ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)



Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile

December 2020, Volume 29, Number 4 [DOI: 10.13164/re.2020-4]

Show all Hide all

D. Sayad, C. Zebiri , I. Elfergani , J. Rodriguez , R. Abd-Alhameed, F. Benabdelaziz [references] [full-text] [DOI: 10.13164/re.2020.0591] [Download Citations]
Analysis of Chiral and Achiral Medium Based Coplanar Waveguide Using Improved Full Generalized Exponential Matrix Technique

In this work, an analytical study of the electromagnetic propagation in a complex medium-based suspended three-layer coplanar waveguide (CPW) is carried out. The study aims at a numerical calculation of the dominant hybrid mode complex propagation constant in the CPW printed on a bianisotropic substrate. The herein considered bianisotropy is characterized by full 3×3 tensors of permittivity, permeability and magnetoelectric parameters. The study is based on the numerical derivation of the Green's functions of such a complex medium in the spectral domain. The study is carried out using the Full Generalized Exponential Matrix Technique based on matrix-shaped compact mathematical formulations. The Spectral Method of Moments (SMoM) and the Galerkin's procedure are used to solve the resulting homogeneous system of equations. The effect of the chiral and achiral bianisotropy on the complex propagation constant is particularly investigated. Good agreements with available data for an anisotropic-medium-based suspended CPW structure are achieved. Various cases of chiral and achiral bianisotropy have been investigated, and particularly, the effect on the dispersion characteristics is presented and compared with cases of isotropic and bianisotropic Tellegen media.

  1. SAYAD, D., ZEBIRI, C., DAOUDI, S., et al. Analysis of the effect of a gyrotropic anisotropy on the phase constant and characteristic impedance of a shielded microstrip line. Advanced Electromagnetics, 2019, vol. 8, no. 5, p. 15–22. DOI: 10.7716/aem.v8i5.946
  2. SHELBY, R. A., SMITH, D. R., SCHULTZ, S. Experimental verification of a negative index of refraction. Science, 2001, vol. 292, no. 5514, p. 77–79. DOI: 10.1126/science.1058847
  3. BILOTTI, F., SEVGI, L. Metamaterials: Definitions, properties, applications, and FDTD-based modeling and simulation. International Journal of RF and Microwave Computer-Aided Engineering, 2012, vol. 22, no 4, p. 422–438. DOI: 10.1002/mmce.20634
  4. CHEN, L. F., ONG, C. K., NEO, C. P., et al. Microwave Electronics: Measurement and Materials Characterization. 1st ed. John Wiley & Sons, 2004. ISBN: 978-0470844922
  5. MACKAY, T. G., LAKHTAKIA, A. Negatively refracting chiral metamaterials: A review. SPIE Reviews, 2010, vol. 1, no 1, p. 1–29. DOI: 10.1117/6.0000003
  6. MOLINA-CUBEROS, G. J., GARCIA-COLLADO, A. J., MARGINEDA, J., et al. Electromagnetic activity of chiral media based on crank inclusions. IEEE Microwave and Wireless Components Letters, 2009, vol. 19, no. 5, p. 278–280. DOI: 10.1109/LMWC.2009.2017588
  7. LINDELL, I. V., SIHVOLA, A. H., VIITANEN, A. J., TRETYAKOV S. A. Electromagnetic Waves in Chiral and Biisotropic Media. Artech House, 1994. ISBN: 0890066841
  8. SIHVOLA, A., SEMCHENKO, I., KHAKHOMOV, S. View on the history of electromagnetics of metamaterials: Evolution of the congress series of complex media. Photonics and NanostructuresFundamentals and Applications, 2014, vol. 12, no. 4, p. 279–283. DOI: 10.1016/j.photonics.2014.03.004
  9. NOVITSKY, A., SHALIN, A. S., LAVRINENKO, A. V. Spherically symmetric inhomogeneous bianisotropic media: Wave propagation and light scattering. Physical Review A, 2017, vol. 95, no. 5, p. 1–11. DOI: 10.1103/PhysRevA.95.053818
  10. ASADCHY, V. S., DIAZ-RUBIO, A., TRETYAKOV, S. A. Bianisotropic metasurfaces: Physics and applications. Nanophotonics 2018, vol. 7, no. 6, p. 1069–1094. DOI: 10.1515/nanoph-2017-0132
  11. MULJAROV, E. A., WEISS, T. Resonant-state expansion for open optical systems: Generalization to magnetic, chiral, and bianisotropic materials. Optics Letters, 2018, vol. 43, no. 9, p. 1978–1981. DOI: 10.1364/OL.43.001978
  12. KAMRA, V., DREHER, A. Efficient analysis of multiple microstrip transmission lines with anisotropic substrates. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 8, p. 636–638. DOI: 10.1109/LMWC.2018.2847032
  13. BUZOV, A. L., BUZOVA, M. A., KLYUEV, D. S., et al. Calculating the input impedance of a microstrip antenna with a substrate of a chiral metamaterial. Journal of Communications Technology and Electronics, 2018, vol. 63, no. 11, p. 1259–1264. DOI: 10.1134/S1064226918110037
  14. KLYUEV, D. S., MINKIN, M. A., MISHIN, D. V., et al. Characteristics of radiation from a microstrip antenna on a substrate made of a chiral metamaterial. Radiophysics and Quantum Electronics, 2018, vol. 61, no. 6, p. 445–455. DOI: 10.1007/s11141-018-9906-3
  15. ZHOU, Z., KELLER, S. M. The application of least-squares finiteelement method to simulate wave propagation in bianisotropic media. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 4, p. 2574–2582. DOI: 10.1109/TAP.2019.2893182
  16. ZEBIRI, C., LASHAB, M., BENABDELAZIZ, F. Effect of anisotropic magneto-chirality on the characteristics of a microstrip resonator. IET Microwaves, Antennas & Propagation, 2010, vol. 4, no. 4, p. 446–452. DOI: 10.1049/iet-map.2008.0439
  17. HASAR, U. C., BARROSO, J. J., SABAH, C., et al. Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials. Journal of Optical Society of America B, Optical Physics, 2013, vol. 30, no. 4, p. 1058–1068. DOI: 10.1364/JOSAB.30.001058
  18. HASAR, U. C., BULDU, G., Y. KAYA, Y., et al. Determination of effective constitutive parameters of inhomogeneous metamaterials with bianisotropy. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 8, p. 3734–3744. DOI: 10.1109/TMTT.2018.2846726
  19. ZEBIRI, C., LASHAB, M., BENABDELAZIZ, F. Rectangular microstrip antenna with uniaxial bianisotropic chiral substratesuperstrate. IET Microwaves, Antennas & Propagation, 2011, vol. 5, no. 1, p. 17–29. DOI: 10.1049/iet-map.2009.0446
  20. AIB, S., BENABDELAZIZ, F., ZEBIRI, C., et al. Propagation in diagonal anisotropic chirowaveguides. Advances in OptoElectronics, 2017, p. 1–8. DOI: 10.1155/2017/9524046
  21. ZEBIRI, C., DAOUDI, S., BENABDELAZIZ, F., et al. Gyrochirality effect of bianisotropic substrate on the operational of rectangular microstrip patch antenna. International Journal of Applied Electromagnetics and Mechanics, 2016, vol. 51, no. 3, p. 249–260. DOI: 10.3233/JAE-150141
  22. ZEBIRI, C., LASHAB, M., BENABDELAZIZ, F. Asymmetrical effects of bi-anisotropic substrate-superstrate sandwich structure on patch resonator. Progress In Electromagnetics Research B, 2013, vol. 49, p. 319–337. DOI: 10.2528/PIERB13012115
  23. SAYAD, D., ZEBIRI, C., ELFERGANI, I., et al. Complex bianisotropy effect on the propagation constant of a shielded multilayered coplanar waveguide using improved full generalized exponential matrix technique. Electronics, 2020, vol. 9, no. 2, p. 1–18. DOI: 10.3390/electronics9020243
  24. VEGNI, L., TOSCANO, A. Shielding and radiation characteristics of cylindrical layered bianisotropic structures. Radioengineering, 2005, vol. 14, no. 4, p. 68–74. ISSN: 1210-2512
  25. YIN, W. Y., LI, L. W., LEONG, M. S. Hybrid effects of gyrotropy and chirality in chiral-ferrite fin lines. Microwave and Optical Technology Letters, 2000, vol. 25, no. 1, p. 40–44. DOI: 10.1002/(SICI)1098-2760(20000405)25:1<40::AIDMOP12>3.0.CO;2-N
  26. ZEBIRI, C., SAYAD, D. Effect of bianisotropy on the characteristic impedance of a shielded microstrip line for wideband impedance matching applications. Waves in Random and Complex Media, 2020, p. 1–14. DOI: 10.1080/17455030.2020.1752957
  27. DAOUDI, S., BENABDELAZIZ, F., ZEBIRI, C., et al. Generalized exponential matrix technique application for the evaluation of the dispersion characteristics of a chiro-ferrite shielded multilayered microstrip line. Progress In Electromagnetics Research M, 2017, vol. 61, p. 1–14. DOI: 10.2528/PIERM17082107
  28. TSALAMENGAS, J. L. Interaction of electromagnetic waves with general bianisotropic slabs. IEEE Transactions on Microwave Theory and Technique, 1992, vol. 40, no. 10, p. 1870–1878. DOI: 10.1109/22.159623
  29. XU, H., JAIN, S., SONG, J., et al. Acceleration of spectral domain immitance approach for generalized multilayered shielded microstrips using the Levin’s transformation. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 14, p. 92–95. DOI: 10.1109/LAWP.2014.2356401
  30. OUESLATI, N., AGUILI, T. An improved MoM-GEC method for fast and accurate computation of transmission planar structures in waveguides: Application to planar microstrip lines. Progress In Electromagnetics Research M, 2016, vol. 48, p. 9–24. DOI: 10.2528/PIERM16030204
  31. SAYAD, D., BENABDELAZIZ, F., ZEBIRI, C., et al. Spectral domain analysis of gyrotropic anisotropy chiral effect on the input impedance of a printed dipole antenna. Progress In Electromagnetics Research M, 2016, vol. 51, p. 1–8. DOI: 10.2528/PIERM16073106
  32. LUCIDO, M. A new high-efficient spectral-domain analysis of single and multiple coupled microstrip lines in planarly layered media. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 60, no. 7, p. 2025–2034. DOI: 10.1109/TMTT.2012.2195025
  33. JAIN, S., SONG, J., KAMGAING, T., et al. Acceleration of spectral domain approach for generalized multilayered shielded microstrip interconnects using two fast convergent series. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, vol. 3, no. 3, p. 401–410. DOI: 10.1109/TCPMT.2012.2222644
  34. VAN BLADEL, J. G. Electromagnetic Fields. 2nd ed. Wiley-IEEE Press, 2007. ISBN: 978-0-471-26388-3
  35. CHIANG, K. S. Review of numerical and approximate methods for the modal analysis of general optical dielectric waveguides. Optical and Quantum Electronics, 1994, vol. 26, no. 3, p. S113–S134. DOI: 10.1007/BF00384667
  36. MIRSHEKAR-SYAHKAL, D. Spectral Domain Method for Microwave Integrated Circuits. Wiley-Blackwell, 1990. ISBN: 0863800998
  37. MAZE-MERCEUR, G., TEDJINI, S., BONNEFOY, J. L. Analysis of a CPW on electric and magnetic biaxial substrate. IEEE Transactions on Microwave Theory and Technique, 1993, vol. 41, no. 3, p. 457–461. DOI: 10.1109/22.223745
  38. KHODJA, A., YAGOUB, M. C. E., TOUHAMI, R., et al. Practical recurrence formulation for composite substrates: Application to coplanar structures with bi-anisotropic dielectrics. In Proceedings of the 18th Mediterranean Microwave Symposium (MMS). Istanbul (Turkey), 2018, p. 341–344. DOI: 10.1109/MMS.2018.8612139

Keywords: CPW, chiral and achiral, Tellegen, full-GEMT, complex propagation constant

A. Ghaffar, W. A. Awan, A. Zaidi, N. Hussain, S. M. Rizvi, X. J. Li [references] [full-text] [DOI: 10.13164/re.2020.0601] [Download Citations]
Compact Ultra Wide-Band and Tri-Band Antenna for Portable Device

A compact ultra-wideband (UWB) and triband patch antenna with the partial ground plane is presented in this paper. Initially, the antenna is designed for UWB applications, operating at the UWB portion of the spectrum ranging from 3.1 GHz to 10.6 GHz, then it is modified to operate at three distinct frequencies of 2.45 GHz, 5 GHz, and 10.2 GHz. The proposed antenna is inspired by a classic rectangular patch antenna in which slots, stubs, and defected ground structure (DGS) were introduced to increase its operational bandwidth. Good results in terms of return loss are found in all resonant frequencies as well as for the single wideband. In addition, the proposed antenna has been compared with related works in the literature, to highlight its potential for future UWB and multiband portable devices.

  1. LAHEURTE, J.M. (Ed.) Compact Antennas for Wireless Communication and Terminals. Hoboken (NJ): Wiley, 2011. ISBN: 978-1-118-60340-6
  2. GALVAN-TEJADA, G. M., PEYROT-SOLIS, M. A., AGUILAR, H. J. Ultra Wideband Antennas: Design, Methodologies and Performance. Boca Raton (FL): CRC Press, 2015. DOI: 10.1201/b18624
  3. AKHTAR, F., NAQVI, S. I., ARSHAD, F., et al. A flexible and compact semicircular antenna for multiple wireless communication applications. Radioengineering, 2018, vol. 27, no. 3, p. 671–678. DOI: 10.13164/re.2018.0671
  4. AWAN, W.A., ZAIDI, A., HUSSAIN, N., et al. Stub loaded, low profile UWB antenna with independently controllable notch‐ bands. Microwave and Optical Technology Letters, 2019, vol. 61, no. 11, p. 2447–2454. DOI: 10.1002/mop.31915
  5. HUSSAIN, N., JEONG, M., PARK, J., et al. A compact size 2.9‐ 23.5 GHz microstrip patch antenna with WLAN band‐rejection. Microwave and Optical Technology Letters, 2019, vol. 61, no. 5, p. 1307–1313. DOI: 10.1002/mop.31708
  6. CHAUDHARY, P., KUMAR, A. Compact ultra-wideband circularly polarized CPW-fed monopole antenna. AEU International Journal of Electronics and Communication, 2019, vol. 107, p. 137–145. DOI: 10.1016/j.aeue.2019.05.025
  7. DAS, A., ACHARJEE, J., MANDAL, K. Compact UWB printed slot antenna with three extra bands and WiMAX rejection functionality. Radioengineering, 2019, vol. 28, no. 3, p. 544–551. DOI: 10.13164/re.2019.0544
  8. LI, Y., LI, W., JIANG, T. Implementation and investigation of a compact circular wide slot UWB antenna with dual notched band characteristics using stepped impedance resonators. Radioengineering, 2012, vol. 21, no. 1, p. 617–527. ISSN: 1210- 2512
  9. HOTA, S., BAUDHA, S., MANGARAJ, B. B., et al. A novel compact planar antenna for ultra-wideband application. Journal of Electromagnetic Waves and Applications, 2020, vol. 34, no. 1, p. 116–128. DOI: 10.1080/09205071.2019.1689854
  10. BAUDHA, S., BASAK, A., MANOCHA, M., et al. A compact planar antenna with extended patch and truncated ground plane for ultra-wide band application. Microwave and Optical Technology Letters, 2020, vol. 62, no. 1, p. 200–209. DOI: 10.1002/mop.31988
  11. HOTA, S., BAUDHA, S., MANGARAJ, B. B., et al. A compact, ultrawide band planar antenna with modified circular patch and a defective ground plane for multiple applications. Microwave and Optical Technology Letters, 2019, vol. 61, no. 9, p. 2088–2097. DOI: 10.1002/mop.31867
  12. ULLAH, U., KOZIEL, S. Design and optimization of a novel compact broadband linearly/circularly polarized wide-slot antenna for WLAN and Wi-MAX applications. Radioengineering, 2019, vol. 28, no. 1, p. 19–24. DOI: 10.13164/re.2019.0019
  13. HAMAD, E. K. I., NADY, G. Bandwidth extension of ultrawideband microstrip antenna using metamaterial double-side planar periodic geometry. Radioengineering, 2019, vol. 28, no. 1, p. 25–32. DOI: 10.13164/re.2019.0025
  14. NIYAMANON, S., JANPANGNGERN, P., PHONGCHAROENPANICH, C. Wideband dual-arm capacitively coupled patch antenna for tablet/laptop applications. Radioengineering, 2019, vol. 28, no. 4, p. 671–679. DOI: 10.13164/re.2019.0671
  15. BARAD, D., BEHERA, S. Hybrid polarized microstrip antenna for multifrequency application. International Journal of RF Microwave Computer‐Aided Engineering, 2017, vol. 27, no. 7, p. 1–9. DOI: 10.1002/mmce.21117
  16. AMEEN, M., KUMAR, R., MISHRA, N., et al. A compact triple band dual polarized metamaterial antenna loaded with double hexagonal SRR for WLAN/WiMAX applications. In International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM). Bangalore (India), 2017, p. 1–4. DOI: 10.1109/IAIM.2017.8402518
  17. FERTAS, F., CHALLAL, M., FERTAS, K. Design and implementation of a miniaturized CPW-fed microstrip antenna for triple-band applications. In 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B). Boumerdes (Algeria), p. 1–6. DOI: 10.1109/ICEE-B.2017.8192103
  18. JALALI, A. R., AHAMDI-SHOKOUH, J., EMADIAN, S. R. Compact multiband monopole antenna for UMTS, WiMAX, and WLAN applications. Microwave and Optical Technology Letters, 2016, vol. 58, no. 4, p. 844–847. DOI: 10.1002/mop.29685
  19. LIU, G., LIU, Y., GONG, S. Compact tri‐band wide‐slot monopole antenna with dual‐ring resonator for WLAN/WiMAX applications. Microwave and Optical Technology Letters, 2016, vol. 58, no. 5, p. 1097–1101. DOI: 10.1002/mop.29759
  20. ACHARJEE, J., KUMAR, R. L., MANDAL, K., et al. A compact multiband multimode antenna employing defected ground structure. Radioengineering, 2019, vol. 28, no. 4, p. 663–670. DOI: 10.13164/re.2019.0663
  21. IQBAL, A., SMIDA, A., ABDULRAZAK, L. F., et al. Lowprofile frequency reconfigurable antenna for heterogeneous wireless systems. Electronics, 2019, vol. 8, no. 9, p. 1–11. DOI: 10.3390/electronics8090976
  22. BALANIS, C. A. Advanced Engineering Electromagnetics. John Wiley & Sons, 1999.
  23. UR RAHMAN, M., NAGSHVARIAN JAHROMI, M., MIRJAVADI, S. S., et al. Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications. Electronics, 2019, vol. 8, no. 2, p. 1–13. DOI: 10.3390/electronics8020158

Keywords: Compact size, UWB, triple-band, low profile antenna, DGS

R. K. Barik, Q. S. Cheng, N. C. Pradhan, S. S. Karthikeyan [references] [full-text] [DOI: 10.13164/re.2020.0609] [Download Citations]
Design of Miniaturized SIW Filter Loaded with Open-Loop Resonators and Its Application to Diplexer

This paper presents a novel design of miniaturized substrate-integrated waveguide (SIW) filter loaded with a pair of unit-cell resonators. Two identical open-loop resonators are connected face-to-face to form a unit-cell. A pair of unit-cells is engraved on the surface of the SIW to develop an evanescent-mode bandpass filter. The proposed unit-cells behave as an electric-dipole and produce a passband smaller than the waveguide frequency. This reduction in resonant frequency allows us to achieve size miniaturization. An equivalent electrical-circuit model is developed and investigate for characterization of passband and transmission-zero. This filter structure is then employed to develop a SIW planar diplexer. Two SIW filter structures loaded with unit-cells are excited with a T-shaped feed line to achieve lower and upper channels of the diplexer. To demonstrate the analysis, both SIW filter and diplexer loaded with open-loop resonators are implemented and fabricated. The proposed SIW filter and diplexer prototypes exhibit size miniaturization, low insertion-loss and high-selectivity due to evanescent-mode transmission and sub-wavelength resonators. The measurement responses are very similar to the simulation responses.

  1. HONG, J. S., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. New York (USA): John Wiley & Sons, 2001, DOI: 10.1002/0471221619
  2. DESLANDES, D., WU, K. L. Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques 2006, vol. 54, no. 6, p. 2516–2526. DOI: 10.1109/TMTT.2006.875807
  3. WU, L., ZHOU, X., YIN, W. Evanescent-mode bandpass filters using folded and ridge substrate integrated waveguides (SIWs). IEEE Microwave and Wireless Components Letters 2009, vol. 19, no. 3, p. 161–163. DOI: 10.1109/LMWC.2009.2013739
  4. LI, R., TANG, X., XIAO, F. Design of substrate integrated waveguide transversal filter with high selectivity. IEEE Microwave and Wireless Components Letters, 2010, vol. 20, no. 6, p. 328–330. DOI: 10.1109/LMWC.2010.2047518
  5. ZHANG, Q., YIN, W., HE, S, et al. Compact substrate integrated waveguide (SIW) bandpass filter with complementary split-ring resonators (CSRRs). IEEE Microwave and Wireless Components Letters, 2010, vol. 20, no. 8, p. 426–428. DOI: 10.1109/LMWC.2010.2049258
  6. SHEN, W., YIN, W., SUN, X. Compact substrate integrated waveguide (SIW) filter with defected ground structure. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 2, p. 83–85. DOI: 10.1109/LMWC.2010.2091402
  7. ZHANG, P., LI, M. Cascaded trisection substrate-integrated waveguide filter with high selectivity. Electronics Letters, 2014, vol. 50, no. 23, p. 1717–1719. DOI: 10.1049/el.2014.3456
  8. LEE, B., LEE, T., LEE, K., et al. K-band substrate-integrated waveguide resonator filter with suppressed higher-order mode. IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 6, p. 367–369. DOI: 10.1109/LMWC.2015.2421313
  9. JIA, D., FENG, Q., XIANG, Q., et. al. Multilayer substrate integrated waveguide (SIW) filters with higher-order mode suppression. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 9, p. 678–680. DOI: 10.1109/LMWC.2016.2597222
  10. HE, Z., YOU, C., LENG, S., et al. Compact inline substrate integrated waveguide filter with enhanced selectivity using new non-resonating node.Electronics Letters, 2016, vol. 52, no. 21, p. 1778–1779. DOI: 10.1049/el.2016.2712
  11. KHAN, A., MANDAL, M. Narrowband substrate integrated waveguide bandpass filter with high selectivity. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 5, p. 416–418. DOI: 10.1109/LMWC.2018.2820605
  12. AZAD, A., MOHAN, A. Single- and dual-band bandpass filters using a single perturbed SIW circular cavity. IEEE Microwave and Wireless Components Letters, 2010, vol. 29, no. 9, p. 201–203. DOI: 10.1109/LMWC.2019.2893379
  13. SERKAN, S., REZAEIEH, S. A design method for substrate integrated waveguide electromagnetic bandgap (SIW-EBG) filters. AEU - International Journal of Electronics and Communications, 2013, vol. 67, no. 11, p. 981–983. DOI: 10.1016/j.aeue.2013.05.009
  14. CLARA, M. G., HINOJOSA, J., MELCON, A. A. Design of wide band-pass substrate integrated waveguide (SIW) filters based on stepped impedances. AEU - International Journal of Electronics and Communications, 2019, vol. 100, p. 1–8. DOI: 10.1016/j.aeue.2018.12.022
  15. TSAI, W. L., SHEN, T. M., CHEN, B., et al. Design of singlebranch laminated waveguide diplexers using modal orthogonality. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 12, p. 4079–4089. DOI: 10.1109/TMTT.2013.2287476
  16. KORDIBOROUJENI, Z., BORNEMANN, J. Substrate integrated waveguide diplexer with dual-mode junction cavity. In 2015 European Microwave Conference (EuMC), 2015, p. 753–756. DOI: 10.1109/EuMC.2015.7345873
  17. ZHOU, K., ZHOU, C., WU, W. Compact SIW diplexer with flexibly allocated bandwidths using common dual-mode cavities. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 4, p. 317–319. DOI: 10.1109/LMWC.2018.2805881
  18. CHU, P., HONG, W., TUO, M., et al. Dual-mode substrate integrated waveguide filter with flexible response. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 3, p. 824–830. DOI: 10.1109/TMTT.2016.2633346
  19. GARCIA-LAMPEREZ, A., SALAZAR-PALMA, M., YEUNG, S. H. Compact diplexer with dual-mode SIW resonators. In 2014 44th European Microwave Conference. Rome (Italy), 2014, p. 857–860. DOI: 10.1109/EuMC.2014.6986570
  20. NWAJANA, A. O., YEO, K. S. K. Microwave diplexer purely based on direct synchronous and asynchronous coupling. Radioengineering, 2016, vol. 25, no. 2, p. 247–252. DOI: 10.13164/re.2016.0247
  21. NWAJANA, A. O., DAINKEH, A., YEO, K. S. K. Substrate integrated waveguide (SIW) diplexer with novel input/output coupling and no separate junction. Progress In Electromagnetics Research M, 2018, vol. 67, p. 75–84. DOI: 10.2528/PIERM18021603
  22. QU, L., ZHANG, Y., LIU, J. et al. Three-state SIW diplexer with independently controllable centre frequencies. Electronics Letters, 2019, vol. 55, no. 9, p. 548–550. DOI: 10.1049/el.2018.8255
  23. SONG, K., ZHOU, Y., CHEN, Y., et al. High-isolation diplexer with high frequency selectivity using substrate integrate waveguide dual-mode resonator. IEEE Access, 2019, vol. 7, p. 116676–116683. DOI: 10.1109/ACCESS.2019.2926121
  24. IQBAL, A., TIANG, J. J., LEE, C. K., et al. Tunable substrate integrated waveguide diplexer with high isolation and wide stopband. IEEE Microwave and Wireless Components Letters, 2019, vol. 29, no. 7, p. 456–458. DOI: 10.1109/LMWC.2019.2916609
  25. SU, Z. L., XU, B. W., ZHENG, S. Y., et al. High-isolation and widestopband SIW diplexer using mixed electric and magnetic coupling. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, vol. 67, no. 1, p. 32–36. DOI: 10.1109/TCSII.2019.2903388
  26. PRADHAN, N. C. SUBRAMANIAN, K. S., BARIK, R. K., et al. Design of a compact SIW diplexer with square cavities for C-band applications. In 2020 URSI Regional Conference on Radio Science (URSI-RCRS). Varanasi (India), 2020, p. 1–4, DOI: 10.23919/URSIRCRS49211.2020.9113580
  27. XIE, H., ZHOU, K., ZHOU, C., et al. High-isolation and widestopband SIW diplexer using mixed electric and magnetic coupling. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, p. 1–1, DOI: 10.1109/TCSII.2020.2992059

Keywords: SIW, filter, diplexer, open-loop resonators

D. M. Luong, X. N. Tran [references] [full-text] [DOI: 10.13164/re.2020.0617] [Download Citations]
An Independently Biased 3-stacked GaN HEMT Power Amplifier for Next-Generation Wireless Communication Systems

In this paper, a design of 3-stacked GaN highelectron-mobility transistor radio-frequency power amplifier employing an independently biased technique is presented to meet stringent requirements of next-generation wireless communication systems. The ability of independently adjusting operation conditions for each transistor of the proposed amplifier makes it possible to operate not only for high efficiency, high linearity but also for both improved efficiency and linearity. Efficiency can be optimized through varying drain bias voltages. Linearity, however, can be optimized independently through varying gate bias voltages. Importantly, both efficiency and linearity can be optimized simultaneously by making a compromise between drain and gate bias voltages. In contrast to conventional methods, the proposed configuration still ensures a compact size for design of the power amplifier. This can be feasible because the proposed solution is introduced in the device level using a MMIC technology. These superior advantages make the proposed PA a promising candidate for using in transceiver of the next-generation wireless communications systems.

  1. FAN, Y., YANG, L., ZHANG, D., et al. An angle rotateQAM aided differential spatial modulation for 5G ubiquitous mobile networks. Mobile Networks and Applications, 2019, p. 1–3. DOI: 10.1007/s11036-019-01399-0
  2. XU, X., LIU, X., XU, Z., et al. Joint optimization of resource utilization and load balance with privacy preservation for edge services in 5G networks. Mobile Networks and Applications, 2020, vol. 25, p. 713–724. DOI: 10.1007/s11036-019-01448-8
  3. BIRAFANE, A., KOUKI, A. B. On the linearity and efficiency of outphasing microwave amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 7, p. 1702–1708. DOI: 10.1109/TMTT.2004.830485
  4. FU, J. S., MORTAZAWI, A. Improving power amplifier efficiency and linearity using a dynamically controlled tunable matching network. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 12, p. 3239–3244. DOI: 10.1109/TMTT.2008.2007094
  5. FAGER, C., ERICKSSON, T., BARRADAS, F., et al. Linearity and efficiency in 5G transmitters: new techniques for analyzing efficiency, linearity, and linearization in a 5G active antenna transmitter context. IEEE Microwave Magazine, 2019, vol. 20, no. 5, p. 35–49. DOI: 10.1109/MMM.2019.2898020
  6. KIM, B., KIM, J., KIM, I., et al. The Doherty power amplifier. IEEE Microwave Magazine, 2006, vol. 7, no. 5, p. 42–50. DOI: 10.1109/MW-M.2006.247914
  7. NGUYEN, D. P., CURTIS, J., PHAM, A. V. A Doherty amplifier with modified load modulation scheme based on load-pull data. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 1, p. 227–236. DOI: 10.1109/TMTT.2017.2734663
  8. ABDULKHALEG, A. M., YAHYA, M. A., AL-YASIR, Y. I. A., et al. Doherty power amplifier for LTE-advanced systems. Technologies, MDPI, 2019, vol. 7, no. 3, p. 1–13. DOI: 10.3390/technologies7030060
  9. KIM ,D., KANG, D., CHOI, J., et al. Optimization for envelope shaped operation of envelope tracking power amplifier. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 7, p. 1787–1795. DOI: 10.1109/TMTT.2011.2140124
  10. PARK, B., KIM, D., KIM, S., et al. High-performance CMOS power amplifier with improved envelope tracking supply modulator. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 3, p. 798–809. DOI: 10.1109/TMTT.2016.2518659
  11. ALT, A., HIRSHY, H., JIANG, S., et al. Analysis of gain variation with changing supply voltages in GaN HEMTs for envelope tracking power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2019, vol. 67, no. 7, p. 2495–2504. DOI: 10.1109/TMTT.2019.2916404
  12. WOOD, J. System-level design considerations for digital predistortion of wireless base station transmitters. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 5, p. 1880–1890. DOI: 10.1109/TMTT.2017.2659738
  13. ABDELAZIZ, M., ANTTILA, L., BRIHUEGA, A., et al. Digital predistortion for hybrid MIMO transmitters. IEEE Journal of Selected Topics in Signal Processing, 2018, vol. 12, no. 3, p. 445–454. DOI: 10.1109/JSTSP.2018.2824981
  14. LE, D.H., HOANG, V. P., NGUYEN, M. H., et al. Linearization of RF power amplifiers in wideband communication systems by adaptive indirect learning using RPEM algorithm. Mobile Networks and Applications, 2020, vol. 25, p. 1988–1997. DOI: 10.1007/s11036-020-01545-z
  15. ARMIJO, C. T., MEYER, R. G. A new wide-band Darlington amplifier. IEEE Journal of Solid-State Circuits, 1989, vol. 4, no. 24, p. 1105–1109. DOI: 10.1109/4.34098
  16. WENG, S. H., CHANG, H. Y., CHIONG, C. C., et al. Gain-bandwidth analysis of broadband Darlington amplifiers in HBT-HEMT process. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 11, p. 3458–3473. DOI: 10.1109/TMTT.2012.2215051
  17. AHY, R. M., NISHIMOTO, C., RIAZIAT, M., et al. 100-GHz highgain InP MMIC cascode amplifier. IEEE Journal of Solid-State Circuits, 1991, vol. 26, no. 10, p. 1370–1378. DOI: 10.1109/4.90088
  18. SOWLATI, T., LEENERTS, D. A 2.4-GHz 0.18-μm CMOS selfbiased cascode power amplifier. IEEE Journal of Solid-State Circuits, 2003, vol. 38, no. 8, p. 1318–1324. DOI: 10.1109/JSSC.2003.814417
  19. ROOZBAHANI, R. G. BJT-BJT, FET-BJT, and FET-FET. IEEE Circuits and Devices Magazine, 2004, vol. 20, no. 6, p. 17–22. DOI: 10.1109/MCD.2004.1364771
  20. LUONG, D. M., TAKAYAMA, Y., ISHIKAWA, R., et al. Power gain performance enhancement of independently biased heterojunction bipolar transistor cascode chip. Japanese Journal of Applied Physics, 2015, vol. 54, no. 4S, p. 1–8. DOI: 10.7567/JJAP.54.04DF11
  21. LUONG, D. M., TAKAYAMA, Y., ISHIKAWA, R., et al. Microwave characteristics of an independently biased 3-stack InGaP/- GaAs HBT configuration. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, vol. 64, no. 5, p. 3487–3495. DOI: 10.1109/TCSI.2016.2637406
  22. HOANG, N. H., LUONG, D. M., DUONG, B. G. A novel independently biased 3-stack GaN HEMT configuration for efficient design of microwave amplifiers. Applied Sciences, MDPI, 2019, vol. 9, no. 7, p. 1–16. DOI: 10.3390/app9071510
  23. WIN Semiconductors. [Online] Cited 2020-06-23. Available at:
  24. Murata Inovator in Electronics. [Online] Cited 2020-06-23. Available at:

Keywords: Power amplifier, GaN HEMT, independently biased, IMD3, linearity, efficiency

F. Akram, I. Rashid, A. Ghafoor, A. M. Siddiqui [references] [full-text] [DOI: 10.13164/re.2020.0625] [Download Citations]
Coherence Optimized Channel Estimation for Mm-Wave Massive MIMO

Mm-wave MIMO communication makes a hybrid combination of analog RF and digital baseband processing more attractive, where digital baseband precoders/combiners able to adapt to the pre-defined analog (switch based) RF processors. Non-uniform two-dimensional quantized azimuth and elevation angle grid antenna array responses are suggested for uniform planar array (UPA) and are proven orthogonal. Training vectors (or sensing matrix) are designed for suggested antenna array response with unitary RF processing for UPA in mm-wave hybrid MIMO system. Proposed training vectors achieve minimized total coherence of the equivalent sensing matrix for hybrid MIMO system. Open-loop channel estimation of the mm-wave channel is done by using iterative re-weight based super resolution algorithm to exploit its sparse nature. Extensive simulations reveal the benefit of coherence optimization where normalized mean squared error is reduced and spectral efficiency is improved in comparison to existing methods.

  1. RAPPAPORT, T. S., SUN, S., RIMMA, M., et al. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 2013, vol. 1, p. 335–349. DOI: 10.1109/ACCESS.2013.2260813
  2. RAPPAPORT, T. S., XING, Y., MACCARTNEY, G., et al. Overview of millimeter wave communications for fifth-generation (5G) wireless networks - With a focus on propagation models. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 12, p. 6213–6230. DOI: 10.1109/TAP.2017.2734243
  3. AKDENIZ, M. R., LIU, Y., SAMIMI, M. K., et al. Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 2014, vol. 32, no. 6, p. 1164–1179. DOI: 10.1109/JSAC.2014.2328154
  4. AYACH, O. E., RAJAGOPAL, S., ABU-SURRA, S., et al. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 3, p. 1499–1513. DOI: 10.1109/TWC.2014.011714.130846
  5. AHMED, I., KHAMMARI, H., SHAHID, A., et al. A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives. IEEE Communications Surveys & Tutorials, 2018, vol. 20, no. 4, p. 3060–3097. DOI: 10.1109/COMST.2018.2843719
  6. LEE, J., KANG, M., OH, J., et al. Space-time alignment for channel estimation in millimeter wave communication with beam sweeping. In IEEE Global Communications Conference (GLOBECOM). Singapore, 2017, p. 1–7. DOI:10.1109/GLOCOM.2017.8254894
  7. QIN, Q., GUI, L., CHENG, P., et al. Time-varying channel estimation for millimeter wave multiuser MIMO systems. IEEE Transactions on Vehicular Technology, 2018, vol. 67, no. 10, p. 9435–9448. DOI: 10.1109/TVT.2018.2854735
  8. SHAHMANSOORI, A., GARCIA, G. E., DESTINO, G., et al. Position and orientation estimation through millimeter-wave MIMO in 5G systems. IEEE Transactions on Wireless Communications, 2018, vol. 17, no. 3, p. 1822–1835. DOI: 10.1109/TWC.2017.2785788
  9. YANG, J., WEI, Z., ZHANG, X., et al. Correlation based adaptive compressed sensing for millimeter wave channel estimation. In IEEE Wireless Communications and Networking Conference (WCNC). San Francisco (CA, USA), 2017, p. 1–6. DOI: 10.1109/WCNC.2017.7925685
  10. QI, B., WANG, W., WANG, B. Off-grid compressive channel estimation for mm-Wave massive MIMO with hybrid precoding. IEEE Communications Letters, 2019, vol. 23, no. 1, p. 108–111. DOI: 10.1109/LCOMM.2018.2878557
  11. PARK, S., HEATH, R. W. Spatial channel covariance estimation for the hybrid MIMO architecture: A compressive sensing-based approach. IEEE Transactions on Wireless Communications, 2018, vol. 17, no. 12, p. 8047–8062. DOI: 10.1109/TWC.2018.2873592
  12. HU, R., TONG, J., XI, J., et al. Matrix completion-based channel estimation for mmwave communication systems with arrayinherent impairments. IEEE Access, 2018, vol. 6, p. 62915–62931. DOI: 10.1109/ACCESS.2018.2877432
  13. ZHANG, D., WANG, Y., LI, X., et al. Hybridly connected structure for hybrid beamforming in mmwave massive MIMO systems. IEEE Transactions on Communications, 2018, vol. 66, no. 2, p. 662–674. DOI: 10.1109/TCOMM.2017.2756882
  14. WANG, Y., LIU, A., XIA, X., et al. Exploiting the clustered sparsity for channel estimation in hybrid analog-digital massive MIMO systems. IEEE Access, 2019, vol. 7, p. 4989–5000. DOI: 10.1109/ACCESS.2018.288729
  15. SRIVASTAVA, S., MISHRA, A., RAJORIYA, A., et al. Quasi-static and time-selective channel Estimation for block-sparse millimeter wave hybrid MIMO systems: Sparse Bayesian learning (SBL) based approaches. IEEE Transactions on Signal Processing, 2019, vol. 67, no. 5, p. 1251–1266. DOI: 10.1109/TSP.2018.2890058
  16. VIZZIELLO, A., SAVAZZI, P., CHOWDHURY, K. R. A Kalman based hybrid precoding for multi-user millimeter wave MIMO systems. IEEE Access, 2018, vol. 6, p. 55712–55722. DOI: 10.1109/ACCESS.2018.2872738
  17. MA, X., YANG, F., LIU, S., et al. Design and optimization on training sequence for mmwave communications: A new approach for sparse channel estimation in massive MIMO. IEEE Journal on Selected Areas in Communications, 2017, vol. 35, no. 7, p. 1486–1497. DOI: 10.1109/JSAC.2017.2698978
  18. MANOJ, A., KANNU, A. P. Channel estimation strategies for multi-user mm wave systems. IEEE Transactions on Communications, 2018, vol. 66, no. 11, p. 5678–5690. DOI: 10.1109/TCOMM.2018.2854188
  19. NGUYEN, D. H. N., LE, L. B., LE-NGOC, T., et al. Hybrid MMSE precoding and combining designs for mmwave multiuser systems. IEEE Access, 2017, vol. 5, p. 19167–19181. DOI: 10.1109/ACCESS.2017.2754979
  20. LEE, J., GIL, G., LEE, Y. H. Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Transactions on Communications, 2016, vol. 64, no. 6, p. 2370–2386. DOI: 10.1109/TCOMM.2016.2557791
  21. HU, C., DAI, L., MIR, T., et al. Super-resolution channel estimation for mmwave massive MIMO with hybrid precoding. IEEE Transactions on Vehicular Technology, 2018, vol. 67, no. 9, p. 8954–8958. DOI: 10.1109/TVT.2018.2842724
  22. ALKHATEEB, A., AYACH, O. E., LEUS, G., et al. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 2014, vol. 8, no. 5, p. 831–846. DOI: 10.1109/JSTSP.2014.2334278
  23. HEATH, R. W., GONZALEZ-PRELCIC, N., RANGAN, S., et al. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 2016, vol. 10, no. 3, p. 436–453. DOI: 10.1109/JSTSP.2016.2523924
  24. MENDEZ-RIAL, R., RUSU, C., GONZALEZ-PRELCIC, N., et al. Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches? IEEE Access, 2016, vol. 4, p. 247–267. DOI: 10.1109/ACCESS.2015.2514261
  25. JOKAR, S., MEHRMANN, V. Sparse solutions to underdetermined Kronecker product systems. Linear Algebra and its Applications, 2009, vol. 431, no. 12, p. 2437–2447. DOI:10.1016/j.laa.2009.08.005
  26. ZELNIK-MANOR, L., ROSENBLUM, K., ELDAR, Y. C. Sensing matrix optimization for block-sparse decoding. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 9, p. 4300–4312. DOI: 10.1109/TSP.2011.2159211
  27. ELAD, M. Optimized projections for compressed sensing. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 12, p. 5695–5702. DOI: 10.1109/TSP.2007.900760
  28. ZORLEIN, H., AKRAM, F., BOSSERT, M. Dictionary adaptation in sparse recovery based on different types of coherence. In 2nd International Workshop on Compressed Sensing applied to Radar (CoSeRa). Bonn (Germany), 2013, p. 1–3.
  29. LAUE, H. E. A., DU PLESSIS, W. P. A coherence-based algorithm for optimizing rank-1 Grassmannian codebooks. IEEE Signal Processing Letters, 2017, vol. 24, no. 6, p. 823–827. DOI: 10.1109/LSP.2017.2690466

Keywords: Channel estimation, compressed sensing, hybrid MIMO, mm-wave communication, sparse channel.

A. Bastani, F. Ahouz [references] [full-text] [DOI: 10.13164/re.2020.0636] [Download Citations]
High Capacity and Secure Watermarking for Medical Images Using Tchebichef Moments

Using Tchebichef Moments, this study has introduced a new method for imperceptible watermarking of the medical images with a high embedding capacity and robustness against the various attacks. The suggested method applies conditional quantization based on dither modulation to minimize the number of the moment orders that need to be changed. Reduction of modified moments increases the watermark imperceptibility and hence decreases the attacks probability. The proposed method has been examined in the presence of such factors as quantization step and watermark size. Experimental results show that average PSNR is 53.91 dB for 16384 embedding watermark bits. Moreover, the introduced algorithm has been tested for known attacks like scaling, cropping, noise, etc. It has been shown that our proposed method has proper security and robustness against various attacks. In addition, zero false positive rate on non-watermarked images has been obtained.

  1. VELUMANI, R., SEENIVASAGAM, V. A reversible blind medical image watermarking scheme for patient identification, improved telediagnosis and tamper detection with a facial image watermark. In Proceedings of IEEE Conference on Computational Intelligence and Computing Research. Coimbatore (India), 2010, p. 1–8. DOI: 10.1109/ICCIC.2010.5705832
  2. MEMON, N. A., GILANI, S. A. M. Watermarking of chest CT scan medical images for content authentication. International Journal of Computer Mathematics, 2011, vol. 88, no. 2, p. 265–280. DOI: 10.1080/00207161003596690
  3. TSOUGENIS, E. D., PAPAKOSTAS, G. A., KOULOURIOTIS, D. E., et al. Performance evaluation of moment-based watermarking methods: A review. Systems and Software, 2012, vol. 85, p. 1864–1884. DOI: 10.1016/j.jss.2012.02.045
  4. MUKUNDAN, R., ONG, S. H., LEE, P. A. Discrete vs. continuous orthogonal moments for image analysis. In Proceedings of International Conference on Imaging Science, Systems, and Technology (CISST01). Las Vegas (NV, USA), 2001, p. 23–29.
  5. MUKUNDAN, R., ONG, S. H., LEE, P. A. Image analysis by Tchebichef moments. IEEE Transactions on Image Processing, 2001, vol. 10, no. 9, p. 1357–1364. DOI: 10.1109/83.941859
  6. KOTOULAS, L., ANDREADIS, I. Fast computation of Chebyshev moments. IEEE Transactions on Circuits and Systems for Video Technology, 2006, vol. 16, no. 7, p. 884–888. DOI: 10.1109/TCSVT.2006.877403
  7. ALGHONIEMY, M., TEWFIK, A. H. Image watermarking by moment invariants. In Proceedings of IEEE International Conference on Image Processing. Vancouver (BC, Canada), 2000, vol. 2, p. 73–76. DOI: 10.1109/ICIP.2000.899229
  8. XIN, Y., LIAO, S., PAWLAK, M. Circularly orthogonal moments for geometrically robust image watermarking. Pattern Recognition, 2007, vol. 40, no. 12, p. 3740–3752. DOI: 10.1016/j.patcog.2007.05.004
  9. DENG, C., GAO, X., LI, X., et al. A local Tchebichef momentsbased robust image watermarking. Signal Processing, 2009, vol. 89, p. 1531–1539. DOI: 10.1016/j.sigpro.2009.02.005
  10. WANG, X. Y., YANG, Y. P., YANG, H. Y. Invariant image watermarking using multi-scale Harris detector and wavelet moments. Computers and Electrical Engineering, 2010, vol. 36, no. 1, p. 31–44. DOI: 10.1016/j.compeleceng.2009.04.005
  11. SINGH, C., RANADE, S. K. Image adaptive and high-capacity watermarking system using accurate Zernike moments. IET Image Processing, 2014, vol. 8, no. 7, p. 373–382. DOI: 10.1049/ietipr.2013.0382
  12. CHEN, B., WORNELL, G. W. Quantization index modulation methods: A class of provably good methods for digital watermarking and information embedding. IEEE Transactions on Information Theory, 2001, vol. 47, no. 4, p. 1423–1443. DOI: 10.1109/18.923725
  13. ELSHOURA, S. M., MEGHERBI, D. B. Analysis of noise sensitivity of Tchebichef and Zernike moments with application to image watermarking. Visual Communication and Image Representation, 2013, vol. 24, no. 5, p. 567–578. DOI: 10.1016/j.jvcir.2013.03.021
  14. MUKUNDAN, R. Some computational aspects of discrete orthonormal moments. IEEE Transactions on Image Processing, 2004, vol. 13, no. 8, p. 1055–1059. DOI: 10.1109/TIP.2004.828430
  15. MedPixTM Medical Image Database. [Online] Available at:,
  16. SHARMA, A., SINGH, A. K., GHRERA, S. P. Robust and secure multiple watermarking for medical images. Wireless Personal Communications, 2017, vol. 92, no. 4, p. 1611–1624. DOI: 10.1007/s11277-016-3625-x
  17. THANKI, R., BORRA, S., DWIVEDI, V., S., et al. An efficient medical image watermarking scheme based on FDCuT-DCT. Engineering Science and Technology, an International Journal, 2017, vol. 20, p. 1366–1379. DOI: 10.1016/j.jestch.2017.06.001
  18. SINGH, A. K., KUMAR, B., DAVE, M., et al., Multiple watermarking on medical images using selective discrete wavelet transform coefficients. Journal of Medical Imaging and Health Informatics, 2015, vol. 5, p. 1–8. DOI: 10.1166/jmihi.2015.1432
  19. LOAN, N. A., PARAH, S. A., SHEIKH, J. A., et al. Hiding Electronic Patient Record (EPR) in medical images: A high capacity and computationally efficient technique for e-healthcare applications. Journal of Biomedical Informatics, 2017, vol. 73, p. 125–136. DOI: 10.1016/j.jbi.2017.08.002
  20. XIAO, B., LUO, J., BI, X., et al. Fractional discrete Tchebyshev moments and their applications in image encryption and watermarking. Information Sciences, 2019, vol. 516, p. 545–559. DOI: 10.1016/j.ins.2019.12.044
  21. CEDILLO-HERNANDEZ, M., CEDILLO-HERNANDEZ, A., NAKANO-MIYATAKE, M., et al. Improving the management of medical imaging by using robust and secure dual watermarking. Biomedical Signal Processing and Control, 2020, vol. 56, p. 1–16. DOI: 10.1016/j.bspc.2019.101695

Keywords: Medical image, digital watermarking, Tchebichef moments, dither modulation

S. Chatterjee, R. Baishya, B. Tiru [references] [full-text] [DOI: 10.13164/re.2020.0644] [Download Citations]
Estimating the Characteristics of the Forward Voltage Gain Scattering Parameter of Indoor Power Line Channel Using Only Input Port Measurement

Estimation of the characteristics of power line channel is a pre-requisite for successful implementation of any power line communication system. This paper presents a method to estimate the forward voltage gain scattering parameters (S21) of an indoor power line using only the input port reflection coefficient (S11). The measured input parameter with one/two load placed at the output suffices to estimate the S21 as far as frequency selectivity is concerned. The positions of notches can be estimated within a limit of error with positive and at times high correlation between the experimental and evaluated S21 parameters. The method is validated for a number of practical networks, and also for random channels with different types of loads and cables found in the papers. The procedure can be incorporated in estimating the channel for mitigating the related problems.

  1. TIRU, B. Exploiting power line for communication purpose: Features and prospects of power line communication. In Intelligent Applications for Heterogeneous System Modeling and Design. 2015, p. 320–334. DOI: 10.4018/978-1-4666-8493-5.ch014
  2. ARTALE, G., CATALIOTTI, A., COSENTINO, V., et al. A new low cost power line communication solution for smart grid monitoring and management. IEEE Instrumentation & Measurement Magazine, 2018, vol. 21, no. 2, p. 29–33. DOI: 10.1109/MIM.2018.8327976
  3. MLYNEK, P., HASIRCI, Z., MISUREC, J., et al. Analysis of channel transfer functions in power line communication system for smart metering and home area network. Advances in Electrical and Computer Engineering, 2016, vol. 16, no. 4, p. 51–56. DOI: 10.4316/AECE.2016.04008
  4. VERSOLATTO, F., TONELLO, A. M. PLC channel characterization up to 300 MHz: Frequency response and line impedance. In Proceedings of the IEEE Global Communications Conference (GLOBECOM). Anaheim (CA, USA), 2012, p. 3525–3530. DOI: 10.1109/GLOCOM.2012.6503661
  5. TIRU, B., BAISHYA, B., SARMA, U. An analysis of indoor power line network as a communication medium using ABCD matrices effect of loads on the transfer function of power line. Lecture Notes in Electrical Engineering, Advances in Communication and Computing, Springer, 2015, vol. 347, p. 171–181. DOI: 10.1007/978-81-322-2464-8_14
  6. MLYNEK, P., MISUREC, J., KOUTNY, M. Random channel generator for indoor power line communication. Measurement Science Review, 2013, vol. 13, no. 4, p. 206–213. DOI: 10.2478/msr-2013-0032
  7. CANETE, F. J. C., CORTES, J. A. S., DIEZ, L., et al. A channel model proposal for indoor power line communication. IEEE Communications Magazine, 2011, vol. 49, no. 12, p. 166–174. DOI: 10.1109/MCOM.2011.6094022
  8. KHALIL, K. Contributions to Indoor Broadband Power Line Communication: Channel Modeling and Data Rate Optimization. PhD Dissertation. 2015, Universite de Valenciennes et du Hainaut-Cambresis, Available at:
  9. ZIMMERMANN, M., DOSTERT, K. A multipath model for the powerline channel. IEEE Transactions on Communications, 2002 vol. 50, no. 4, p. 553–559. DOI: 10.1109/26.996069
  10. PASSERINI, F., TONELLO, A. M. Power line fault detection and localization using high frequency impedance measurement. In Proceedings of the IEEE International Symposium on Power Line Communications and its Applications (ISPLC). Madrid (Spain), 2017, p. 1–5. DOI: 10.1109/ISPLC.2017.7897102
  11. MARROCCO, G., STATOVCI, D., TRAUTMANN, S. A PLC broadband channel simulator for indoor communications. In Proceedings of the IEEE 17th International Symposium on Power Line Communications and Its Applications. Johannesburg (South Africa), 2013, p. 321–326. DOI: 10.1109/ISPLC.2013.6525871
  12. RASOOL, B., RASOOL, A., KHAN, I. Impedance characterization of power line communication networks. Arabian Journal for Science and Engineering, 2014, vol. 39, p. 6255–6267. DOI: 10.1007/s13369-014-1235-z
  13. ANDARI, M. K., BEHESHTI, A. A. Pilot based channel estimation in broadband power line communication networks. Communications and Network, 2012, vol. 4 no. 3, p. 240–247. DOI: 10.4236/cn.2012.43028
  14. GALLI, S., BANWELL, T. A novel approach to the modeling of the indoor power line channel-Part II: Transfer function and its properties. IEEE Transactions on Power Delivery, 2005, vol. 20, no. 3, p. 1869–1878. DOI: 10.1109/TPWRD.2005.848732
  15. BAISHYA, R., TIRU, B., SARMA, U. An alternate method for prediction and analysis of notch characteristics in indoor power lines under varied channel conditions. Arabian Journal for Science and Engineering, 2020, vol. 45, p. 1531–1552. DOI: 10.1007/s13369-019-04052-w
  16. TIRU, B. A novel method of computation of the transfer function of unknown networks for indoor power line communication. In Proceedings of the IEEE Symposium of Computational Intelligence for Communication Networks (CIComms). Orlando (FL, USA), 2014, p. 1–7. DOI: 10.1109/CICommS.2014.7014640
  17. LINDQVIST, F. Estimation and Detection of Transmission Line Characteristics in Copper Access Network. PhD Dissertation. 2011, Lund University. Available at:
  18. MENG, H., CHEN, S., GUAN, Y. L., et al. Modeling of transfer characteristics for the broadband power line communication channel. IEEE Transactions on Power Delivery, 2004, vol. 19, no. 3, p. 1057–1064. DOI: 10.1109/TPWRD.2004.824430
  19. SASTRY, S. S. Introductory Methods of Numerical Analysis. 5th ed. New Delhi (India): PHI Learning Limited, 2012. ISBN: 978- 81-203-4592-8
  20. CASPERS, F. RF Engineering Basic Concepts: S-parameters. 2012, p. 1-27. arXiv:1201.2346 [physics.acc-ph]
  21. FRICKEY, D. A. Conversions between S, Z, Y, h, ABCD and T parameters which are valid for complex source and load impedances. IEEE Transactions on Microwave Theory and Techniques, 1994, vol. 42, no. 2, p. 205–211. DOI: 10.1109/22.275248
  22. KING, A. P., ECKERSLEY, R. J. Statistics for Biomedical Engineers and Scientists. Academic Press, 2019. ISBN: 978-0-08- 102939-8. DOI: 10.1016/C2018-0-02241-0

Keywords: Power line communication, two port networks, scattering matrices, frequency selectivity

Q. Hussain, S. Sohaib [references] [full-text] [DOI: 10.13164/re.2020.0654] [Download Citations]
Full Duplex Relaying in Non Orthogonal Multiple Access System with Advanced Successive Interference Cancellation

This paper describes a full-duplex (FD) cooperative non orthogonal multiple access (NOMA) system with dedicated relay under residual self-interference (RSI). An advanced successive interference cancellation (ASIC) technique is proposed in the FD cooperative NOMA system as an alternate of successive interference cancellation (SIC) scheme. The ASIC scheme maps the received signal into subgroups and by applying conventional SIC scheme on each subgroup results in separation of signals. The approximated analytical expressions of outage probability and ergodic sum rate for proposed ASIC based FD DF cooperative NOMA system are derived and the system throughput is analyzed. Finally, according to the results, our proposed ASIC based FD DF cooperative NOMA system shows better outage performance and higher ergodic sum rate as compared to conventional SIC based FD DF cooperative NOMA system.

  1. DAI, L., WANG, B., YUAN, Y., et al. Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 2015, vol. 53, no. 9, p. 74–81. DOI: 10.1109/MCOM.2015.7263349
  2. SHIMOJO, T., UMESH, A., FUJISHIMA, A., et al. Special articles on 5G technologies toward 2020 deployment. NTT DOCOMO Technologies, 2016, vol. 17, no. 4, p. 50–59.
  3. SAITO, Y., KISHIYAMA, Y., BENJEBBOUR, A., et al. Nonorthogonal multiple access for cellular future radio access. In IEEE Vehicular Technology Conference. Dresden (Germany), 2013, p. 1–5. DOI: 10.1109/VTCSpring.2013.6692652
  4. SAITO, K., BENJEBBOUR, A., KISHIYAMA, Y., et al. Performance and design of SIC receiver for downlink NOMA with open-loop SU-MIMO. In IEEE International Conference on Communication Networks. London (UK), 2015. DOI: 10.1109/ICCW.2015.7247334
  5. WEI, Z., YUAN, J., Ding, Z., et al. A survey of downlink nonorthogonal multiple access for 5G wireless communication networks. ZTE Communication, 2016, vol. 14, no. 4, p. 17–23.
  6. DING, Z., LIE, X., KARAGIANNIDIS, K., et al. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 2017, vol. 35, no. 10, p. 2181–2195. DOI: 10.1109/JSAC.2017.2725519
  7. ZHANG, S., XU, X., LU, L., et al. Sparse code multiple access: An energy efficient uplink approach for 5G wireless systems. In IEEE Global Communication Conference. Austin (USA), 2014. DOI: 10.1109/GLOCOM.2014.7037563
  8. DING, Z., LIU, Y., CHOI, J., et al. Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 2017, vol. 55, no. 2, p. 185–191. DOI: 10.1109/MCOM.2017.1500657CM
  9. OTAO, N., KISHIYAMA, Y., HIGUCHI, K. Performance of nonorthogonal multiple access with SIC in cellular downlink using proportional fair based resource allocation. IEICE Transactions on Communications, 2015, vol. 98, no. 2, p. 344–351. DOI: 10.1109/ISWCS.2012.6328413
  10. USMAN, R., KHAN, A., USMAN, A., et al. On the performance of perfect and imperfect SIC in downlink non orthogonal multiple access. In International Conference on Smart Green Technology in Electrical and Information Systems, 2016. DOI: 10.1109/ICSGTEIS.2016.7885774
  11. IMARI, A., XIAO, P., IMRAN, A., et al. Uplink non-orthogonal multiple access for 5G wireless networks. In International Symposium on Wireless Communications Systems. Barcelona (Spain), 2014. DOI: 10.1109/ISWCS.2014.6933459
  12. ZHANG, N., WANG, J., KANG, J.,et al. Uplink non-orthogonal multiple access in 5G systems. IEEE Communication Letters, 2016, vol. 20, no. 3, p. 458–461. DOI: 10.1109/LCOMM.2016.2521374
  13. DING, Z., YANG, Z., FAN, P., et al. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Processing Letters, 2014, vol. 21, no. 12, p. 1501–1505. DOI: 10.1109/LSP.2014.2343971
  14. DING, Z., FAN, P., POOR, V. Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Transactions on Vehicular Technology, 2016, vol. 65, no. 8, p. 6010–6023. DOI: 10.1109/TVT.2015.2480766
  15. LIU, X., WANG, X., LIU, Y. Power allocation and performance analysis of the collaborative NOMA assisted relaying systems in 5G. China Communications, 2017, vol. 14, no. 1, p. 50–60. DOI: 10.1109/CC.2017.7839757
  16. OZDURAN, V. Advanced successive interference cancellation for non-orthogonal multiple access. In 26th Telecommunications Forum. Belgrade (Serbia), 2018, p. 1–4. DOI: 10.1109/TELFOR.2018.8612111
  17. MEN, J., GE, J. Non-orthogonal multiple access for multiple-antenna relaying networks. IEEE Communication Letters, 2015, vol. 19, no. 10, p. 1686–1689. DOI: 10.1109/LCOMM.2015.2472006
  18. KIM, J., LEE, I. Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communication Letters, 2015, vol. 19, no. 11, p. 2037–2040. DOI: 10.1109/LCOMM.2015.2474856
  19. DING, Z., PENG, M., POOR, V. Cooperative non-orthogonal multiple access in 5G systems.IEEE Communication Letters, 2015, vol. 19, no. 8, p. 1462–1465. DOI: 10.1109/LCOMM.2015.2441064
  20. JU. H., OH, E., HONG, D. Improving efficiency of resource usage in two-hop full duplex relay systems based on resource sharing and interference cancellation. IEEE Transactions on Wireless Communications, 2009, vol. 8, no. 8, p. 3933–3938. DOI: 10.1109/TWC.2009.081049
  21. DUARTE, M., DICK, C., SABHARWAL, A. Experiment-driven characterization of full-duplex wireless systems. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 12, p. 4296–4307. DOI: 10.1109/TWC.2012.102612.111278
  22. JIMENEZ, L., RODRIQUEZ, I., TRAN, N., et al. Performance of full duplex AF relaying in the presence of residual self-interference. IEEE Journal on Selected Areas in Communications, 2014, vol. 32, no. 9, p. 1752–1764. DOI: 10.1109/JSAC.2014.2330151
  23. RODRIGUEZ, L., TRAN, N., LE-NQOC, T. Optimal power allocation and capacity of full-duplex AF relaying under residual selfinterference. IEEE Wireless Communication Letters, 2014, vol. 3, no. 2, p. 233–236. DOI: 10.1109/WCL.2014.020614.130831
  24. KWON, T., LIM, S., CHOI, S., et al. Optimal duplex mode for DF relay in terms of the outage probability. IEEE Transactions on Vehicular Technology, 2010, vol. 59, no. 7, p. 3628–3634. DOI: 10.1109/TVT.2010.2050503
  25. SOHAIB, S., UPPAL, M. Full duplex compress-and-forward relaying under residual self interference. IEEE Transactions on Vehicular Technology, 2018, vol. 67, no. 3, p. 2776–2780. DOI: 10.1109/LCOMM.2016.2611500
  26. ZHANG, Z., MA, Z., XIAO, M., et al. Full-duplex device-to device aided cooperative non-orthogonal multiple access. IEEE Transactions on Vehicular Technology, 2017, vol. 66, no. 5, p. 4467–4471. DOI: 10.1109/TVT.2016.2600102
  27. MEN, J., GE, J. Performance analysis of non-orthogonal multiple access in downlink cooperative network. IET Communications, 2015, vol. 9, no. 18, p. 2267–2273. DOI: 10.1049/iet-com.2015.0203
  28. ZHONG, C., ZHANG, Z. Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Communication Letters, 2016, vol. 20, no. 12, p. 2478–2481. DOI: 10.1109/LCOMM.2016.2611500
  29. GRADSHTEYN, I., RYZHIK, I. Table of Integrals, Series and Products. 6th ed., New York (USA): Academic Press, 2000. ISBN: 9780080542225
  30. HILDEBRAND, F. Introduction to Numerical Analysis. 2nd ed., Mineola. New York (USA): Dover Publications, 1987. ISBN: 9780486653631

Keywords: Advanced successive interference cancellation, full duplex, non orthogonal multiple access, residual selfinterference

E. A. Shams, A. H. Ulusoy, A. Rizaner [references] [full-text] [DOI: 10.13164/re.2020.0664] [Download Citations]
Performance Analysis and Comparison of Anomaly-based Intrusion Detection in Vehicular Ad hoc Networks

Security and safety applications of Vehicular Ad hoc Networks (VANETs) are developed to improve the traffic flow. While safety applications in VANETs provide warnings and information for the vehicle and other units in the area, malicious behaviors can render this very purpose meaningless. Intrusion Detection Systems (IDSs) are key features for identifying the presence of faulty or malicious behaviors. Support Vector Machine (SVM) is an efficient tool for anomaly detection and it can be employed for intrusion detection based on the metrics of a known attack or normal behavior. Dropping and or delaying network packets are two of the most common variants among other methods in Denial of Service (DoS) attacks. Hence an IDS which can detect both variants can detect similar types of DoS attacks. The result of the study is obtained by designing and implementing an SVM detection module into computer-generated simulation, which depicts a successful outcome in detection of mentioned DoS attack variants.

  1. AL-SULTAN, S., AL-DOORI, M. M., AL-BAYATTI, A. H., et al. A comprehensive survey on vehicular ad hoc network. Journal of Network and Computer Applications, 2014, vol. 37, no. 1, p. 380–392. DOI: 10.1016/j.jnca.2013.02.036
  2. LI, F., WANG, Y. Routing in vehicular ad hoc networks: a survey. IEEE Vehicular Technology Magazine, 2007, vol. 2, no. 2, p. 12–22. DOI: 10.1109/MVT.2007.912927
  3. EZE, E. C., ZHANG, S., LIU, E. Vehicular ad hoc networks (VANETs): current state, challenges, potentials and way forward. In ICAC 2014 - Proceedings of the 20th International Conference on Automation and Computing: Future Automation, Computing and Manufacturing. Cranfield (UK), 2014, p. 176–181. DOI: 10.1109/IConAC.2014.6935482
  4. UR-REHMAN, S., KHAN, M. A., ZIA, T. A., et al. Vehicular ad-hoc networks (VANETs)-an overview and challenges. Journal of Wireless Networking and Communications, 2013, vol. 3, no. 3, p. 29–38. DOI: 10.5923/j.jwnc.20130303.02
  5. LIU, P., CHOO, K. K. R., WANG, L., et al. SVM or deep learning? A comparative study on remote sensing image classification. Soft Computing, 2017, vol. 21, no. 23, p. 7053–7065. DOI: 10.1007/s00500-016-2247-2
  6. SHAMS, E. A., RIZANER, A., ULUSOY, A. H. Trust aware support vector machine intrusion detection and prevention system in vehicular ad hoc networks. Computers and Security, Sep. 2018, vol. 78, p. 245–254. DOI: 10.1016/j.cose.2018.06.008
  7. KOLANDAISAMY, R., NOOR, R. M., KOLANDAISAMY, I., et al. A stream position performance analysis model based on DDoS attack detection for cluster-based routing in VANET. Journal of Ambient Intelligence and Humanized Computing, 2020. DOI: 10.1007/s12652-020-02279-2
  8. ZHOU, M., HAN, L., LU, H., et al. Distributed collaborative intrusion detection system for vehicular ad hoc networks based on invariant. Computer Networks, 2020, vol. 172, p. 1–14. DOI: 10.1016/j.comnet.2020.107174
  9. SUBBA, B., BISWAS, S., KARMAKAR, S. A game theory based multi layered intrusion detection framework for wireless sensor networks.International Journal of Wireless Information Networks, 2018, vol. 25, no. 4, p. 399–421. DOI: 10.1007/s10776-018-0403-6
  10. MEHDI, M. M., RAZA, I., HUSSAIN, S. A. A game theory based trust model for vehicular ad hoc networks (VANETs). Computer Networks, 2017, vol. 121, p. 152–172. DOI: 10.1016/j.comnet.2017.04.024
  11. ALHEETI, K. M. A., GRUEBLER, A., MCDONALD-MAIER, K. Using discriminant analysis to detect intrusions in external communication for self-driving vehicles. Digital Communications and Networks, 2017, vol. 3, no. 3, p. 180–187. DOI: 10.1016/j.dcan.2017.03.001
  12. KUMARESAN, G., ADILINE MACRIGA, T. Group key authentication scheme for vanet intrusion detection (GKAVIN). Wireless Networks, 2017, vol. 23, no. 3, p. 935–945. DOI: 10.1007/s11276-016-1197-z
  13. SEDJELMACI, H., SENOUCI, S. M. An accurate and efficient collaborative intrusion detection framework to secure vehicular networks. Computers and Electrical Engineering, 2015, vol. 43, p. 33–47. DOI: 10.1016/j.compeleceng.2015.02.018
  14. LEE, B. K., JEONG, E. H. A black hole detection protocol design based on a mutual authentication scheme on VANET. KSII Transactions on Internet and Information Systems, 2016, vol. 10, no. 3, p. 1467-1480. DOI: 10.3837/tiis.2016.03.032
  15. KUMAR, N., CHILAMKURTI, N. Collaborative trust aware intelligent intrusion detection in VANETs. Computers and Electrical Engineering, 2014, vol. 40, no. 6, p. 1981–1996. DOI: 10.1016/j.compeleceng.2014.01.009
  16. KIM, G., LEE, S., KIM, S. A novel hybrid intrusion detection method integrating anomaly detection with misuse detection. Expert Systems with Applications, 2014, vol. 41, no. 4, p. 1690–1700. DOI: 10.1016/j.eswa.2013.08.066
  17. ZHANG, T., ZHU, Q. Distributed privacy-preserving collaborative intrusion detection systems for VANETs. IEEE Transactions on Signal and Information Processing over Networks, 2018, vol. 4, no. 1, p. 148–161. DOI: 10.1109/TSIPN.2018.2801622
  18. KYRIAKOPOULOS, K. G., APARICIO-NAVARRO, F. J., PARISH, D. J. Manual and automatic assigned thresholds in multilayer data fusion intrusion detection system for 802.11 attacks. IET Information Security, 2014, vol. 8, no. 1, p. 42–50. DOI: 10.1049/iet-ifs.2012.0302
  19. KHAN, U., AGRAWAL, S., SILAKARI, S. Detection of malicious nodes (DMN) in vehicular ad-hoc networks. Procedia Computer Science, 2015, vol. 46, p. 965–972. DOI: 10.1016/j.procs.2015.01.006
  20. HORTELANO, J., RUIZ, J. C., MANZONI, P. Evaluating the usefulness of watchdogs for intrusion detection in VANETs. In 2010 IEEE International Conference on Communications Workshops, ICC 2010. Capetown (SA), 2010, p. 1–5. DOI: 10.1109/ICCW.2010.5503946
  21. RAJKUMAR, M. N., NITHYA, M., HEMALATHA, P. Overview of vanet with its features and security attacks. 6 pages. [Online] Cited 2020-03-23. Available at:
  22. HOA LA, V., CAVALLI, A. Security attacks and solutions in vehicular ad hoc networks: a survey. International Journal on AdHoc Networking Systems, 2014, vol. 4, no. 2, p. 1–20. DOI: 10.5121/ijans.2014.4201
  23. SHARMA, S., KAUL, A. A survey on intrusion detection systems and honeypot based proactive security mechanisms in VANETs and VANET cloud. Vehicular Communications, 2018, vol. 12, p. 138–164. DOI: 10.1016/j.vehcom.2018.04.005
  24. MALHI, A. K., BATRA, S., PANNU, H. S. Security of vehicular ad-hoc networks: a comprehensive survey. Computers and Security, 2020, vol. 89, p. 1–30. DOI: 10.1016/j.cose.2019.101664
  25. KAUR, S., KAUR, R., VERMA, A. K. Jellyfish attack in MANETs: a review. In Proceedings of 2015 IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2015. Coimbatore (India), 2015, p. 1–5. DOI: 10.1109/ICECCT.2015.7226168
  26. SHAMS, E. A., RIZANER, A. A novel support vector machine based intrusion detection system for mobile ad hoc networks. Wireless Networks, 2018, vol. 24, no. 5, p. 1821–1829. DOI: 10.1007/s11276-016-1439-0
  27. TYAGI, P., DEMBLA, D. Investigating the security threats in vehicular ad hoc networks (VANETs): towards security engineering for safer on-road transportation. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2014. New Delhi (India), 2014, p. 2084–2090. DOI: 10.1109/ICACCI.2014.6968313
  28. CORTES, C., VAPNIK, V. Support-vector networks. Machine Learning, Sep. 1995, vol. 20, no. 3, p. 273–297. DOI: 10.1007/bf00994018
  29. PENG, S., HU, Q., CHEN, Y., et al. Improved support vector machine algorithm for heterogeneous data. Pattern Recognition, 2015, vol. 48, no. 6, p. 2072–2083. DOI: 10.1016/j.patcog.2014.12.015.
  30. The Network Simulator 2 - ns-2. [Online] Cited 2020-03-24. Available at:
  31. KARNADI, F. K., MO, Z. H., LAN, K. C. Rapid generation of realistic mobility models for VANET. In IEEE Wireless Communications and Networking Conference, WCNC. Kowloon (China), 2007, p. 2508–2513. DOI: 10.1109/WCNC.2007.467
  32. KRAJZEWICZ, D., ERDMANN, J., BEHRISCH, M., et al. Recent Development and Applications of SUMO - Simulation of Urban Mobility. 10 pages. [Online] Cited 2020-03-26. Available at:
  33. MATTHEWS, B. W. Comparison of the predicted and observed secondary structure of t4 phage lysozyme. BBA - Protein Structure, 1975, vol. 405, no. 2, p. 442–451. DOI: 10.1016/0005-2795(75)90109-9
  34. CLAESEN, M., DE SMET, F., SUYKENS, J. A. K., et al. Fast Prediction with SVM Models Containing RBF Kernels. [Online] Cited 2020-03-26. Available at:
  35. CAI, D., HE, X., HAN, J. Training linear discriminant analysis in linear time. In Proceedings - International Conference on Data Engineering, 2008, p. 209–217. DOI: 10.1109/ICDE.2008.4497429

Keywords: Vehicular ad hoc networks, support vector machines, denial of service attack, intrusion detection, machine learning

K. Zyka [references] [full-text] [DOI: 10.13164/re.2020.0672] [Download Citations]
The Influence of the Bitrate Level on the Subjective Sound Quality Perception of the Concatenated Non-Entropic Audio Coding Algorithms in the Digital Broadcasting Chain

Digital Audio Broadcasting (DAB) and all similar systems for digital radio and television broadcasting are inevitably associated with lossy psychoacoustic audio compression. The coding algorithms are continuously being improved. To achieve high sound quality a lower bitrate, required by the broadcasters, is now sufficient. This paper compares the relevant digital audio codecs: MPEG 2 and AAC in three profiles (AAC LC, HE-AAC v1 and HE-AAC v2). The well-known MP3 format is also added for a better comparison. A brief description of the basic functional principles of the codecs is followed by a comparison of their efficiency keeping in mind the subjectively comparable sound quality. The main contribution of this paper is the verification of the relationship of the bitrate level and sound quality in broadcasting environment and the finding out the influence of other, often more significant factors, such as the primary quality of the input recordings and the concatenation of non-entropic coding, on the subjective perception in the digital broadcasting chain. These findings are supported by the results of a unique research analysis providing an insight into which specific audio encoding configurations are used for DAB+ radio broadcasting in practice, in Europe as a whole and in individual European countries.

  1. HOEG, W., LAUTERBACH, T. (Eds.) Digital Audio Broadcasting: Principles and Applications of DAB, DAB+ and DMB. 3rd ed. John Wiley & Sons, 2009. ISBN:978-0-470-51037-7
  2. ETSI ETSI European Standard EN 300 401 V2.1.1 Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to Mobile, Portable and Fixed Receivers. January 2017.
  3. O' NEILL, B. DAB Eureka-147: The European platform for digital radio. New Media Society, 2009, vol. 11, no. 1–2, p. 261–278. DOI: 10.1177/1461444808099578
  4. BOWER, A., J. BBC digital radio - The Eureka 147 DAB system. Electronic Engineering, April 1998, p. 55–56. [Online] Available at:
  5. GILSKI, P. DAB vs DAB+ radio broadcasting: A subjective comparative study. Archives of Acoustics, 2017, vol. 42, no. 4, p. 715–723. DOI: 10.1515/aoa-2017-0074
  6. JAIN, P., SHARMA, S. Efficient performance analysis of OFDM based DAB systems using Reed Solomon coding technique. IOSR Journal of Electronics and Communication Engineering, 2015, vol. 10, no. 4, p. 56–59. DOI: 10.9790/2834-10435659
  7. ETSI ETSI Technical Specification TS 102 563, Digital Audio Broadcasting (DAB); Transport of Advanced Audio Coding (AAC) Audio. Sophia Antipolis Cedex, France, 2010.
  8. ETSI ETSI European Standard EN 302 755 V1.4.1 Digital Video Broadcasting (DVB); Frame Structure Channel Coding and Modulation for a Second Generation Digital Terrestrial Television Broadcasting System (DVB-T2). July 2015.
  9. HERRE, J., DICK, S. Psychoacoustic models for perceptual audio coding - A tutorial review. Applied Sciences, 2019, vol. 9, no. 14, p. 1–22. DOI: 10.3390/app9142854
  10. MUIN, F. A., GUNAWAN, T. S., KARTIWI, M., et al. A review of lossless audio compression standards and algorithms. AIP Conference Proceedings, 2017, vol. 1883, no. 1, p. 1–12. DOI: 10.1063/1.5002024
  11. HANS, M., SCHAFER, R. F. Lossless compression of digital audio. IEEE Signal Processing Magazine, 2001, vol. 18, no. 4, p. 21–32. DOI: 10.1109/79.939834
  12. ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Method for the Subjective Assessment of Intermediate Quality Levels of Coding Systems. Recommendation ITU-R BS.1534. 2001-2015. Approved in 2015-10.
  13. ZYKA, K. DAB+ network implementation in the Czech Republic and impact of the audio coding on subjective perception of sound quality. Radioengineering, 2020, vol. 29, no. 1, p. 235–242. DOI: 10.13164/re.2020.0235
  14. ULOVEC, K., SMUTNY, M. Perceived audio quality analysis in digital audio broadcasting plus system based on PEAQ. Radioengineering, 2018, vol. 27, no. 1, p. 342–352. DOI: 10.13164/re.2018.0342
  15. GILSKI, P., STEFAŃSKI, J. Subjective and objective comparative study of DAB+ broadcast system. Archives of Acoustics, 2017, vol. 42, no. 1, p. 3–11. DOI: 10.1515/aoa-2017-0001
  16. ETSI ETSI Technical Specification TS 103 466 V1.1.1. Digital Audio Broadcasting (DAB); DAB Audio Coding (MPEG Layer II). 10/2016.
  17. BRANDENBURG, K. MP3 and AAC explained. In AES 17th International Conference on High Quality Audio Coding. Florence (Italy), 1999, p. 1–12.
  18. NOLL, P. MPEG Digital Audio Coding Standards. CRC Press LLC, 1999. [Online] Available at:
  19. INTERNATIONAL STANDARD, GENEVA SWITZERLAND. Information technology - Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to about 1,5 Mbit/s - Part 3: Audio. Reference number ISO/IEC 11172- 3:1993(E). August 1993.
  20. DEHERY, Y. F., LEVER, M., URCUN, P. A MUSICAM source codec for digital audio broadcasting and storage. In ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing. Toronto (Canada), 1991, vol. 5, p. 3605–3608. DOI: 10.1109/ICASSP.1991.151054
  21. BRANDENBURG, K., POPP, H. An introduction to MPEG Layer-3. EBU Technical Review, 2000, p. 1–15. [Online] Available at:
  22. HERRE, J., DIETZ, M. MPEG-4 high-efficiency AAC coding [Standards in a Nutshell]. IEEE Signal Processing Magazine, 2008, vol. 25, no. 3, p. 137–142. DOI: 10.1109/MSP.2008.918684
  23. ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Audio Coding for Digital Broadcasting. BS Series Broadcasting Service (Sound). Recommendation ITU-R BS.1196-8. 2019. Approved in 2019-10.
  24. INTERNATIONAL STANDARD, GENEVA SWITZERLAND. Information Technology - Generic Coding of Moving Pictures and Associated Audio Information - Part 7: Advanced Audio Coding (AAC). Reference number ISO/IEC 13818-7:2004(E), 3rd ed. October 2004.
  25. INTERNATIONAL STANDARD, GENEVA SWITZERLAND. Information Technology - Coding of Audio-Visual Objects - Part 3: Audio. Reference number ISO/IEC 14496-3(E). 2nd ed, December 2001.
  26. WANG, Y., VILERMO, M. Modified discrete cosine transform - Its implications for audio coding and error concealment. In AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio. Finland, 2002, paper no. 258, p. 1–10.
  27. HERRE, J., JOHNSTON, J. D. Enhancing the performance of perceptual audio coders by using Temporal Noise Shaping (TNS). Presented at AES 101st Convention. Los Angeles (USA), 1996, paper no. 4384, p. 1–24.
  28. DIETZ, M., LILJERYD, L., KJORLING, K., et al. Spectral Band Replication, a novel approach in audio coding. Presented at AES 112th Convention. Munich (Germany), May 2002, paper no. 5553, p. 1–8.
  29. ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Audio Coding for Digital Broadcasting. Recommendation ITU-R BS. 1196-7. 1995-2019. Approved in 2019-10.
  30. MELTZER, S., MOSER, G. MPEG-4 HE-AAC v2 - audio coding for today’s media world. EBU Technical Review, 2006. [Online] Available at: moser.pdf
  31. BREEBAART, J., VAN DE PAR, S., KOHLRAUSCH, A., et al. Parametric Coding of Stereo Audio. EURASIP Journal on Applied Signal Processing, 2005, p. 1305–1322. DOI: 10.1155/ASP.2005.1305
  32. ZYKA, K. The digital audio broadcasting journey from the lab to listeners - the Czech Republic case study. Radioengineering, 2019, vol. 28, no. 2, p. 483–490. DOI: 10.13164/re.2019.0483
  33. SONTACCHI, A., POMBERGER, H., HOLDRICH, R. Recruiting and evaluation process of an expert listening panel. In the International Conference on Acoustics NAG/DAGA. Rotterdam (the Netherlands), 2009, p. 1552–1555. [Online] Available at: http: //
  34. STRANAK, P. Interfering DC component, suppression and influence to digital signal processing. Radioengineering, 2008, vol. 17, no. 3, p. 121–123. ISSN: 1210-2512
  35. STRANAK, P., DOBES, J. Controlling peaks of the audio signal by dynamically allocated scale factor for lossy psychoacoustic encoder. In 53rd IEEE International Midwest Symposium on Circuits and Systems. Seattle (USA), 2010, p. 388–391. DOI: 10.1109/MWSCAS.2010.5548874
  36. FMLIST - The Database of Worldwide FM Radio, DAB and TV. [Online] Available at:
  37. FMLIST - DAB Ensembles Worldwide. [Online] Available at:
  38. WORLD DAB – The Official Database of the Latest Information on Regulatory Frameworks, DAB+ Network Coverage, Services on Air. [Online] Available at:
  39. EBU - Digital Radio Report 2020. [Online] Available at: -radio

Keywords: DAB+, Digital Audio Broadcasting, psychoacoustic compression, coding, MPEG, MP3, AAC, HE-AAC, Spectral Band Replication, Parametric Stereo