. 143, no. 1, p. 1–8. DOI: 10.1049/ip-cds:19960150
  3. GUNEŞ, F., TORPI, H., GURGEN, F. Multidimensional signalnoise neural network model. IEE Proceedings Circuits, Devices and Systems, 1998, vol. 145, no. 2, p. 111–117. DOI: 10.1049/ipcds:19981712
  4. GIANNINI, F. LEUZZI, G., ORENGO, G., et al. Small-signal and large-signal modelling of active devices using CAD-optimized neural networks. International Journal on RF and Microwave Computer-Aided Engineering, 2002, vol. 12, no. 1, p. 71–78. DOI: 10.1002/MMCE.10007
  5. MARINKOVIC, Z. D., MARKOVIC, V. V. Temperaturedependent models of low-noise microwave transistors based on neural networks. International Journal on RF and Microwave Computer-Aided Engineering, 2005, vol. 15, no. 6, p. 567–577. DOI: 10.1002/mmce.20102
  6. MARINKOVIC, Z., PRONIC-RANCIC, O., MARKOVIC, V. Small-signal and noise modeling of class of HEMTs using knowledge-based artificial neural networks. International Journal on RF and Microwave Computer-Aided Engineering, 2013, vol. 23, no. 1, p. 34–39. DOI: 10.1002/MMCE.20631
  7. GUNEŞ, F., TOKAN, N. T., GURGEN, F. Signal - noise support vector model of a microwave transistor. International Journal on RF and Microwave Computer-Aided Engineering, 2007, vol. 17, no. 4, p. 404–415. DOI: 10.1002/mmce.20239
  8. GUNEŞ, F., OZKAYA, U., ULUSLU, A. Generalized neuralnetwork based efficient noise modeling of microwave transistors. In International Symposium on Innovations in Intelligent Systems and Applications (INISTA 2011). Istanbul (Turkey), 2011, p. 212– 216. DOI: 10.1109/INISTA.2011.5946067
  9. MAHOUTİ, P., GUNEŞ, F., DEMİREL, S., et al. Efficient scattering parameter modeling of a microwave transistor using generalized regression neural network. In 20th International Conference on Microwaves, Radar, and Wireless Communication (MIKON). Gdansk (Poland), 2014, p. 1–4. DOI: 10.1109/Mikon.2014.6899968
  10. GUNEŞ, F., MAHOUTİ, P., DEMİREL, S., et al. A cost–effective GRNN–based modeling of microwave transistors with a reduced number of measurements. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2015. Published online in Wiley Online Library ( DOI: 10.1002/jnm.2089
  11. ANGIULLI, G., CACCIOLA, M., VERSACI, M. Microwave devices and antennas modeling by Support Vector Regression Machines. IEEE Transactions on Magnetics, 2007, vol. 43, no. 4, p. 1589–1592. DOI: 10.1109/TMAG.2007.892480
  12. CHAUHAN, N., MITTAL, A., KARTIKEYAN, M. V. Support vector driven genetic algorithm for the design of circular polarized microstrip antenna. International Journal on Infrared and Millimeter Waves, 2008, vol. 29, no. 6, p. 558–569. DOI: 10.1007/s10762-008-9354-9
  13. GUNEŞ, F., TOKAN, N. T., GURGEN, F. A consensual modeling of the expert systems applied to microwave devices. International Journal on RF and Microwave Computer-Aided Engineering, 2010, vol. 20, no. 4, p. 430–440. DOI: 10.1002/mmce.20448
  14. TOKAN, N. T., GUNEŞ, F. Knowledge-based support vector synthesis of the microstrip lines. Progress in Electromagnetics Research, 2009, vol. 92, p. 65–77. DOI: 10.2528/PIER09022704
  15. GUNEŞ, F., TOKAN, N. T., GURGEN, F. A Knowledge-based support vector synthesis of the transmission lines for use in microwave integrated circuits. Expert Systems with Applications, 2010, vol. 37, no. 4, p. 3302–3309. DOI: 10.1016/J.ESWA.2009.10.021
  16. XIA, L., MENG, J. C., XU, R. M., et al. Modeling of 3-D vertical interconnect using support vector machine regression. IEEE Microwave and Wireless Components Letters, 2006, vol. 16, no. 12, p. 639–641. DOI: 10.1109/LMWC.2006.885585
  17. VAPNIK, V. N. An overview of statistical learning theory. IEEE Transactions of Neural Networks, 1999, vol. 10, no. 5, p. 988–999. DOI: 10.1109/72.788640
  18. CRISTIANINI, N., SHAWE-TAYLOR, J. An Introduction to Support Vector Machines (and Other Kernel-Based Learning Methods). Cambridge University Press, Cambridge, 2000. ISBN: 0521780195
  19. CAMPS-VALLS, G., GOMEZ-CHOVA, L., CALPEMARAVILLA, J., et al. Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE Transactions on Geoscience and Remote Sensing, 2004, vol. 42, no. 7, p. 1530–1542. DOI: 10.1109/TGRS.2004.827262
  20. KIM, D., CHO, S. Pattern selection for support vector regression based response modeling. Expert Systems with Applications, 2012, vol. 39, no. 10, p. 8975–8985. DOI: 10.1016/J.ESWA.2012.02.026
  21. CHANG, C. C., LIN, C. J. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, vol. 2, p. 27:1-27:27. Software available at http://Www.Csie.Ntu.Edu.Tw/~Cjlin/Libsvm.
  22. VMMK1225 0.5 to 26 GHz recommended as a low noise EPHEMT in a wafer scale package. Datasheet. [Online] Cited 2016- 04-13. Available at: 1082EN.

Keywords: Scattering S-parameters, noise N- parameters, Support Vector Regression Machine (SVRM), Generalized Regression Neural Network (GRNN)

N. Stojanovic, N. Stamenkovic, I. Krstic [references] [full-text] [DOI: 10.13164/re.2016.0500] [Download Citations]
Discrete-Time Filter Synthesis using Product of Gegenbauer Polynomials

A new approximation to design continuoustime and discrete-time low-pass filters, presented in this paper, based on the product of Gegenbauer polynomials, provides the ability of more flexible adjustment of passband and stopband responses. The design is achieved taking into account a prescribed specification, leading to a better trade-off among the magnitude and group delay responses. Many well-known continuous-time and discrete-time transitional filter based on the classical polynomial approximations(Chebyshev, Legendre, Butterworth) are shown to be a special cases of proposed approximation method.

  1. LAIPERT, M., VLCEK, M., VRBATA, J. Contribution to the Chebyshev approximations of the normalized low-pass prototype. Radioengineering, 2004, vol. 13, no. 1, p. 32–36. ISSN: 1805-9600
  2. CHRYSSOMALLIS, M. T., SAHALOS, J. N. Filter synthesis using products of Legendre polynomials. Electrical Engineering, 1999, vol. 81, no. 6, p. 419–424. DOI: 10.1007/BF01387163
  3. PAI, K. R., MURTHY, K. V. V., RAMACHANDRAN, V. Chebyshev-family of transitional filters. Journal of Circuits, Systems and Computers, 1998, vol. 8, no. 2, p. 283–299. DOI: 10.1142/S0218126698000122
  4. BUDAK, A., ARONHIME, P. Transitional Butterworth-Chebyshev filters. IEEE Transactions on Circuit Theory, May 1971, vol. 18, no. 5, p. 413–415. DOI: 10.1109/TCT.1971.1083276
  5. ROY, S. C. D. Modified Chebyshev lowpass filters. International Journal of Circuit Theory and Applications, 2010, vol. 38, no. 5, p. 543–549. DOI: 10.1002/cta.585
  6. ĆIRIĆ, D., PAVLOVIĆ, V. Generalised Christoffel-Darboux formula most directly applied in generating fully symmetric doubly resistively terminated lc lossless ladder filters. International Journal of Electronics, 2013, vol. 100, no. 7, p. 942–958. DOI: 10.1080/00207217.2012.727352
  7. STAMENKOVIĆ, N., STOJANOVIĆ, V. On the design transitional Legendre–Butterworth filters. International Journal of Electronics Letters, 2014, vol. 2, no. 3, p. 186–195. DOI: 10.1080/00207217.2014.894138
  8. STOJANOVIĆ, N., STAMENKOVIĆ, N., STOJANOVIĆ, V. Allpole recursive digital filters design based on ultraspherical polynomials. Radioengineering, 2014, vol. 23, no. 3, p. 949–954. ISSN: 1805-9600
  9. HAZRA, S., ROY, S. C. D. A comparison of digital tan and sine filters with the generating analog filter. Journal of the Franklin Institute, 1971, vol. 292, no. 3, p. 225–230. DOI: 10.1016/0016-0032(71)90054-8
  10. ABRAMOWITZ, M., STEGUN, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, New York (USA), 1972.
  11. ZAPLATILEK, K., LARES, M. Efficient algorithms of direct and inverse first-order s − z transformations. Radioengineering, 2001, vol. 10, no. 1, p. 6–10. ISSN: 1805-9600
  12. RADER, C., GOLD, B. Digital filter design techniques in the frequency domain. Proceedings of the IEEE, 1967, vol. 55, no. 2, p. 149– 171. ISSN: 0019-9219

Keywords: Gegenbauer polynomials, lowpass filters, continuous-time filters, discrete-time filters.

J. Li, J. Nie, B. Li, F. Wang [references] [full-text] [DOI: 10.13164/re.2016.0506] [Download Citations]
Increase of Carrier-to-Noise Ratio in GPS Receivers Caused by Continuous-Wave Interference

The increased use of personal private devices (PPDs) is drawing greater attention to the effects of continuous-wave interference (CWI) on the performance of global positioning system (GPS) receivers. The effective carrier-to-noise density ratio (C/N0), an essential index of GNSS receiver performance, is studied in this paper. Receiver tracking performance deteriorates in the presence of interference. Hence, the effective C/N0, which measures tracking performance, decreases. However, simulations and bench tests have shown that the effective C/N0 may increase in the presence of CWI. The reason is that a sinusoidal signal is induced by the CWI in the correlator and may be tracked by the carrier tracking loop. Thus, the effective carrier power depends on the power of the signal induced by the CWI, and the effective C/N0 increases with the power of the CWI. The filtering of the CWI in the carrier tracking loop correlator and its effect on the phase locked loop (PLL) tracking performance are analyzed. A mathematical model of the effect of the CWI on the effective C/N0 is derived. Simulation results show that the proposed model is more accurate than existing models, especially when the jam-to-signal ratio (JSR) is greater than 30 dBc.

  1. BETZ, J. W. Effect of partial-band interference on receiver estimation of CN0 theory. Technical Report, the MITRE Corporation, 2001, p. 716–723.
  2. BETZ, J. W. Effect of narrowband interference on GPS code tracking accuracy. In Proceedings of 2000 National Technical Meeting of the Institute of Navigation. Anaheim (CA, USA), January 2000, p. 16–27.
  3. BETZ, J. W., KOLODZIEJSKI, K. R. Generalized theory of code tracking with an early-late discriminator part 1: Lower bound and coherent processing. IEEE Transactions on Aerospace and Electronic Systems, 2009, vol. 45, no. 4, p. 1538–1550. DOI: 10.1109/TAES.2009.5310316
  4. BETZ, J. W., KOLODZIEJSKI, K. R. Generalized theory of code tracking with an early-late discriminator part 2: Non-coherent processing and numerical results. IEEE Transactions on Aerospace and Electronic Systems, 2009, vol. 45, no. 4, p. 1551–1564. DOI: 10.1109/TAES.2009.5310317
  5. KAPLAN, E. D., HEGARTY, C. J. Understanding GPS: Principles and Applications. 2nd ed. London: The Artech House, 2006. ISBN: 1580538940
  6. MOTELLA, B., SAVASTA, S., MARGARIA, D., et al. Method for assessing the interference impact on GNSS receivers. IEEE Transactions on Aerospace and Electronic Systems, 2011, vol. 47, no. 2, p. 1416–1432. DOI: 10.1109/TAES.2011.5751267
  7. ZHANG, J., LOHAN, E. S. Effect of narrowband interference on Galileo E1 signal receiver performance. International Journal of Navigation and Observation, 2011, vol. 2011, p. 1–10. DOI: 10.1155/2011/959871
  8. BEK, M. K., SHAHEEN, E. M., ELGAMEL, S. A. Mathematical analyses of pulse interference signal on post-correlation carrier-tonoise ratio for the global positioning system receivers. IET Radar, Sonar and Navigation, 2015, vol. 9, no. 3, p. 266–275. DOI: 10.1049/iet-rsn.2014.0155
  9. OJEDA, O. A. Y., GRAJAL, J., LOPEZ-RISUENO, G. Analytical performance of GNSS receivers using interference mitigation techniques. IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, no. 2, p. 885–906. DOI: 10.1109/TAES.2013.6494387
  10. ZHANG, T., ZHANG, X., LU, M. Effect of frequency domain anti-jamming filter on satellite navigation signal tracking performance. In Proceedings of 4th China Satellite Navigation Conference. The Wuhan, May 2013, p. 507–516.
  11. MUSUMECI, L., SAMSON, J., DOVIS, F. Performance assessment of pulse blanking mitigation in presence of multiple distance measuring equipment/tactical air navigation interference on global navigation satellite systems signals. IET Radar, Sonar and Navigation, 2014, vol. 8, no. 6, p. 647–657. DOI: 10.1049/ietrsn.2013.0198
  12. BORIO, D. GNSS acquisition in the presence of continuous wave interference. IEEE Transactions on Aerospace and Electronic Systems, 2010, vol. 46, no. 1, p. 47–60. DOI: 10.1109/TAES.2010.5417147
  13. LIU, Y., RAN, Y., KE, T., et al. Code tracking performance analysis of GNSS signal in the presence of CW interference. Signal Processing, 2011, vol. 91, no. 4, p. 970–987. DOI: 10.1016/j.sigpro.2010.09.022
  14. BALAEI, A. T., DEMPSTER, A. G., PRESTI, L. L. Characterization of the effects of CW and pulse CW interference on the GPS signal quality. IEEE Transactions on Aerospace and Electronic Systems, 2009, vol. 45, no. 4, p. 1418–1431. DOI: 10.1109/TAES.2009.5310308
  15. JANG, J., PAONNI, M., EISSFELLER, B. CW interference effects on tracking performance of GNSS receivers. IEEE Transactions on Aerospace and Electronic Systems, 2012, vol. 48, no. 1, p. 243–258. DOI: 10.1109/TAES.2012.6129633
  16. POTTER, B. J., SHALBERG, K., GRABOWSKI, J. Personal privacy device interference in the WAAS. In Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation. Nashville (TN, USA), September 2012, p. 2868–2874.
  17. MARCUS, M. J. Growing consumer interest in jamming: spectrum policy implications. IEEE Wireless Communications, 2014, vol. 21, no. 1, p. 4. DOI: 10.1109/MWC.2014.6757888
  18. BORRE, K., AKOS, D. M., BERTELSEN, N., et al. A soft-defined GPS and Galileo Receiver. 1st ed. Boston: The Birkhauser, 2007. ISBN: 9780817645403

Keywords: Receiver performance, interference monitoring, signal-to-interference-plus-noise ratio

W. L. Mao [references] [full-text] [DOI: 10.13164/re.2016.0518] [Download Citations]
GPS Interference Mitigation Using Derivative-free Kalman Filter-based RNN

The global positioning system (GPS) with accurate positioning and timing properties has become integral part of all applications around the world. Radio frequency interference can significantly decrease the performance of GPS receivers or even completely prohibit the acquisition or tracking of satellites. The approaches of system performances that can be further enhanced by preprocessing to reject the jamming signal will be investigated. A recurrent neural network (RNN) predictor for the GPS anti-jamming applications will be proposed. The adaptive RNN predictor is utilized to accurately predict the narrowband waveform based on an unscented Kalman filter (UKF)-based algorithm. The UKF algorithm as a derivative-free alternative to the extended Kalman filter (EKF) in the framework of state-estimation is adopted to achieve better performance in terms of convergence rate and quality of solution. The adaptive RNN filter can be successfully applied for the suppression of interference with a number of different narrowband formats, i.e. continuous wave interference (CWI), multi-tone CWI, swept CWI and pulsed CWI, to emulate realistic circumstances. Simulation results show that the proposed UKF-based scheme can offer the superior performances to suppress the interference over the conventional methods by computing mean squared prediction error (MSPE) and signal-to-noise ratio (SNR) improvements.

  1. KAPLAN, E. D., HEGARTY, C. J. Understanding GPS: Principles and Applications. 2nd ed., rev. London (UK): Artech House, 2006. ISBN: 9781580538947
  2. DOVIS, F., MUSUMECI, L., LINTY, N., PINI, M. Recent trends in interference mitigation and spoofing detection. International Journal of Embedded and Real-Time Communication Systems, 2012, vol. 3, p. 1–17. DOI: 10.4018/jertcs.2012070101
  3. LI, L. M., MISTEIN, L. B. Rejection of pulsed CW interference in PN spread spectrum systems using complex adaptive filter. IEEE Transactions on Communications, 1983, vol. 31, no. 1, p. 10–20. DOI: 10.1109/TCOM.1983.1095722
  4. RUSCH, L. A., POOR, H. V. Narrowband interference suppression in CDMA spread spectrum communications. IEEE Transactions on Communications, 1994, vol. 42, no. 2-3-4, p. 1969–1979. DOI: 10.1109/TCOMM.1994.583411
  5. GLISIC, S. G., MAMMELA, A., KAASILA, V. P., PAJKOVIC, M. K. Rejection of frequency sweeping signal in DS spread spectrum systems using complex adaptive filters. IEEE Transactions on Communications, 1995, vol. 43, no. 1, p. 136–145. DOI: 10.1109/26.385934
  6. CHANG, P. R., HU, J. T. Narrow-band interference suppression in spread spectrum CDMA communications using pipelined recurrent neural network. IEEE Transactions on Vehicular Technology. 1999, vol. 48, no. 2, p. 467–477. DOI: 10.1109/25.752570
  7. WILLIAMS, R. J., ZIPSER, D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1989, vol. 1, p. 270–280. ISSN: 0899-7667. DOI: 10.1162/neco.1989.1.2.270
  8. CONNOR, J. T., MARTIN, R. D., ATLAS, L. E. Recurrent neural networks and robust time series prediction, IEEE Transactions on Neural Network, 1994, vol. 5, no. 2, p. 240–254. DOI: 10.1109/72.279188
  9. JULIER, S. J., UHLMANN, J. K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, vol. 92, no. 3, p. 401–422. DOI: 10.1109/JPROC.2003.823141
  10. WU, X. WANG, Y. Extended and unscented Kalman filtering based feedforward neural networks for time series prediction. Applied Mathematical Modelling, 2012, vol. 36, no. 3, p. 1123– 1131. DOI: 10.1016/j.apm.2011.07.052
  11. CHIEN, Y. R. Design of GPS anti-jamming systems using adaptive notch filters. IEEE System Journal, 2015, vol. 9, no. 2, p. 451–460. DOI: 10.1109/JSYST.2013.2283753
  12. CAPOZZA, P. T., HOLLAND, B. J., HOPKINSON, T. M., LANDRAU, R. L. A single-chip narrow-band frequency-domain excisor for a Global Positioning System (GPS) receiver. IEEE Journal of Solid-State Circuits, 2000, vol. 35, no. 3, p. 401–411. DOI: 10.1109/4.826823
  13. SAVASTA, S., LO PRESTI, L., RAO, M. Interference mitigation in GNSS receivers by a time-frequency approach. IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, no. 1, p. 415–438. DOI: 10.1109/TAES.2013.6404112
  14. SURENDRAN K. SHANMUGAM. Narrowband interference suppression performance of multi-correlation differential detection. In Proceedings of ENC-GNSS 2007. Geneva (Switzerland), May 29-31, 2007, p. 1–12.
  15. QIANG, W., ZHANG, J., JING, Y. Nonlinear adaptive joint filter for narrowband interference suppression in GPS receiver. In 5th International Conference on Computer Sciences and Convergence Information Technology (ICCIT). Seoul (Korea), 2010, p. 400–404. ISBN: 978-1-4244-8567-3. DOI: 10.1109/ICCIT.2010.5711091

Keywords: Global positioning system (GPS) receiver, narrowband interference, direct sequence spread spectrum (DSSS), recurrent neural network (RNN) predictor, unscented Kalman filter (UKF) algorithm

M. Li, Z. Lin, W. An, Y. Zhou [references] [full-text] [DOI: 10.13164/re.2016.0527] [Download Citations]
Box-Particle Labeled Multi-Bernoulli Filter for Multiple Extended Target Tracking

This paper focuses on real-time tracking of multiple extended targets in clutter based on labeled multi-Bernoulli filter. To address this problem, a novel approach is proposed within the recently presented box-particle framework. Unlike the traditional point-particle approach, the measurements of extended targets are modeled as interval measurements in this work, and the corresponding likelihood function is given based on interval analysis. Then, labeled multi-Bernoulli recursion for extended targets is implemented by box particles, referred to as BP-LMB filter. Furthermore, BP-MM-LMB filter is proposed to better accommodate the uncertainty of target dynamics by integrating the BP-LMB filter with interacting multiple models (IMM) algorithm. Simulations demonstrate that the proposed approach can significantly reduce the number of particles and well track multiple extended targets with less runtime.

  1. CAI, F., FAN, H., FU, Q. Bernoulli filter for extended target in clutter using Poisson models. Chinese Journal of Electronics, 2015, vol. 24, no. 2, p. 326–331. DOI: 10.1049/cje.2015.04.017
  2. GILHOLM, K., GODSILL, S., MASKELL, S., et al. Poisson models for extended target and group tracking. In SPIE Proc. 5913. California (USA), 2005, p. 59130R–59130R12. DOI: 10.1117/12.618730
  3. MAHLER, R. P. S. Statistical Multisource Multitarget Information Fusion. London (UK): Artech House, 2007.
  4. MAHLER, R. P. S. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, vol. 39, no. 4, p. 1152–1178. DOI: 10.1109/TAES.2003.1261119
  5. MAHLER, P. R. S. PHD filters of higher order in target number. IEEE Transactions on Aerospace and Electronic Systems, 2007, vol. 43, no. 4, p. 1523–1543. DOI: 10.1109/TAES.2007.4441756
  6. VO, B. T., VO, B. N., CANTONI, A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 2, p. 409 to 423. DOI: 10.1109/TSP.2008.2007924
  7. VO, B. N., VO, B. T., PHUNG, D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 24, p. 6554–6567. DOI: 10.1109/TSP.2014.2364014
  8. VO, B. T., VO, B. N. Labeled random finite sets and multi-object conjugate priors. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 13, p. 3460–3475. DOI: 10.1109/TSP.2013.2259822
  9. REUTER, S., VO, B. T., VO, B. N., et al. The labeled multiBernoulli filter. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 12, p. 3246–3260. DOI: 10.1109/TSP.2014.2323064
  10. VO, B. N., MA, W. K. The Gaussian mixture probability hypothesis density filter. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 11, p. 4091–4104. DOI: 10.1109/TSP.2006.881190
  11. REUTER, S., SCHEEL, A., DIETMAYER, K. The multiple model labeled multi-Bernoulli filter. In 18th International Conference on Information Fusion. Washington, DC (USA), 2015, p. 1574–1580.
  12. GNING, A., RISTIC, B., MIHAYLOVA, L., et al. An introduction to box particle filtering. IEEE Signal Processing Magazine, 2013, vol. 30, no. 4, p. 166–171. DOI: 10.1109/MSP.2013.2254601
  13. SCHIKORA, M., GNING, A., MIHAYLOVA, L., et al. Boxparticle probability hypothesis density filtering. IEEE Transactions on Aerospace and Electronic Systems, 2014, vol. 50, no. 3, p. 1660–1672. DOI: 10.1109/TAES.2014.120238
  14. SONG, L., ZHAO, X. Box-particle cardinality balanced multitarget multi-Bernoulli filter. Radioengineering, 2014, vol. 23, no. 2, p. 609–617.
  15. GRANSTROM, K., LUNDQUIST, C., ORGUNER, U. A Gaussian mixture PHD filter for extended target tracking. In 13th Conference on Information Fusion. Edinburgh (UK), 2010, p. 1–8. DOI: 10.1109/ICIF.2010.5711885
  16. GNING, A., RISTIC, B., MIHAYLOVA, L. Bernoulli particle/box-particle filters for detection and tracking in the presence of triple measurement uncertainty. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 5, p. 2138–2151. DOI: 10.1109/TSP.2012.2184538
  17. LONG, Y. L., XU, H., AN, W., et al. Track-before-detect for infrared maneuvering dim multi-target via MM-PHD. Chinese Journal of Aeronautics, 2012, vol. 25, no. 2, p. 252–261. DOI: 10.1016/S1000-9361(11)60385-3
  18. LI, X. R., JILKOV, V. P. Survey of maneuvering target trackingpart V: multiple-model methods. IEEE Transactions on Aerospace and Electronic Systems, 2005, vol. 41, no. 4, p. 1255–1321. DOI: 10.1109/TAES.2005.1561886
  19. SCHUHMACHER, D., VO, B. T., VO, B. N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 8, p. 3447–3457. DOI: 10.1109/TSP.2008.920469

Keywords: Box particle, labeled multi-Bernoulli, multi-target tracking, extended target, interacting multiple models.

O. Kaller, L. Bolecek, L. Polak, T. Kratochvil [references] [full-text] [DOI: 10.13164/re.2016.0536] [Download Citations]
Depth Map Improvement by Combining Passive and Active Scanning Methods

The paper presents a new method of more precise estimation of the depth map in 3D videos. The novelty of the proposed approach lies in sophisticated combination of partial results obtained by selected existing passive and active 3D scanning methods. The aim of the combination is to overcome drawbacks of individual methods and this way to improve the accessible precision of the final depth map. The active method used is incoherent profilometry scanning which fails on surface discontinuities. As a passive method, a stereo pair matching is used. This method is currently the most widely applied method of depth map estimation in the field of 3D capturing and is available in various implementations. Unfortunately, it fails if there is a lack of identifiable corresponding points in the scanned scene. The paper provides a specific way of combining these methods to improve the accuracy and usability. The proposed innovative technique exploits the advantages of both approaches. Specifically, the more accurate depth profiles of individual discontinuous objects obtained from the active method, and information about mean depths of the objects from the stereo pair are combined. Two implementations of the passive method have been tested for combination with active scanning: matching from stereo pair, and SIFT. The paper includes a brief description of the active and passive methods used and a thorough explanation of their combination. As an example, the proposed method is tested on a simple scene whose nature enables straight assessment of the achieved accuracy. The choice of a suitable implementation of the passive component is also shown and discussed. The obtained results of individual existing methods used and of the proposed combined method are given and compared. To demonstrate the contribution of the proposed combined method, also a comparison with the results obtained with a commercial solution is presented with significantly good results.

  1. HERAKLEOUS, K., POULLIS, C. 3D UNDERWORLD-SLS: An Open-Source Structured-Light Scanning System for Rapid Geometry Acquisition. Immersive and Creative Technologies Lab, Cyprus University of Technology, June 26, 2014, ICT-TR-2014- 01
  2. LEE, CH., SONG, H., CHOI, B., HO, Y-S. 3D scene capturing using stereoscopic cameras and a time-of-flight camera. IEEE Transaction on Consumer Electronics, 2011, vol. 57, no. 3, p. 1370–1376. DOI: 10.1109/TCE.2011.6018896
  3. JAVIDI, B., OKANO, F. Three-Dimensional Imaging, Visualisation and Display. 1st ed. New York: Springer, 2009. ISBN: 978-0-387-79334-4
  4. OZAKTAS, H., ONURALL, L. Three-Dimensional Television: Capture, Transmission, Display (Signals and Communication Technology). 1st ed. New York: Springer, 2007. ISBN: 978-3-540- 72531-2
  5. FEHRMAN, B., MCGOUGH, J. Depth mapping using a low-cost camera array. In 2014 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI). San Diego (CA, USA), 2014, p. 101–104. DOI: 10.1109/SSIAI.2014.6806039
  6. ZELLER, N., QUINT, F., STILLA, U. Establishing a probabilistic depth map from focused plenoptic cameras. In International Conference on 3D Vision (3DV 2015). Lyon (France), 2015, p. 91–99. DOI: 10.1109/3DV.2015.18
  7. GALABOV, M. 3D Capturing with monoscopic camera, Radioengeneering, 2014, vol. 23, no. 4, p. 1208–1212.
  8. ETSI TS 101 547-3 V1.1.1: Digital Video Broadcasting (DVB); Plano-stereoscopic 3DTV; Part 3: HDTV Service Compatible Plano-stereoscopic 3DTV. [Online] Cited 2016-05-16. Available at:
  9. KAMENCAY, P., BREZNAN, M., JARINA, R., LUKAC, P., ZACHARIASOVA, M. Improved depth map estimation from stereo images based on hybrid method. Radioengeneering, 2012, vol. 21, no. 1, p. 70–78.
  10. AABED, M., TEMEL, D., ALREGIB, G. Depth map estimation in DIBR stereoscopic 3d videos using a combination of monocular cues. In Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR). Pacific Grove (CA, USA), 2012, p. 729–733. DOI: 10.1109/ACSSC.2012.6489108
  11. KALLER, O., BOLECEK, L., KRATOCHVIL, T. Profilometry scanning for correction of 3D images depth map estimation. In 2011 Proceedings of the 53rd Symposium ELMAR. Zadar (Croatia), 2011, p. 119–122.
  12. PAGÈS, J., SALVI, J., GARCIA, R., MATABOSCH, C. Overview of coded light projection techniques for automatic 3D profiling. In Proceedings of IEEE International Conference on Robotics and Automation ICRA '03. Girona (Spain), 2003.
  13. SU, X., CHEN, W. Fourier transform profilometry: a review. Optics and Lasers in Engineering, 2001, vol. 35, no. 5, p. 263 to 284. DOI: 10.1016/S0143-8166(01)00023-9
  14. MOORE, A. J., MENDOZA-SANTOYO, F. Phase demodulation in space domain without a fringe carrier. Optics and Laser in Engineering, 1995, vol. 23, no. 5, p. 319–330. DOI: 10.1016/0143- 8166(95)00037-O
  15. ANDERSEN, M. R., JENSEN, T., LISOUSKI, P., MORTENSEN, A. K., HANSEN, M. K. Kinect depth sensor evaluation for computer vision applications. Technical Report ECE-TR-6, Department of Engineering – Electrical and Computer Engineering, Aarhus University, Denmark
  16. FREEDMAN, B. Distance-Varying Illumination and Imaging Techniques for Depth Mapping. United States Patent Application Publication US2010/0290698 A1. [Online] Cited 2010-11-18. Available at: 98_A1.pdf?id=23222535&page=all
  17. LIN, H.Y., HUANG, P.K., LIN, T.Y., et al. Stereo matching architecture for 3D pose/gesture recognition and distancemeasuring application. In 2013 International Conference on 3D Imaging (IC3D). Liege (Belgium), 2013, 6 p. DOI: 10.1109/IC3D.2013.6732095
  18. SMISEK, J., JANCOSEK, M., PAJDA, T. 3D with Kinect. In Proceedings of IEEE International Conference on Computer Vision Workshops (ICCV Workshops). Barcelona (Spain), 2011, p. 1154 to 1160. DOI: 10.1109/ICCVW.2011.6130380
  19. BOLECEK, L., RICNY, V. MATLAB detection of shadow in image of profilometry. In Proceedings of Technical Computing Prague (TCP). Prague (Czech Republic), 2011, p. 22–30.
  20. VEDALDI, A., FULKERSON, B. VLFeat: An Open and Portable Library of Computer Vision Algorithms. [Online] Cited 2016-05-16. Available at:
  21. TRIAXES, Stereo Tracker Version 7 User Guide. Triaxes Lab LLC, Tomsk (Russia). [Online] Cited 2016-05-16. Available at:
  22. JAN, J. Medical Image Processing, Reconstruction and Restoration - Concepts and Methods. (Signal Processing and Comm.) Boca Raton (FL, USA): CRC Press, Taylor and Francis Group, 2006. ISBN: 0-8247-5849- 8

Keywords: Profilometry, stereoscopical capturing, depth map, phase unwrapping, stereo pair, 3D images, map estimation, shadow detection

D. Tralic, S. Grgic [references] [full-text] [DOI: 10.13164/re.2016.0548] [Download Citations]
Robust Image Encryption based on Balanced Cellular Automaton and Pixel Separation

The purpose of image encryption is to protect content from unauthorized access. Image encryption is usually done by pixel scrambling and confusion, so process is possible to reverse only by knowing secret information. In this paper we introduce a new method for digital image encryption, based on a 2D cellular automaton and pixel separation. Novelty in the proposed method lies in the application of the balanced 2D cellular automata with extended Moore neighborhood separately on each level of pseudorandom key-image. This process extends key space several times when compared to the previous methods. Furthermore, pixel separation is introduced to define operation for each pixel of the source image. Thanks to pixel separation, decryption process is more difficult to conduct without knowing secret information. Moreover, encryption is robust against different statistical attacks and analysis, does not affect image quality and can cope with loss of encrypted image content.

  1. WOLFGANG, R. B., DELL, E. J. Overview of image security techniques with applications in multimedia systems. In Proceedings of the SPIE International Conference on Multimedia Networks: Security, Displays, Terminals, and Gateways. Dallas (USA), 1997, p. 297–308. DOI: 10.1117/12.300900
  2. LAFE, O. Data compression and encryption using Cellular Automata Transforms. In Proceedings of the IEEE International Joint Symposia on Intelligence and Systems. Rockville (USA), 1996, p. 234–241. DOI: 10.1109/IJSIS.1996.565074
  3. TOMASSINI, M., SIPPER, M., PERRENOUD, M. On the generation of high-quality random numbers by two-dimensional cellular automata. IEEE Transactions on Computers, 2000, vol. 49, no. 10, p. 1146–1151. DOI: 10.1109/12.888056
  4. SEREDYNSKI, F., BOUVRY, P., ZOMAYA, A. Y. Cellular automata computations and secret key cryptography. Parallel Computing, 2004, vol. 30, no. 5–6, p. 753–766. DOI: 10.1016/j.parco.2003.12.014
  5. SARKAR, P. A brief history of cellular automata. ACM Computing Surveys (CSUR), 2000, vol. 32, no. 1, p. 80–107. DOI: 10.1145/349194.349202
  6. WU, H. L., ZHOU, J. L., GONG, X. G. A novel image watermarking algorithm based on two-dimensional cellular automata transform. In Proceedings of the 6th IEEE Joint International Information Technology and Artificial Intelligence Conference (ITAIC ’11). Chongqing (China), 2011, vol. 2, p. 206–210. DOI: 10.1109/ITAIC.2011.6030311
  7. MANKAR, V. H., DAS, T. S., SARKAR, S. K. Cellular automata based robust watermarking architecture towards the VLSI realization. World Academy of Science, Engineering and Technology, 2007, vol. 31, no. 8, p. 20–29.
  8. ALVAREZ, G., HERNANDEZ ENCINAS, L., MARTIN DEL REY, A. A multisecret sharing scheme for color images based on cellular automata. Information Sciences, 2008, vol. 178, no. 22, p. 4382–4395. DOI: 10.1016/j.ins.2008.07.010
  9. ESLAMI, Z., RAZZAGHI, S. H., ZAREPOUR AHMADABADI, J. Z. Secret image sharing based on cellular automata and steganography. Pattern Recognition, 2010, vol. 43, no. 1, p. 397–404. DOI: 10.1016/j.patcog.2009.06.007
  10. ESLAMI, Z., ZAREPOUR AHMADABADI, J. A verifiable multisecret sharing scheme based on cellular automata. Information Sciences, 2010, vol. 180, no. 15, p. 2889–2894. DOI: DOI:10.1016/j.ins.2010.04.015
  11. JIN, J., WU, Z. A secret image sharing based on neighbourhood configurations of 2-D cellular automata. Optics and Laser Technology, 2012, vol. 44, no. 3, p. 538–548. DOI: 10.1016/j.optlastec.2011.08.023
  12. CHEN, R. J., LU, W. K., LAI, J. L. Image encryption using progressive cellular automata substitution and SCAN. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS ’05). 2005, vol. 2, p. 1690–1693. DOI: 10.1109/ISCAS.2005.1464931
  13. CHEN, R. J., CHEN, Y. H., CHEN, C. S., LAI, J. L. Image encryption/decryption system using 2-D cellular automata. In Proceedings of the IEEE 10th International Symposium on Consumer Electronics (ISCE ’06). St. Petersburg, 2006, p. 651 to 656. DOI: 10.1109/ISCE.2006.1689421
  14. HERNANDEZ ENCINAS, L., MARTIN DEL REY, A., HERNANDEZ ENCINAS, A. Encryption of images with 2- dimensional cellular automata. In Proceedings of the 8th International Conference on Information Systems Analysis and Synthesis (ISAS ’02). 2002, p. 471–476.
  15. HABIBIPOUR, M., MAAREFDOUST, R., YAGHOBI, M., RAHATI, S. An image encryption system by 2D memorized cellular automata and chaos mapping. In Proceedings of the 6th International Conference on Digital Content, Multimedia Technology and Its Applications (IDC ’10). 2010, p. 331–336.
  16. JIN, J. An image encryption based on elementary cellular automata. Optics and Lasers in Engineering, 2012, vol. 50, no. 12, p. 1836–1843. DOI: 10.1016/j.optlaseng.2012.06.002
  17. YU, L., LI, Y. X., XIA, X. W. Image encryption algorithm based on self-adaptive symmetrical-coupled toggle cellular automata. In Proceedings of the 1st International Congress on Image and Signal Processing (CISP ’08). Sanya (China), 2008, p. 32–36. DOI: 10.1109/CISP.2008.48
  18. MALEKI, F., MOHADES, A., MEHDI HASHEMI, S., SHIRI, M. E. An image encryption system by cellular automata with memory. In Proceedings of the 3rd International Conference on Availability, Security, and Reliability (ARES ’08). Barcelona (Spain), 2008, p. 1266–1271. DOI: 10.1109/ARES.2008.121
  19. CHEN, R. J., LAI, J. L. Image security system using recursive cellular automata substitution. Pattern Recognition, 2007, vol. 40, no. 5, p. 1621–1631. DOI: 10.1016/j.patcog.2006.11.011
  20. CHEN, R. J., HORNG, S. J. Novel SCAN-CA-based image security system using SCAN and 2-D von Neumann cellular automata. Signal Processing, 2010, vol. 25, no. 6, p. 413–426. DOI: 10.1016/j.image.2010.03.002
  21. ZHANG, X., WANG, C., ZHONG, S., YAO, Q. Image encryption scheme based on balanced two-dimensional cellular automata. Mathematical Problems in Engineering, 2013, vol. 2013, 10 p. DOI: 10.1155/2013/562768
  22. WANG, X., LUAN, D. A novel image encryption algorithm using chaos and reversible cellular automata. Communications in Nonlinear Science and Numerical Simulation, 2013, vol. 18, no. 11, p. 3075–3085. DOI: 10.1016/j.cnsns.2013.04.008
  23. ROSIN, P. L. Training cellular automata for image processing. IEEE Transaction on Image Processing, 2006, vol. 15, no. 7, p. 2076–2087. DOI: 10.1109/TIP.2006.877040
  24. SUN, X., ROSIN, P. L., MARTIN, R. R. Fast rule identification and neighborhood selection for cellular automata. IEEE Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics, 2011, vol. 41, no. 3, p. 749–760. DOI: 10.1109/TSMCB.2010.2091271

Keywords: Image security, encryption, decryption, cellular automaton, statistical tests

Y.L. Liu, G.J. Xin, Y. Xiao [references] [full-text] [DOI: 10.13164/re.2016.0556] [Download Citations]
Robust Image Hashing Using Radon Transform and Invariant Features

A robust image hashing method based on radon transform and invariant features is proposed for image authentication, image retrieval, and image detection. Specifically, an input image is firstly converted into a counterpart with a normalized size. Then the invariant centroid algorithm is applied to obtain the invariant feature point and the surrounding circular area, and the radon transform is employed to acquire the mapping coefficient matrix of the area. Finally, the hashing sequence is generated by combining the feature vectors and the invariant moments calculated from the coefficient matrix. Experimental results show that this method not only can resist against the normal image processing operations, but also some geometric distortions. Comparisons of receiver operating characteristic (ROC) curve indicate that the proposed method outperforms some existing methods in classification between perceptual robustness and discrimination.

  1. STEVENS, M., SOTIROV, A., APPELBAUM, J., et al. Short chosen-prefix collisions for MD5 and the creation of a rogue CA certificate. In Proceedings of CRYPTO, 2009, LNCS 5677, p. 55 to 69. DOI: 10.1007/978-3-642-03356-8_4
  2. LIU, S. H., YAO, H. X., GAO, W., et al. An image fragile watermark scheme based on chaotic image pattern and pixel-pairs. Applied Mathematics and Computation, 2007, vol. 185, no 2, p. 869–882. DOI: 10.1016/j.amc.2006.07.036
  3. MONGA, V., EVANS, B. L. Perceptual image hashing via feature points: performance evaluation and tradeoffs. IEEE Transactions on Image Processing, 2006, vol. 15, no. 11, p. 3452–3465. DOI: 10.1109/TIP.2006.881948
  4. LIN, C. Y., CHANG, S. F. A robust image authentication method distinguishing JPEG compression from malicious manipulation. IEEE Transactions on Circuits and Systems for Video Technology, 2001, vol. 11, no. 2, p. 153–168. DOI: 10.1109/76.905982
  5. LEFEBVRE, F., MACQ, B., LEGAT, J. D. RASH: radon soft hash algorithm. In Proceedings of the 11thEuropean Signal Processing Conference. Toulouse (France), 2002, p. 299–302.
  6. LEFEBVRE, F., CZYZ, J., MACQ, B. A robust soft image hash algorithm for digital image signature. In Proceedings of IEEE International Conference on Image Processing ICIP’2003. Barcelona (Spain), September 2003, vol. 3, p. 495–498. DOI: 10.1109/ICIP.2003.1246725
  7. LEI, Y. Q., WANG, Y. G., HUANG, J. W. Robust image hash in radon transform domain for authentication. Signal Processing: Image Communication, 2011, vol. 26, no. 6, p. 280–288. DOI: 10.1016/j.image.2011.04.007
  8. WU, D., ZHOU, X. B., NIU, X. M. A novel image hash algorithm resistant to print-scan. Signal Processing. 2009, vol. 89, no. 12, p. 2415-2424. DOI: 10.1016/j.sigpro.2009.05.016
  9. OU, Y., RHEE, K. H. A key-dependent secure image hashing scheme by using radon transform. In Proceedings of the International Symposium on Intelligent Signal Processing and Communication System. Kanazawa (Japan), January 2009, p. 595-598. DOI: 10.1109/ISPACS.2009.5383770
  10. RAMIREZ-GUTIERREZ, K., NAKANO-MIYATAKE, M., PEREZ-MEANA, H. Improvement of radon-based image hashing using image normalization. In Processing of Conference on Electronics, Robotics and Automotive Mechanics CERMA. Cuernavaca (Mexico), November 2011, p. 173–177. DOI: 10.1109/CERMA.2011.34
  11. SWAMINATHAN, A., MAO, Y. N., WU, M. Robust and secure image hashing. IEEE Transactions on Information Forensics and Security, 2006, vol. 1, no. 2, p. 215–230. DOI: 10.1109/TIFS.2006.873601
  12. XIANG, S. J., KIM, H. J., HUANG, J. W. Histogram-based image hashing scheme robust against geometric deformations. In Proceedings of the 9th workshop on Multimedia and Security. Dallas (TX, USA), September 2007, p. 121–128. DOI: 10.1145/1288869.1288886
  13. QIN, C., CHANG, C. C., TSOU, P. L. Robust image hashing using non-uniform sampling in Discrete Fourier Domain. Digital Signal Processing, 2012, vol. 23, no. 2, p. 578–585. DOI: 10.1016/j.dsp.2012.11.002
  14. KOZAT, S. S., VENKATESAN, R., MIHCAK, M. K. Robust perceptual image hashing via matrix invariants. In Proceedings of IEEE International Conference on Image Processing ICIP’2004. Singapore, October 2004, p. 3443–3446. DOI: 10.1109/ICIP.2004.1421855
  15. MONGA, V., MIHCAK, M. K. Robust and secure image hashing via non-negative matrix factorizations. IEEE Transactions on Information Forensics and Security, 2007, vol. 2, no. 3, p. 376–390. DOI: 10.1109/TIFS.2007.902670
  16. TANG, Z. J., WANG, S. Z., ZHANG, X. P. Robust image hashing for tamper detection using non-negative matrix factorization. Journal of Ubiquitous Convergence Technology, 2008, vol. 2, no. 1, p. 18–26.
  17. KANG, L.W., LU, S. C., HSU, Y. C. Compressive sensing-based image hashing. In Proceedings of the 16thIEEE International Conference on Image Processing ICIP 2009. Cairo (Egypt), November 2009, p. 1285–1288. DOI: 10.1109/ICIP.2009.5413606
  18. TANG, Z. J., WANG, S. Z., ZHANG, X. P., et al. Lexicographical framework for image hashing with implementation based on DCT and NMF. Multimedia Tools and Application, 2011, vol. 52, no. 2-3, p. 325–345. DOI: 10.1007/s11042-009-0437-y
  19. ZHAO, Y. Perceptual image hash using texture and shape feature. Journal of Computational Information Systems, 2012, vol. 8, no. 8, p. 3519–3526.
  20. ZHAO, Y., WANG, S. Z., ZHANG, X. P., et al. Robust hashing for image authentication using Zernike moments and local features. IEEE Transactions on Information Forensics and Security, 2013, vol. 8, no. 1, p. 55–63. DOI: 10.1109/TIFS.2012.2223680
  21. TANG, Z. J., DAI, Y. M., ZHANG, X. Q. Perceptual hashing for colour images using invariant moments. Applied Mathematics and Information Sciences, 2012, vol. 6, no. 2S, p. 643–650.
  22. TANG, Z. J., ZHANG, X. Q., DAI, X., et al. Robust image hash function using local colour features. International Journal of Electronics and Communications (AEU), 2013, vol. 67, no. 8, p. 717–722. DOI: 10.1016/j.aeue.2013.02.009
  23. LIU, F., CHENG, L. M., LEUNG, H. Y., et al. Wave atom transform generated strong image hashing scheme. Optics Communications, 2012, vol. 285, no. 24, p. 5008–5018. DOI: 10.1016/j.optcom.2012.08.007
  24. LIU, Y. L., XIAO, Y. A robust image hashing algorithm resistant against geometrical attacks. Radioengineering, 2013, vol. 22, no. 4, p. 1072–1082.
  25. HU, M. K. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 1962, vol. IT-8, no. 2, p. 179–187. DOI: 10.1109/TIT.1962.1057692

Keywords: Image hashing, radon transform, invariant centroid, invariant moments

L. Povoda, R. Burget, J. Masek, V. Uher, M. K. Dutta [references] [full-text] [DOI: 10.13164/re.2016.0565] [Download Citations]
Optimization Methods in Emotion Recognition System

Emotions play big role in our everyday communication and contain important information. This work describes a novel method of automatic emotion recognition from textual data. The method is based on well-known data mining techniques, novel approach based on parallel run of SVM (Support Vector Machine) classifiers, text preprocessing and 3 optimization methods: sequential elimination of attributes, parameter optimization based on token groups, and method of extending train data sets during practical testing and production release final tuning. We outperformed current state of the art methods and the results were validated on bigger data sets (3346 manually labelled samples) which is less prone to overfitting when compared to related works. The accuracy achieved in this work is 86.89% for recognition of 5 emotional classes. The experiments were performed in the real world helpdesk environment, was processing Czech language but the proposed methodology is general and can be applied to many different languages.

  1. BURGET, R., KARASEK, J., SMEKAL, Z. Recognition of Emotions in Czech Newspaper Headlines. Radioengineering, 2011, vol. 20, no. 1, p. 1–9.
  2. CHUANG, Z. J., WU, C. H. Multi-modal emotion recognition from speech and text. Computational Linguistics and Chinese Language Processing, 2004, vol. 9, no. 2, p. 5–62.
  3. MA, C., PRENDINGER, H., ISHIZUKA, M. Emotion estimation and reasoning based on affective textual interaction. Affective Computing and Intelligent Interaction. Springer Berlin Heidelberg, 2005, p. 622–628. DOI: 10.1007/11573548_80
  4. WU, C. H., CHUANG, Z. J., LIN, Y. C. Emotion recognition from text using semantic labels and separable mixture models. ACM Transactions on Asian Language Information Processing (TALIP), 2006, vol. 5, no. 2, p. 165–183. DOI: 10.1145/1165255.1165259
  5. KIRANGE, D. K., et al. Emotion classification of news headlines using SVM. Asian Journal of Computer Science and Information Technology, 2013, vol. 2, no. 5, p. 104–106. ISSN: 2249-5126
  6. DE SILVA, J., HADDELA, P. S. A term weighting method for identifying emotions from text content. In 2013 IEEE 8th International Conference on Industrial and Information Systems, ICIIS 2013 – Conference Proceedings, 2013, p. 381–386. DOI: 10.1109/ICIInfS.2013.6732014
  7. PATIL, C. G., PATIL, S. S. Use of Porter stemming algorithm and SVM for emotion extraction from news headlines. International Journal of Electronics, Communication & Soft Computing Science and Engineering, 2013, vol. 2, no. 7, p. 9–13. ISSN: 2277-9477
  8. SHAHEEN, S., EL-HAJJ, W., HAJJ, H., et al. Emotion recognition from text based on automatically generated rules. In 2014 IEEE International Conference on Data Mining Workshop, 2014, p. 383–392. DOI: 10.1109/ICDMW.2014.80
  9. YAN, G., et al. A bilingual approach for conducting Chinese and English social media sentiment analysis. Computer Networks, 2014, vol. 75, p. 491–503. DOI: 10.1016/j.comnet.2014.08.021
  10. LI, Q., et al. Parallel multitask cross validation for Support Vector Machine using GPU. Journal of Parallel and Distributed Computing, 2013, vol. 73, no. 3, p. 293–302. DOI: 10.1016/j.jpdc.2012.02.011
  11. MASEK, J., BURGET, R., KARASEK, J., et al. Multi–GPU implementation of k-nearest neighbor algorithm. In 37th International Conference on Telecommunications and Signal Processing (TSP), Prague (Czechia), 2015, p. 764–767. ISBN: 978-80-214-4983-1. DOI: 10.1109/TSP.2015.7296368
  12. POLPINIJ, J. Multilingual Sentiment Classification on Large Textual Data. In IEEE Fourth International Conference on Big Data and Cloud Computing (BdCloud), Sydeny (Australia), 2014, p. 183–188. DOI: 10.1109/BDCloud.2014.15
  13. COWIE, R., et al. ’FEELTRACE’: An instrument for recording perceived emotion in real time. In Proceedings of the ISCA Tutorial and Research Workshop (ITRW) on Speech and Emotion. 2000.
  14. CARUANA, R., FREITAG, D. Greedy attribute selection. In Proceedings of the Eleventh International Conference on Machine Learning, 1994, p. 28–36.
  15. POVODA, L., ARORA, A., SINGH, S., et al. Emotion recognition from helpdesk messages. In 2015 7th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2015, p. 310-313. ISBN: 978-1-4673-9282-2. DOI: 10.1109/ICUMT.2015.7382448

Keywords: Czech, Emotion classification, Emotion detection, Emotion recognition, Text mining

C. Han, L. Wang [references] [full-text] [DOI: 10.13164/re.2016.0573] [Download Citations]
Array Pattern Synthesis Using a Digital Position Shift Method

Considering all possible steering directions for beam scanning, a digital position shift method (DPSM) is presented to minimize the Peak Sidelobe Level (PSL) by searching the best position solution for every sensor and calculating the pattern with position offset factor. For the truly minimum PSL, digital position shift with optimal amplitude (DPSOA) is considered simultaneously for beam scanning. For searching the best solution to the two methods, constrained conditions for position shift range and amplitude range are described. The method of feedback particle swarm optimization (FPSO) is presented to obtain a large searching space and fast convergence in local space with refined solution. Numerical examples show that the optimized results by DPSM and DPSOA in all steering directions can be used in beam scanning for its digital realization. When compared with the other techniques published in the literature, especially the steering direction close to endfire direction, this method has lower PSL when the main beam width is maintained.

  1. YANG, K., ZHAO, Z. Q., LIU, J. Z., et al. Robust adaptive beamforming using an iterative FFT algorithm. Signal Processing, 2014, vol. 96, no. part B, p. 253–260. DOI: 10.1016/j.sigpro.2013.09.003
  2. EIREY-PEREZ, R., RODRIGUEZ-GONZALEZ, J. A., ARESPENA, F. J. Synthesis of array radiation pattern footprints using radial stretching, Fourier analysis, and Hankel transformation. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 4, p. 2106–2109. DOI: 10.1109/TAP.2012.2186257
  3. CHATTERJEE, S., CHATTERJEE, S., PODDAR, D. R. Synthesis of linear array using Taylor distribution and Particle Swarm Optimisation. International Journal of Electronics, 2015, vol. 102, no. 3, p. 514–528. DOI: 10.1080/00207217.2014.905993
  4. WANG, X. C., ZHOU, Y. G., WANG, Y. F. An improved antenna array pattern synthesis method using fast Fourier transforms. International Journal of Antennas and Propagation, 2015, vol. 2015, 9 p. DOI: 10.1155/2015/316962
  5. WANG, X. R., ABOUTANIOS, E., AMIN, M. G. Thinned array beampattern synthesis by iterative soft-thresholding-based optimization algorithms. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 12, p. 6102–6113. DOI: 10.1109/TAP.2014.2364048
  6. ZHANG, F. G., JIA, W. M., YAO, M. L. Linear aperiodic array synthesis using differential evolution algorithm. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 797–800. DOI: 10.1109/LAWP.2013.2270930
  7. SHARAQA, A., DIB, N. Position-only side lobe reduction of a uniformly excited elliptical antenna array using evolutionary algorithms. IET Microwaves Antennas and Propagation, 2013, vol. 7, no. 6, p. 452–457. DOI: 10.1049/iet-map.2012.0541
  8. CEN, L., SER, W., YU, Z. L., et al. Linear sparse array synthesis with minimum number of sensors. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 3, p. 720–726, DOI: 10.1109/TAP.2009.2039292
  9. ABU-AL-NADI, D. I., ISMAIL, T. H., AL-TOUS, H., et al. Design of linear phased array for interference suppression using array polynomial method and particle swarm optimization. Wireless Personal Communications, 2012, vol. 63, no. 2, p. 501–513. DOI: 10.1007/s11277-010-0146-x
  10. ISMAIL, T. H., HAMICI, Z. M. Array pattern synthesis using digital phase control by quantized particle swarm optimization. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 6, p. 2142–2145. DOI: 10.1109/TAP.2010.2046853
  11. ELKAMCHOUCHI, H. M., HASSAN, M. M. Array pattern synthesis approach using a genetic algorithm. IET Microwaves Antennas and Propagation, 2014 vol. 8, no. 14, p. 1236–1240. DOI: 10.1049/iet-map.2013.0718
  12. BEVELACQUA, P. J., BALANIS, C. A. Minimum sidelobe levels for linear arrays. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 12, p. 3442–3449. DOI: 10.1109/TAP.2007.910490
  13. CEN, L., YU, Z. L., SER, W., et al. Linear aperiodic array synthesis using an improved genetic algorithm. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 2, p. 895–902. DOI: 10.1109/TAP.2011.2173111
  14. VASKELAINEN, L. I. Virtual array synthesis method for planar array antennas. IEEE Transactions on Antennas and Propagation, 1998, vol. 46, no. 3, p. 391–396. DOI: 10.1109/8.662658
  15. TRUCCO, A. Synthesizing asymmetric beam patterns. IEEE Journal of Oceanic Engineering, 2000, vol. 25, no. 3, p. 347–350. DOI: 10.1109/48.855383
  16. KURUP, D. G., HIMDI, M., RYDBERG, A. Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 9, p. 2210–2217. DOI: 10.1109/TAP.2003.816361
  17. JIN, N., RAHMAT-SAMII, Y. Hybrid real-binary particle swarm optimization (HPSO) in engineering electromagnetics. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 12, p. 3786–3794. DOI: 10.1109/TAP.2010.2078477
  18. BHATTACHARYA, R., BHATTACHARYYA, T. K., GARG, R. Position mutated hierarchical particle swarm optimization and its application in synthesis of unequally spaced antenna arrays. IEEE Transactions on Antennas and Propagation, 2012, vol.60, no. 7, p. 3174–3181. DOI: 10.1109/TAP.2012.2196917
  19. ZHANG, W., MA, D., WEI, J. J., et al. A parameter selection strategy for particle swarm optimization based on particle positions. Expert Systems with Applications, 2014, vol. 41, no. 7, p. 3576 to 3584. DOI: 10.1016/j.eswa.2013.10.061
  20. BERA, R., MANDAL, D., KAR, R., et al. Application of particle swarm optimization technique in hexagonal and concentric hexagonal antenna array for side lobe level reduction. Advances in Intelligent Systems and Computing, 2015, vol. 343, p. 333–347. DOI: 10.1007/978-81-322-2268-2_36
  21. MODIRI A., KIASALEH, K. Modification of real-number and binary PSO algorithms for accelerated convergence. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 1, p. 214–224. DOI: 10.1109/TAP.2010.2090460
  22. ZHANG, L. M., TANG, Y. G., HUA, C. C., et al. A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques. Applied Soft Computing, 2015, vol. 28, p. 138–149. DOI: 10.1016/j.asoc.2014.11.018
  23. TRUCCO A., MURINO, V. Stochastic optimization of linear sparse arrays. IEEE Journal of Oceanic Engineering, 1999, vol. 24, no. 3, p. 291–299. DOI: 10.1109/48.775291
  24. CHANG, J. C. A robust adaptive array beamformer using particle swarm optimization for space-time code division multiple access systems. Information Sciences, 2014, vol. 278, p. 174–186. DOI: 10.1016/j.ins.2014.03.036
  25. KHABBAZIBASMENJ, A., VOROBYOV, S. A., HASSANIEN, A. Robust adaptive beamforming based on steering vector estimation with as little as possible prior information. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 6, p. 2974–2987. DOI: 10.1109/TSP.2012.2189389

Keywords: Digital position shift method (DSPM), feedback particle swarm optimization (FPSO), beam scanning, Peak Sidelobe Level (PSL)

H. Tian, W.G. Chang, X.Y. Li, Z.H. Liu [references] [full-text] [DOI: 10.13164/re.2016.0581] [Download Citations]
Strong Spurious Noise Suppression for an FMCW SAR

To meet the miniature requirement, a frequency modulated continuous wave synthetic aperture radar (FMCW SAR) puts tight constraint on the compactness, which causes the interference of narrow band noise. The aim of this study is to suppress the strong noise for an FMCW SAR. First, the quantitative analysis of the noise is performed. It is found that a strong spurious noise of the analog-to-digital converter (ADC) is introduced from interferences and significantly affects the image quality; the other noise components are sufficiently small, thus having ignorable influences. Then, a Fast Fourier Transform (FFT) based method of noise suppression is proposed to eliminate the ADC strong spurious noise, adopting an ADC and a field programmable gate array (FPGA). Finally, using the real Ku-band FMCW SAR data, the level of the noise components is measured and the effectiveness of the proposed noise suppression method is validated. The results show that the measured noise level coincides with the theoretical noise level, and the proposed noise suppression method effectively eliminates the ADC strong spurious noise.

  1. JIA, G. W., BUCHROITHNER, M., CHANG, W. G., et al. Simplified real-time imaging flow for high-resolution FMCW SAR. IEEE Geoscience and Remote Sensing Letters, 2015, vol. 12, no. 5, p. 973–977. ISSN: 1545-598X. DOI: 10.1109/ LGRS. 2014.2370733
  2. YANG, J. G., HUANG, X. T., JIN, T., et al. Synthetic aperture radar imaging using stepped frequency waveform. IEEE Transactions on Geoscience and Remote Sensing, 2012, vol. 50, no. 5, p. 2026–2036. DOI: 10.1109/ TGRS.2011.2170176
  3. AN, D. X., HUANG, X. T., JIN, T., et al. Extended nonlinear chirp scaling algorithm for high-resolution highly squint SAR data focusing. IEEE Transactions on Geoscience and Remote Sensing, 2012, vol. 50, no. 9, p. 3595–3609. ISSN: 0196-2892. DOI: 10.1109/TGRS.2012.2183606
  4. OTTEN, M., MAAS, N., BOLT, R., et al. Light weight digital array SAR. In Proceedings of the IEEE International Symposium on Phased Array Systems and Technology (ARRAY). Waltham (MA, USA), 2010, p. 177–182. ISBN: 978-1-4244-5127-2. DOI: 10.1109/ARRAY.2010.5613374
  5. EDRICH, M. Design overview and flight test results of the miniaturised sensor MiSAR. In Proceedings of the First European Radar Conference (EURAD). Amsterdam (the Netherlands), 2004, p. 205–208. ISBN: 1-58053-993-9.
  6. NOUVEL, J. F., JEULAND, H., BONIN, G., et al. A Ka band imaging radar: drive on board ONERA motorglider. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Denver (USA), 2006, p. 134–136. ISBN: 0-7803-9510-7. DOI: 10.1109/IGARSS.2006.39
  7. ZAUGG, E. C., HUDSON, D. L., LONG, D. G. The BYU USAR: a small, student-built SAR for UAV operation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Denver (USA), 2006, p. 411–413. ISBN: 0-7803-9510-7. DOI: 10.1109/IGARSS.2006.110
  8. TIAN, H. S., CHANG, W. G., LI, X. Y. Ambiguity noise analysis of a SAR system. In Proceedings of MIPPR 2015: Multispectral Image Acquisition, Processing and Analysis. Enshi (China), 2015, p. 354–358. DOI: 10.1117/12.2231541
  9. CHANG, W. G., JIA, G. W., GU, C. F., TIAN, H. S. Preliminary results of a FMCW SAR with real-time processor. In Proceedings of the International Radar Conference. Hangzhou (China), 2015, p. 1–4. ISBN: 978-1-78561-038-7. DOI: 10.1049/cp.2015.1487
  10. CARRARA, W. G., GOODMAN, R. S., MAJEWSKI, R. M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. 1st ed. London (UK): Artech House, 1995. (Chapter 8) ISBN: 0- 89006-728-7.
  11. SO, H. C. A novel adaptive algorithm for sinusoidal interference cancellation. Electronics Letters, 1997, vol. 33, no. 22, p. 1910 to 1912. ISSN: 0013-5194. DOI: 10.1049/ el:19971295
  12. SO, H. C. Adaptive cancellation of multiple interfering sinusoids. Electronics Letters, 1998, vol. 34, no. 24, p. 2301–2302. ISSN: 0013-5194. DOI: 10.1049/el:19981633
  13. VASEGHI, S. Advanced Signal Processing and Digital Noise Reduction. 1st ed. Chichester (England): John Wiley & Sons, 1996. (Chapter 6) ISBN: 978-3-322-92774-3.
  14. NORTH, R. C., ZEIDLER, J. R., ALBERT, T. R., et al. Comparison of adaptive lattice filters to LMS transversal filters for sinusoidal cancellation. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. San Francisco (USA), 1992, vol. 4, p. 33–36. ISBN: 0-7803-0532-9. DOI: 10.1109/ICASSP.1992.226418
  15. PFITZNER, M., CHOLEWA, F., PIRSCH, P., et al. A flexible hardware architecture for real-time airborne wavenumber domain SAR processing. In Proceedings of the 9th European Conference on Synthetic Aperture Radar (EUSAR). Nuremberg (Germany), 2012, p. 28–31. ISBN: 978-3-8007-3404-7.
  16. MILSTEIN, L. B., DAS, P. An analysis of a real-time transform domain filtering digital communication system-part I: Narrowband interference rejection. IEEE Transactions on Communications, 1983, vol. 31, no. 1, p. 21–27. ISSN: 0090-6778. DOI: 10.1109/TCOM.1983.1095733
  17. XU, L. J., YAN, Y. Wavelet-based removal of sinusoidal interference from a signal. Measurement Science and Technology, 2004, vol. 15, no. 9, p. 1779–1786. ISSN: 0957-0233. DOI: 10.1088/0957-0233/15/9/015
  18. ZHAO, Z.Y., CHANG, W.G., LI, X.Y., et al. Range-dependent phase error of dechirp. Journal of National University of Defense Technology, 2014, vol. 36, no. 3, p. 169–176. DOI: 10.11887/ (in Chinese)
  19. TAO ZENG, ZHENG LU, DING, Z. G., BIANG, M. M. SAR Doppler ambiguity resolver based on entropy minimization. IEEE Transactions on Geoscience and Remote Sensing, 2013, vol. 51, no. 8, p. 4405–4416. ISSN: 0196-2892. DOI: 10.1109/ TGRS.2013.2240305
  20. ROLT, K. D., SCHMIDT, H. Azimuthal ambiguities in synthetic aperture sonar and synthetic aperture radar imagery. IEEE Journal of Oceanic Engineering, 1992, vol. 17, no. 1, p. 73–79. ISSN: 0364-9059. DOI: 10.1109/48.126956
  21. LIU, M., YU, Z., LI, C. S. Azimuth ambiguity suppression for spaceborne SAR based on PRF micro-variation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS. Melbourne (Australia), 2013, p. 1325–1328. ISSN: 978-1-4799-1114-1. DOI: 10.1109/IGARSS.2013.6723026
  22. LI, F. K., JOHNSON, W. T. K. Ambiguities in spaceborne synthetic aperture radar systems. IEEE Transactions on Aerospace and Electronic System, 1983, vol. AES-19, no. 3, p. 389–397. ISSN: 0018-9251. DOI: 10.1109/TAES.1983.309319
  23. TIAN, H. S., CHANG, W. G., LI, X. Y. Multiplicative noise analysis of the FMCW SAR. In Proceedings of the International Radar Conference. Hangzhou (China), 2015, p. 1–4. ISBN: 978-1- 78561-038-7. DOI: 10.1049/cp.2015.1485
  24. TIAN, H. S., CHANG, W. G., LI, X. Y. Integrated system of miniSAR real-time signal processing and data storage. In Proceedings of the IEEE Radar Conference. Johannesburg (South Africa), 2015, p. 354–358. DOI: 10.1109/ RadarConf.2015.7411907
  25. XILINX INCORPORATED. LogiCORE IP Fast Fourier Transform V7.1 (datasheet). 63 pages. [Online] Cited 2011-04-19. Available at: ip_documentation/xfft_ds260.pdf.

Keywords: Frequency Modulated Continuous Wave (FMCW), Synthetic Aperture Radar (SAR), strong spurious noise, noise suppression, miniaturized system

F. Yan, W. Chang, X. Li, Q. Zhang [references] [full-text] [DOI: 10.13164/re.2016.0592] [Download Citations]
Beam Footprint Detection and Tracking for Non-cooperative Bistatic SAR

In non-cooperative bistatic synthetic aperture radar (SAR), the position of transmitter’s beam footprint should be detected and tracked in real-time to perform beam synchronization. Theoretical analysis shows that signal-to-noise ratio (SNR) of the reflected echoes from the observational scene is too low to apply the conventional detection and tracking method. According to the cross correlation and Doppler frequency information of the backscattering echo, a beam footprint detection and tracking method is proposed in this paper. This method can realize accumulation of signal energy, therefore enormously improve the performance of beam footprint detection and tracking. Meanwhile, vehicle-based bistatic SAR experiment and airborne bistatic SAR experiment are performed to evaluate the performance of the proposed beam footprint detection and tracking method. Experimental results show that the proposed method performs well for real-time transmitter beam footprint detection and tracking.

  1. YANG, Y. H., PI, Y. M., LI, R. Considerations for non-cooperative bistatic SAR with spaceborne radar illuminating. In CIE International Conference on Radar. Shanghai (China), 2006, p. 1–4. DOI: 10.1109/ICR.2006.343395
  2. TIAN, W. M., LONG, T., YANG, J., et al. General processing approach for bistatic SAR systems: description and performance analysis. In 8th European Conference on Synthetic Aperture Radar (EUSAR). Aachen (Germany), 2010, p. 1–4.
  3. YAN, F. F., CHANG, W. G., LI, X. Y. Beam-footprint detection for non-cooperative spaceborne/airborne bistatic SAR. In Progress in Electromagnetics Research Symposium. Prague (Czech Republic), 2015, p. 604–608.
  4. GE, X. J., HE, Y., SONG, J. Cross-correlation detection and time difference estimation in non-cooperative bistatic radar systems. In IEEE International Conference on Signal Processing. Beijing (China), 2010, p. 2261–2265. DOI: 10.1109/ICOSP.2010.5655147
  5. ANTONIOU, M., CHERNIAKOV, M. GNSS-based bistatic SAR: a signal processing view. EURASIP Journal on Advances in Signal Processing, 2013, vol. 2013, no. 98, p. 124–132. ISSN: 1687-6180. DOI: 10.1186/1687-6180-2013-98
  6. WANG, H. Y., WU, Y. H. The accurate model for beam synchronization in spaceborne/airborne hybrid bistatic SAR. In CIE International Conference on Radar. Chengdu (China), 2011, p. 950–953. DOI: 10.1109/CIE-Radar.2011.6159698
  7. WANG, W. Q., CAI, J. Y. Antenna directing synchronization for bistatic synthetic aperture radar systems. IEEE Antennas Wireless Propagation Letters, 2010, vol. 9, no. 2, p. 307–310. ISSN: 1536- 1225. DOI: 10.1109/LAWP.2010.2047490
  8. MU, F. Y., ZHANG, J. F., DU, J. A weak signal detection technology based on stochasticresonance system. In International Conference on Computer Science and Service System, Nanjing (China), 2011, p. 2004–2007. DOI: 10.1109/CSSS.2011.5974613
  9. YU, D., WU, J. Z., CHEN, Z. P. Detection of LFM signals in low SNR based on STFT and wavelet denoising. In International Conference on Audio Language and Image Processing. Shanghai (China), 2014, p. 921–925. DOI: 10.1109/ICALIP.2014.7009929
  10. WALTERSCHEID, I., EDPETER, T., ENDER, J. H. Performance analysis of a hybrid bistatic SAR system operating in the double sliding spotlight mode. In IEEE Transactions on Geoscience and Remote Sensing Symposium. Barcelona (Spain), 2007, p. 2144–2147. DOI: 10.1109/IGARSS.2007.4423258
  11. ZHOU, P., PI, Y. M. Two methods for beam synchronization in spaceborne/airborne hybrid bistatic SAR. Acta Electronica Sinica, 2009, vol. 37, no. 6, p. 1192–1197. ISSN: 0372-2112. DOI: 10.3321/j.issn:0372-2112.2009.06.008
  12. NICO, G., TESAURO, M. On the existence of coverage and integration time regimes in bistatic SAR configurations. IEEE Geoscience and Remote Sensing Letters, 2007, vol. 4, no. 3, p. 426–430. ISSN: 1545-598X. DOI: 10.1109/LGRS.2007.895957
  13. ANINDYA, D. Beyond the central limit theorem: asymptotic expansions and pseudorandomness for combinatorial sums. In IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS). Berkeley (USA), 2015, p. 883–902. DOI: 10.1109/FOCS.2015.59
  14. YANG, X. L., WEN, G. J., MA, C. H., et al. CFAR detection of moving range-spread target in white Gaussian noise using waveform contrast. IEEE Geoscience and Remote Sensing Letters, 2016, vol. 13, no. 2, p. 282–286. ISSN: 1545-598X. DOI: 10.1109/LGRS.2015.2511060
  15. LUHR, D., ADAMS, M. Radar noise reduction based on binary integration. IEEE Sensors Journal, 2014, vol. 15, no. 3, p. 766–777. ISSN: 1530-437X. DOI: 10.1109/JSEN.2014.2352295
  16. PU, W., LI, W. C., LV, Y. X., et al. An extended omega-K algorithm with integrated motion compensation for bistatic SAR. In IEEE Radar Conference. Arlington (USA), 2015, p. 1291–1295. DOI: 10.1109/RADAR.2015.7131194
  17. NEO, Y. L., WONG, F. H., CUMMING, I. G. Processing of azimuthinvariant bistatic SAR data using the range Doppler algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2008, vol. 46, no. 1, p. 14–21. ISSN: 0196-2892. DOI: 10.1109/TGRS.2007.909090

Keywords: Beam footprint, detection and tracking, non-cooperative, cross-correlation, Doppler information

M. Svecova, D. Kocur [references] [full-text] [DOI: 10.13164/re.2016.0602] [Download Citations]
Time of Arrival Complementing Method for Cooperative Localization of a Target by Two-Node UWB Sensor Network

Recently, the detection, localization and tracking of moving persons in emergency situations using ultra-wideband (UWB) sensors have attracted the attention of researchers and final users as well. Experiences with single UWB sensors in real applications have shown that their reliability and accuracy in person detection and localization may be considerably reduced. In contrast, the improved performance of a UWB sensor-based localization system can be provided by a UWB sensor network, which benefits from cooperation among spatially distributed sensor nodes. This cooperation extends the coverage of the monitored area and improves detection capability and localization performance, especially in the case of complex environments and multiple targets. In this paper, we will introduce a new approach to cooperative localization of a target, referred to as the time of arrival complementing method (TOACOM). TOACOM, developed for a two-node UWB sensor network, is based on the time of arrival (TOA) complementing and combining algorithms in combination with the conventional direct calculation method (DC). Its properties will be analyzed for through-the-wall single moving person localization. The obtained results will show the superior performance of TOACOM as compared with person localization by a single UWB sensor, or by a two-node sensor network. In the conclusion, we will outline that the presented version of TOACOM can be further modified for a multiple target scenario and an N-node sensor network.

  1. SACHS, J. Handbook for Ultra-Wideband Short-Range Sensing: Theory, Sensors, Applications. 1st ed., Weinheim (Germany): WileyVCH Verlag GmbH & Co. KGaA, 2012. ISBN: 9783527408535. DOI: 10.1002/9783527651818
  2. ZETIK, R., JOVANOSKA, S., THOMA, R. Simple method for localisation of multiple tag-free targets using UWB sensor network. In Proceedings of the IEEE International Conference on Ultra-Wideband (ICUWB). Bologna (Italy), 2011, p. 268–272. DOI: 10.1109/ICUWB.2011.6058843
  3. JOVANOSKA, S., THOMA, R. Multiple target tracking by a distributed UWB sensor network based on the PHD filter. In Proceedings of the 15th International Conference on Informational Fusion (FUSION). Singapore, 2012, p. 1095–1102.
  4. GULMEZOGLU, B., GULDOGAN, M. B., GEZICI, S. Multiperson tracking with a network of ultrawideband radar sensors based on Gaussian mixture PHD filters. IEEE Sensors Journal. April 2015, vol. 15, no. 4, p. 2227–2237. DOI: 10.1109/JSEN.2014.2372312
  5. ROVNAKOVA, J., KOCUR, D. Short range tracking of moving persons by UWB sensor network. In Proceedings of the European Radar Conference (EuRAD). Manchester (UK), 2011, p. 321–324.
  6. ZHOU, Y., LAW, C. L., YONG, L. G., et al. Localization of passive target based on UWB backscattering range measurement. In Proceedings of the IEEE International Conference on Ultra-Wideband (ICUWB). Vancouver (BC), 2009, p. 145–149. DOI: 10.1109/ICUWB.2009.5288835
  7. KOCUR, D., SVECOVA, M., ROVNAKOVA, J. Through-the-wall localization of a moving target by two independent ultra wideband (UWB) radar systems. Sensors. Basel (Switzerland), 2013, vol. 13, no. 9, p. 11969–11997. DOI: 10.3390/s130911969
  8. ZHOU, Y., LAW, C. L., GUAN, Y. L., et al. Indoor elliptical localization based on asynchronous UWB range measurement. In IEEE Transactions on Instrumentation and Measurement. Jan. 2011, vol. 60, no. 1, p. 248–257. DOI: 10.1109/TIM.2010.2049185
  9. ROVNAKOVA, J., KOCUR, D. Data fusion from UWB radar network: Preliminary experimental results. In Proceedings of the 21st International Conference Radioelektronika (RADIOELEKTRONIKA). Brno (CZ), 2011, p. 1–4. DOI: 10.1109/RADIOELEK.2011.5936439
  10. RAOL, J. R. Multi-Sensor Data Fusion with MATLAB. 1st ed.: CRC Press, Taylor & Francis Group, 2009. ISBN: 9781439800034
  11. SVECOVA, M., KOCUR, D. TOACOM: A new cooperative method of target localization by UWB radar systems. In Proceedings of the IEEE 9th International Symposium on Intelligent Signal Processing (WISP). Siena (Italy), 2015, p. 1–6. DOI: 10.1109/WISP.2015.7139158
  12. SVECOVA, M., KOCUR, D., URAMOVA, N., et al. TOA complementing method for target localization by UWB radar systems. In Proceedings of the International Radar Symposium (IRS). Dresden (Germany), 2015, p. 949–954. DOI: 10.1109/IRS.2015.7226265
  13. RUDAS, I. J., FODOR, J., KACPRZYK, J. Towards Intelligent Engineering and Information Technology, (Through Wall Tracking of Moving Targets by M-Sequence UWB Radar). 1st ed., Berlin (Germany): Springer, 2009. ISBN: 978-3-642-03736-8. DOI: 10.1007/978-3-642-03737-5
  14. DARDARI, D., CONTI, A., FERNER, U., et al. Ranging with ultrawide bandwidth signals in multipath environments. In Proceedings of the IEEE. Feb. 2009, vol. 97, no. 2, p. 404–426. DOI: 10.1109/JPROC.2008.2008846
  15. DUTTA, P. K., ARORA, A. K., BIBYK, S. B. Towards radar-enabled sensor networks. In Proceedings of the Fifth International Conference on Information Processing in Sensor Networks (IPSN 2006). Nashville, USA, 2006, p. 467–474. DOI: 10.1109/IPSN.2006.243915
  16. ROVNAKOVA, J. , KOCUR, D. TOA estimation and data association for through-wall tracking of moving targets. EURASIP Journal on Wireless Communications and Networking. vol. 2010, article ID 420767. DOI: 10.1155/2010/420767
  17. EBERLY, D. Intersection of Ellipses. Geometric Tools, LLC, 2000, 20 pages. [Online] Available at:
  18. ROVNAKOVA,J. , KOCUR, D. Compensation of wall effect for through wall tracking of moving targets. Radioengineering. June 2009, vol. 13, no. 2, p. 189–195. ISSN: 1805-9600
  19. FORTES, J., KOCUR, D. Solutions of mutual shadowing effect between people tracked by UWB radar. In Proceedings of the IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (COMCAS). Tel Aviv (Israel), Oct. 2013, p. 1–5. DOI: 10.1109/COMCAS.2013.6685300

Keywords: Radar signal processing, target tracking, TOA complementing method, UWB sensor network

R. Mehmood, N. Huda, J. Song, M. M. Riaz, N. Iqbal, T. S. Choi [references] [full-text] [DOI: 10.13164/re.2016.0612] [Download Citations]
Improved Mean Shift Target Localization using True Background Weighted Histogram and Geometric Centroid Adjustment

Mean Shift (MS) tracking using histogram features alone may cause inaccuracy in target localization. The problem becomes worst due to presence of mingled background features in target model representation. To improve MS target localization problem, this paper propose a spatiospectral technique. The true background features are identified in target model representation using spectral and spatial weighting and then a transformation is applied to minimize their effect in target model representation for localization improvement. The target localization is further improved by adjusting the MS estimated target position through edge based centroid re positioning. The paper also propose method of target model update for background weighted histogram based algorithms followed by weighted transformation through online feature consistency data. The proposed method is designed for single object tracking in complex scenarios and tested for comparative results with existing state of the art techniques. Experimental results on numerous challenging video sequences verify the significance of proposed technique in terms of robustness to complex background, occlusions, appearance changes, and similar color object avoidance.

  1. SMEULDERS, A. W., CHU, D. M., CUCCHIARA, et al. Visual tracking: an experimental survey.IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, vol. 36, no. 7, p. 1442–1468. DOI: 10.1109/TPAMI.2013.230
  2. LIU, Q., ZHAO, X., HOU, Z. Survey of single-target visual tracking methods based on online learning. IET Computer Vision, 2014, vol. 8, no. 5, p. 419–428. DOI: 10.1049/iet-cvi.2013.0134
  3. YILMAZ, A., JAVED, O., SHAH, M. Object tracking: A Survey. ACM computing surveys, 2006, vol. 38, no. 4, article 13. DOI: 10.1145/1177352.1177355
  4. COMANICIU, D., RAMESH, V., MEER, P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, vol. 25, no. 5, p. 564–575. DOI: 10.1109/TPAMI.2003.1195991
  5. CHENG. Y. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, vol. 17, no. 8, p. 790–799. DOI: 10.1109/34.400568
  6. KHALID, M. S, MALIK, M. B. Biased nature of Bhattacharyya coefficient in correlation of gray-scale objects. In IEEE International Symposium on Image and Signal Processing and Analysis, 2005, p. 209-214. DOI: 10.1109/ISPA.2005.195411
  7. NING, J., ZHANG, L., ZHANG, D., et al. Robust mean-shift tracking with corrected background-weighted histogram. IET Computer Vision, 2012, vol. 6, no. 1, p. 62–69. DOI: 10.1049/iet-cvi.2009.0075
  8. KEN, C., KANGKANG, S., CHOI, K., et al. Optimized meanshift target reference model based on improved pixel weighting in visual tracking. Journal Of Electronics (CHINA), 2013, vol. 30, no. 3, p. 283–289. DOI: 10.1007/s11767-013-2168-5
  9. XU, D., WANG, Y., AN, J. Applying a New Spatial Color Histogram in Mean-Shift Based Tracking Algorithm. In Conference on Image and Vision Computing, Univ. of Otago (New Zealand), 2005.
  10. XIAORONG, P., ZHIHU, Z. A more robust mean shift tracker on joint color-CLTP histogram. International Journal on Image, Graphics and Signal Processing, 2012, vol. 12, p. 34–42. DOI: 10.5815/ijigsp.2012.12.05
  11. MEHMOOD, R., ALI, M. U., TAJ, I. A. Applying centroid based adjustment to kernel based object tracking for improving localization. In International Conference on Information and Communication Technologies, 2009, Karachi (Pakistan), p. 209–214. DOI: 10.1109/ICICT.2009.5267188
  12. HE, K.,SUN, J., TANG, X. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intellignece, 2013, vol. 35, no. 6. DOI: 10.1109/TPAMI.2012.213
  13. WANG, D., SUN, W., YU, S., et al. A novel background-weighted histogram scheme based on foreground saliency for mean-shift tracking. Multimedia Tools and Applications, 2015. DOI: 10.1007/s11042- 015-3078-3
  14. ZHAO, H., XIANG, K., CAO, S., et al. Robust visual tracking via CAMShift and structural local sparse appearance model. Journal of Visual Communication and Image Rrpresentation, 2016, vol. 34, p. 176–186. DOI: 10.1016/j.jvcir.2015.11.008
  15. STANLEY, T., BIRCHFIELD, RANGARAJAN, S. Spatial histograms for region-based tracking. ETRI Journal, 2007, vol. 29, no. 5, p. 697–699. DOI: 10.4218/etrij.07.0207.0017
  16. CHU, H., SONG, Q., YUAN, H. Research of Mean Shift target tracking with spatiogram corrected background-weighted histogram. In IEEE International Conference on Information and Automation, 2015, Lijiang (China). DOI: 10.1109ICInfA.2015.7279606
  17. PAKFILIZ, A.G. Video tracking for visual degraded aerial vehicle with H-PMHT. Radioengineering, 2015, vol. 24, no. 4, p. 1091– 1098. DOI: 10.13164/re.2015.1091
  18. MEHMOOD, R., NAWAZ, R., IQBAL, N. Occlusion handling in meanshift tracking using adaptive window normalized cross correlation. In International Bhurban Conference on Applied Sciences and Technology (IBCAST). Isamabad (Pakistan), 2014. DOI: 10.1109/IBCAST.2014.6778134

Keywords: Target tracking, spatio-spectral technique, Mean Shift, Guided filter, Target localization