ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

June 2017, Volume 26, Number 2 [DOI: 10.13164/re.2017-2]

Show all Hide all

Z. Biolek, D. Biolek [references] [full-text] [DOI: 10.13164/re.2017.0397] [Download Citations]
Euler-Lagrange Equations of Networks with Higher-Order Elements

The paper suggests a generalization of the classic Euler-Lagrange equation for circuits compounded of arbitrary elements from Chua’s periodic table. Newly defined potential functions for general (α, β) elements are used for the construction of generalized Lagrangians and generalized dissipative functions. Also procedures of drawing the Euler-Lagrange equations are demonstrated.

  1. JELTSEMA, D., SHERPEN, J. M. A. Multidomain modeling of nonlinear networks and systems. IEEE Control Systems, 2009, vol. 29, no. 4, p. 22–59. DOI: 10.1109/MCS.2009.932927
  2. CHUA, L. O. Memristor – The missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. 18, no. 5, p. 507–519. DOI: 10.1109/TCT.1971.1083337
  3. CHUA, L. O. Device modeling via nonlinear circuit elements. IEEE Transactions on Circuits and Systems, 1980, vol. 27, no. 11, p. 1014–1044. DOI: 10.1109/TCS.1980.1084742
  4. COHEN, G. Z., PERSHIN, Y. V., DI VENTRA, M. Lagrange formalism of memory circuit elements: classical and quantum formulations. Physical Review B, 2012, vol. 85, no. 16, p. 165428–165430. DOI: 10.1103/PhysRevB.85.165428
  5. JELTSEMA, D. Memory elements: A paradigm shift in Lagrangian modeling of electrical circuits. IFAC Proceedings Volumes, 2012, vol. 45, no. 2, p. 445–450. DOI: 10.3182/20120215-3-AT- 3016.00078
  6. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. Utilization of EulerLagrange equations in circuits with memory elements. Radioengineering, 2016, vol. 25, no. 4, p. 783–789. DOI: 10.13164/re.2016.0783
  7. CHERRY, C. Some general theorems for non-linear systems possessing reactance. Philosophical Magazine, 1951, series 7, vol. 42, no. 333, p. 1161–1177. ISSN: 0031-8086. DOI: 10.1080/14786445108561362
  8. MILLAR, W. Some general theorems for non-linear systems possessing resistance. Philosophical Magazine, 1951, series 7, vol. 42, no. 333, p. 1150–1160. ISSN: 0031-8086. DOI: 10.1080/14786445108561361
  9. BRUTON, L. T. Network transfer functions using the concept of frequency-dependent negative resistance. IEEE Transactions on Circuit Theory, 1969, vol. 16, no. 3, p. 406–408. DOI: 10.1109/TCT.1969.1082989
  10. SMITH, M. C. Synthesis of mechanical networks: the inerter. IEEE Transactions on Automatic Control, 2002, vol. 47, no. 10, p. 1648–1662. DOI: 10.1109/TAC.2002.803532
  11. CHEN, M. Z. Q., PAPAGEORGIOU, C., SCHEIBE, F., WANG, F-C., SMITH, M. C. The missing mechanical circuit element. IEEE Circuits and Systems Magazine, 2009, vol. 9, no. 1, p. 10–26. DOI: 10.1109/MCAS.2008.931738
  12. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V., KOLKA, Z. Nonlinear inerter in the light of Chua's table of higher-order electrical elements. In IEEE Asia Pacific Conference on Circuits and Systems. Jeju (South Korea), 2016, p. 617–620. DOI: 10.1109/APCCAS.2016.7804046
  13. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. Memristors and other higher-order elements in generalized through-across domain. In IEEE International Conference on Electronics, Circuits and Systems (ICECS). Monte Carlo (Monaco), 2016, p. 604–607. DOI: 10.1109/ICECS.2016.7841274

Keywords: Periodic table of fundamental elements, higher-order elements, content, energy, action, evolution, Lagrangian, dissipation function, FDNR, inerter

S. Costanzo [references] [full-text] [DOI: 10.13164/re.2017.0406] [Download Citations]
Non-Invasive Microwave Sensors for Biomedical Applications: New Design Perspectives

The basic operation principles of non-invasive microwave sensors are summarized in this work, with specific emphasis on health-care systems applications. Design criteria to achieve reliable results in terms of biological parameters detection are specifically highlighted. In particular, the importance to adopt accurate frequency models for the complex permittivity (in terms of both dielectric constant as well as loss tangent) in the synthesis procedure of the microwave sensor is clearly motivated. Finally, an application example of the outlined new perspectives in the framework of glucose monitoring to face diabete disease is deeply discussed.

  1. NEHRING, J., NASR, I., BORUTTA, K., WEIGEL, R., KISSINGER, D. A silicon integrated microwave vector network analyzer for biomedical sensor read-out applications. In Proceedings of IEEE MTT-S International Microwave Symposium. Tampa (FL), 2014. DOI: 10.1109/MWSYM.2014.6848254
  2. KOELPIN, A., VINCI, G., LAEMMLE, B., KISSINGER, D., WEIGEL, R. The six port in modern society. IEEE Microwave Magazine, 2010, vol. 11, no. 7, p. 35–43. DOI: 10.1109/MMM.2010.938584
  3. ROSEN, A., STUCHLY, M. A., VANDER VORST, A. Applications of RF/microwaves in medicine. IEEE Transactions on Microwave Theory and Techniques, 2002, vol. 50, no. 3, p. 963–974. DOI: 10.1109/22.989979
  4. GRENIER, K., DUBUC, D., POLENI, P.-E., KUMEMURA, M., TOSHIYOSHI, H., FUJII, T., FUJITA, H. Integrated broadband microwave and microfluidic sensor dedicated to bioengineering. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 12, p. 3246–3253. DOI: 10.1109/TMTT.2009.2034226
  5. JEAN, B. R., GREEN, E. C., MCCLUNG, M. J. A microwave frequency sensor for non-invasive blood-glucose measurement. In Proceedings of IEEE Sensors Applications Symposium. Atlanta (GA), 2008. DOI: 10.1109/SAS.2008.4472932
  6. AHMADI, M. M., JULLIEN, G. A. A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Transactions on Biomedical Circuits and Systems, 2009, vol. 3, no. 3, p. 169–180. DOI: 10.1109/TBCAS.2009.2016844
  7. COLE, K. S., COLE, R. H. Dispersion and absorption in dielectrics I. Alternating current characteristics. Journal of Chemical Physics, 1941, vol. 9, p. 341–351. DOI: 10.1063/1.1750906
  8. GABRIEL, S., LAU, R., W., GABRIEL, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine and Biology, 1996, vol. 41, no. 11, p. 2271–2293.
  9. KARACOLAK, T., HOOD, A., TOPSAKAL, E. Design of a dualband implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 4, p. 1001–1008. DOI: 10.1109/TMTT.2008.919373
  10. VENKATARAMAN, J., FREER, B. Feasibility of non-invasive blood glucose monitoring. In Proceedings of IEEE International Symposium on Antennas and Propagation AP-S/URSI. Spokane (WA), 2011, p. 603–606. DOI: 10.1109/APS.2011.5996782
  11. BAGHBANI, R., RAD, M. A., POURZIAD, A. Microwave sensor for non-invasive glucose measurements design and implementation of a novel linear. IET Wireless Sensor Systems, 2015, vol. 5, no. 2, p. 51–57. DOI: 10.1049/iet-wss.2013.0099
  12. CHOI, H., NAYLON, J., LUZIO, S., BEUTLER, J., BIRCHALL, J., MARTIN, C., PORCH, A. Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 10, p. 3016–3025. DOI: 10.1109/TMTT.2015.2472019
  13. COSTANZO, S. Loss tangent effect on the accurate design of microwave sensors for blood glucose monitoring. In Proceedings of the 11th European Conference on Antennas and Propagation EuCAP. Paris (France), March 2017.

Keywords: Microwaves, sensors, biomedical applications, dielectric characterization.

A. Collado, S. Daskalakis, K. Niotaki, R. Martinez, F. Bolos, A. Georgiadis [references] [full-text] [DOI: 10.13164/re.2017.0411] [Download Citations]
Rectifier Design Challenges for RF Wireless Power Transfer and Energy Harvesting Systems

The design of wireless power transfer (WPT) and energy harvesting (EH) solutions poses different challenges towards achieving maximum RF-DC conversion efficiency in these systems. This paper covers several selected challenges when developing WPT and electromagnetic EH solutions, such as the design of multiband and broadband rectifiers, the minimization of the effect that load and input power variations may have on the system performance and finally the most optimum power combining mechanisms that can be used when dealing with multi-element rectifiers.

  1. RIZZOLI, V., BICHICCHI, G., COSTANZO, A., DONZELLI, F., MASOTTI, D. CAD of multi-resonator rectenna for micro-power generation. In 2009 European Microwave Integrated Circuits Conference (EuMIC). Rome (Italy), 2009, p. 331–334
  2. KEYROUZ, S., VISSER, H. J., TIJHUIS, A. G. Multi-band simultaneous radio frequency energy harvesting. In 7th European Conference on Antennas and Propagation (EuCAP). Gothenburg (Sweden), 2013, p. 3058–3061
  3. SCHEELER, R., KORHUMMEL, S., POPOVIC, Z. A dualfrequency ultralow-power efficient 0.5-g rectenna. IEEE Microwave Magazine, 2014, vol. 15, no. 1, p. 109–114. DOI: 10.1109/MMM.2013.2288836
  4. OKA, T., OGATA, T., SAITO, K., TANAKA, S. Triple-band single-diode microwave rectifier using CRLH transmission line. In Proceedings of 2014 Asia-Pacific Microwave Conference. Sendai (Japan), 2014, p. 1013–1015.
  5. COLLADO, A., GEORGIADIS, A. Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, vol. 60, no. 8, p. 2225–2234. DOI: 10.1109/TCSI.2013.2239154
  6. BELO, D., GEORGIADIS, A., CARVALHO, N. B. Increasing wireless powered systems efficiency by combining WPT and electromagnetic energy harvesting. In 2016 IEEE Wireless Power Transfer Conference (WPTC). Aveiro (Portugal), 2016, 3 p. DOI: 10.1109/WPT.2016.7498836
  7. YONG HUANG, SHINOHARA, N., TOROMURA, H. A wideband rectenna for 2.4 GHz-band RF energy harvesting. In 2016 IEEE Wireless Power Transfer Conference (WPTC). Aveiro (Portugal), 2016, 3 p. DOI: 10.1109/WPT.2016.7498816
  8. TSAI, C. H., LIAO, I.N., PAKASIRI, C., PAN, H.C., WANG, Y.J. A wideband 20 mW UHF rectifier in CMOS. IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 6, p. 388–390. DOI: 10.1109/LMWC.2015.2421357
  9. ABBASIAN, S., JOHNSON, T. High efficiency GaN HEMT synchronous rectifier with an octave bandwidth for wireless power applications. In 2016 IEEE MTT-S International Microwave Symposium (IMS). San Francisco (CA, USA), 2016, 4 p. DOI: 10.1109/MWSYM.2016.7540080
  10. HAGERTY, J. A., HELMBRECHT, F. B., MCCALPIN, W. H., ZANE, R., POPOVIC, Z. B. Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 3, p. 1014–1024. DOI: 10.1109/TMTT.2004.823585
  11. KIMIONIS, J., COLLADO, A., TENTZERIS, M. M., GEORGIADIS, A. Octave and decade UWB rectifier based on non-uniform transmission lines for energy harvesting. IEEE Transactions on Microwave Theory and Techniques, accepted for publication.
  12. MARIAN, V., VOLLAIRE, C., VERDIER, J., ALLARD, B. Potentials of an adaptive rectenna circuit. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1393–1396. DOI: 10.1109/LAWP.2011.2178225
  13. DEL PRETE, M., COSTANZO, A., GEORGIADIS, A., COLLADO, A., MASOTTI, D., POPOVIĆ, Z. A 2.45-GHz energy-autonomous wireless power relay node. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 12, p. 4511–4520. DOI: 10.1109/TMTT.2015.2494003
  14. HAN, Y., LEITERMANN, O., JACKSON, D. A., RIVAS, J. M., PERREAULT, D. J. Resistance compression networks for radiofrequency power conversion. IEEE Transactions on Power Electronics, 2007, vol. 22, no. 1, p. 41–53. DOI: 10.1109/TPEL.2006.886601
  15. NIOTAKI, K., GEORGIADIS, A., COLLADO, A., VARDAKAS, J. S. Dual-band resistance compression networks for improved rectifier performance. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 12, p. 3512–3521. DOI: 10.1109/TMTT.2014.2364830
  16. GUTMANN, R. J., BORREGO, J. M. Power combining in an array of microwave power rectifiers. IEEE Transactions on Microwave Theory and Techniques, 1979, vol. 27, no. 12, p. 958–968. DOI: 10.1109/TMTT.1979.1129774
  17. SHINOHARA, N., MATSUMOTO, H. Dependence of DC output of a rectenna array on the method of interconnection of its array elements. Electrical Engineering in Japan, 1998, vol. 125, no. 1, p. 9–17. DOI: 10.1002/(SICI)1520-6416(199810)125:1<9::AIDEEJ2>3.0.CO;2-3
  18. POPOVIC, Z., KORHUMMEL, S., DUNBAR, S., et al. Scalable RF energy harvesting. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 4, p. 1046–1056. DOI: 10.1109/TMTT.2014.2300840
  19. BOLOS, F., BELO, D., GEORGIADIS, A. A UHF rectifier with one octave bandwidth based on a non-uniform transmission line. In 2016 IEEE MTT-S International Microwave Symposium (IMS). San Francisco (CA, USA), May 2016, 3 p. DOI: 10.1109/MWSYM.2016.7540083
  20. FANO, R. M. Theoretical Limitations on the Broadband Matching of Arbitrary Impedances. Research Laboratory of Electronics, Massachusetts Institute of Technology, MA, Tech. Rep. No. 41, Jan. 2, 1948
  21. BOLOS, F., BLANCO, J., COLLADO, A., GEORGIADIS, A. RF energy harvesting from multi-tone and digitally modulated signals. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 6, p. 1918–1927. DOI: 10.1109/TMTT.2016.2561923
  22. SAKAKI, H., KUROIWA, F., TSUJII, M., et al. A novel wide dynamic range rectifier design for wireless power transfer system. In 2014 Asia-Pacific Microwave Conference. Sendai (Japan), 2014, p. 1208–1210.

Keywords: Wireless power transfer, energy harvesting, rectifier, rectenna, Schottky diode, multiband rectifier, broadband rectifier, wideband rectifier.

A. Dobesch, M. Figueiredo, L. N. Alves, O. Wilfert [references] [full-text] [DOI: 10.13164/re.2017.0418] [Download Citations]
Performance Analysis of 8-bit ODACs for VLC Applications

A discrete optical power level stepping technique in visible light communication (VLC), also known, as an optical digital to analog conversion (ODAC) has been proposed. This is an alternative concept for VLC front-end design, able to mitigate the LED intrinsic non-linearity. Additionally, it removes the need of an electrical digital to analog conversion (EDAC) in the driver stage. This paper provides an experimental evaluation of two different ODAC front-ends. The results investigate the spatial relation between the optical front-end and the optical receiver. In addition, the performance evaluation employs dynamic test metrics rather than conventional static metrics previously reported in the literature.

  1. AYYASH, M., ELGALA, H., KHREISHAH, A., et al. Coexistence of WiFi and LiFi toward 5G: Concepts, opportunities, and challenges. IEEE Communications Magazine, 2016, p. 64–71. DOI: 10.1109/MCOM.2016.7402263
  2. RAHAIM, M. B., LITTLE, T. D. C. Toward practical integration of dual-use VLC within 5G networks. IEEE Wireless Communications, 2016, vol. 22, no. 4, p. 97–103. DOI: 10.1109/MWC.2015.7224733
  3. CHUN, H., RAJBHANDARI, S., FAULKNER, G., et al. LED based wavelength division multiplexed 10 Gb/s visible light communications. Journal of Lightwave Technology, 2016, vol. 34, no. 13, p. 3047–3052. DOI: 10.1109/JLT.2016.2554145
  4. IEEE Standard for Local and Metropolitan Area Networks – Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Standard 802.15.7-2011, pages 1–309, 2011.
  5. JUNGNICKEL, V., UYSAL, M., SERAFIMOVSKI, N., et al. A European view on the next generation optical wireless communication standard. In IEEE Conference on Standards for Communications and Networking (CSCN). Tokyo (Japan), 2015, p. 106–111. DOI: 10.1109/CSCN.2015.7390429
  6. FATH, T., HELLER, C., HAAS, H. Optical wireless transmitter employing discrete power level stepping. Journal of Lightwave Technology, 2013, vol. 31, no. 11, p. 1734–1743. DOI: 10.1109/JLT.2013.2257984
  7. ARMSTRONG, J. Optical domain digital-to-analog converter for visible light communications using LED arrays [Invited]. Photonics Research, 2013 vol. 1, no. 2, p. 92–95. DOI: 10.1109/GLOCOMW.2013.6825141
  8. LAGRANGE, A., BONO, H., TEMPLIER, F. Monolithic LED arrays, next generation smart lighting sources. Proc. SPIE 9768, Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XX, 97680X, 2016. DOI: 10.1117/12.2209574
  9. FIGUEIREDO, M., RIBEIRO, C. G., DOBESCH, A., ALVES, L. N., WILFERT, O. Real-time optical DAC-based OFDM visible light transceiver. IEEE Transactions on Consumer Electronics. (accepted for publication).
  10. YEW, J., DISSANAYAKE, S. D., ARMSTRONG, J. Performance of an experimental optical DAC used in a visible light communication system. In IEEE Globecom 2013 Workshop – Optical Wireless Communications. Atlanta (GA, USA), 2013, p. 1110–1115. DOI: 10.1109/GLOCOMW.2013.6825141
  11. DOBESCH, A., ALVES, L. N., WILFERT, O. Spatial ODAC performance for indoor environment. In 3rd International Workshop on Optical Wireless Communications (IWOW). Funchal (Portugal), 2014, p. 70–74. DOI: 10.1109/IWOW.2014.6950779
  12. DOBESCH, A., ALVES, L. N., WILFERT, O., RIBEIRO, C. G. Optical digital to analog conversion performance analysis for indoor set-up conditions. Optics Communications (accepted for publication May 11, 2017).
  13. ANALOG DEVICES. Data Conversion Handbook. 1st ed. Newnes, 2004. ISBN 0-7506-7841-0

Keywords: LED, VLC, Li-Fi, ODAC.

T. Z. Meng, W. W. Wu, N. C. Yuan [references] [full-text] [DOI: 10.13164/re.2017.0423] [Download Citations]
The Design and Analysis of Invisible Radome with Sandwich-like Properties

A novel thin radome made by metamaterial is presented, with the properties like the sandwich where the middle acts as a pass band filter at an expected frequency band, while others behave as absorbers. This new radome consists of three layers including metal goblets-shape the frequency selective surface (FSS) layer, a substrate and a resistive square loops. Compared with the traditional invisible radome, the new radome’s two absorptive bands were separated by one transmission band, which is a challenge for the traditional ones. Except for the analysis of absorption property, the effects of the radome for the antenna are also simulated and some useful conclusions are drawn. Also, it has the advantages of simple structure for the easy fabrication, which could be more attracting in practical radome.

  1. ARCENEAUX, W. S., AKINS, R. D., MAY, W. B. Absorptive/transmissive radome. US Patent 5,400,043, 1995.
  2. COSTA, F., MONORCHIO A. A frequency selective radome with wideband absorbing properties. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 6, 2012, p. 2740–2747. DOI: 10.1109/TAP.2012.2194640
  3. MONORCHIO, A., COSTA, F., MANARA, G. Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model. IEEE Antennas and Propagation Magazine, 2012, vol. 54, p. 35–48. DOI: 10.1109/MAP.2012.6309153
  4. COSTA, F., MONORCHIO, A., MANARA, G. An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces. Applied Computational Electromagnetics Society Journal, 2014, vol. 29, no. 12, p. 960–976.
  5. LI WEN-HUI, ZHANG JIE-QIU, QU SHAO-BO, et.al. Radar cross section reduction of microstrip antenna based on wide-band metamaterial absorber. Acta Physica Sinica, 2015, vol. 64, no. 8, p. 084101(7). DOI: 10.7498/aps.64.084101 (in Chinese)
  6. GENOVESI, S., COSTA, F., MONORCHIO, A. Wideband radar cross section reduction of slot antennas arrays. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 1, p. 163–173. DOI: 10.1109/TAP.2013.2287888
  7. LI SIJIA, CAO XIANGYU, GAO JUN, et.al. Design of ultra-thin broadband metamaterial absorber and its application for RCS reduction of circular polarization tilted beam antenna. Acta Physica Sinica, 2013, vol. 62, no. 12, p. 124101(10). DOI: 10.7498/aps.62.124101 (in Chinese)
  8. JIE ZHOU, SHAOWEI BIE, DONG WAN, et.al. Realization of thin and broadband magnetic radar absorption materials with the help of resistor FSS. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 24–27. DOI: 10.1109/LAWP.2014.2349533
  9. HUI YICONG, WANG CHUANQI, HUANG XIAOZHONG. Design and fabrication of broadband radar metamaterial absorber based on the resistor FSS. Acta Physica Sinica, 2015, vol. 64, p. 218102(5). DOI: 10.7498/aps.64.218102 (in Chinese)
  10. ZHOU HANG, YANG LIWEI, QU SHAOBO, et.al, Experimental demonstration of an absorptive/transmissive FSS with magnetic material. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 114–117. DOI: 10.1109/LAWP.2013.2296992
  11. CHEN QIANG, FU YUNQI. A planar stealthy antenna radome using absorptive frequency selective surface. Microwave and Optical Technology Letter, 2014, vol. 56, no. 8, p. 1788–1792. DOI: 10.1002/mop.28442
  12. YUPING SHANG, ZHONGXIANG SHEN, SHAOQIU XIAO. Frequency-selective rasorber based on square-loop and crossdipole arrays. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 11, p. 5581–5589. DOI: 10.1109/TAP.2014.2357427
  13. XUJIN YUAN, XIAOFENG YUAN. A transmissive/absorbing radome with double absorbing band. Microwave and Optical Technology Letters, 2016, vol. 58, no. 8, p. 2016–2019. DOI: 10.1002/mop
  14. WEIWEI WU, TIANZHEN MENG, HUANG JINGJIAN, et.al. Study of a metamaterial with single passband between two neighboring absorptive bands. In 10th European Conference on Antennas and Propagation. Davos (Switzerland), 2016, p. 1-4. DOI: 10.1109/EuCAP.2016.7481634

Keywords: Invisible radome, RCS reduction, resistive material.

S. Kawdungta, P. Jaibanauem, R. Pongga, C. Phongcharoenpanich [references] [full-text] [DOI: 10.13164/re.2017.0430] [Download Citations]
Superstrate-integrated Switchable Beam Rectangular Microstrip Antenna for Gain Enhancement

This research has proposed a switchable beam rectangular microstrip antenna with double parasitic patches, in which two PIN diodes were deployed for manipulation of the main beam direction and a superstrate (i.e. either a dielectric slab or metamaterial) for enhancement of the antenna gain. The dielectric slab is a second FR4 substrate while the metamaterial (MTM) is the 7×17 periodic structure of planar cycloid dipoles (PCD). Simulations were carried out and three different antenna prototypes (i.e. the proposed switchable beam rectangular microstrip antenna, the proposed antenna either with dielectric slab or MTM) fabricated and experimented. The simulation and experimental results are in good agreement and exhibit good impedance matching (|S11|<-10dB) along the operating frequency. The average measured gain is 7 dBi with the unidirectional radiation pattern along the operating frequency. The proposed switchable antennas with and without the superstrate are operable in the 2.4-2.5 GHz WLAN system and switchable in three directions of 0 deg, 30 deg and 330 deg (xy-plane). Moreover, the findings validate the applicability of either the dielectric slab or three MTM block-layers as the superstrate to improve the antenna gain.

  1. FURUKAWA, H., KAMIO, Y., SASAOKA, H. Cochannel interference reduction and path-diversity reception technique using CMA adaptive array antenna in digital land mobile communications. IEEE Transactions on Vehicular Technology, 2001, vol. 50, no. 2, p. 605–616. DOI: 10.1109/25.923072
  2. GHOUSE BASHA, T. S., ALOYSIUS, G., RAJAKUMAR, B. R., GIRI PRASAD, M. N., SRIDEVI, P. V. A constructive smart antenna beam-forming technique with spatial diversity. IET Microwaves, Antennas and Propagation, 2012, vol. 6, no. 7, p. 773 – 780. DOI: 10.1049/iet-map.2011.0356
  3. CERRI, G., LEO, R. D., PRIMIANI, V. M., MONTEVERDE, C., RUSSO, P. Design and prototyping of a switching beam disc antenna for wideband communications. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 12, p. 3721–3726. DOI: 10.1109/TAP.2006.886555
  4. LAI, M.-I., WU, T.-Y., HSIEH, J.-C., WANG, C.-H., JENG, S.-K. Compact switched-beam antenna employing a four-element slot antenna array for digital home applications. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 9, p. 2929–2936. DOI: 10.1109/TAP.2008.928775
  5. SHYNU NAIR, S. V., AMMANN, M. J. Reconfigurable antenna with elevation and azimuth beam switching. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 367–370. DOI: 10.1109/LAWP.2010.2049332
  6. QIN, P.-Y., GUO, Y. J., DING, C. A beam switching quasi-Yagi dipole antenna. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 10, p. 4891–4899. DOI: 10.1109/TAP.2013.2274635
  7. NOR, M. Z. M., RAHIM, S. K. A., SABRAN, M. I., SOH, P. J., VANDENBOSCH, G. A. E. Dual-band, switched-beam, reconfigurable antenna for WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 1500–1503. DOI: 10.1109/LAWP.2013.2289919
  8. EDALATI, A., DENIDNI, T. A. Frequency selective surfaces for beam-switching applications. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 1, p. 195–200. DOI: 10.1109/TAP.2012.2219842
  9. CHENG, S., RANTAKARI, P., MALMQVIST, R., SAMUELSSON, C., VAHA-HEIKKILA, T., RYDBERG, A., VARIS, J. Switched beam antenna based on RF MEMS SPDT switch on quartz substrate. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 383–386. DOI: 10.1109/LAWP.2009.2018712
  10. REBEIZ, G. M., RF MEMS: Theory, Design and Technology. New York: Wiley, 2003. ISBN: 0471201693
  11. YANG, H. Y., ALEXOPOULOS, N. G. Gain enhancement methods for printed circuit antennas through multiple superstrates. IEEE Transactions on Antennas and Propagation, 1987, vol. 35, no. 7, p. 860–864. DOI: 10.1109/TAP.1987.1144186
  12. SELVANAYAGAM, M., ELEFTHERIADES, G. V. A compact printed antenna with an embedded double-tuned metamaterial matching network. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 7, p. 2354–2361. DOI: 10.1109/TAP.2010.2048876
  13. HUANG, H., LIU, Y., ZHANG, S., GONG, S. Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 662–665. DOI: 10.1109/LAWP.2014.2376969
  14. BUELL, K., MOSALLAEI, H., SARABANDI, K. Metamaterial insulator enabled superdirective Array. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 4, p. 1074–1085. DOI: 10.1109/TAP.2007.893373
  15. PANDEY, G. K., SINGH, H. S., BHARTI, P. K., MESHRAM, M. K. Metamaterial-based UWB antenna. Electronics Letters, 2014, vol. 50, no. 18, p. 1266–1268. DOI: 10.1049/el.2014.2366
  16. ANTONIADES, M. A., ELEFTHERIADES, G. V. A broadband dual-mode monopole antenna using NRI-TL metamaterial loading. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 258–261. DOI: 10.1109/LAWP.2009.2014402
  17. CALOZ, C., ITOH, T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. John Wiley & Sons, 2006. ISBN: 978-0-471-66985-2
  18. CST Microwave Studio, User’s Manual.
  19. ZIOLKOWSKI, R. W. Design, fabrication, and testing of double negative metamaterials. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 7, p. 1516–1529. DOI: 10.1109/TAP.2003.813622
  20. WU, B.-I., WANG, W., PACHECO, J., CHEN, X., GRZEGORCZYK, T., KONG, J. A. A study of using metamaterials as antenna substrate to enhance gain. Progress In Electromagnetics Research, 2005, PIER 51, p. 295–328. DOI: 10.2528/PIER04070701
  21. BALANIS, C. A., Antenna Theory: Analysis and Design. 3rd ed., John Wiley & Sons, 2005. ISBN: 978-0-471-66782-7
  22. CHEN, W.-L., WANG, G.-M. Small size edge-fed Sierpinski carpet microstrip patch antennas. Progress In Electromagnetics Research C, 2008, vol. 3, p. 195–202. DOI: 10.2528/PIERC08050302
  23. POZAR, D. M., VODA, S. M. A rigorous analysis of a microstripline fed patch antenna. IEEE Transactions on Antennas and Propagation, 1987, vol. 35, no. 12, p. 1343–1350. DOI: 10.1109/TAP.1987.1144041
  24. SABAPATHY, T., JAMLOS, M. F., AHMAD, R. B., JUSOH, M., JAIS, M. I., KAMARUDIN, M. R. Electronically reconfigurable beam steering antenna using embedded RF pin based parasitic arrays (ERPPA). Progress In Electromagnetics Research, 2013, vol. 140, p. 241–261. DOI: 10.2528/PIER13042906

Keywords: Gain enhancement, metamaterial, microstrip, parasitic patch, PIN diode, switched beam, superstrate

A. A. Ibrahim, W. Ali, J. Machac [references] [full-text] [DOI: 10.13164/re.2017.0438] [Download Citations]
UWB Monopole Antenna with Band Notched Characteristics Mitigating Interference with WiMAX

Compact asymmetric coplanar strip (ACS) - fed monopole antenna is presented in this paper for operation in ultra wide-band (UWB) applications. The antenna is composed of a semi-elliptical monopole and lateral coplanar ground plane to operate in the UWB range. It occupies a very small size of 28 × 11.5 mm 2 and is mounted on low cost FR4 substrate of 1.6 mm thickness and dielectric constant of 4.4. Band notched structure is applied to the proposed antenna to assure the rejection of WiMAX frequency band centered at 3.5 GHz to minimize the interference of the communication system with this service. The radiation characteristics of the proposed ACS-fed monopole antenna is nearly omnidirectional with moderate gain over the entire UWB frequency range. The measurements of the fabricated model confirm the designed behavior. The compactness in size, cheap cost and simple feeding technique make it as a good candidate to be integrated within the portable devices for wireless communication.

  1. FEDERAL COMMUNICATIONS COMMISSION. First Report and order, Revision of part 15 of the commission's Rule Regarding Ultra-Wideband Transmission System FCC 02-48. 2002.
  2. REDDY, G. S., KAMMA, A., MISHRA, S. K., MUKHERJEE, J. Compact bluetooth/UWB dual-band planar antenna with quadruple band-notch characteristics. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 872–875. DOI: 10.1109/LAWP.2014.2320892
  3. BOUTEJDAR, A., ABD ELLATIF, W. A novel compact UWB monopole antenna with enhanced bandwidth using triangular defected microstrip structure and stepped cut technique. Microwave and Optical Technology Letters, 2016, vol. 58, no. 6, p. 1514–1519. DOI: 10.1002/mop.29820
  4. ALI, W. A., ZAKI, A. I., ABDOU, M. H. Design and fabrication of rectangular ring monopole array with parasitic elements for UWB applications. Microwave and Optical Technology Letters, 2016, vol. 58, p. 2268–2273. DOI: 10.1002/mop.30021
  5. ABDALLA, M. A., IBRAHIM, A. A., BOUTEJDAR, A. Resonator switching for UWB antenna in wireless applications. IET Microwaves, Antennas and Propagation, 2015, vol. 9, no. 13, p. 1468–1477. DOI: 10.1049/iet-map.2014.0838
  6. LI, T., HUO, F. F., ZHAI, H. Q., LIANG, C. H. Compact ultrawideband antenna with sharp band-notched characteristics for WiMax and WLAN. Electronics Letters, 2012, vol. 48, no. 22, p. 1380–1382. DOI: 10.1049/el.2012.2924
  7. XU, J. SHEN, D., ZHANG, X., WU, K. A compact disc ultrawide band (UWB) antenna with quintuple band rejections. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 1517-1520. DOI: 10.1109/LAWP.2012.2234075
  8. DAS, S., MITRA, D., CHAUDHURI, S. R. B. Design of UWB planar monopole antennas with etched spiral slot on the patch for multiple band-notched characteristics. International Journal of Microwave Science and Technology, 2015, Article ID 303215, 9 p. DOI: 10.1155/2015/303215
  9. OJAROUDI, N., GHADIMI, N., OJAROUDI, Y. Compact multiresonance monopole antenna with dual band-stop property for UWB wireless communications. Wireless Personal Communications, 2015, vol. 81, no. 2, p. 563–579. DOI: 10.1007/s11277-014-2145-9
  10. CAI, Y. Z., YANG, H. C., CAI, L. Y. Wideband monopole antenna with three band-notched characteristics. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 607–610. DOI: 10.1109/LAWP.2014.2313178
  11. LI, L., ZHOU, Z. L., HONG, J. S. Compact UWB antenna with four band-notches for UWB applications. Electronics Letters, 2011, vol. 47, no. 22, p. 1211–1212. DOI: 10.1049/el.2011.2334
  12. SARKAR, D., SRIVASTAVA, K. V., K. SAURAV, K. A compact microstrip-fed triple band-notched UWB monopole antenna. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 396–399. DOI: 10.1109/LAWP.2014.2306812
  13. FEI, P., JIAO, Y.-C., ZHU, Y., ZHANG, F.-S. Compact CPW-fed monopole antenna and miniaturized ACS-fed half monopole antenna for UWB applications. Microwave and Optical Technology Letters, 2012, vol. 54, p. 1605–1609. DOI: 10.1002/mop.26909
  14. LIU, Y.-F., WANG, P., QIN, H. A compact triband ACS-fed monopole antenna employing inverted-L branches for WLAN/WiMAX applications. Progress In Electromagnetics Research C, 2014, vol. 47, p. 131–138. DOI: 10.2528/PIERC14012002
  15. LI, X., SHI, X. W., HU, W., FEI, P., YU, J. F. Compact triband ACS-fed monopole antenna employing open-ended slots for wireless communication. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 104–107. DOI: 10.1109/LAWP.2013.2252414
  16. LI, Y., LI, W., YE, Q. Miniaturization of asymmetric coplanar strip-fed staircase UWB antenna with reconfigurable notch band. Microwave and Optical Technology Letters, 2012, vol. 55, no. 7, p. 1467–1470. DOI: 10.1002/mop.27634
  17. DEEPU, V., RAJ, R. K., JOSEPH, M., SUMA, M. N., MOHANAN, P. Compact asymmetric coplanar strip fed monopole antenna for multiband applications. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 8, p. 2351–2357. DOI: 10.1109/TAP.2007.901847
  18. ASHKARALI, P., SREENATH, S., SUJITH, R., et al. A compact asymmetric coplanar strip fed dual-band antenna for DCS/WLAN applications. Microwave and Optical Technology Letters, 2012, vol. 54, p. 1087–1089. DOI: 10.1002/mop.26731
  19. SOLTANI, S., AZARMANESH, M. N., LOTFI, P. Design of small ACS fed band-notch UWB monopole antenna using particle swarm optimization, Microwave and Optical Technology Letters, 2010, vol. 52, p. 1510–1513. DOI: 10.1002/mop.25269
  20. LI, Y., LI, W., YU, W. A switchable UWB slot antenna using SISHSIR and SIS-SIR for multi-mode wireless communications applications. Applied Computational Electromagnetics Society Journal, 2012, vol. 27, no. 4, p. 340–351.
  21. TAWK Y., CHRISTODOULOU, C. G. A new reconfigurable antenna design for cognitive radio. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 1378–1381. DOI: 10.1109/LAWP.2009.2039461
  22. LI, Y., LI, W., YE, Q. A reconfigurable wide slot antenna integrated with sirs for UWB/multiband communication applications. Microwave and Optical Technology Letters, 2012, vol. 55, p. 52–55. DOI: 10.1002/mop.27253
  23. Al-Husseini, M., Ramadan, A., El-Hajj, A., et al. Design based on complementary split-ring resonators of an antenna with controllable band notches for UWB cognitive radio applications,” In Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting (APSURSI '11). Spokane (WA, USA), 2011, p. 1120 to 1122. DOI: 10.1109/APS.2011.5996479
  24. LI, Y., LI, W., YE, Q. A reconfigurable triple-notch-band antenna integrated with defected microstrip structure band-stop filter for ultra-wideband cognitive radio applications. International Journal of Antennas and Propagation, 2013, Article ID 472645, 13 p. DOI: 10.1155/2013/472645
  25. LI, Y., LI, W., MITTRA, R. A compact CPW-fed circular slot antenna with reconfigurable dual band-notch characteristics for UWB communication applications. Microwave and Optical Technology Letters, 2014, vol. 56, no. 2, p. 465–468. DOI: 10.1002/mop.28087

Keywords: UWB monopole antenna, band notched characteristics, WiMAX.

I. T. E. Elfergani, J. Rodriguez , F. M. Abdussalam , C. H. See , R. A. Abd-Alhameed [references] [full-text] [DOI: 10.13164/re.2017.0444] [Download Citations]
Miniaturized Balanced Antenna with Integrated Balun for Practical LTE Applications

A design of dual-band balanced antenna structure operating in the 700 and 2600MHz LTE bands is studied and investigated. The overall dimensions of the radiator are 50 × 18 × 7 mm^3 allowing it to be easily concealed within mobile handsets. A broad-band balun is designed and integrated with the antenna handset in order to provide the feeding network and perform the measurements of the antenna radiation performance. Prototypes of proposed antenna with and without balun are fabricated and verified. The simulated and practical results with and without the handheld effects in terms of reflection coefficient, power gain and radiation pattern, are studied and shown reasonable agreement.

  1. ANGUERA, J., ANDUJAR, A., HUYNH, M.C., ORLENIUS, C., PICHER, C., PUENTE, C. Advances in antenna technology for wireless handheld devices. International Journal on Antennas and Propagation, 2013, article ID 838364, 25 p. DOI: 10.1155/2013/838364
  2. ABRI, M., BELGACEM, N., BELGACEM, W. New GSM, DCS and GSM/DCS PIFA antenna for wireless networks applications. International Journal of Information Network Security, 2013, vol. 2, no. 4, p. 305–310. ISSN: 2089-3299
  3. CABEDO, A., ANGUERA, J., PICHER, C., RIBO, M., PUENTE, C. Multi-band handset antenna combining PIFA, slots, and ground plane modes. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 9, p. 2526–2533. DOI: 10.1109/TAP.2009.2027039
  4. GANDARA, T., PEIXEIRO, C. Compact double U-slotted microstrip patch antenna element for GSM1800, UMTS and HiperLAN2. In IEEE Antennas and Propagation Society Int. Symp. Monterey (California), 2004, p. 1459–1462. DOI: 10.1109/APS.2004.1330463
  5. BRISSOS J., PEIXEIRO, C. Triple-band microstrip patch antenna element for GSM1800, UMTS and HiperLAN2. In Proc. of 2003 IEEE Int. Antennas and Prop. Symp., Columbus (OH, USA), 2003, p. 130–133. DOI: 10.1109/APS.2003.1220138
  6. FAN, S., T., YIN, Y., Z., HU, W., SONG, K., LI, B. Novel CPWfed printed monopole antenna with an n-shaped slot for dual-band operations. Microwave and Optical Technology Letters, 2012, vol. 54, no. 1, p. 240–242. DOI: 10.1002/mop.26475
  7. MANOUARE, A. Z., IBNYAICH, S., EL IDRISSI, A., ABDELILAH GHAMMAZ, A. Miniaturized triple wideband CPW-fed patch antenna with a defected ground structure for WLAN/WiMAX applications. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2016, vol. 15, no. 3, p. 157–169. DOI: 10.1590/2179-10742016v15i3497
  8. ANG, I., GUO, Y., X., CHIA, Y. W. Compact internal quad-band antenna for mobile phones. Microwave and Optical Technology Letters, 2003, vol. 38, no. 3, p. 217–223. DOI: 10.1002/mop.11019
  9. LEE, C., WONG, K. Planar monopole with a coupling feed and an inductive shorting strip for LTE/GSM/UMTS operation in the mobile phone. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 7, p. 2479–2483. DOI: 10.1109/TAP.2010.2048878
  10. DING-BING LIN, JUI-HUNG CHOU, SON-ON FU, HSUEHJYH LI A compact dual-band printed antenna design for LTE operation in handheld device applications. International Journal of Antennas and Propagation, 2014, 9 p. DOI: 10.1155/2014/897328
  11. ELFERGANI, I., HUSSAINI, S.A., RODRIGUEZ, J., SEE, C. H., ALHAMEED, R. A. Wideband tunable PIFA antenna with loaded slot structure for mobile handset and LTE applications. Radioengineering, 2014, vol. 23, no. 1, p. 345–355.
  12. LIZZI, L., MASSA, A. Dual-band printed fractal monopole antenna for LTE applications. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 760–763. DOI: 10.1109/LAWP.2011.2163051
  13. WONG, K. L., LYU, C. A., CHOU, L. C. Small-size multiband planar antenna for LTE700/2300/2500 operation in the tablet computer. Microwave and Optical Technology Letters, 2012, vol. 54, no. 1, p. 81–86. DOI: 10.1002/mop.26507
  14. ABD-ALHAMEED, R. A., EXCELL, P. S., KHALIL, K., ALIAS, R., MUSTAFA, J. SAR and radiation performance of balanced and un-balanced mobile antennas using a hybrid computational electromagnetics formulation. IEE Proceedings - Science, Measurement and Technology, 2004, vol. 151, no. 6, p. 440 – 444. DOI: 10.1049/ip-smt:20040855
  15. VAINIKAINEN, P., OLLIKAINEN, J., KIVEKAS, O., KELANDER, K. Resonator-based analysis of the combination of mobile handset antenna and chassis. IEEE Transactions on Antennas and Propagation, 2002, vol. 50, no. 10, p. 1433–1444. DOI: 10.1109/TAP.2002.802085
  16. ARENAS, J. J., ANGUERA, J., PUENTE, C. Balanced and single-ended handset antennas: free space and human loading comparison. Microwave and Optical Technology Letters, 2009, vol. 51, no. 9, p. 2248–2254. DOI: 10.1002/mop.24525
  17. ILVONEN, J., KIVEKAS, O., AZREMI, A. A. H., VALKONEN, R., HOLOPAINEN, J., VAINIKAINEN, P. Isolation improvement method for mobile terminal antennas at lower UHF band. In Proceedings of the 5th European Conference on Antennas and Propagation. Rome (Italy), 2010, p. 1238–1242.
  18. ZHOU, D., ABD-ALHAMEED, R. A., EXCELL, P. S. Bandwidth enhancement of balanced folded loop antenna design for mobile handsets using genetic algorithms. PIERS Online, 2008, vol. 4, no. 1, p. 136–139.
  19. ILVONEN, J., HOLOPAINEN, J., KIVEKAS, O., VALKONEN, R., ICHELN, VAINIKAINEN, P. Balanced antenna structures of mobile terminals. In Proceedings of the 4th European Conference on Antennas and Propagation. Barcelona (Spain), 2010, 5 p.
  20. ELFERGANI, I. T. E., ABD-ALHAMEED, R. A., ALI, N. T. et al. A novel dual band frequency tunable balanced handset antenna for WLAN application. In 18th IEEE International Conference on Electronics, Circuits and Systems, Beirut (Lebanon), 2011, p. 516 to 519. DOI: 10.1109/ICECS.2011.6122326
  21. BEHERA, S. K., PODDAR. D. R., MISHRA, R. K. Design of sequentially fed balanced amplifying antenna for circular polarization. ICTACT Journal on Communication Technology, 2010, vol. 1, no. 4, p. 213–217.
  22. ZHOU, D., ABD-ALHAMEED, R. A., SEE, C. H., EXCELL, P. S. Design of wideband balanced folded-arms dipole antenna for mobile handsets. Electromagnetics, 2009, vol. 29, p. 641–651. DOI: 10.1080/02726340903287406
  23. ZHOU, D., ABD-ALHAMEED, R. A., SEE, C. H., ALHADDAD, A. G., EXCELL, P. S. Compact wideband balanced antenna for mobile handsets. IET Microwaves, Antennas and Propagation, 2010, vol. 4, no. 5, p. 600–608. DOI: 10.1049/iet-map.2009.0153
  24. COLLINS, B. S., KINGSLEY, S. P., IDE, J. M., SAARIO, S. A., SCHLUB, R. W., KEEFE, S. G. O. A multi-band hybrid balanced antenna. In IWAT 2006 IEEE International Workshop on Antenna Technology: Small Antenna and Novel Materials, White Plains (New York), 2006, p. 100–103.
  25. WEN-JUN LU, YA-MING BO, HONG-BO ZHU. Novel planar dual-band balanced antipodal slot-dipole composite antenna with reduced ground plane effect. International Journal of RF and Microwave Computer-Aided Engineering, 2012, vol. 22, no. 3, p. 3319–328. DOI: 10.1002/mmce.20600
  26. JOLANI, F., DADASHZADEH, G. R., NASER-MOGHADASI, M., DADGARPOUR, A. Design and optimization of compact balanced antipodal Vivaldi antenna. Progress In Electromagnetics Research C, 2009, vol. 9, p. 183–192. DOI: 10.2528/PIERC09071510
  27. VIGNESH, N., SATHISH KUMAR, G. A., BRINDHA, R. Design and development of a tapered slot Vivaldi antenna for ultra-wide band application. International Journal of Advanced Research in Computer Science and Software Engineering, 2014, vol. 4, no. 5, p. 174–178. ISSN: 2277 128X
  28. ELFERGANI, I. T. E., HUSSAINI, A. S., RODRIGUEZ, J., ALI, A. H., SEE, C. H., ABD-ALHAMEED, R. A. A compact and broadband balun design for LTE applications. Progress In Electromagnetics Research C, 2016, vol. 67, p. 85–95.
  29. HFSS version 14, Ansys Inc, USA, 2013, Available at: http://www.ansys.com/. Accessed on October 10, 2014.
  30. YUN-WEN CHI, KIN-LU WONG. Very-small-size printed loop antenna for GSM/DCS/PCS/UMTS operation in the mobile phone. Microwave and Optical Technology Letters, 2009, vol. 51, no. 1, p. 184–192. DOI: 10.1002/mop.24008
  31. JOHNSTON, R. W., MCRORY, J. G. An improved small antenna radiation-efficiency measurement. IEEE Antenna and Propagation Society Magazine, 2008, vol. 40, p. 40–48. DOI: 10.1109/74.735964
  32. AGAHI, D., DOMINO, W. Efficiency measurements of portablehandset antennas using the Wheeler cap. Applied Microwave and Wireless, June 2000. Available at: http://www.rfcafe.com/references/articles/EfficiencyMeasurement-Antenna-Wheeler-Cap.htm
  33. HOSUNG CHOO, ROGERS, R., HAO LING. On the Wheeler cap measurement of the efficiency of microstrip antennas. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 7, p. 2328–2332. DOI: 10.1109/TAP.2005.850758

Keywords: Balanced antenna, printed dipole, dual-band, LTE, balun

A. Habib, S. Ansar, A. Akram, M. Awais Azam, Y. Amin, H. Tenhunnen [references] [full-text] [DOI: 10.13164/re.2017.0453] [Download Citations]
Directly Printable Organic ASK Based Chipless RFID Tag for IoT Applications

A chipless RFID tag with unique ASK encoding technique is presented in this paper. The coding efficiency is enhanced regarding tag capacity. The amplitude varia¬tions of the backscattered RFID signal is used for encoding data instead of OOK. Strips of different widths are used to have amplitude variations. The ASK technique is applied using three different substrates of Kapton®HN, PET, and paper. To incorporate ASK technique, dual polarized rhombic shaped resonators are designed. These tags operate in the frequency range of 3.1–10.6 GHz with size of 70 × 42 mm^2. The presented tags are flexible and offer easy printability. The paper-based decomposable organic tag appears as an ultra low-cost solution for wide scale tracking. This feature enables them to secure a prominent position in the emerging fields of IoT and green electronics.

  1. WANT, R., SCHILIT, B. N., JENSON, S. Enabling the internet of things. IEEE Journals and Magazines, 2015, vol. 48, no. 1, p. 28 to 35. DOI: 10.1109/MC.2015.12
  2. GUBBI, J., BUYYA, R., MARUSIC, S., et al. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 2013, vol. 29, no. 7, p. 1645–1660. DOI: 10.1016/j.future.2013.01.010
  3. TRUONG, H. L., DUSTDAR, S. Principles for engineering IoT cloud systems. IEEE Cloud Computing, 2015, vol. 2, no. 2, p. 68 to 76. DOI: 10.1109/MCC.2015.23
  4. ISLAM, M., KARMARKAR, N. A novel compact printable dualpolarized chipless RFID System. IEEE Transactions on Microwave Theory and Techniques, July 2012, vol. 60, no. 7, p. 2142–2151. DOI: 10.1109/TMTT.2012.2195021
  5. OPREA, A., COURBAT, J., BARSAN, N., et al. Temperature, humidity and gas sensors integrated on plastic foil for low power applications. Sensors and Actuators B: Chemical, 2009, vol. 140, no. 1, p. 227–232. DOI: 10.1016/j.snb.2009.04.019
  6. NOOR, T., HABIB, A., AMIN, Y., et al. High-density chipless RFID tag for temperature sensing. Electronics Letters, 2016, vol. 52, no. 8, p. 620–622.DOI: 10.1049/el.2015.4488
  7. ROSELLI, L., MARIOTTI, C., MEZZANOTTE, P., et al. Review of the present technologies concurrently contributing to the implementation of the Internet of Things (IoT) paradigm: RFID, green electronics, WPT and energy harvesting. In 2015 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet). San Diego (CA, USA), January 2015, p. 1-3. DOI: 10.1109/WISNET.2015.7127402
  8. DOBKIN, D., WANDINGER, T. The RF in RFID, UHF RFID in Practice. 2nd edition. Waltham (USA): Newnes, 2013 (Chapter 3.) ISBN 9780123948304
  9. PRERADOVIC, S., KARMAKAR, N. Chipless RFID: Bar code of the future. IEEE Microwave Magazine, December 2010, vol. 11, no. 7, p. 87–97. DOI: 10.1109/MMM.2010.938571
  10. MCINTYRE, L., MICHAEL, K., ALBRECHT, K. RFID: Helpful new technology or threat to privacy and civil liberties. IEEE Potentials, September/October 2015, vol. 34, no. 5, p. 13–18. DOI: 10.1109/MPOT.2015.2410392
  11. PRERADOVIC, S., KARMAKAR, N .Design of fully printable planar chipless RFID transponder with 35-bit data capacity. In Proceedings of the 39th European Microwave Conference. Rome (Italy), 2009, p. 13–16. ISBN: 978-1-4244-4748-0.
  12. TEDJINI, S., DUROC, Y. From radiator to signal processing antenna. In Asia-Pacific Microwave Conference 2011. Melbourne (Australia), 2011, p.175–178. ISBN: 978-1-4577-2034-5
  13. FAN.P. F., ZHOU, G. Z. Analysis of the business model innovation of the technology of Internet of Things in postal logistics. In 2011 IEEE 18Th International Conference on Industrial Engineering and Engineering Management (IE&EM). Changchun (China), 2011, p. 532–536. ISBN: 978-1-61284-446-6. DOI: 10.1109/ICIEEM.2011.6035215
  14. BHUIYAN, S., KARMAKAR, N. Chipless RFID tag based on split-wheel resonators. In 2013 7th European Conference on Antennas and Propagation (EuCAP). Gothenburg (Sweden), 2013, p. 3054–3057. ISBN: 978-1-4673-2187-7
  15. REZAIESARLAK, R., MANTEGHI, M. Complex-naturalresonance-based design of chipless RFID tag for high-density data. IEEE Transactions on Antennas and Propagation. February 2014, vol. 62, no. 2, p. 898–904. DOI: 10.1109/TAP.2013.2290998
  16. VENA, A., BABAR, A. A., SYDANHEIMO, L., et al. A novel near-transparent ASK-reconfigurable inkjet-printed chipless RFID tag. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 753–756. DOI: 10.1109/LAWP.2013.2270932
  17. COSTA, F., GENOVESI, S., MONORCHIO, A. A chipless RFID based on multi resonant high-impedance surfaces. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 1, p. 146–153. DOI: 10.1109/TMTT.2012.2227777
  18. VENA, A., PERRET, E., TEDJINI, S. Chipless RFID tag using hybrid coding. IEEE Transactions on Microwave Theory and Techniques, December 2011, vol. 59, no. 12, p. 3356–3364. DOI: 10.1109/TMTT.2011.2171001
  19. BORTFELDT, J. The Floating Strip Micromegas Detector: Versatile Particle Detector for High Rate Applications. 1st ed. Switzerland: Springer, 2015. ISBN 978-3-319-18892-8
  20. RANCE, O., SIRAGUSA, R., LEMAÎTRE-AUGER, P., et al. RCS magnitude coding for chipless RFID based on depolarizing tag. In 2015 IEEE MTT-S International Microwave Symposium. Phoenix (AZ, USA), 2015, p. 1-4. DOI: 10.1109/MWSYM.2015.7166929
  21. IONESCU, C., SVASTA, P., VASILE, A., et al. Investigations on organic printed resistors based on PEDOT: PSS. In 2012 IEEE 18th International Symposium on Design and Technology in Electronic Packaging (SIITME). Alba Iulia (Italy), 2012, p. 85–89. DOI: 10.1109/SIITME.2012.6384352
  22. HAVLICEK, J., SVANDA, M., MACHAC, J., et al. Improvement of reading performance of frequency-domain chipless RFID transponders. Radioengineering, June 2016, vol. 25, no. 2, p. 219 to 229. DOI: 10.13164/re.2016.0219
  23. LEI XU, KAMA HUANG. Design of compact trapezoidal bow-tie chipless RFID tag. International Journal of Antennas and Propagation, October 2014, vol.2015, Article ID 502938, 7 p. DOI: 10.1155/2015/502938
  24. FENG, Y., XIE, L., CHEN, Q., et al. Low-cost printed chipless RFID humidity sensor tag for intelligent packaging. IEEE Sensors Journal, 2015, vol. 15, no. 6, p. 3201–3208. DOI: 10.1109/JSEN.2014.2385154
  25. JAVED, N., HABIB, A., AMIN, Y., et al. Directly printable moisture sensor tag for intelligent packaging. IEEE Sensors Journal, June 2016, vol. 16, no. 16, p. 6147–6148. DOI: 10.1109/JSEN.2016.2582847

Keywords: Internet-of-Things (IoT), Radio Frequency Identification (RFID), chipless, Amplitude Shift Keying (ASK), resistive strip, coupling, damping

K. Dwarika, H. Xu. [references] [full-text] [DOI: 10.13164/re.2017.0461] [Download Citations]
Power Allocation and Low Complexity Detector for Differential Full Diversity Spatial Modulation Using Two Transmit Antennas

Differential full diversity spatial modulation (DFD-SM) is a differential spatial modulation scheme that makes use of a cyclic unitary M-ary phase shift keying (M-PSK) constellation to achieve diversity gains at both the transmitter and receiver. In this paper, we extend the power allocation concept of generalized differential modulation (GDM) to DFD-SM to improve its block-error rate (BLER). A novel power allocation scheme is formulated, and its optimum power allocation is derived. An asymptotic upper bound is presented for the new scheme and results are verified through Monte Carlo simulations. It can be seen that for a large enough frame length, the proposed scheme can almost achieve coherent performance. We also propose a low complexity detection scheme for DFD-SM. We evaluate the computational complexity of the maximum-likelihood (ML) detector and compare it to that of the proposed algorithm. It is shown that our scheme is independent of the constellation size. Numerical simulations of the BLER are presented, and it can be seen that the proposed scheme provides near ML performance throughout the entire signal-to-noise ratio (SNR) range with a complexity reduction of about 55% and 52% for one and two receive antennas respectively, in the high SNR region.

  1. MESLEH, R., HAAS, H., SINANOVIC, S., et al. Spatial modulation. IEEE Transactions on Vehicular Technology, Jul. 2008, vol. 57, no. 4, p. 2228–2242. DOI: 10.1109/TVT.2007.912136
  2. SUGIURA, S., CHEN, S., HANZO, L. Coherent and differential space time shift keying: A dispersion matrix approach. IEEE Transactions on Communications, Nov. 2010, vol. 58, no. 11, p. 3219–3230. DOI: 10.1109/TCOMM.2010.093010.090730
  3. BIAN, Y., WEN, M., CHENG, X., et al. A differential scheme for spatial modulation. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM). Atlanta (USA), 2013, p. 3925–3930. DOI: 10.1109/GLOCOM.2013.6831686
  4. BIAN, Y., CHENG, X., WEN, M., et al. Differential spatial modulation. IEEE Transactions on Vehicular Technology, Jul. 2015, vol. 64, no. 7, p. 3262–3268. DOI: 10.1109/TVT.2014.2348791
  5. ISHIKAWA, N., SUGIURA, S. Unified differential spatial modulation. IEEE Wireless Communications Letters, Aug. 2014, vol. 3, no. 4, p. 337–340. DOI: 10.1109/LWC.2014.2315635
  6. ZANG, W., YIN, Q., DENG, H. Differential full diversity spatial modulation and its performance analysis with two transmit antennas. IEEE Wireless Communications Letters, Apr. 2015, vol. 19, no. 4, p. 677–680. DOI: 10.1109/LCOMM.2015.2403859
  7. FANG, Z., LIANG, F., LI, L., et al. Performance analysis and power allocation for two-way amplify-and-forward relaying with generalized differential modulation. IEEE Transactions on Vehicular Technology, Feb. 2014, vol. 63, no. 2, p. 937–942. DOI: 10.1109/TVT.2013.2279856
  8. LI, L., FANG, Z., ZHU. Y., et al. Generalized differential transmission for STBC systems. In Proceedings of the 2008 IEEE Global Communications Conference (GLOBECOM). New Orleans (USA), Dec. 2008, p. 1–5. DOI: 10.1109/GLOCOM.2008.ECP.836
  9. MEN, H., JIN, M. A low complexity ML detection algorithm for spatial modulation systems with MPSK constellation. IEEE Communications Letters, Jun. 2014, vol. 18, no. 8, p. 1375–1378. DOI: 10.1109/LCOMM.2014.2331283
  10. XIAO, L., YANG P., LEI X., et al. A low-complexity detection scheme for differential spatial modulation. IEEE Communications Letters, Jun. 2015, vol. 19, no. 9, p. 1516–1519. DOI: 10.1109/LCOMM.2015.2448616

Keywords: Spatial Modulation (SM), differential spatial modulation (DSM), full transmit diversity, maximumlikelihood (ML) decoding, computational complexity

T. Shuminoski, T. Janevski [references] [full-text] [DOI: 10.13164/re.2017.0470] [Download Citations]
5G Terminals with Multi-Streaming Features for Real-Time Mobile Broadband Applications

In this paper we present a novel QoS framework on the network layer for 5G terminals with vertical multi-homing and multi-streaming capabilities by using radio networks aggregation. The proposed framework is leading to high performance utility networks with QoS provisioning for real-time multimedia services by achieving low packet delays, stochastic queuing network stability and highest mobile broadband capabilities i.e. bitrates. The proposed QoS algorithm is implemented within the mobile terminals on one side, and in dedicated proxy servers on mobile core network side. It is based on Lyapunov optimization techniques and it is targeted to handle simultaneously multiple multimedia service flows via multiple radio network interfaces in parallel.

  1. JANEVSKI, T. Internet Technologies for Fixed and Mobile Networks. USA: Artech House, 2015, ISBN: 978-1-60807-921-6
  2. BOCCARDI, F., et al. Five disruptive technology directions for 5G. IEEE Communications Magazine, 2014, vol. 52, no. 2, p. 74 to 80. DOI: 10.1109/MCOM.2014.6736746
  3. BANGERTER, B., et al. Networks and devices for the 5G era. IEEE Communications Magazine, 2014, vol. 52, no. 2, p. 90–96. DOI: 10.1109/MCOM.2014.6736748
  4. CHENG-XIANG WANG, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine. 2014, vol. 52, no. 2, p. 122–130. DOI: 10.1109/MCOM.2014.6736752
  5. JANEVSKI, T. 5G Mobile phone concept. In IEEE Consumer Communications and Networking Conference (CCNC). Las Vegas (USA), 2009. DOI: 10.1109/CCNC.2009.4784727
  6. WANG, P., et al. Multi-Gigabit millimeter wave wireless communications for 5G: From fixed access to cellular networks. IEEE Communications Magazine, 2015, vol. 53, no. 1, p. 168–178. DOI: 10.1109/MCOM.2015.7010531
  7. QIAO, J., et al. Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Communications Magazine, 2015, vol. 53, no. 1, p. 209–215. DOI: 10.1109/MCOM.2015.7010536
  8. Rec. ITU-T Y.2052 (02/2008): Framework of multi-homing in IPv6-based NGN, February 2008.
  9. Rec. ITU-T Y.2056 (08/2011): Framework of vertical multihoming in IPv6-based Next Generation Networks, August 2011.
  10. NEELY, M. J. Stochastic Network Optimization with Application to Communication and Queueing Systems. USA: Morgan & Claypool, 2010. DOI: 10.2200/S00271ED1V01Y201006CNT007
  11. MALISOFF, M., MAZENC, F. Constructions of Strict Lyapunov Functions. London: Springer, 2009. ISBN: 978-1-84882-535-2
  12. TASSIULAS, L., EPHREMIDES, A. Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Control, Dec. 1992, vol. 37, no. 12, p. 1936–1948. DOI: 10.1109/9.182479
  13. TASSIULAS, L., EPHREMIDES, A. Dynamic server allocation to parallel queues with randomly varying connectivity. IEEE Transactions on Information Theory, March 1993, vol. 39, no. 2, p. 466–478. DOI: 10.1109/18.212277
  14. KUMAR, P. R., MEYN, S. P. Stability of queueing networks and scheduling policies. IEEE Transactions on Automatic Control, Feb. 1995, vol.40, no. 2, p. 251–260. DOI: 10.1109/9.341782
  15. NEELY, M. J., MODIANO, E., LI, C. Fairness and optimal stochastic control for heterogeneous networks. In Proceedings of IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM. Miami (FL, USA), March 2005. DOI: 10.1109/INFCOM.2005.1498453
  16. STOLYAR, A. Maximizing queueing network utility subject to stability: Greedy primal-dual algorithm. Queueing Systems, 2005, vol. 50, no. 4, p. 401–457. DOI: 10.1007/s11134-005-1450-0
  17. NEELY, M. J., MODIANO, E., ROHRS, C. E. Dynamic power allocation and routing for time varying wireless networks. IEEE Journal on Selected Areas in Communications, Jan. 2005, vol. 23, no. 1, p. 89–103. DOI: 10.1109/JSAC.2004.837349
  18. SRIDHARAN, A., MOELLER, S., KRISHNAMACHARI, B. Making distributed rate control using Lyapunov drifts a reality in wireless sensor networks. In 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops WiOPT 2008. Berlin (Germany), 2008, p. 452–461. DOI: 10.1109/WIOPT.2008.4586106
  19. GEORGIADIS, L., NEELY, M. J., TASSIULAS, L. Resource allocation and cross-layer control in wireless networks. Foundations and Trends in Networking, 2006, vol. 1, no. 1, p. 1 to 149. DOI: 10.1561/1300000001
  20. NEELY, M. J. Optimal backpressure routing for wireless networks with multi-receiver diversity. In 40th Annual Conference on Information Sciences and Systems (CISS). Princeton (NJ, USA), 2006, p. 18–25. DOI: 10.1109/CISS.2006.286424
  21. LEE, J. W., MAZUMDAR, R. R., SHROFF, N. B. Opportunistic power scheduling for dynamic multiserver wireless systems. IEEE Transactions on Wireless Communications, June 2006, vol. 5, no. 6, p. 1506–1515. DOI: 10.1109/TWC.2006.1638671
  22. NEELY, M. J. Energy optimal control for time varying wireless networks. IEEE Transactions on Information Theory, July 2006, vol. 52, no. 7, p. 2915–2934. DOI: 10.1109/TIT.2006.876219
  23. NEELY, M. J. Super-fast delay tradeoffs for utility optimal fair scheduling in wireless networks. IEEE Journal on Selected Areas in Communications, Aug. 2006, vol. 24, no. 8, p. 1489–1501. DOI: 10.1109/JSAC.2006.879357
  24. ERYILMAZ, A., SRIKANT, R. Joint congestion control, routing, and mac for stability and fairness in wireless networks. IEEE Journal on Selected Areas in Communications, Special Issue on Nonlinear Optimization of Communication Systems, Aug. 2006, vol. 14, p. 1514–1524. DOI: 10.1109/JSAC.2006.879361
  25. NEELY, M. J., URGAONKAR, R. Cross-layer adaptive control for wireless mesh networks. Ad Hoc Networks (Elsevier journal), August 2007, vol. 5, no. 6, p. 719–743. Available at: http://dx.doi.org/10.1016/j.adhoc.2007.01.004
  26. NEELY, M. J. Optimal energy and delay tradeoffs for multi-user wireless downlinks. IEEE Transactions on Information Theory, Sept. 2007, vol. 53, no. 9, p. 3095–3113. DOI: 10.1109/TIT.2007.903141
  27. ERYILMAZ, A., SRIKANT, R. Fair resource allocation in wireless networks using queue-length-based scheduling and congestion control. IEEE/ACM Transactions on Networking, 2007, vol. 15, no. 6, p. 1333–1344. DOI: 10.1109/TNET.2007.897944.
  28. LI, Q., NEGI, R. Scheduling in wireless networks under uncertainties: A greedy primal-dual approach. Arxiv Technical Report: arXiv:1001:2050v2, June 2010.
  29. NEELY, M. J., URGAONKAR, R. Optimal backpressure routing in wireless networks with multi-receiver diversity. Ad Hoc Networks (Elsevier journal), July 2009, vol. 7, no. 5, p. 862–881. DOI: 10.1016/j.adhoc.2008.07.009
  30. SHUMINOSKI, T., JANEVSKI, T. Lyapunov optimization framework for 5G mobile nodes with multi-homing. IEEE Communications Letters, May 2016, vol. 20, no. 5, p. 1026–1029. DOI: 10.1109/LCOMM.2016.2540622
  31. SHUMINOSKI, T., JANEVSKI, T. 5G mobile terminals with advanced QoS-based user-centric aggregation (AQUA) for heterogeneous wireless and mobile networks. Wireless Networks, 2016, vol. 22, no. 5, p. 1553–1570. DOI: 10.1007/s11276-015-1047-4
  32. SHUMINOSKI, T., JANEVSKI, T. Radio network aggregation for 5G mobile terminals in heterogeneous wireless and mobile networks. Wireless Personal Communication. May 2014, vol. 78, no. 2, p. 1211–1229. DOI: 10.1007/s11277-014-1813-0
  33. BERTSEKAS, D. P., GALLAGER, R. Data Networks. New Jersey: Prentice-Hall, 1992. ISBN 0132009161

Keywords: 5G, Lyapunov optimization, Quality of Service, Radio Access Technology, vertical multi-homing

M. Kenyeres, J. Kenyeres, V. Skorpil, R. Burget [references] [full-text] [DOI: 10.13164/re.2017.0479] [Download Citations]
Distributed Aggregate Function Estimation by Biphasically Configured Metropolis-Hasting Weight Model

An energy-efficient estimation of an aggregate function can significantly optimize a global event detection or monitoring in wireless sensor networks. This is probably the main reason why an optimization of the complementary consensus algorithms is one of the key challenges of the lifetime extension of the wireless sensor networks on which the attention of many scientists is paid. In this paper, we introduce an optimized weight model for the average consensus algorithm. It is called the Biphasically configured Metropolis-Hasting weight model and is based on a modification of the Metropolis-Hasting weight model by rephrasing the initial configuration into two parts. The first one is the default configuration of the Metropolis-Hasting weight model, while, the other one is based on a recalculation of the weights allocated to the adjacent nodes’ incoming values at the cost of decreasing the value of the weights of the inner states. The whole initial configuration is executed in a fully-distributed manner. In the experimental section, it is proven that our optimized weight model significantly optimizes the Metropolis-Hasting weight model in several aspects and achieves better results compared with other concurrent weight models.

  1. BUTUN, I., MORGERA, S. D., SANKAR, R. A survey of intrusion detection systems in wireless sensor networks. IEEE Communications Survey & Tutorials, 2014, vol. 16, no. 1, p. 266–282. DOI: 10.1109/SURV.2013.050113.00191
  2. BAHREPOUR, M., MERATNIA, N., POEL, M., et al. Distributed event detection in wireless sensor networks for disaster management. In Proceeding of the 2nd International Conference on Intelligent Networking and Collaborative Systems (INCOS). Thessaloniki (Greece), 2010, p. 507–512. DOI: 10.1109/INCOS.2010.24
  3. OTHMAN, M. F., SHAZALI, K. Wireless sensor network applications: A study in environment monitoring system. Procedia Engineering, 2012, vol. 41, p. 1204–1210. DOI: 10.1016/j.proeng.2012.07.302
  4. YICK, J., MUKHERJEE, B., GHOSAL, D. Wireless sensor network survey. Computer Networks, 2008, vol. 52, no. 12, p. 2292–2330. DOI: 10.1016/j.comnet.2008.04.002
  5. SHERLY PUSPHA, L., MURUGAN, K. Energy-efficient quorumbased MAC protocol for wireless sensor networks. ETRI Journal, 2015, vol. 37, no. 3, p. 480–490. DOI: 10.4218/etrij.15.0114.0688
  6. HATAMIAN, M., ALMASI BARDMILY, M., ASADBOLAND, M., el al. Congestion-aware Routing and fuzzy-based rate controller for wireless sensor networks. Radioengineering, 2016, vol. 25, no. 1, p. 114–123. DOI: 10.13164/re.2016.0114
  7. XIE, L., SHI, Y., HOU, Y.T., et al. Wireless power transfer and applications to sensor networks. IEEE Wireless Communications, 2013, vol. 20, no. 4, p. 140–145. DOI: 10.1109/MWC.2013.6590061
  8. KUILA, P., JANA, P. K. Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 2014, vol. 33, p. 127–140. DOI: 10.1016/j.engappai.2014.04.009
  9. RAULT, T., BOUABDALLAH, A., CHALLAL, Y. Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 2014, vol. 67, p. 104–122. DOI: 10.1016/j.comnet.2014.03.027
  10. VISSER, H. J., VULLERS, R. J. RF energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proceedings of the IEEE, 2013, vol. 101, no. 6, p. 1410–1423. DOI: 10.1109/JPROC.2013.2250891
  11. SHELTAMI, T. An enhanced energy saving approach for WSNs. Procedia Computer Science, 2013, vol. 21, p. 199–206. DOI: 10.1016/j.procs.2013.09.027
  12. KARABOGA, D., OKDEM, S., OZTURK, C. Cluster based wireless sensor network routing using artificial bee colony algorithm. Wireless Networks, 2012, vol. 18, no. 7, p. 847–860. DOI: 10.1007/s11276-012-0438-z
  13. KAR, S., TANDON, R., POOR, H. V., et al. Distributed detection in noisy sensor networks. In Proceeding of the IEEE International Symposium on Information Theory Proceedings (ISIT). St. Petersburg (Russia), 2011, p. 2856–2860. DOI: 10.1109/ISIT.2011.6034097
  14. KEMPE, D., DOBRA, A., GEHRKE, J. Gossip-based computation of aggregate information. In Proceeding of the 44th Annual IEEE Symposium on Foundations of Computer Science. Cambridge (Massachusetts, USA), 2003, p. 482–491. DOI: 10.1109/SFCS.2003.1238221
  15. BRACA, P., MARANO, S., MATTA, V. Enforcing consensus while monitoring the environment in wireless sensor networks. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 7, p. 3375–3380. DOI: 10.1109/TSP.2008.917855
  16. SLUCIAK, O., RUPP, M. Reaching consensus in asynchronous WSNs: Algebraic approach. In Proceeding of the IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP). Prague (Czech Republic), 2011, p. 3300 to 3303. DOI: 10.1109/ICASSP.2011.5946727
  17. XIONG, G., KISHORE, S. Linear high-order distributed average consensus algorithm in wireless sensor networks. EURASIP Journal on Advances in Signal Processing, 2010, vol. 1, no. 1, p. 1–6. DOI: 10.1155/2010/373604
  18. JAFARIZADEH, S., JAMALIPOUR, A. Weight optimization for distributed average consensus algorithm in symmetric, CCS & KCS star networks. arXiv preprint arXiv:1001.4278.
  19. SLUCIAK, O., RUPP, M. Network size estimation using distributed orthogonalization. IEEE Signal Processing Letters, 2013, vol. 20, no. 4, p. 347–350. DOI: 10.1109/lsp.2013.2247756
  20. OLFATI-SABER, R., FAX, J. A., MURRAY, R. M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, vol. 95, no. 1, p. 215–233. DOI: 10.1109/JPROC.2006.887293
  21. SHAMES, I., CHARALAMBOUS, T., HADJICOSTIS, C.N., et al. Distributed network size estimation and average degree estimation and control in networks isomorphic to directed graphs. In Proceeding of the 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton). Monticello (Illinois, USA), 2012, p. 1885–1892. DOI: 10.1109/Allerton.2012.6483452
  22. BIANCHIN, G., CENEDESE, A., LUVISOTTO, M., et al. Distributed faults detection in sensor networks via clustering and consensus. In Proceeding of the IEEE 54th Conference on Decision and Control (CDC). Osaka (Japan), 2015, p. 3828–3833. DOI: 10.1109/cdc.2015.7402814
  23. KIM, B. Y., HUR, H., AHN, H. S. Coordination and control for freeway traffic network. In Proceeding of the IEEE International Systems Conference (SysCon). Orlando (Florida, USA), 2013, p. 159–163. DOI: 10.1109/syscon.2013.6549875
  24. ZENG, F., LI, C., TIAN, Z. Distributed compressive spectrum sensing in cooperative multihop cognitive networks. IEEE Journal of Selected Topics in Signal Processing, 2011, vol. 5, no. 1, p. 37 to 48. DOI: 10.1109/vtcfall.2013.6692163
  25. TAHBAZ-SALEHI, A., JADBABAIE, A. A one-parameter family of distributed consensus algorithms with boundary: From shortest paths to mean hitting times. In 45th IEEE Conference on Decision and Control. San Diego (CA, USA), 2006, p. 4664–4669. DOI: 10.1109/cdc.2006.377308
  26. CHIB, S., GREENBERG, E. Understanding the MetropolisHastings algorithm. The American Statistician, 1995, vol. 49, no. 4, p. 327–335. DOI: 10.2307/2684568
  27. KIA, S. S., CORTES, J., MARTINEZ, S. Distributed eventtriggered communication for dynamic average consensus in networked systems. Automatica, 2015, vol. 59, p. 112–119. DOI: 10.1016/j.automatica.2015.06.011
  28. WANG, X., LI, J., XING, J., et al. A novel finite-time average consensus protocol for multi-agent systems with switching topology. Transaction of the Institute of Measurement and Control, 2016, p. 1–9. DOI: 10.1177/0142331216663617
  29. KENYERES, M., KENYERES, J., SKORPIL, V. Split distributed computing in wireless sensor networks. Radioengineering, 2015, vol. 24, no. 3, p. 749–756. DOI: 10.13164/re.2015.0749
  30. KIA, S. S., CORTES, J., MARTINEZ, S. Dynamic average consensus under limited control authority and privacy requirements. International Journal of Robust and Nonlinear Control, 2015, vol. 25, no. 13. p. 1941–1966. DOI: 10.1002/rnc.3178
  31. PRIOLO, A., GASPARRI, A., MONTIJANO, E., et al. A distributed algorithm for average consensus on strongly connected weighted digraphs. Automatica, 2014, vol. 50, no. 3, p. 946–951. DOI: 10.1016/j.automatica.2013.12.026
  32. YUAN, D., XU, S., ZHAO, H., et al. Accelerating distributed average consensus by exploring the information of second-order neighbors. Physics Letters A, 2010, vol. 374, no. 24. p. 2438–2445. DOI: 10.1016/j.physleta.2010.03.053
  33. AYSAL, T. C., ORESHKIN, B. N., COATES, M. J. Accelerated distributed average consensus via localized node state prediction. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 3. p. 1563–1576. DOI: 10.1109/TSP.2008.2010376
  34. LIU, W., GU, W., XU, Y., et al. Improved average consensus algorithm based distributed cost optimization for loading shedding of autonomous microgrids. International Journal of Electrical Power & Energy Systems, 2015, vol. 73, p. 89–96. DOI: 10.1016/j.ijepes.2015.04.006
  35. CHEN, Y., TRON, R., TERZIS, A., et al. Corrective consensus: Converging to the exact average. In Proceeding of the 49th IEEE Conference on Decision and Control (CDC). Atlanta (Georgia, USA), 2010, p. 1221–1228. DOI: 10.1109/CDC.2010.5717925
  36. LI, W., JIA, Y. Consensus-based distributed multiple model UKF for jump Markov nonlinear systems. IEEE Transactions on Automatic Control, 2012, vol. 57, no. 1, p. 227–233. DOI: 10.1109/TAC.2011.2161838
  37. LI, Z., YU, F.R., HUANG, M. A distributed consensus-based cooperative spectrum-sensing scheme in cognitive radios. IEEE Transactions on Vehicular Technology, 2010, vol. 59, no. 1, p. 383–393. DOI: 10.1109/TVT.2009.2031181
  38. FRASCA, P., CARLI, R., FAGNANI, F., et al. Average consensus on networks with quantized communication. International Journal of Robust and Nonlinear Control, 2009, vol. 19, no. 16, p. 1797 to 1816. DOI: 10.1109/TVT.2009.2031181
  39. KENYERES, M., KENYERES, J., SKORPIL, V. The distributed convergence classifier using the finite difference. Radioengineering, 2016, vol. 25, no. 1, p. 148–155. DOI: 10.13164/re.2016.0148
  40. TOULOUSE, M., MINH, B. Q., CURTIS, P. A consensus based network intrusion detection system. In Proceeding of the 5th International Conference on IT Convergence and Security (ICITCS). Kuala Lumpur (Malaysia), 2015, p. 1–6. DOI: 10.1109/ICITCS.2015.7292913
  41. BENJAMIN, A., CHARTRAND, G., ZHANG, P. The Fascinating World of Graph Theory. Princeton (NJ, USA): Princeton University Press, 2015. ISBN: 9780691163819
  42. SCHWARZ, V., MATZ, G. Average consensus in wireless sensor networks: Will it blend? In Proceeding of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Vancouver (British Columbia, Canada), 2013, p. 4584–4588. DOI: 10.1109/ICASSP.2013.6638528
  43. ANDERSON, W. N., MORLEY, T. D. Eigenvalues of the Laplacian of a graph. Linear and Multilinear Algebra, vol. 18, no. 2, 1985, p. 141–145. DOI: 10.1080/03081088508817681
  44. SPIELMAN, D. A. The Laplacian (Lecture 2). 6 pages. [Online] Cited 2016-10-20. Available at: http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf
  45. XIAO, L., BOYD, S., KIM, S. J. Distributed average consensus with least-mean-square deviation. Journal of Parallel and Distributed Computing, 2007, vol. 67, no. 1. p. 33–46. DOI: 10.1016/j.jpdc.2006.08.010
  46. XIAO, L., BOYD, S. Fast linear iterations for distributed averaging. Systems & Control Letters, 2004, vol. 53, no. 1, p. 65 to 78. DOI: 10.1016/j.sysconle.2004.02.022
  47. MACUA, S. V., LEON, C. M., ROMERO, J. S., et al. How to implement doubly-stochastic matrices for consensus-based distributed algorithms. In Proceeding of the IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM). A Coruña, (Spain), 2014, p. 333–336. DOI: 10.1109/SAM.2014.6882409
  48. BAPAT, R. B. Graphs and Matrices. New York (NY): Springer, 2010. DOI: 10.1007/978-1-84882-981-7
  49. LI, Z., REN, W., LIU, X., et al. Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Transactions on Automatic Control, 2013, vol. 58, no. 7, p. 1786–1791. DOI: 10.1109/TAC.2012.2235715
  50. NOWZARI, C., CORTES, J. Zeno-free, distributed event-triggered communication and control for multi-agent average consensus. In Proceeding of the American Control Conference (ACC). Portland (Oregon, USA), 2014, p. 2148–2153. DOI: 10.1109/ACC.2014.6859495
  51. AL-NAKHALA, N., RILEY, R. ELFOULY, T. Distributed algorithms in wireless sensor networks: An approach for applying binary consensus in a real testbed. Computer Networks, vol. 79, p. 30–38. DOI: 10.1016/j.comnet.2014.12.011
  52. SCHWARZ, V., HANNAK, G., MATZ, G. On the convergence of the average consensus with generalized Metropolis-Hasting weights. In Proceeding of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence (Italy), 2014, p. 5442–5446, DOI: 10.1109/icassp.2014.6854643
  53. VARGA, R. S. Gersgorin and His Circles. Berlin (GE): SpringerVerlag, 2004. DOI: 10.1007/978-3-642-17798-9

Keywords: Distributed computing, aggregate function, average consensus algorithm, metropolis-hasting weight model, wireless sensor networks

D. Yuan, H. D. Quan, H. X. Sun [references] [full-text] [DOI: 10.13164/re.2017.0496] [Download Citations]
Effect Analysis of Time and Carrier Frequency Offset on the Performance of Distributed Transmit Beamforming for Emergency Radio

In emergency radio scenario, distributed transmit beamforming (DTBF) enables a set of distributed radio nodes to transmit cooperatively to get a better performance. DTBF performance has been analyzed for various node distributions in the literature. However, time offset (TO) and carrier frequency offset (CFO) may exist between transmitting nodes, due to each radio node is equipped with its own clock circuit and local oscillator. Effect analysis of TO and CFO on DTBF performance is an open issue. This paper evaluates the effect of TO and CFO on performance of DTBF for arbitrary node distributions. In this study, TO and CFO are converted into phase offset (PO), and non-parametric kernel method is used to calculate the PDFs of node and offsets. Theoretical analysis and simulation results show that TO and CFO result in degradation of the mainlobe power and affect the beampattern characteristics.

  1. HER, J., WYSOKI, T. A., WYSOKI, B. J. Review of distributed beamforming. Journal of Telecommunications and Information Technology, 2011, vol. 12, no. 1, p. 78–88. ISSN: 1899-8852
  2. PREUSS, R. D., BROWN, D. R. Retrodirective distributed transmit beamforming with two-way source synchronization. In Proceedings of the 44th Annual Conference on Information Sciences and Systems (CISS). New Jersey (USA), 2010, p. 1–6. DOI: 10.1109/CISS.2010.5464801
  3. BLETSAS, A., LIPPMAN, A., SAHALOS, J. N. Simple, zero-feedback, collaborative beamforming for emergency radio. In Proceedings of the 6th International Symposium on Wireless Communication Systems. 2009, p. 657–661. DOI: 10.1109/ISWCS.2009.5285299
  4. OCHIAI, H., MITRAN, P., POOR, H. V. Collaborative beamforming for distributed wireless ad hoc sensor networks. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 11, p. 4110–4124. DOI: 10.1109/TSP.2005.857028
  5. SRIPLOY, P., UTHANSAKUL, P., UTHANSAKUL, M. An effect of imperfection in node location estimation on distributed beamforming. In Proceedings of the 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). 2012, p. 1–4. DOI: 10.1109/ECTICon.2012.6254143
  6. DONG, L., PETROPULU, A. P., POOR, H. V. Performance analysis of a cross-layer collaborative beamforming approach in the presence of channel and phase errors. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. 2008, p. 3233–3236. DOI: 10.1109/ICASSP.2008.4518339
  7. AHMED, M. F., VOROBYOV, S. A. Collaborative beamforming for wireless sensor networks with Gaussian distributed sensor nodes. IEEE Transactions on Wireless Communications, 2009, vol. 8, no. 2, p. 638–643. DOI: 10.1109/TWC.2009.071339
  8. CHEN, H. W., ZHAN, W. S., KIRING, A., et al. Distributed beamforming with uniform circular array formation in wireless sensor networks. In Proceedings of the Global High Tech Congress on Electronics. 2012, vol. 3, no. 1, p. 75–80. DOI: 10.1109/GHTCE.2012.6490128
  9. HUANG, J., WANG, P., WAN, Q. Collaborative beamforming for wireless sensor networks with arbitrary distributed sensors. IEEE Communications Letters, 2012, vol. 16, no. 7, p. 1118–1120. DOI: 10.1109/LCOMM.2012.050912.120370
  10. SHEN, X., HUANG, J., LIU, P., et al. Analysis of collaborative beamforming for wireless sensor networks with phase offset. Radioengineering, 2014, vol. 23, no. 1, p. 421–429. ISSN: 1805-9600
  11. MUDUMBAI, R., BROWN, D. R., MADHOW, U., et al. Distributed transmit beamforming: challenges and recent progress. IEEE Communications Magazine, 2009, vol. 47, no. 2, p. 102–110. DOI: 10.1109/MCOM.2009.4785387
  12. MAGGS, M. K., O’KEEFE, S. G., THIEL, D. V. Consensus clock synchronization for wireless sensor networks. IEEE Sensors Journal, 2012, vol. 12, no. 6, p. 2269–2277. DOI: 10.1109/JSEN.2011.2182045
  13. HU, P. H., TSENG, P. H., GUO, Y. Y., et al. Distributed transmit beamforming algorithms for unsynchronized OFDM systems with timing offset. IEEE Communications Letters, 2016, vol. 20, no. 9, p. 1788–1791. DOI: 10.1109/LCOMM.2016.2587774
  14. WANG, W. Q. Carrier frequency synchronization in distributed wireless sensor networks. IEEE Systems Journal, 2015, vol. 9, no. 3, p. 703–713. DOI: 10.1109/JSYST.2014.2330392

Keywords: Distributed transmit beamforming, emergency radio, time offset, carrier frequency offset, non-parametric kernel method

L. Kirasamuthranon, J. Koseeyaporn, P. Wardkein [references] [full-text] [DOI: 10.13164/re.2017.0504] [Download Citations]
QPSK Modulator with Continuous Phase and Fast Response Based on Phase-Locked Loop

Among M-phase shift keying (M-PSK) schemes, quadrature phase-shift keying (QPSK) is used most often because of its efficient bandwidth consumption. However, in comparison with minimum-shift keying, which has continuous phase transitions, QPSK requires a higher bandwidth to transmit a signal. This article focuses on the phase transitions in QPSK signals, and a QPSK modulator based on a phase-locked loop (PLL) is proposed. The PLL circuit in the proposed system differs from that of conventional PLL circuits because a three-input XOR gate and a summing circuit are used. With these additional components, the proposed PLL provides a continuous phase change in the QPSK signal. Consequently, the required bandwidth for transmitting the QPSK signal when using the proposed circuit is less than that for a conventional QPSK signal with a discontinuous phase. The analytical results for the proposed system in the time domain agree well with the experimental and simulation results of the circuit. Both the theoretical and experimental results thus confirm that the proposed technique can be realized in real-world applications.

  1. SAH, K. L., DASGUPTA, K. S., JIT, S. Novel performance of QPSK modulator subsystem with matched filters for GSAT-4 satellite. In International Conference on Emerging Trends in Electronic and Photonic Devices and Systems (ELECTRO '09). Varanasi (India), December 2009, p. 281–284.
  2. NAZARETH MOTTA MARINS, C., KAUFMANN, P., ALVES FERREIRA, A., et al. Power reduction on QPSK modulation coding for geopositioning application using LEO satellites. In SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC). Belem (Brazil), November 2009, p. 282–285. DOI: 10.1109/IMOC.2009.5427582
  3. CARTIER, N., HUSSONNOIS, M., TRANIER, B., et al. X-band full MMIC QPSK modulator with direct oscillator for the spot 5 earth observation satellite payload. In 29th European Microwave Conference. Munich (Germany), October 1999, p. 115–118. DOI: 10.1109/EUMA.1999.338354
  4. MORRISON, I. S. ACE-QPSK: A new method of coding QPSK for the nonlinear transmitter. In Proceedings of IEEE International Conference on Information Engineering. Singapore, September 1993, p. 862–866. DOI: 10.1109/SICON.1993.515709
  5. CHOW, P. S., CIOFFI, J. M. A multi-drop in-house ADSL distribution network. In IEEE International Conference on Communication SUPERCOMM/ICC '94. New Orleans, (LA, USA), May 1994, p. 456–460. DOI: 10.1109/ICC.1994.368862
  6. KIM, S. R., LEE, J. G., LEE H., et al. A coherent dual-channel QPSK modulation for CDMA system. In IEEE 46th Vehicular Technology Conference. Atlanta (USA), May 1996, p. 1848–1852. DOI: 10.1109/VETEC.1996.504078
  7. GUO, Y., FEHER, K. Frequency hopping F-QPSK for power and spectrally efficient cellular systems. In IEEE 43rd Vehicular Technology Conference. Secaucus (USA), May 1993, p. 799–802. DOI: 10.1109/VETEC.1993.508811
  8. POPESCU, S. O., GONTEAN, A. S., IANCHIS, D. QPSK modulator on FPGA. In IEEE 9th International Symposium on Intelligent Systems and Informatics SISY 2011. Subotica (Serbia), September 2011, p. 359–364. DOI: 10.1109/SISY.2011.6034353
  9. KAZAZ, T., KULIN, M., HADZIALIC, M. Design and implementation of SDR based QPSK modulator on FPGA. In 36th International Convention on Information & Communication Technology Electronics & Microelectronics MIPRO 2013. Opatija (Croatia), May 2013, p. 513–518.
  10. KHANNA, A., JAISWAL, A., JAIN, H. Design and synthesis of bandwidth efficient QPSK modulator for low power VLSI design. In 2nd International Conference on Electronics and Communication Systems (ICECS). Coimbatore (India), February 2015, p. 1235–1240. DOI: 10.1109/ECS.2015.7124781
  11. EL-GABALY, A. M., JACKSON, B. R., SAAVEDRA, C. E. An L-band direct-digital QPSK modulator in CMOS. In International Symposium on Signals, Systems and Electronics, ISSSE '07. Montreal (Quebec, Canada), 2007, p. 563–566. DOI: 10.1109/ISSSE.2007.4294538
  12. TANG, A., YUAN, F., LAW, E. A new CMOS active transformer QPSK modulator with optimal bandwidth control. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, vol. 55, no. 1, p. 11–15. DOI: 10.1109/TCSII.2007.909867
  13. LEE, S. Y., ITO, H., ISHIHARA, N., et al. A novel direct injection-locked QPSK modulator based on ring VCO in 180nm CMOS. IEEE Microwave and Wireless Components Letters, 2014, vol. 24, no. 4, p. 269–271. DOI: 10.1109/LMWC.2014.2299534
  14. FUSCO, V. F., WANG, C., POCHIRAJU, T. 35-65GHz MMIC QPSK modulator. In European Microwave Integrated Circuit Conference EuMIC 2008. Amsterdam (the Netherlands), October 2008, p. 242–245. DOI: 10.1109/EMICC.2008.4772274
  15. WISARTPONG, P., KOSEEYAPON, J., WARDKEIN, P. QPSK modulator based on phase locked loop. In Proceedings of the 2007 Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI) International Conference ECTI 2007. Chiang Rai (Thailand), May 2007, p. 868–871.
  16. BIRLA, N., GAUTAM, N., PATEL, J., et al. A novel QPSK modulator. In International Conference on Advanced Communication Control and Computing Technologies (ICACCCT). Ramanathapuram (India), 2014, p. 653–656. DOI: 10.1109/ICACCCT.2014.7019170
  17. PASUPATHY, S. Minimum shift keying: A spectrally efficient modulation. IEEE Communications Magazine, 1979, vol. 17, no. 4, p. 14–22. DOI: 10.1109/MCOM.1979.1089999
  18. SUN, J. Pulse-Width Modulation. Chapter in Dynamics and Control of Switched Electronic Systems. Springer Science & Business Media, 2012, 1st ed., p. 25–61.

Keywords: QPSK, Phase Locked Loop (PLL), phase shift

M. Jelinek, J. Jakovenko [references] [full-text] [DOI: 10.13164/re.2017.0515] [Download Citations]
An Effect of Output Capacitor ESL on Hysteretic PLL Controlled Multiphase Buck Converter

This paper provides analysis of output capacitor effects to phase stability of a hysteretic mode controlled buck converter. The hysteretic control method is a simple and fast control technique for switched-mode converters, but the hysteresis control is not oscillator referenced. It results in difficulty to achieve stable switching phase and frequency. In recent papers, the authors propose a use of phase locked loops (PLL) to permit interleaved multiphase operation where each voltage regulator (VR) module is coupled together via output node and leads to a strong loop interaction. In this work analysis of this interaction is studied by Matlab Simulink simulations and a new solution how to partially suppress this effect is given. The proposed method confirms the theoretical analysis.

  1. SU, F., KI, W. H., TSUI, C. Y. Ultra fast fixed-frequency hysteretic buck converter with maximum charging current control and adaptive delay compensation for DVS applications. IEEE Journal of Solid-State Circuits, April 2008, vol. 43, no. 4, p. 815 to 822. DOI: 10.1109/JSSC.2008.917533
  2. TSO, C. H., WU, J. C. A ripple control buck regulator with fixed output frequency. IEEE Power Electronics Letters, Sept. 2003, vol. 1, no. 3, p. 61–63. DOI: 10.1109/LPEL.2003.819643
  3. LEE, K., LEE, F. C., XU, M. A hysteretic control method for multiphase voltage regulator. IEEE Transactions on Power Electronics, Dec. 2009, vol. 24, no. 12, p. 2726–2734. DOI: 10.1109/TPEL.2009.2030804
  4. ZHENG, Y., CHEN, H., LEUNG, K. N. A fast-response pseudoPWM buck converter with PLL-based hysteresis control. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, July 2012, vol. 20, no. 7, p. 1167–1174. DOI: 10.1109/TVLSI.2011.2156437
  5. LABBE, B., ALLARD, B., LIN-SHI, X. Design and stability analysis of a frequency controlled sliding-mode buck converter. IEEE Transactions on Circuits and Systems I: Regular Papers, Sept. 2014, vol. 61, no. 9, p. 2761–2770. DOI: 10.1109/TCSI.2014.2333291
  6. REDL, R., SUN, J. Ripple-based control of switching regulators— An overview. IEEE Transactions on Power Electronics, Dec. 2009, vol. 24, no. 12, p. 2669–2680. DOI: 10.1109/TPEL.2009.2032657
  7. CASTILLA, M., GARCIA DE VICUNA, L., GUERRERO, J. M., et al. Simple low-cost hysteretic controller for single-phase synchronous buck converters. IEEE Transactions on Power Electronics, July 2007, vol. 22, no. 4, p. 1232–1241. DOI: 10.1109/TPEL.2007.900469
  8. TAN S. C., LAI, Y. M., CHEUNG, M. K. H., TSE, C. K. On the practical design of a sliding mode voltage controlled buck converter. IEEE Transactions on Power Electronics, March 2005, vol. 20, no. 2, p. 425–437. DOI: 10.1109/TPEL.2004.842977
  9. TAN, S. C., LAI, Y. M., TSE, C. K. General design issues of sliding-mode controllers in DC–DC converters. IEEE Transactions on Industrial Electronics, March 2008, vol. 55, no. 3, p. 1160 to 1174. DOI: 10.1109/TIE.2007.909058
  10. AHMED, M. Sliding Mode Control for Switched Mode Power Supplies. Thesis for the degree of Doctor of Science, Lappeenranta University of Technology, Lappeenranta (Finland), 2004, 97 p. ISBN: 951-764-979-7
  11. Texas Instruments, Designing Fast Response Synchronous Buck TPS5210, Application Report. [Online] Cited 2016-05-18. Available at: http://www.ti.com/lit/an/slva044/slva044.pdf
  12. HU, K. Y., LIN, S. M., TSAI, C. H. A fixed-frequency quasi- V2 hysteretic buck converter with PLL-based two-stage adaptive window control. IEEE Transactions on Circuits and Systems I: Regular Papers, Oct. 2015, vol. 62, no. 10, p. 2565–2573. DOI: 10.1109/TCSI.2015.2466791
  13. TIAN, S., LEE, F. C., MATTAVELLI, P., et al. Small-signal analysis and optimal design of external ramp for constant on-time V2 control with multilayer ceramic caps. IEEE Transactions on Power Electronics, Aug. 2014, vol. 29, no. 8, p. 4450–4460. DOI: 10.1109/TPEL.2013.2287213
  14. BANERJEE, D. PLL Performance, Simulation and Design Handbook. 4th ed. National Semiconductor, 2006. ISBN-10: 1598581341
  15. MIDDLEBROOK, R. D., CUK, S. A general unified approach to modelling switching-converter power stage. In IEEE Power Electronics Specialists Conference. Cleveland (OH, USA), 1976, p. 18–34. DOI: 10.1109/PESC.1976.7072895
  16. SLOTINE, J. J. E., LI, W. Applied Nonlinear Control. Engelwoods Cliffs (NJ, USA): Prentice Hall, 1991. ISBN: 0-13-040890-5

Keywords: SMPS, Buck, hysteretic mode control, interleaving, PLL, multi-phase.

K. Khaw-Ngam, M. Kumngern, F. Khateb [references] [full-text] [DOI: 10.13164/re.2017.0522] [Download Citations]
Mixed-Mode Third-Order Quadrature Oscillator Based on Single MCCFTA

This paper presents a new mixed-mode third-order quadrature oscillator based on new modified current-controlled current follower transconductance amplifier (MCCFTA). The proposed circuit employs one MCCFTA as active element and three grounded capacitors as passive component which is highly suitable for integrated circuit implementation. The condition and frequency of oscillations can be controlled orthogonally and electronically by adjusting the bias currents of the active device. The circuit provides four quadrature current outputs and two quadrature voltage outputs into one single topology, which can be classified as mixed-mode oscillator. In addition, four quadrature current output terminals possess high-impedance level which can be directly connected to next stage without additional buffer circuits. The performance of the proposed structure has been verified through PSPICE simulators using 0.25 µm CMOS process from TSMC and experimental results are also investigated.

  1. TOUMAZOU, C., LIDGEY, F., MAKRIS, C. A. Extending voltage-mode op amps to current-mode performance, IEE Proceeding Part-G, 1990, vol. 137, p. 116–130. DOI: 10.1049/ipg-2.1990.0020
  2. BIOLEK, D. CDTA-building block for current-mode analog signal processing, In Proceedings of European Conference on Circuit Theory and Design (ECCTD). Poland, 2003, p. 397–400, vol. III.
  3. HAYKIN, S., MOHER, M. An Introduction to Analog and Digital Communications. New York: John Wiley & Sons, 2007. ISBN-13: 978-0471432227
  4. BOLTON, W. Measurement and Instrumentation Systems. Oxford: Newnes, 1996. ISBN-9780128011324
  5. KESKIN, A. U., BIOLEK, D. Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proceeding of Circuits Devices and Systems, 2006, vol. 153, p. 214–218: DOI: 10.1049/ip-cds:20050304
  6. LAHIRI, A. Novel voltage/current-mode quadrature oscillator using current differencing transconductance amplifier. Analog Integrated Circuits and Signal Processing, 2009, vol. 61, p. 199 to 203. DOI: 10.1007/s10470-009-9291-0
  7. BIOLEK, D., KESKIN, A. U., BIOLKOVA, V. Grounded capacitor current mode single resistance-controlled oscillator using single modified current differencing transconductance amplifier. IET Circuits, Devices and Systems, 2009, vol. 4, p. 496–520. DOI: 10.1049/iet-cds.2009.0330
  8. BUMRONGCHOKE, T., DUANGMALAI, D., JAIKLA, W. Current differencing transconductance amplifier based currentmode quadrature oscillator using grounded capacitors. In Proceedings of 2010 International Communications and Information Technologies (ISCIT). Japan, 2010, p. 192–195. DOI: 10.1109/ISCIT.2010.5664834
  9. JAIKLA, W., SIRIPRUCHYANUN, M., BAJER, J., BIOLEK, D. A simple current-mode quadrature oscillator using single CDTA. Radioengineering, 2008, vol. 17, no. 4, p. 33–40.
  10. KUMNGERN, M., LAMUN, P., DEJHAN, K. Current-mode quadrature oscillator using current differencing transconductance amplifiers. International Journal of Electronics, 2012, vol. 99, p. 971–986. DOI: 10.1080/00207217.2011.651693
  11. JAIKLA, W., LAHIRI, A. Resistor-less current-mode four-phase quadrature oscillator using CCCDTAs and grounded capacitors. International Journal of Electronics and Communications, 2012, vol. 66, p. 214–218. DOI: 10.1016/j.aeue.2011.07.001
  12. JIN, J., WANG, C. Single CDTA-based current-mode quadrature oscillator. International Journal of Electronics and Communications, 2012, vol. 66, p. 933–936. DOI: 10.1016/j.aeue.2012.03.018
  13. BIOLEK, D., SENANI, R., BIOLKOVA, V., KOLKA, Z. Active elements for analog signal processing: classification: Review and new proposals. Radioengineering, 2008, vol. 17, no. 4, p. 15–32.
  14. HERENCSAR, N. KOTON, J. VRBA, K., LAHIRI, A. Floating simulators based on current follower transconductance amplifiers (CFTAs). In Proceedings of the European Conference of Circuits Technology and Devices. Tenerife (Spain), 2010, p. 23–26.
  15. HERENCSAR, N., KOTON, J., VRBA, K., CICEKOGLU, O. New active-C grounded positive inductance simulator based on CFTAs. In Proceedings of 33rd International Conference on Telecommunications and Signal Processing. Czech Republic, 2010, p. 35–37.
  16. HERENCSAR, N., KOTON, J., VRBA, K. Realization of currentmode KHN-equivalent biquad using current follower transconductance amplifiers (CFTAs). IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2010, vol. E93.A, p. 1816–1819. DOI: 10.1587/transfun.E93.A.1816
  17. HERENCSAR, N., KOTON, J., VRBA, K., LATTENBERG, I. Current follower transconductance amplifier (CFTA)-a useful building block for analog signal processing. Journal of Active and Passive Electronic Devices, 2011, vol. 6, p. 217–229.
  18. INTAWICHAI, K., TANGSRIRAT, W. Signal flow graph realization of nth-order current-mode allpass filters using CFTAs. In Proceedings of 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). Thailand, 2013, p. 1–6. DOI: 10.1109/ECTICon.2013.6559519
  19. TORTEANCHAI, U., KUMNGERN, M. First-order allpass network using CFTA. In Proceedings of 2014 4th Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering (JICTEE). Thailand, 2014, p. 1–4. DOI: 10.1109/JICTEE.2014.6804120
  20. HERENCSAR, N., VRBA, K., KOTON, J., LAHIRI, A. Realisations of single-resistance-controlled quadrature oscillators using a generalised current follower transconductance amplifier and a unity-gain voltage-follower. International Journal of Electronics, 2010, vol. 97, p. 897–906. DOI: 10.1080/00207211003733320
  21. TANGSRIRAT, W., MONGKOLWAI, P., PUKKALANUN, T. Current-mode high-Q bandpass filter and mixed-mode quadrature oscillator using ZC-CFTAs and grounded capacitors. Indian Journal of Pure & Applied Physics, 2012, vol. 50, p. 600–607. URI: http://hdl.handle.net/123456789/14480
  22. PRASERTSOM, D., TANGSRIRAT, W. Current gain controlled CFTA and its application to resistorless quadrature oscillator. In Proceedings of 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). Thailand, 2012, p. 1–4. DOI: 10.1109/ECTICon.2012.6254271
  23. LAMUN, P. KUMNGERN, M., TORTEANCHAI, U., SARSITTHITHUM, K. Tunable current-mode quadrature sinusoidal oscillator using CCCFTAs and grounded capacitors. In Proceedings of 2013 4th International Conference on Intelligent Systems, Modelling and Simulation (ISMS). Thailand, 2013, p. 665–668. DOI: 10.1109/ISMS.2013.138
  24. KUMNGERN, M., LAMUN, P., JUNNAPIYA, S. CFTA-based electroniccally tunable quadrature sinusoidal oscillator. In Proceedings of 2014 International Electrical Engineering Congress (iEECON). Thailand, 2014, p. 1–4. DOI: 10.1109/iEECON.2014.6925891
  25. PHATSORNSIRI, P., LAMUN, P. Tunable current-mode quadrature oscillator using CFTAs and grounded capacitors. In Proceedings of 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). Thailand, 2015, p. 1–4. DOI: 10.1109/ECTICon.2015.7207104
  26. SRISAKULTIEW, S., SIRIPRUCHYANUN, M., JAIKLA, W. Single-resistance-controlled current-mode quadrature sinusoidal oscillator using single CCCFTA with grounded elements. In Proceedings of 2013 36th International Conference on Telecommunications and Signal Processing (TSP). Rome (Italy), 2013, p. 436-439. DOI: 10.1109/TSP.2013.6613969
  27. VAN VALKENBURG, M. E. Analog Filter Design. Holt Sounders International Edition, 1987.
  28. RUBIOLA, E. Phase Noise and Frequency Stability in Oscillators. Cambridge University Press, 2010. ISBN-13: 9780521153287
  29. RAZAVI, B. A study of phase noise in CMOS oscillators. IEEE Journal of Solid-State Circuits, 1996, vol. 31, p. 331–343. DOI: 10.1109/9780470545492.ch19
  30. PROMMEE, P. DEJHAN, K. An integrable electronic-controlled quadrature sinusoidal oscillator using CMOS operational transconductance amplifier. International Journal of Electronics, 2002, vol. 89, p. 365–379. DOI: 10.1080/713810385
  31. HORNG, J.-W. Quadrature oscillators using operational amplifiers. Active and Passive Electronic Components, vol. 2011, Article ID 320367. DOI: 10.1155/2011/320367
  32. HORNG, J.-W., HOU, C.-L., CHANG, C.-M., CHUNG, W.-Y., TANG, H.-I., WEN, Y.-I. Quadrature oscillator using CCIIs. International Journal of Electronics, 2005, vol. 92, p. 21–31. DOI: 10.1080/00207210412331332899
  33. HORNG, J.-W. Current/voltage-mode third order quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors. Indian Journal of Pure & Applied Physics, 2011, vol. 49, p. 494–498. URI: http://hdl.handle.net/123456789/12012
  34. KOTON, J., HERENCSAR, N., VRBA, K., METIN, B. Currentand voltage-mode third-order quadrature oscillator. In Proceedings of 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM). Romania, 2012, p. 1203–1206. DOI: 10.1109/OPTIM.2012.6231795
  35. CHATURVEDI, B., MAHESHWARI, S. Third-order quadrature oscillator circuit with current and voltage outputs. ISRN Electronics, vol. 2013, Article ID 385062, DOI: 10.1155/2013/385062
  36. PANDEY, R., PANDEY, N., KOMANAPALLI, G., ANURAG, R. OTRA based voltage mode third order quadrature oscillator. ISRN Electronics, vol. 2014, Article ID: 126471, p. 1–5. DOI: 10.1155/2014/126471
  37. KUMNGERN, M., KANSIRI, I. Single-element control thirdorder quadrature oscillator using OTRAs. In Proceedings 2014 12th ICT and Knowledge Engineering (ICT&KE). Thailand, 2014, p. 24–27. DOI: 10.1109/ICTKE.2014.7001529
  38. MAHESHWARI, S., KHAN, I. A. Current controlled third order quadrature oscillator. IEE Proceeding of Circuits Devices and System, 2005, vol. 152, p. 605–607. DOI: 10.1049/ipcds.20045185
  39. MAHESHWARI, S. Current-mode third-order quadrature oscillator. IET Circuits, Devices and Systems, 2010, vol. 4, p. 188 to 195. DOI: 10.1049/iet-cds.2009.0259
  40. HORNG, J.-W. Current-mode third-order quadrature oscillator using CDTAs. Active and Passive Electronic Components, vol. 2009, Article ID 789171. DOI: 10.1155/2009/789171
  41. HORNG, J.-W., LEE, H., WU, J.-Y. Electronically tunable thirdorder quadrature ocillator using CDTAs. Radioengineering, 2010, vol. 19, p. 326–330.
  42. KUMNGERN, M., JUNNAPIYA, S. Current-mode third-order quadrature oscillator using minimum elements. In Proceedings of International Conference on Electrical Engineering and Informatics (ICEEI). Indonesia, 2011, p. 1–4. DOI: 10.1109/ICEEI.2011.6021799
  43. LAWANWISUT, S., SIRIPRUCHAYANUN, M. High outputimpedance current-mode third-order quadrature oscillator based on CCCCTAs. In Proceedings of 2009 IEEE Region 10 Conference (TENCON). Singapore, 2009, p. 1–4. DOI: 10.1109/TENCON.2009.5395961
  44. DUANGMALAI, D., JAIKLA, W. Realization of current-mode quadrature oscillator based on third order technique. ACEEE International Journal on Electrical and Power Engineering, 2011, vol. 2, p. 46–49. Available at: http://agritech.pcru.ac.th/new/doc/3rd%20oscillator-20120222- 093615.pdf
  45. PANDEY, R., PANDEY, N., PAUL, S. K. MOS-C third order quadrature oscillator using OTRA. In Proceedings of 2012 Third International Conference on Computer and Communication Technology (ICCCT). India, 2012, p. 77–80. DOI: 10.1109/ICCCT.2012.24
  46. PHANRUTTANACHAI, K., JAIKLA, W. Third order currentmode quadrature sinusoidal oscillator with high output impedances. World Academy of Science, Engineering and Technology, 2013, vol. 7, p. 472–475.
  47. PANDEY, N., PANDEY, R. Approach for third order quadrature oscillator realization. IET Circuits, Devices & Systems, 2015, vol. 9, p. 161–171. DOI: 10.1049/iet-cds.2014.0170
  48. PROMMEE, P., ANGKEAW, K. Log-domain current-mode thirdorder sinusoidal oscillator. In Proceedings of 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS). Korea, 2011, p. 1–4.
  49. KUMNGERN, M., CHANWUTITUM, J. Single MCCCCTAbased mixed-mode third-order quadrature oscillator. In Proceedings of Fourth International Conference on Communications and Electronics (ICCE). Vietnam, 2012, p. 426 to 429. DOI: 10.1109/CCE.2012.6315943
  50. PANDEY, R., PANDEY, N., KOMANAPALLI, G., ANURAG, R. OTRA based voltage mode third order quadrature oscillator. ISRN Electronics, vol. 2014, Article ID 126471.
  51. PHATSORNSIRI, P. LAMUN, P. KUMNGERN, M. TORTEANCHAI, U. Current-mode third-order quadrature oscillator using VDTAs and grounded capacitors. in Proceeding of The 4th Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering (JICTEE). Thailand, 2014, p. 1–4. DOI: 10.1109/JICTEE.2014.6804103
  52. CHANNUMSIN, O. JANTAKUN, A. Third-order sinusoidal oscillator using VDTAs and grounded capacitors with amplitude controllability. In Proceeding of The 4th Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering (JICTEE). Thailand, 2014, p. 1–4. DOI: 10.1109/JICTEE.2014.6804103
  53. HERENCSAR, N., KOTON, J., VRBA, K. LAHIRI, A., CICEKOGLU, O. Current-controlled CFTA-based current-mode SITO universal filter and quadrature oscillator. In Proceedings of 2010 International Conference on Applied Electronics (AE), Czech Republic, 2010, p. 1–4.
  54. LI, Y. A modified CDTA (MCDTA) and its applications: designing current-mode sixth-order elliptic band-pass filter. Circuits, Systems, and Signal Processing, 2011, vol. 30, p. 1383 to 1390. DOI: 10.1007/s00034-011-9329-2
  55. JAIKLA, W., SIRIPRUCHYANUN, M., LAHIRI, A. Resistorless dual-mode quadrature sinusoidal oscillator using a single active building block. Microelectronics Journal, 2011, vol. 42, p. 135 to 104. DOI: 10.1016/j.mejo.2010.08.017
  56. KUMNGERN, M., TORTEANCHAI, U. A current-mode fourphase third-order quadrature oscillator using a MCCCFTA. In Proceedings of 2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Thailand, 2012, p. 156–159. DOI: 10.1109/CYBER.2012.6392545
  57. BHUSAN, M., NEWCOMB, R. W. Grounding of capacitors in integrated circuits. Electronics Letters, 1967, vol. 3, p. 148–149. DOI: 10.1049/el:19670114
  58. BIOLEK, B., LAHIRI, A., JAIKLA, W., SIRIPRUCHYANUN, M., BIOLKOVA, V. Realization of electronically tunable voltagemode/current-mode quadrature sinusoidal oscillator using ZC-CGCDBA. Microelectronics Journal, 2011, vol. 42, p. 1116–1123. DOI: 10.1016/j.mejo.2011.07.004
  59. SOTNER, R., JERABEK, J., HERENCSAR, N., PETRZELA, J., VRBA, K., KINCL, Z. Linear tunable quadrature oscillator derived from LC Colpitts structure using voltage differencing transconductance amplifier and adjustable current amplifier. Analog Integrated Circuits and Signal Processing, 2014, vol. 81, p. 121–136. DOI: 10.1007/s10470-014-0353-6
  60. SOTNER, R., HRUBOS, Z., HERENCSAR, N., JERABEK, J., DOSTAL, T., VRBA, K. Precise electronically adjustable oscillator suitable for quadrature signal generation employing active elements with current and voltage gain control. Circuits, Systems, and Signal Processing, 2014, vol. 33, p. 1–35. DOI: 10.1007/s00034-013-9623-2
  61. SOTNER, R., JERABEK, J., LANGHAMMER, L., POLAK, J., HERENCSAR, N., PROKOP, R., PETRZELA, J., JAIKLA, W. Comparison of two solutions of quadrature oscillators with linear control of frequency of oscillation employing modern commercially available devices. Circuits, Systems, and Signal Processing, 2015, vol. 34, p. 3449–3469. DOI: 10.1007/s00034- 015-0015-7
  62. BULT, K., WALLINGA, H. A class of analog CMOS circuits based on the square-law characteristic of an MOS transistor in saturation. IEEE Journal of Solid-State Circuits, 1987, vol. 22, p. 357–365. DOI: 10.1109/JSSC.1987.1052733
  63. KUMNGERN, M., DEJHAN, K. Versatile dual-mode class-AB four-quadrant analog multiplier. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2008, vol. 2, p. 215–221. Available at: www.waset.org/publications/401

Keywords: third-order quadrature oscillator, mixed-mode oscillator, modified current-controlled current follower transconductance amplifier (MCCFTA)

M. Cedillo-Hernandez, A. Cedillo-Hernandez, F. Garcia-Ugalde, M. Nakano-Miyatake, H. Perez-Meana [references] [full-text] [DOI: 10.13164/re.2017.0536] [Download Citations]
Digital Color Images Ownership Authentication via Efficient and Robust Watermarking in a Hybrid Domain

We propose an efficient, imperceptible and highly robust digital watermarking scheme applied to color images for ownership authentication purposes. A hybrid domain for embedding the same watermark is used in this algorithm, which is composed by a couple of watermarking techniques based on spread spectrum and frequency domain. The visual quality is measured by three metrics called Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and Visual Information Fidelity (VIF). The difference color between the original and watermarked image is computed using the Normalized Color Difference (NCD) measure. Experimentation shows that the proposed method provides high robustness against several geometric distortions including large image cropping, removal attacks, image replacement and affine transformation; signal processing operations including several image filtering, JPEG lossy compression, visual watermark added and noisy image, as well as combined distortions between all of them. Also, we present a comparison with some previously published methods which reported outstanding results and have a similar purpose that our proposal, i.e. they are focused in robust watermarking.

  1. BARNI, M., BARTOLINI, F. Watermarking Systems Engineering: Enabling Digital Assets Security and Other Applications. CRC Press, 2004. ISBN: 9780824750916
  2. LANGELAAR, G. C., SETYAWAN, I., LAGENDIJK, R. L. Watermarking digital image and video data. A state-of-the-art overview. IEEE Signal Processing Magazine, 2000, vol. 17, p. 20 to 46. DOI: 10.1109/79.879337
  3. WOJTOWICZ, W., OGIELA, M. R. Digital images authentication scheme based on bimodal biometric watermarking in an independent domain. Journal of Visual Communication and Image Representation, 2016, vol. 38, p. 1–10. DOI: 10.1016/j.jvcir.2016.02.006
  4. RABIZADEH, M., AMIRMAZLAGHANI, M., AHMADIANATTARI, M. A new detector for contourlet domain multiplicative image watermarking using Bessel K form distribution. Journal of Visual Communication and Image Representation, 2016, vol. 40, Part A, p. 324–334. DOI: 10.1016/j.jvcir.2016.07.001
  5. BUM-SOO, K., CHOI, J. G., PARK, C. H., et al. Robust digital image watermarking method against geometrical attacks. RealTime Imaging, 2003, vol. 9, p. 139–149. DOI: 10.1016/s1077- 2014(03)00020-2
  6. NAJIH, A., AL-HADDAD, S.A.R., RAMLI, A. R., et al. Digital image watermarking based on angle quantization in discrete contourlet transform. Journal of King Saud University - Computer and Information Sciences. [Online] Cited April 4, 2016. DOI: 10.1016/j.jksuci.2016.02.005
  7. XIANG-YANG WANG, AI-LONG WANG, HONG-JING YANG, et al. A new robust digital watermarking based on exponent moments invariants in nonsubsampled contourlet transform domain. Computers & Electrical Engineering, April 2014, vol. 40, no. 3, p. 942–955. DOI: 10.1016/j.compeleceng.2013.12.017
  8. CHAREYRON, G., DA RUGNA, J., TREMEAU, A. Chapter 3: Color in Image Watermarking. Advanced Techniques in Multimedia Watermarking: Image, Video and Audio Applications. IGI Global Press, p. 36–56, 2010. ISBN: 1615209042
  9. TREMEAU, A., TOMINAGA, S., PLATANIOTIS, K. Color in image and video processing: Most recent trends and future research directions. EURASIP Journal on Image and Video Processing, 2008. DOI: 10.1155/2008/581371
  10. CHEMAK, C., LAPAYRE J. C., BOUHLEL, M. S. New watermarking scheme for security and transmission of medical images for pocket neuro project. Radioengineering, 2007, vol. 16, no. 4, p. 58–63. ISSN 1210-2512
  11. KUO-CHENG, L. Wavelet-based watermarking for color images through visual masking. AEU - International Journal of Electronics and Communications, 2010, vol. 64, no. 2, p. 112–124. DOI: 10.1016/j.aeue.2008.11.006
  12. CEDILLO-HERNANDEZ, M., CEDILLO-HERNANDEZ, A., GARCIA-UGALDE, F., NAKANO-MIYATAKE, M., PEREZMEANA, H. Copyright protection of color imaging using robustencoded watermarking. Radioengineering, 2015, vol. 24, no. 1, p. 240–251. DOI: 10.13164/re.2015.0240
  13. BATTIATO, S., CATALANO, D., GALLO, G., GENNARO, R. Robust watermarking for images based on color manipulation. In Proceedings of the Third International Workshop on Information Hiding. Dresden (Germany), 1999. Springer-Verlag, 2000, vol. 1768, p. 302–317. DOI: 10.1007/10719724_21
  14. CHAREYRON, G., COLTUC, D., TREMEAU, A. Watermarking and authentication of color images based on segmentation of the XYZ color space. Journal of Imaging Science and Technology, 2006, vol. 50, no. 5, p. 411–423. DOI: 10.2352/J.ImagingSci.Technol.(2006)50:5(411)
  15. JIA, X., QI, Y., SHAO, L., JIA, X. An anti-geometric digital watermark algorithm based on histogram grouping and faulttolerance channel. Intelligent Science and Intelligent Data Engineering. Lecture Notes in Computer Science, 2012, vol. 7202, p. 753–760. DOI: 10.1007/978-3-642-31919-8_96
  16. CHRYSOCHOS, E., FOTOPOULOS, V., XENOS, M., SKODRAS, A. N. Hybrid watermarking based on chaos and histogram modification. Signal, Image and Video Processing, 2014, vol. 8, no.5, p. 843–857. DOI 10.1007/s11760-012-0307-3
  17. CEDILLO-HERNANDEZ, M., GARCIA-UGALDE, F., NAKANO-MIYATAKE, M., PEREZ-MEANA H. Robust hybrid color image watermarking method based on DFT domain and 2D histogram modification. Signal, Image and Video Processing, 2014, vol. 8, no. 1, p. 49–63. DOI: 10.1007/s11760-013-0459-9
  18. SHAO-LI JIA. A novel blind color images watermarking based on SVD. Optik - International Journal for Light and Electron Optics, 2014, vol. 125, no. 12, p. 2868–2874. DOI: 10.1016/j.ijleo.2014.01.002
  19. LAUR, L., RASTI, P., AGOYI, M., ANBARJAFARI, G. A robust color image watermarking scheme using entropy and QR decomposition. Radioengineering, 2015, vol. 24, no. 4, p. 1025 to 1032. DOI: 10.13164/re.2015.1025
  20. PAN-PAN NIU, XIANG-YANG WANG, YI-PING YANG, MING-YU LU. A novel color image watermarking scheme in nonsampled contourlet-domain. Expert Systems with Applications, 2011, vol. 38, no. 3, p. 2081–2098. DOI: 10.1016/j.eswa.2010.07.147
  21. PRATHAP, I., NATARAJAN, V., ANITHA, R. Hybrid robust watermarking for color images. Computers & Electrical Engineering, 2014, vol. 40, no. 3, p. 920–930. DOI: 10.1016/j.compeleceng.2014.01.006
  22. DO, M. N., VETTERLI, M. The Contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 2005, vol. 14, no. 12, p. 2091 to 2106. DOI: 10.1109/TIP.2005.859376
  23. MALVAR, H., FLORÊNCIO, D. Improved spread spectrum: a new modulation technique for robust watermarking. IEEE Transactions on Image Processing, 2003, vol. 51, no. 4, p. 898 to 905. DOI: 10.1109/TSP.2003.809385
  24. JIMENEZ-SALINAS, M., GARCIA-UGALDE, F. Improved spread spectrum image watermarking in contourlet domain. In 2008 23rd International Conference Image and Vision Computing. Christchurch (New Zealand), 2008, 6 p. DOI: 10.1109/IVCNZ.2008.4762090
  25. SHEIKH, H. R., BOVIK, A. C. Image information and visual quality. IEEE Transactions on Image Processing, 2006, vol. 15, no. 2, p. 430–444. DOI: 10.1109/TIP.2005.859378
  26. WANG, Z., BOVIK, A. C., SHEIKH, H. R., SIMONCELLI, E. P. Image quality assessment: From error measurement to structural similarity. IEEE Transactions on Image Processing, 2004, vol. 13, no. 4, p. 600–612. DOI: 10.1109/TIP.2003.819861
  27. CHANG, H., CHEN, H. H. Stochastic color interpolation for digital cameras. IEEE Transactions on Circuits and Systems for Video Technology, 2007, vol. 17, no. 8, p. 964–973. DOI: 10.1109/TCSVT.2007.897471
  28. CAYRE, F., FONTAINE, C., FURON, T. Watermarking security: theory and practice. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 10, p. 3976–3987. DOI: 10.1109/TSP.2005.855418
  29. CEDILLO-HERNANDEZ, M., GARCIA-UGALDE, F., NAKANO-MIYATAKE, M., PEREZ-MEANA, H. Robust objectbased watermarking using SURF feature matching and DFT domain. Radioengineering, 2013, vol. 22, no. 4, p. 1057–1071. ISSN 1210-2512
  30. PROAKIS, J. G., SALEHI, M. Digital Communications. 5th ed. McGraw-Hill, 2008. p. 336, 351, 361. ISB: 0072321113
  31. KALKER, T. Considerations on watermarking security. In Proceedings of 2001 IEEE Fourth Workshop on Multimedia Signal Processing MMSP. Cannes (France), 2001, p. 201–206. DOI: 10.1109/MMSP.2001.962734

Keywords: Robust digital watermarking; ownership authentication; spread spectrum; discrete Fourier transform; discrete Contourlet transform.

P. K. Dhar, T. Shimamura [references] [full-text] [DOI: 10.13164/re.2017.0552] [Download Citations]
Blind Audio Watermarking in Transform Domain Based on Singular Value Decomposition and Exponential-Log Operations

Digital watermarking has drawn extensive attention for copyright protection of multimedia data. This paper introduces a blind audio watermarking scheme in discrete cosine transform (DCT) domain based on singular value decomposition (SVD), exponential operation (EO), and logarithm operation (LO). In our proposed scheme, initially the original audio is segmented into non-overlapping frames and DCT is applied to each frame. Low frequency DCT coefficients are divided into sub-bands and power of each sub band is calculated. EO is performed on the sub-band with highest power of the DCT coefficients of each frame. SVD is applied to the exponential coefficients of each sub bands with highest power represented in matrix form. Watermark information is embedded into the largest singular value by using a quantization function. Simulation results indicate that the proposed watermarking scheme is highly robust against different attacks. In addition, it has high data payload and shows low error probability rates. Moreover, it provides good performance in terms of imperceptibility, robustness, and data payload compared with some recent state-of-the-art watermarking methods.

  1. CVEJIC, N., SEPPANEN, T. (Eds.) Digital Audio Watermarking Techniques and Technologies. Applications and Benchmarks. IGI Global, 2007. DOI: 10.4018/978-1-59904-513-9
  2. COX, I., MILLER, M., BLOOM J., FRIDRICH, J., KALKAR, T. Digital Watermarking and Steganography. 2nd ed. The Morgan Kaufmann Series in Multimedia Information Systems, Elsevier, 2007. ISBN-13: 978-0123725851
  3. BASSIA, P., PITAS, I., NIKOLAIDIS, N. Robust audio watermarking in the time domain. IEEE Transaction on Multimedia, 2001, vol. 3, no. 2, p. 232–241. DOI: 10.1109/6046.923822
  4. LIE, W.-N., CHANG, L.-C. Robust high quality time domain audio watermarking based on low frequency amplitude modification. IEEE Transaction on Multimedia, 2006, vol. 8, no. 1, p. 46–59. DOI: 10.1109/TMM.2005.861292
  5. MEGIAS, D., SERRA-RUIZ, J, FALLAHPOUR, M. Efficient self–synchronized blind audio watermarking system based on time domain and FFT amplitude modification. Signal Processing, 2010, vol. 90, no. 12, p. 3078–3092. DOI: 10.1016/j.sigpro.2010.05.012
  6. ZENG, Z., QIU, Z. Audio watermarking in DCT: embedding strategy and algorithm. In Proceedings of the 11th IEEE International Conference on Signal Processing (ICSP’08). 2008, vol. 1, p. 2193–2196. DOI: 10.1109/ICOSP.2008.4697583
  7. CHEN, S. T., HUANG, H. N., CHEN, C. J., WU, G. D. Energyproportion based scheme for audio watermarking. IET Signal Processing, 2010, vol. 4, no. 5, p. 576–587. DOI: 10.1049/ietspr.2009.0184
  8. CHEN, S. T., HUANG, H. N., CHEN, C. J., TSENG, K. K., TU, S. Y. Adaptive audio watermarking via the optimization point of view on the wavelet-based entropy. Digital Signal Processing, 2013, vol. 23, no. 3, p. 971–980. DOI: 10.1016/j.dsp.2012.12.013
  9. CHEN, S. T., WU, G. D., HUANG, H. N. Wavelet-domain audio watermarking scheme using optimisation-based quantization. IET Signal Processing, 2010, vol. 4, no. 6, p. 720–727. DOI: 10.1049/iet-spr.2009.0187
  10. WANG, R., XU, D., CHEN, J., DU, C. Digital audio watermarking algorithm based on linear predictive coding in wavelet domain. In Proceedings of the 7th IEEE International Conference on Signal Processing (ICSP’04). 2004, vol. 1, p. 2393–2396. DOI: 10.1109/ICOSP.2004.1442262
  11. ERÇELEBI, E., BATAKÇI, L. Audio watermarking scheme based on embedding strategy in low frequency components with a binary image. Digital Signal Processing, 2009, vol. 19, no. 2, p. 265–277. DOI: 10.1016/j.dsp.2008.11.007
  12. KHALDI, K., BOUDRAA, A. O. Audio watermarking via EMD. IEEE Transaction on Audio, Speech and Language Processing, 2013, vol. 21, no. 3, p. 675–680. DOI: 10.1109/TASL.2012.2227733
  13. EL-SAMIE, F. E. A. An efficient singular value decomposition algorithm for digital audio watermarking. International Journal of Speech Technology, 2009, vol. 12, no. 1, p. 27–45. DOI: 10.1186/s13636-014-0037-2
  14. NUAIMY, W. A., EL-BENDARY, M. A. M., SHAFIK, A., et al. An SVD audio watermarking approach using chaotic encrypted images. Digital Signal Processing, 2011, vol. 21, no. 6, p. 764–779. DOI: 10.1016/j.dsp.2011.01.013
  15. BHAT, V. K., SENGUPTA, I., DAS, A. An adaptive audio watermarking based on the singular value decomposition in the wavelet domain. Digital Signal Processing, 2010, vol. 20, no. 6, p. 1547–1558. DOI: 10.1016/j.dsp.2010.02.006
  16. LEI, B. Y., SOON, I. Y., LI, Z. Blind and robust audio watermarking scheme based on SVD-DCT. Signal Processing, 2011, vol. 91, p. 1973–1984. DOI: 10.1016/j.sigpro.2011.03.001
  17. XIANG, S., HUANG, J. Histogram based audio watermarking against time scale modification and cropping attacks. IEEE Transaction on Multimedia, 2007, vol. 9, no. 7, p. 1357–1372. DOI: 10.1109/TMM.2007.906580
  18. XIANG, S., KIM, H. J., HUANG, J. Audio watermarking robust against time scale modification and MP3 compression. Signal Processing, 2008, vol. 88, no. 10, p. 2372–2387. DOI: 10.1016/j.sigpro.2008.03.019
  19. ERFANI, Y., SIAHPOUSH, S. Robust audio watermarking using improved TS echo hiding. Digital Signal Processing, 2009, vol. 19, no. 5, p. 809–814. DOI: 10.1016/j.dsp.2009.04.003
  20. Y. XIANG, D. PENG, I. NATGUNANATHAN, W., ZHOU. Effective pseudonoise sequence and decoding function for imperceptibility and robustness enhancement in time-spread echobased audio watermarking. IEEE Transaction on Multimedia, 2011, vol. 13, no. 1, p. 2–13. DOI: 10.1109/TMM.2010.2080668
  21. DHAR, P. K., SHIMAMURA, T. Blind SVD-based audio watermarking using entropy and log-polar transformation. Journal of Information Security and Applications, 2015, vol. 20, p. 74–83. DOI: 10.1016/j.jisa.2014.10.007
  22. THIEDE, T., TREURNIET, W. C., BITTO, R., et al. PEAQ - The ITU standard for objective measurement of perceived audio quality. Journal of Audio Engineering Society, 2000, vol. 48, no. 1/2, p. 3–29.
  23. BAUDRY, S., DELAIGLE, J.-F., SANKUR, MACQ, B. B., MAÎTRE, H. Analyses of error correction strategies for typical communication channels in watermarking. Signal Processing, 2001, vol. 81, no. 6, p. 1239–1250. DOI: 10.1016/S0165- 1684(01)00041-X

Keywords: Copyright protection, Discrete Cosine Transform, Singular Value Decomposition (SVD), Exponential Operation (EO), Logarithm Operation (LO)

K. B. Cui, W. W. Wu, J. J. Huang, X. Chen, N. C. Yuan [references] [full-text] [DOI: 10.13164/re.2017.0562] [Download Citations]
2D DOA Estimation of UCA Correlative Interferometer Based on One Dimensional Sorting Lookup Table-Two Dimensional Linear Interpolation Algorithm

In order to improve the direction-finding efficiency of the correlative interferometer and reduce the size of the lookup table, this paper proposes the one dimensional sorting lookup table-two dimensional linear interpolation (1DSLUT-2DLI) algorithm. Firstly, the uniform circular array (UCA) model is established and the direction finding (DF) theory of the correlative interferometer is analyzed. A new lookup table is obtained by proceeding the ascending order for the first dimensional phase differences and a one dimensional iterative filtering method is used to look up the new table to get the direction of arrival (DOA) estimation. Compared to the exist methods, the 1DSLUT algorithm can reduce the computational complexity greatly. Considering the burden of a big lookup table, this paper proposes the 2DLI algorithm. Through the Taylor expansion, the conclusion that the phase difference is approximately linear in a small angle range is obtained. So, the linear interpolation can be applied to calculate the phase differences in the azimuth direction and elevation direction. On this basis, we conclude the equations to get the DOA estimation using the 2DLI algorithm. In this way, the size of the lookup table is reduced greatly, which decreases the computational complexity greatly also. The numerical simulations verify the effectiveness of the 1DSLUT-2DLI algorithm and it can obtain a pretty high DOA estimation precision with a low computational complexity and a small lookup table.

  1. PAN, Y. J., ZHANG, X. F., XIE, S. Y., et al. An ultra-fast DOA estimator with circular array interferometer using lookup table method. Radioengineering, 2015, vol. 24, no. 3, p. 850–856. DOI: 10.13164/re.2015.0850
  2. LIU, Z. M., GUO, F. C. Azimuth and elevation estimation with rotating long-baseline interferometers. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 9, p. 2405–2419. DOI: 10.1109/TSP.2015.2405506
  3. ZHANG, M., GUO, F. C., ZHOU, Y. Y. A closed-form solution for moving source localization using LBI changing rate of phase difference only. Chinese Journal of Aeronautics, 2014, vol. 27, no. 2, p. 365–374. DOI: 10.1016/j.cja.2014.02.013
  4. NANZER, A. J. Sensitivity of a passive correlation interferometer to an angularly moving source. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 12, p. 3868–3876. DOI: 10.1109/TMTT.2012.2217982
  5. JACOBS, E., RALSTON, E. W. Ambiguity resolution in interferometry. IEEE Transactions on Aerospace and Electronic Systems, 1981, vol. 17, no. 6, p. 766–780. DOI: 10.1109/TAES.1981.309127
  6. PACE, P. E., WICKERSHAM, D., JENN, D. C., et al. Highresolution phase sampled interferometry using symmetrical number systems. IEEE Transactions on Antennas and Propagation, 2001, vol. 49, no. 10, p. 1411–1423. DOI: 10.1109/8.954930
  7. SUNDARAM, K. R., MALLIK, R. K., MURTHY, U. M. S. Modulo conversion method for estimating the direction of arrival. IEEE Transactions on Aerospace and Electronics Systems, 2000, vol. 36, no. 4, p. 1391–1396. DOI: 10.1109/7.892687
  8. QU, Z. Y., SI, S. C. Direction finding method of wideband passive radar seeker based on virtual baseline. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, vol. 27, no. 4, p. 92–95. DOI: 10.3969/j.issn.1673-9728.2007.04.028 (in Chinese)
  9. SI, W. J., CHU, P., SUN, S. H. Research on solving ambiguity technology based on semi-circle array. Systems Engineering and Electronics, 2008, vol. 30, no. 11, p. 2128–2131. DOI: 10.3321/j.issn:1001-506X.2008.11.023 (in Chinese)
  10. CUI, X. Phase interferometer improvement based on virtual baseline. Communications Technology, 2011, vol. 44, no. 7, p. 89–91. DOI: 10.3969/j.issn.1002-0802.2011.07.033 (in Chinese)
  11. ZHANG, C. J., LI, Z. D. Research on solving ambiguity error of nonuniform circular antenna array model. Systems Engineering and Electronics, 2012, vol. 34, no. 8, p. 1525–1529. DOI: 10.3969/j.issn.1001-506X.2012.08.01 (in Chinese)
  12. WANG, C. H. Correlation interferometer and its application. China Radio Management, 2001, vol. 8, p. 28–29. DOI: 10.3969/j.issn.1672-7797.2001.08.013 (in Chinese)
  13. PARK, C. S., KIM, D. Y. The fast correlative interferometer direction finder using I/Q demodulator. In 2006 Asia-Pacific Conference on Communications (APCC 2006). 2006. 5 p. DOI: 10.1109/APCC.2006.255915
  14. WEI, H. W., SHI, Y. G. Performance analysis and comparison of correlative interferometers for direction finding. In IEEE 10th International Conference on Signal Processing (ICSP). Beijing (China), 2010, p. 393–396. DOI: 10.1109/ICOSP.2010.5657185
  15. HAN, G., WANG, B., CHEN, J. Y. Researching on algorithm suitable for implementation of correlation interferometer direction finding with FPGA. Computer Engineering and Design, 2010, vol. 31, no. 20, p. 4365–4367. (in Chinese)
  16. QIAN, Z. B., CHEN, N. Fast implementation of correlation interferometer direction finding based on DSP. Radio Engineering of China, 2011, vol. 41, no. 8, p. 47–50. DOI: 10.3969/j.issn.1003- 3106.2011.08.016 (in Chinese)
  17. CHENG, T., GUI, X. T., ZHANG, X. A dimension separationbased two-dimensional correlation interferometer algorithm. EURASIP Journal on Wireless Communications and Networking, 2013, vol. 2013, no. 1, p. 1–10. DOI: 10.1186/1687-1499-2013-40
  18. XIE, S. G., HAO, X. C., ZENG, X. Y., et al. A secondary correlation method of direction finding based on phase differences interpolation algorithm. Chinese Journal of Radio Science, 2014, vol. 29, no. 1, p. 183–187. DOI: 10.13443/j.cjors.2013032301 (in Chinese)
  19. LIM, J. S., CHAE, G. S. Analysis of direction finding accuracy for amplitude-phase comparison and correlative interferometer method. Journal of Digital Convergence, 2016, vol. 14, no. 1, p. 195–201. DOI: 10.14400/JDC.2016.14.1.195
  20. XIAO, W., XIAO, X. C., TAI, H. M. Rank-1 ambiguity DOA estimation of circular array with fewer sensors. In Proceedings of the 45th IEEE Midwest Symposium on Circuits and Systems (MWSCAS-2002). Tulsa (USA), 2002, p. III-29–III-32. DOI: 10.1109/MWSCAS.2002.1186962
  21. WANG, P., LI, Y. H., VUCETIC, B. Millimeter wave communications with symmetric uniform circular antenna arrays. IEEE Communications Letters, 2014, vol. 18, no. 8, p. 1307–1310. DOI: 10.1109/LCOMM.2014.2332334
  22. DORSEY, W. M., COLEMAN, J. O., PICKLES, W. R. Uniform circular array pattern synthesis using second-order cone programming. IET Microwaves, Antennas & Propagation, 2015, vol. 9, no. 8, p. 723–727. DOI: 10.1049/iet-map.2014.0418
  23. JACKSON, B. R., RAJAN, S., LIAO, B. J., et al. Direction of arrival estimation using directive antennas in uniform circular arrays. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 2, p. 736–747. DOI: 10.1109/TAP.20142384044
  24. WANG, M., MA, X. C., YAN, S. F., et al. An autocalibration algorithm for uniform circular array with unknown mutual coupling. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 12–15. DOI: 10.1109/LAWP.2015.2425423

Keywords: UCA, correlative interferometer, 2D DOA estimation, direction-finding, 1DSLUT-2DLI algorithm

P. Li, H. Ge, J. Yang [references] [full-text] [DOI: 10.13164/re.2017.0573] [Download Citations]
Adaptive Measurement Partitioning Algorithm for a Gaussian Inverse Wishart PHD Filter that Tracks Closely Spaced Extended Targets

Use of the Gaussian inverse Wishart probability hypothesis density (GIW-PHD) filter has demonstrated promise as an approach to track an unknown number of extended targets. However, when targets of various sizes are spaced closely together and performing maneuvers, estimation errors will occur because measurement partitioning algorithms fail to provide the correct partitions. Specifically, the sub-partitioning algorithm fails to handle cases in which targets are of different sizes, while other partitioning approaches are sensitive to target maneuvers. This paper presents an improved partitioning algorithm for a GIW-PHD filter in order to solve the above problems. The sub-partitioning algorithm is improved by considering target extension information and by employing Mahalanobis distances to distinguish among measurement cells of different sizes. Thus, the improved approach is not sensitive to either differences in target sizes or target maneuvering. Simulation results show that the use of the proposed partitioning approach can improve the tracking performance of a GIW-PHD filter when target are spaced closely together.

  1. MAHLER, R. Multi-target Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, vol. 39, no. 4, p. 1152–1178. DOI: 10.1109/TAES.2003.1261119
  2. VO, B. N., MA, W. K. The Gaussian mixture probability hypothesis density filter. IEEE Transactions on Signal Processing, 2010, vol. 54, no. 11, p. 4091–4104. DOI: 10.1109/TSP.2006.881190
  3. MULLANE, J., VO, B. N., ADAMS, M. D., et al. A randomfinite-set approach to Bayesian SLAM. IEEE Transactions on Robotics, 2011, vol. 27, no. 2, p. 268–282. DOI: 10.1109/TRO.2010.2101370
  4. DRALLE, K., RUDEMO, M. Automatic estimation of individual tree positions from aerial photos. Canadian Journal of Forest Research, 1997, vol. 27, no. 27, p. 1728–1736. DOI: 10.1109/LGRS.2013.2242044
  5. BAUM, M., HANEBECK, U. D. Random hypersurface models for extended object tracking. In Proceedings of IEEE International Symposium on Signal Processing and Information Technology. Ajman (United Arab. Emirates), December 2009, p. 178–183. DOI: 10.1109/ISSPIT.2009.5407526
  6. BAUM, M., HANEBECK, U. D. Shape tracking of extended objects and group targets with star-convex RHMs. In Proceedings of the 14th International Conference on Information Fusion. Chicago (Illinois, USA), July 2011, p. 1–8. ISBN: 9780982443828
  7. ZEA, A., FAION, F., BAUM, M., et al. Level-set random hypersurface models for tracking non-convex extended objects. In Proceedings of the 16th International Conference on Information Fusion. Istanbul (Turkey), July 2013, p. 1760–1767. ISBN: 9781479902842
  8. KOCH, W. Bayesian approach to extended object and cluster tracking using random matrices. IEEE Transactions on Aerospace and Electronic Systems, 2008, vol. 44, no. 3, p. 1042–1059. DOI: 10.1109/TAES.2008.4655362
  9. FELDMANN, M., FRANKEN, D. Tracking of extended objects and group targets using random matrices. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 4, p. 1409–1420. DOI: 10.1109/TSP.2010.2101064
  10. LAN, J., LI, X. R. Tracking of maneuvering non-ellipsoidal extended object or target group using random matrix. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 9, p. 2450 to 2463. DOI: 10.1109/TSP.2014.2309561
  11. MAHLER, R. PHD filters for nonstandard targets, I: Extended targets. In Proceedings of the 12th International Conference on Information Fusion. Seattle (WA, USA), July 2009, p. 915–921. ISBN: 9780982443804
  12. GRANSTROM, K., LUNDQUIST, C., ORGUNER, U. A Gaussian mixture PHD filter for extended target tracking. In Proceedings of the 13th International Conference on Information Fusion. Edinburgh (Scotland, UK), July 2010, p. 1–8. DOI: 10.1109/ICIF.2010.5711885
  13. GRANSTROM, K., LUNDQUIST, C., ORGUNER, U. Extended target tracking using a Gaussian-mixture PHD filter. IEEE Transactions on Aerospace and Electronic Systems, 2012, vol. 48, no. 4, p. 3268–3286. DOI: 10.1109/TAES.2012.6324703
  14. GRANSTROM, K., ORGUNER, U. A PHD filter for tracking multiple extended targets using random matrices. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 1, p. 5657 to 5671. DOI: 10.1109/TSP.2012.2212888
  15. GRANSTROM, K., ORGUNER, U. Estimation and maintenance of measurement rates for multiple extended target tracking. In Proceedings of the 15th Conference on Information Fusion. Singapore, September 2012, p. 2170–2176. ISBN: 978-0-9824438-5-9
  16. GRANSTROM, K., ORGUNER, U. On the reduction of Gaussian inverse Wishart mixtures. In Proceedings of the 15th Conference on Information Fusion. Singapore, September 2012, p. 2162–2169. ISBN: 978-0-9824438-5-9
  17. GRANSTROM, K., NATALE, A., BRACA, P., et al. Gamma Gaussian inverse Wishart probability hypothesis density for extended target tracking using X-band marine radar data. IEEE Transactions on Geoscience & Remote Sensing, 2015, vol. 53, p. 1 to 15. DOI: 10.1109/TGRS.2015.2444794
  18. HAN Y., ZHU H., HAN C. Z. Maintaining track continuity for extended targets using Gaussian-mixture probability hypothesis density filter. Mathematical Problems in Engineering, 2015, no. 3, p. 1–16. DOI: 10.1155/2015/501915
  19. ARTHUR, D., VASSILVITSKII, S. k-means++: The advantages of careful seeding. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. New Orleans (USA), Jan. 2007, p. 1027–1035. DOI: 10.1145/1283383.1283494
  20. PANTA, K., CLARK, D., VO, B. N. Data association and track management for the Gaussian mixture probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2009, vol. 45, no. 3, p. 1003–1016. DOI: 10.1109/TAES.2009.5259179
  21. SCHUHMACHER, D., VO, B. T., VO, B. N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 8, p. 3447–3457. DOI: 10.1109/TSP.2008.920469
  22. SONG, L. P., LIANG, M., JI, H. B. Box-particle implementation and comparison of cardinalized probability hypothesis density filter. Radioengineering, 2016, vol. 25, no. 1, p. 177–186. DOI: 10.13164/re.2016.0177
  23. LI, M., LIN, Z., AN, W., et al. Box-particle labeled multiBernoulli filter for multiple extended target tracking. Radioengineering, 2016, vol. 25, no. 3, p. 527–535. DOI: 10.13164/re.2016.0527

Keywords: Target tracking, extended target, filtering, GIW PHD filter, measurement partition

M. Nazari Majd, M. Radmard, M. M. Chitgarha, M. H. Bastani, M. M. Nayebi [references] [full-text] [DOI: 10.13164/re.2017.0581] [Download Citations]
Detection-Localization Tradeoff in MIMO Radars

Two gains play key roles in recently developed‎ MIMO ‎wireless communication systems‎: ‎"spatial diversity‎" ‎gain and "spatial multiplexing‎" ‎gain‎. ‎The diversity gain refers to the capability to decrease the error rate of the MIMO channel‎, ‎while the multiplexing gain implicitly refers to the amount of increase in the capacity of the MIMO channel‎. ‎It has been shown that there is a fundamental tradeoff between these two types of gains‎, ‎meaning interplay between increasing reliability (via an increase in the diversity gain) and increasing data rate (via an increase in the multiplexing gain)‎. ‎On the other hand‎, ‎recently‎, ‎MIMO radars have attracted much attention for their superior ability to enhance the system's performance‎. ‎As a MIMO system‎, ‎it is expected that the mentioned diversity-multiplexing tradeoff exists in a MIMO radar‎, ‎too‎. ‎In this paper‎, ‎this tradeoff is studied and verified in MIMO radars with widely separated antennas‎. ‎In more details‎, ‎it will be shown that increasing dependency between transmit-receive links results in higher diversity gain and lower multiplexing gain‎, ‎and vice versa‎. ‎Then‎, ‎the optimal tradeoff is introduced‎, ‎i.e.‎, ‎the conditions that the MIMO radar system should have‎, ‎so that the diversity-multiplexing tradeoff is at its optimum point‎, ‎are driven‎.

  1. LI, J., STOICA, P. MIMO radar with colocated antennas. IEEE Signal Processing Magazine, 2007, vol. 24, no. 5, p. 106–114. DOI: 10.1109/MSP.2007.904812
  2. FISHLER, E., HAIMOVICH, A., BLUM, R. S., et al. Spatial diversity in radars-models and detection performance. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 3, p. 823–838. DOI: 10.1109/TSP.2005.862813
  3. LEHMANN, N., FISHLER, E., HAIMOVICH, A., et al. Evaluation of transmit diversity in MIMO-radar direction finding. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 5, p. 2215–2225. DOI: 10.1109/TSP.2007.893220
  4. RADMARD, M., NAYEBI, M. M., KARBASI, S. M. Diversity-based geometry optimization in MIMO passive coherent location. Radioengineering, 2014, vol. 23, no. 1, p. 41–49. ISSN: 1805-9600
  5. FISHLER, E., HAIMOVICH, A., BLUM, R. S., et al. MIMO radar: An idea whose time has come. In Proceedings of the IEEE Radar Conference, 2004, p. 71–78. DOI: 10.1109/NRC.2004.1316398
  6. RADMARD, M., NAYEBI, M. M. Target tracking and receiver placement in MIMO DVB-T based PCL. Iranian Journal of Science and Technology, Transactions of Electrical Engineering. [In press] Cited: 2016-09-06.
  7. HAIMOVICH, A., BLUM, R. S., CIMINI, L. J. MIMO radar with widely separated antennas. IEEE Signal Processing Magazine, 2008, vol. 25, no. 1, p. 116–129. DOI: 10.1109/MSP.2008.4408448
  8. RADMARD, M., KARBASI, S. M., NAYEBI, M. M. Data fusion in MIMO DVB-T -based passive coherent location. IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, no. 3, p. 1725–1737. DOI: 10.1109/TAES.2013.6558015
  9. ZHENG, L., TSE, D. Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 2003, vol. 49, no. 5, p. 1073–1096. DOI: 10.1109/TIT.2003.810646
  10. KIM, T. T., SKOGLUND, M. Diversity-multiplexing tradeoff in MIMO channels with partial CSIT. IEEE Transactions on Information Theory, 2007, vol. 53, no. 8, p. 2743–2759. DOI: 10.1109/TIT.2007.901171
  11. JIANG, Y., VARANASI, M. K. Diversity-multiplexing tradeoff of MIMO systems with antenna selection. In Proceedings of the IEEE International Symposium on Information Theory (ISIT). 2007, p. 2836– 2840. DOI: 10.1109/ISIT.2007.4557648
  12. GARCIA-ORDONEZ, L., PAGES-ZAMORA, A., FONOLLOSA, J. R. Diversity and multiplexing tradeoff of spatial multiplexing MIMO systems with CSI. IEEE Transactions on Information Theory, 2008, vol. 54, no. 7, p. 2959–2975. DOI: 10.1109/TIT.2008.924670
  13. KARMAKAR, S., VARANASI, M. K. The diversity-multiplexing tradeoff of the dynamic decode-and-forward protocol on a MIMO half-duplex relay channel. IEEE Transactions on Information Theory, 2011, vol. 57, no. 10, p. 6569–6590. DOI: 10.1109/TIT.2011.2165828
  14. DAHER, R., ADVE, R. A notion of diversity order in distributed radar networks. IEEE Transactions on Aerospace and Electronic Systems, 2010, vol. 46, no. 2, p. 818–831. DOI: 10.1109/TAES.2010.5461659
  15. DE MAIO, A., LOPS, M., VENTURINO, L. Diversityintegration tradeoffs in MIMO detection. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 10, p. 5051–5061. DOI: 10.1109/TSP.2008.928693
  16. HE, Q., BLUM, R. S. Diversity gain for MIMO Neyman-Pearson signal detection. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 3, p. 869–881. DOI: 10.1109/TSP.2010.2094611
  17. VAN TREES, H. L. Detection, Estimation, and Modulation Theory, Part l: Detection, Estimation, and Linear Modulation Theory. John Wiley and Sons, 2001. ISBN: 978-0-471-46382-5
  18. MOSCHOPOULOS, P. G., CANADA, W. B. The distribution function of a linear combination of chi-squares. Computers and mathematics with applications, 1984, vol. 10, no. 4, p. 383–386. DOI: 10.1016/0898-1221(84)90066-X
  19. SKOLNIK, M. I. Introduction to Radar. 3rd ed., McGraw-Hill, 2001. ISBN: 0-07-044533-8
  20. GODRICH, H., HAIMOVICH, A., BLUM, R. Target localisation techniques and tools for multiple-input multiple-output radar. IET Radar, Sonar and Navigation, 2009, vol. 3, no. 4, p. 314–327. DOI: 10.1049/ietrsn.2008.0141

Keywords: MIMO radar, widely separated antennas, detection, localization, tradeoff

H. Hou, X. Mao [references] [full-text] [DOI: 10.13164/re.2017.0588] [Download Citations]
DOA Estimation of Uncorrelated, Partly Correlated and Coherent Signals Using Alternating Oblique Projection

The problem of direction-of-arrival (DOA) estimation is important in array signal processing. To estimate the DOAs of uncorrelated, partly correlated and coherent signals, a new iterative DOA estimation algorithm, named AOP-DOA, is proposed by using alternating oblique projection (AOP). In each iteration, the oblique projection approach is employed to separate the received signals, then the DOA of each separated signal is estimated one after another. After theoretical analysis on the relationship between the proposed AOP-DOA and the conventional alternating projection based maximum likelihood estimator (AP-MLE), an AOP&AP-DOA algorithm, which is a combination of AOP-DOA and AP-MLE, is developed to reduce the computational complexity of AOP-DOA. Extensive experiments validate the effectiveness and complexity of the proposed two algorithms. Particularly, AOP&AP-DOA keeps the merits of AOP-DOA, but exhibits superiority over AOP-DOA in terms of computational complexity when proper adaptive grid refinement strategy is applied.

  1. KRIM, H., VIBERG, M. Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine, 1996, vol. 13, no. 4, p. 67–94. DOI: 10.1109/79.526899
  2. GAN, L., LUO, X. Direction-of-arrival estimation for uncorrelated and coherent signals in the presence of multipath propagation. IET Microwaves, Antennas and Propagation, 2013, vol. 7, no. 9, p. 746–753. DOI: 10.1049/iet-map.2012.0659
  3. STOICA, P., NEHORAI, A. Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, vol. 38, no. 10, p. 1783–1795. DOI: 10.1109/29.60109
  4. STOICA, P., SHARMAN, K. C. Maximum likelihood methods for direction-of-arrival estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, vol. 38, no. 7, p. 1132–1143. DOI: 10.1109/29.57542
  5. SHEINVALD, J., WAX, M., WEISS, A. J. On maximumlikelihood localization of coherent signals. IEEE Transactions on Signal Processing, 1996, vol. 44, no. 10, p. 2475–2482. DOI: 10.1109/78.539032
  6. SCHMIDT, R. O. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 3, p. 276–280. DOI: 10.1109/TAP.1986.1143830
  7. ROY, R., KAILATH, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, vol. 37, no. 7, p. 984–995. DOI: 10.1109/29.32276
  8. XIN, J. M., SANO, A. Computationally efficient subspace-based method for direction-of-arrival estimation without eigendecomposition. IEEE Transactions on Signal Processing, 2004, vol. 52, no. 4, p. 876–893. DOI: 10.1109/TSP.2004.823469
  9. ZOLTOWSKI, M., HABER, F. A vector space approach to direction finding in a coherent multipath environment. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 9, p. 1069–1079. DOI: 10.1109/TAP.1986.1143956
  10. TAO, H., XIN, J., WANG, J., et al. Two-dimensional direction estimation for a mixture of noncoherent and coherent signals. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 2, p. 318–333. DOI: 10.1109/TSP.2014.2369004
  11. LINEBARGER, D. A. Redundancy averaging with large arrays. IEEE Transactions on Signal Processing, 1993, vol. 41, no. 4, p. 1707– 1710. DOI: 10.1109/78.212750
  12. PILLAI, S. U., KWON, B. H. Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, vol. 37, no. 1, p. 8–15. DOI: 10.1109/29.17496
  13. WAX, M., SHEINVALD, J. Direction finding of coherent signals via spatial smoothing for uniform circular arrays. IEEE Transactions on Antennas and Propagation, 1994, vol. 42, no. 5, p. 613–620. DOI: 10.1109/8.299559
  14. INDUKUMAR, K. C., REDDY, V. U. A note on redundancy averaging. IEEE Transactions on Signal Processing, 1992, vol. 40, no. 2, p. 466–469. DOI: 10.1109/78.124962
  15. QIAN, C., HUANG, L., ZENG, W. J., et al. Direction-of-arrival estimation for coherent signals without knowledge of source number. IEEE Sensors Journal, 2014, vol. 14, no. 9, p. 3267–3273. DOI: 10.1109/JSEN.2014.2327633
  16. RAHAMIM, D., TABRIKIAN, J., SHAVIT, R. Source localization using vector sensor array in a multipath environment. IEEE Transactions on Signal Processing, 2004, vol. 52, no. 11, p. 3096–3103. DOI: 10.1109/TSP.2004.836456
  17. ZISKIND, I., WAX, M. Maximum likelihood localization of multiple sources by alternating projection. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, vol. 36, no. 10, p. 1553–1560. DOI: 10.1109/29.7543
  18. OH, S. K., UN, C. K. Efficient realisation of alternating projection algorithm for maximum likelihood direction finding. Electronics Letters, 1989, vol. 25, no. 20, p. 1325–1326. DOI: 10.1049/el:19890885
  19. VIBERG, M., OTTERSTEN, B., KAILATH, T. Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Transactions on Signal Processing, 1991, vol. 39, no. 17, p. 2436–2449. DOI: 10.1109/78.97999
  20. LI, M. H., LU Y. L. Maximum likelihood DOA estimation in unknown colored noise fields. IEEE Transactions on Aerospace and Electronic Systems, 2008, vol. 44, no. 3, p. 1079–1090. DOI: 10.1109/TAES.2008.4655365
  21. MASSA, A., ROCCA, P., OLIVERI, G. Compressive sensing in electromagnetics – a review. IEEE Antennas and Propagation Magazine, 2015, vol. 57, no. 1, p. 224–238. DOI: 10.1109/MAP.2015.2397092
  22. SAHOO, S. K., MAKUR, A. Signal recovery from random measurements via extended orthogonal matching pursuit. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 10, p. 2572–2581. DOI: 10.1109/TSP.2015.2413384
  23. MALIOUTOV, D., CETIN, M., WILLSKY, A. S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 8, p. 3010–3022. DOI: 10.1109/TSP.2005.850882
  24. YIN, J., CHEN, T. Direction-of-arrival estimation using a sparse representation of array covariance vectors. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 9, p. 4489–4493. DOI: 10.1109/TSP.2011.2158425
  25. HYDER, M. M., MAHATA, K. Direction-of-arrival estimation using a mixed l2,0 norm approximation. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 9, p. 4646–4655. DOI: 10.1109/TSP.2010.2050477
  26. CARLIN, M., ROCCA, P., OLIVERI, G., et al. Directions-of-arrival estimation through bayesian compressive sensing strategies. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 7, p. 3828–3838. DOI: 10.1109/TAP.2013.2256093
  27. WU, X., ZHU, W. P., YAN, J. Direction of arrival estimation for off-grid signals based on sparse bayesian learning. IEEE Sensors Journal, 2016, vol. 16, no. 7, p. 2004–2016. DOI: 10.1109/JSEN.2015.2508059
  28. LI, J., ZHENG, D. M., STOICA, P. Angle and waveform estimation via RELAX. IEEE Transactions on Aerospace and Electronic Systems, 1997, vol. 33, no. 3, p. 1077–1087. DOI: 10.1109/7.599338
  29. YARDIBI, T., LI, J., STOICA, P., et al. Source localization and sensing: a nonparametric iterative adaptive approach based on weighted least squares. IEEE Transactions on Aerospace and Electronic Systems, 2010, vol. 46, no. 1, p. 425–443. DOI: 10.1109/TAES.2010.5417172
  30. BEHRENS, R. T., SCHARF, L. L. Signal processing applications of oblique projection operators. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 6, p. 1413–1424. DOI: 10.1109/78.286957
  31. BOYER, R. Oblique projection for source estimation in a competitive environment: algorithm and statistical analysis. Signal Processing, 2009, vol. 89, no. 12, p. 2547–2554. DOI: 10.1016/j.sigpro.2009.04.023
  32. SCHARF, L. L., MCCLOUD, M. L. Blind adaptation of zero forcing projections and oblique pseudo-inverses for subspace detection and estimation when interference dominates noise. IEEE Transactions on Signal Processing, 2002, vol. 50, no. 12, p. 2938–2946. DOI: 10.1109/TSP.2002.805245
  33. MCCLOUD, M. L., SCHARF, L. L. A new subspace identification algorithm for high-resolution DOA estimation. IEEE Transactions on Antennas and Propagation, 2002, vol. 50, no. 10, p. 1382–1390. DOI: 10.1109/TAP.2002.805244
  34. BOYER, R., BOULEUX, G. Oblique projections for directionof-arrival estimation with prior knowledge. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 4, p. 1374–1387. DOI: 10.1109/TSP.2007.909348
  35. TAO, H., XIN, J. M., WANG, J. S., et al. Oblique projection based enumeration of mixed noncoherent and coherent narrowband signals. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 16, p. 4282–4295. DOI: 10.1109/TSP.2016.2548994
  36. TAO, H., XIN, J. M., WANG, J. S., et al. Two-dimensional direction estimation for a mixture of noncoherent and coherent signals. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 2, p. 318–333. DOI: 10.1109/TSP.2014.2369004
  37. XU, X., YE, Z., Zhang Y., et al. A deflation approach to direction of arrival estimation for symmetric uniform linear array. IEEE Antennas and Wireless Propagation Letters, 2006, vol. 5, no. 1, p. 486–489. DOI: 10.1109/LAWP.2006.886304
  38. SI, W. J., ZHAO P. J., QU, Z. Y., et al. Real-valued DOA estimation for a mixture of uncorrelated and coherent sources via unitary transformation. Digital Signal Processing, 2016, vol. 58, p. 102–114. DOI: 10.1016/j.dsp.2016.07.024
  39. CUI, Y., LIU, K., WANG, J. Direction-of-arrival estimation for coherent GPS signals based on oblique projection. Signal Processing, 2012, vol. 92, no. 1, p. 294–299. DOI: 10.1016/j.sigpro.2011.07.014
  40. XU, X., YE, Z., PENG, J. Method of direction-of-arrival estimation for uncorrelated, partially correlated and coherent sources. IET Microwaves, Antennas and Propagation, 2007, vol. 1, no. 4, p. 949–954. DOI: 10.1049/iet-map:20070006
  41. LU, Z., ZOUBIR, A. M. Source enumeration in array processing using a two-step test. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 10, p. 2718–2727. DOI: 10.1109/TSP.2015.2414894
  42. HUANG, L., XIAO, Y., LIU, K., et al. Bayesian information criterion for source enumeration in large-scale adaptive antenna array. IEEE Transactions on Vehicular Technology, 2016, vol. 65, no. 5, p. 3018–3032. DOI: 10.1109/TVT.2015.2436060
  43. ROUBICEK, T., KRUZIK, M. Adaptive approximation algorithm for relaxed optimization problems. In Fast Solution of Discretized Optimization Problems. Birkhauser (Basel), 2001, p. 242–254. DOI: 10.1007/978-3-0348-8233-0_18
  44. THEODORIDIS, S., SLAVAKIS, K., YAMADA, I. Adaptive learning in a world of projections. IEEE Signal Processing Magazine, 2011, vol. 28. no. 1, p. 97–123. DOI: 10.1109/MSP.2010.938752
  45. HURT, N. E. Maximum likelihood estimation and MUSIC in array localization signal processing: a review. Multidimensional Systems and Signal Processing, 1990, vol. 1, no. 3, p. 279–325. DOI: 10.1007/BF01812401
  46. GOLUB, G. H., PEREYRA, V. The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM Journal on Numerical Analysis, 1973, vol. 10, no. 2, p. 413–432. DOI: 10.1137/0710036
  47. CIRRINCIONE, G., CIRRINCIONE, M., HERAULT, J., et al. The MCA EXIN neuron for the minor component analysis. IEEE Transactions on Neural Networks, 2002, vol. 13, no. 1, p. 160–187. DOI: 10.1109/72.977295
  48. MANGASARIAN, O. L., WILD, E. W., Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, vol. 28, no. 1, p. 69–74. DOI: 10.1109/TPAMI.2006.17
  49. STURM, J. F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 1999, vol. 11, no. 1–4, p. 625–653. DOI: 10.1080/10556789908805766
  50. LIAO, B., CHAN, S. C., HUANG, L., et al. Iterative methods for subspace and DOA estimation in nonuniform noise. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 12, p. 3008–3020. DOI: 10.1109/TSP.2016.2537265

Keywords: Oblique projection, direction-of-arrival (DOA) estimation, maximum likelihood (ML), coherent signal

B. Ali, N. Zamir, S. X. Ng, M. F. U. Butt [references] [full-text] [DOI: 10.13164/re.2017.0601] [Download Citations]
Distributed Matching Algorithms: Maximizing Secrecy in the Presence of Untrusted Relay

In this paper, we propose a secrecy sum-rate maximization based matching algorithm between primary transmitters and secondary cooperative jammers in the presence of an eavesdropper. More explicitly, we consider an untrusted relay scenario, where the relay is a potential eavesdropper. We first show the achievable secrecy regions employing a friendly jammer in a cooperative scenario with employing an untrusted relay. Then, we provide results for the secrecy regions for two scenarios, where in the first case we consider no direct transmission between the source and the destination, while in the second case we include a source to destination direct link in our communication system. Furthermore, a friendly jammer helps to send a noise signal during the first phase of the cooperative transmission, for securing the information transmitted from the source. In our matching algorithm, the selected cooperative jammer or the secondary user, is rewarded with the spectrum allocation for a fraction of time slot from the source which is the primary user. The Conventional Distributed Algorithm (CDA) and the Pragmatic Distributed Algorithm (PDA), which were originally designed for maximising the user’s sum rate, are modified and adapted for maximizing the secrecy sum-rate for the primary user. Instead of assuming perfect modulation and/or perfect channel coding, we have also investigated our proposed schemes when practical channel coding and modulation schemes are invoked.

  1. YANG, N., WANG, L., GERACI, G., et al. Safeguarding 5g wireless communication networks using physical layer security. IEEE Communications Magazine, 2015, vol. 53, no. 4, p. 20–27. DOI: 10.1109/MCOM.2015.7081071
  2. ZHONG, Z., PENG, J., LUO, W., et al. A tractable approach to analyzing the physical-layer security in k-tier heterogeneous cellular networks. China Communications, 2015, vol. 12, p. 166–173. DOI: 10.1109/CC.2015.7386165
  3. LI, S., XU, L. D., ZHAO, S. The internet of things: A survey. Information Systems Frontiers, 2015, vol. 17, no. 2, p. 243–259. DOI: 10.1007/s10796-014-9492-7
  4. WANG, H. M., ZHENG, T. X., YUAN, J., et al. Physical layer security in heterogeneous cellular networks. IEEE Transactions on Communications, 2016, vol. 64, no. 3, p. 1204–1219. DOI: 10.1109/TCOMM.2016.2519402
  5. MUKHERJEE, A. Physical-layer security in the internet of things: Sensing and communication confidentiality under resource constraints. Proceedings of the IEEE, 2015, vol. 103, no. 10, p. 1747– 1761. DOI: 10.1109/JPROC.2015.2466548
  6. SAAD, W., ZHOU, X., DEBBAH, M., et al. Wireless physical layer security. IEEE Communications Magazine, 2015, vol. 53, no. 12, p. 18. DOI: 10.1109/MCOM.2015.7355560
  7. ELETREBY, R., RAHBARI, H., KRUNZ, M. Supporting phylayer security in multi-link wireless networks using friendly jamming. In Proceedings of the IEEE Global Communications Conference (GLOBECOM). 2015, p. 1–6. DOI: 10.1109/GLOCOM.2015.7417141
  8. BERGER, D. S., GRINGOLI, F., FACCHI, N., et al. Friendly jamming on access points: Analysis and real-world measurements. IEEE Transactions on Wireless Communications, 2016, vol. 15, no. 9, p. 6189-6202. DOI: 10.1109/TWC.2016.2581165
  9. SHEN, W., LIU, Y., HE, X., et al. No time to demodulate - fast physical layer verification of friendly jamming. In Proceedings of the IEEE Military Communications Conference (MILCOM). 2015, p. 653–658. DOI: 10.1109/MILCOM.2015.7357518
  10. XING, H., WONG, K. K., CHU, Z., et al. To harvest and jam: A paradigm of self-sustaining friendly jammers for secure af relaying. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 24, p. 6616–6631. DOI: 10.1109/TSP.2015.2477800
  11. HE, X., YENER, A. Cooperation with an untrusted relay: A secrecy perspective. IEEE Transactions on Information Theory, 2010, vol. 56, no. 8, p. 3807–3827. DOI: 10.1109/TIT.2010.2050958
  12. KHODAKARAMI, H., LAHOUTI, F. Link adaptation with untrusted relay assignment: Design and performance analysis. IEEE Transactions on Communications, 2013, vol. 61, no. 12, p. 4874–4883. DOI: 10.1109/TCOMM.2013.111513.120888
  13. ZEWAIL, A. A., YENER, A. The two-hop interference untrustedrelay channel with confidential messages. In Proceedings of the IEEE Information Theory Workshop - Fall (ITW). 2015, p. 322–326. DOI: 10.1109/ITWF.2015.7360788
  14. XIONG, J., CHENG, L., MA, D., et al. Destination aided cooperative jamming for dual-hop amplify-and-forward MIMO untrusted relay systems. IEEE Transactions on Vehicular Technology, 2015, vol. 65, no. 9, p. 7274-7284. DOI: 10.1109/TVT.2015.2490099
  15. KALAMKAR, S. S., BANERJEE, A. Secure communication via a wireless energy harvesting untrusted relay. IEEE Transactions on Vehicular Technology, 2016, vol. 66, no. 3, p. 2199–2213. DOI: 10.1109/TVT.2016.2572960
  16. ZEWAIL, A. A., NAFEA, M., YENER, A. Multi-terminal networks with an untrusted relay. In Proceedings of the 52nd Annual Conference on Communication, Control, and Computing (Allerton). 2014, p. 895–902. DOI: 10.1109/ALLERTON.2014.7028549
  17. STANOJEV, I., YENER, A. Improving secrecy rate via spectrum leasing for friendly jamming. IEEE Transactions on Wireless Communications, 2013, vol. 12, no. 1, p. 134–145. DOI: 10.1109/TWC.2012.120412.112001
  18. QU, J., CAI, Y., LU, J., et al. Power allocation based on stackelberg game in a jammer-assisted secure network. In Proceedings of the International Conference on Cyberspace Technology (CCT 2013). 2013, p. 347–352. DOI: 10.1049/cp.2013.2150
  19. ZHILING, H., BAOYUN, W. Coalition formation game of dual-identity nodes for improving phy security of wireless networks. In Proceedings of the 27th Chinese Control and Decision Conference (2015 CCDC). 2015, p. 3658–3662. DOI: 10.1109/CCDC.2015.7162560
  20. ZHANG, N., CHENG, N., LU, N., et al. Partner selection and incentive mechanism for physical layer security. IEEE Transactions on Wireless Communications, 2015, vol. 14, no. 8, p. 4265–4276. DOI: 10.1109/TWC.2015.2418316
  21. BAYAT, S., LOUIE, R. H. Y., VUCETIC, B., et al. Dynamic decentralised algorithms for cognitive radio relay networks with multiple primary and secondary users utilising matching theory. Transactions on Emerging Telecommunications Technologies, 2013, vol. 24, p. 486–502. DOI: 10.1002/ett.2663
  22. LIANG, W., NG, S. X., FENG, J., et al. Pragmatic distributed algorithm for spectral access in cooperative cognitive radio networks. IEEE Transactions on Communications, 2014, vol. 62, no. 4, p. 1188– 1200. DOI: 10.1109/TCOMM.2014.030214.130326
  23. NG, S. X., HANZO, L. On the MIMO channel capacity of multidimensional signal sets. IEEE Transactions on Vehicular Technology, 2006, vol. 55, no. 2, p. 528–536. DOI: 10.1109/TVT.2005.863357
  24. BUTT, M. F. U., NG, S. X., HANZO, L. Self-concatenated code design and its application in power-efficient cooperative communications. IEEE Communications Surveys Tutorials, 2012, vol. 14, no. 3, p. 858–883. DOI: 10.1109/SURV.2011.081511.00104
  25. OCHIAI, H., MITRAN, P., TAROKH, V. Design and analysis of collaborative diversity protocols for wireless sensor networks. In Proceedings of the 60th IEEE Vehicular Technology Conference (VTC2004-Fall). 2004, p. 4645–4649. DOI: 10.1109/VETECF.2004.1404971

Keywords: Physical Layer Security, Spectrum Matching, Game Theory, Spectrum Sharing, Cognitive Radio Networks.

Z. Hasirci, I. H. Cavdar, M. Ozturk [references] [full-text] [DOI: 10.13164/re.2017.0611] [Download Citations]
Modeling and Link Performance Analysis of Busbar Distribution Systems for Narrowband PLC

Busbar distribution system is used as a modular infrastructure to carry electrical energy in low voltage grid. Due to the widespread usage in industrial areas, the power line communication possibilities should be investigated in terms of smart grid concept. This paper addresses modeling of the busbar distribution system as a transmission line and gives some suggestions on the link performance for narrowband power line communication for the first time in literature. Firstly, S-parameters of different current level busbars were measured up to 500 kHz for all possible two-port signal paths. The utilization of the frequency-dependent model was proposed to extract transmission line characteristics to eliminate the unwanted measurement effects. Particle swarm algorithm was used to optimize the model parameters with a good agreement between measured and simulated S-parameters. Additionally, link performance of busbar distribution system as a power line communication channel at 3 kHz-148.5 kHz band was examined for frequency shift keying and phase shift keying modulations under different network configurations such as varying busbar type, the line length between transmitter and receiver, branch number, and terminating load impedance. Obtained results were presented as bit-error-rate vs. signal to noise ratio graphs.

  1. PAPAZYAN, R. PETTERSON, P., EDIN, H., ERIKSSON, R., GAFVERT, U. Extraction of high frequency power cable characteristics from S-parameter measurements. IEEE Transactions on Dielectrics and Insulation, 2004, vol. 11, no. 3, p. 461–470. DOI: 10.1109/TDEI.2004.1306724
  2. HASIRCI, Z., CAVDAR, I. H. Modeling of high power busbar systems for power line communications. In IEEE International Energy Conference (ENERGYCON 2014). Dubrovnik (Croatia), 2014, p. 1515–1519. DOI: 10.1109/ENERGYCON.2014.6850623
  3. HASIRCI, Z., CAVDAR, I. H., SULJANOVIC, N., MUJCIC, A. Investigation of current variation effect on PLC channel characteristics of LV high power busbar systems. In The 5th IEEE PES European 2014 Conference on Innovative Smart Grid Technologies (ISGT). Istanbul (Turkey), 2014, 5 p. DOI: 10.1109/ISGTEurope.2014.7028778
  4. MARKS, R. B., WILLIAMS, D. F. Characteristic impedance determination using propagation constant measurement. IEEE Microwave Guided Wave Letters, 1991, vol. 1, no. 6, p. 141–143. DOI: 10.1109/75.91092 10.1109/75.91092
  5. GOLDBERG, S. B., STEER, M. B., FRANZON, P. D. Experimental electrical characterization of interconnects and discontinuities in high-speed digital systems. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1991, vol. 14, no. 4, p. 761–765. DOI: 10.1109/33.105130
  6. WILLIAMS, D. F., ROGERS, J. E., HOLLOWAY, C. L. Multiconductor transmission - line characterization: Representations, approximations, and accuracy. IEEE Transactions on Microwave Theory and Techniques, 1999, vol. 47, no. 4, p. 403–409. DOI: 10.1109/22.754872
  7. CHEN, G., ZHU, L., MELDE, K. Extraction of frequency dependent RLCG parameters of the packaging interconnects on low-loss substrates from frequency domain measurements. In 14th Topical Meeting on Electrical Performance of Electronic Packaging (IEEE-EPEP 2005). 2005, p. 25–28. DOI: 10.1109/EPEP.2005.1563691
  8. KIM, J., HAN, D. Hybrid method for frequency-dependent lossy coupled transmission line characterization and modeling. In Electrical Performance of Electronic Packaging (EPEP2003). Princeton (NJ, USA), 2003, p. 239–242. DOI: 10.1109/EPEP.2003.1250040
  9. DEUTSCH, A., ARJAVALINGAM, G., KOPCSAY, G. V. Characterization of resistive transmission lines by short-pulse propagation. IEEE Microwave and Guided Wave Letters, 1992 (current ver. 2002), vol. 2, no. 1, p. 25–27. DOI: 10.1109/75.109132
  10. FERRARI, P., FLECHET, B., ANGENIEUX, G. Time domain characterization of lossy arbitrary characteristic impedance transmission lines. IEEE Microwave and Guided Wave Letters, 1994 (current ver. 2002), vol. 4, no. 6, p. 177–179. DOI: 10.1109/75.294284
  11. KIM, W., LEE, S., SEO, M., SWAMINATHAN, M., TUMMALA, R. Determination of propagation constants of transmission lines using 1-Port TDR measurements. In 59th ARFTG Conference Digest. Seattle (WA, USA), 2002, p. 119–126. DOI: 10.1109/ARFTGS.2002.1214689
  12. DEGERSTROM, M. J., GILBERT, B. K., DANIEL, E. S. Accurate resistance, inductance, capacitance, and conductance (RLCG) from uniform transmission line measurements. In Electrical Performance of Electronic Packaging (IEEEEPEP2008). San Jose (CA, USA), 2008, p. 77–80. DOI: 10.1109/EPEP.2008.4675881
  13. ZUNIGA-JUAREZ, J. E., REYNOSO-HERNANDEZ, J. A., MAYA-SANCHEZ, M. C., MURPHY-ARTEAGA, R. S. A new analytical method to calculate the characteristic impedance Zc of uniform transmission line. Computacion y Sistemas, 2012, vol. 16, no. 3, p. 277–285.
  14. REYNOSO-HERNANDEZ, J. A. Unified method for determining the complex propagation constant of reflecting and nonreflecting transmission lines. IEEE Microwave and Wireless Components Letters, 2003, vol. 13, no. 8, p. 351–353. DOI: 10.1109/LMWC.2003.815695
  15. BIANCO, B., PARODI, R. M. Determination of the propagation constant of uniform microstrip lines. Alta Frequence, 1976, vol. 45, no. 2, p.107–110.
  16. JANEZIC, M. D., JARGON, J. A. Complex permittivity determination from propagation constant measurements. IEEE Microwave and Guided Wave Letters, 1999, vol. 9, no. 2, p. 76–78. DOI: 10.1109/75.755052
  17. REYNOSO-HERNANDEZ, J. A., ESTRADA-MALDONADO, C. F., PARRA, T., GRENIER, K., GRAFFEUIL, J. An improved method for the wave propagation constant estimation in broadband uniform millimeter-wave transmission line. Microwave and Optical Technology Letters, 1999, vol. 22, no. 4, p. 268–271. DOI: 10.1002/(SICI)1098-2760(19990820)22:4<268::AIDMOP16>3.0.CO;2-6
  18. ZHANG, J., CHEN, Q. B., QIU, Z., DREWNIAK, J. L., ORLANDI, A. Extraction of causal RLGC models from measurements for signal link path analysis. In 2008 International Symposium on Electromagnetic Compatibility - EMC Europe. Hamburg (Germany), 2008, 6 p. ISSN: 2325-0356. DOI: 10.1109/EMCEUROPE.2008.4786839
  19. ZHANG, J., DREWNIAK, J. L., POMMERENKE, D. J., KOLEDINTSEVA, M. Y., DUBROFF, R. E., CHENG, W., YANG, Z., CHEN, Q. B., ORLANDI, A. Causal RLGC(f) models for transmission lines from measured S-parameters. IEEE Transactions on Electromagnetic Compatibility, 2010, vol. 52, no. 1, p. 189–198. DOI: 10.1109/TEMC.2009.2035055
  20. ZHANG, J., KOLEDINTSEVA, M. Y., DREWNIAK, J. L., ANTONINI, G., ORLANDI, A. Extracting R, L, G, C parameters of dispersive planar transmission lines from measured Sparameters using a genetic algorithm. In International Symposium on Electromagnetic Compatibility, EMC 2004. Eindhoven (Netherlands), 2004, vol. 2, p. 572–576. DOI: 10.1109/ISEMC.2004.1349861
  21. HASIRCI, Z., CAVDAR, I. H. Extraction of narrowband propagation properties of a 630 A current level busbar. In 39th International Conference on Telecommunications and Signal Processing, TSP 2016. Vienna (Austria), 2016, p. 203–206. DOI: 10.1109/TSP.2016.7760860
  22. HASIRCI, Z., CAVDAR, I. H., OZTURK, M. Estimation of propagation parameters for aluminum busbar up to 500 kHz. In 2016 International Symposium on Innovations in Intelligent Systems and Applications (INISTA). Sinaia (Romania), 2016. DOI: 10.1109/INISTA.2016.7571824
  23. EAE COMPANY, TURKEY. E-Line KX Busbar Power Distribution System (datasheet). 57 pages. [Online] Cited 2016-05-03. Available at: http://eae.com.tr/EAE-ENG/upload/ELine%20KX_eng.pdf
  24. GUPTA, K. C., GARG, R., CHADHA, R. Computer Aided Design of Microwave Circuits. Dedham (MA): Artech House, p. 2543, 1981. ISBN: 9780890061053
  25. BAKHOUM, E. G. S-parameters model for data communications over 3-phase transmission lines. IEEE Transactions on Smart Grid, 2011, vol. 2, no. 4, p. 615–623. DOI: 10.1109/TSG.2011.2168613
  26. SAMPATH, M. K. On addressing the practical issues in the extraction of RLGC parameters for lossy multi-conductor transmission lines using S-parameter models. In Electrical Performance of Electronic Packaging (IEEE-EPEP2008). San Jose (CA, USA), 2008, p. 259–262. DOI: 10.1109/EPEP.2008.4675929
  27. MARKS, R. B. A multiline method of network analyzer calibration. IEEE Transactions on Microwave Theory and Technique, 1991 (current ver. 2002), vol. 39, no. 7, p. 1205–1215. DOI: 10.1109/22.85388
  28. KIM, J., HAN, D. H. Hybrid method for frequency-dependent lossy coupled transmission line characterization and modelling. In 12th Topical Meeting on Electrical Performance of Electronic Packaging (IEEE-EPEP 2003). Princeton (NJ, USA), 2003, p. 239–242. DOI: 10.1109/EPEP.2003.1250040
  29. KENNEDY, J., EBERHART, R. C. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks. Piscataway (NJ), 1995, p. 1942–1948. DOI: 10.1109/ICNN.1995.488968
  30. POZAR, D. M. Microwave Engineering. 4th ed. New York (USA): Wiley, 2012. ISBN: 9780470631553
  31. Goodness-of-Fit Statistics. [Online] Cited 2016-08-30. Available at:http://web.maths.unsw.edu.au/~adelle/Garvan/Assays/Goodness OfFit.html
  32. CORTES, J. A., DIEZ, L., CANETE, F. J., SANCHEZMARTINEZ, J. J. Analysis of the indoor broadband power-line noise scenario. IEEE Transactions on Electromagnetic Compatibility, 2010, vol. 52, no. 4, p. 849–858. DOI: 10.1109/TEMC.2010.2052463
  33. KATAYAMA, M., YAMAZATO, T., OKADA, H. A. Mathematical model of noise in narrowband power line communication systems. IEEE Journal on Selected Areas in Communications, 2006, vol. 24, no. 7, p. 1267–1276. DOI: 10.1109/JSAC.2006.874408
  34. LIU, W. Emulation of Narrowband Powerline Data Transmission Channels and Evaluation of PLC Systems. Ph.D. dissertation, p. 163–166 Elektrotechnik und Informationstechnik, Karlsruher Institut fur Technologie, Karlsruhe, Germany, 2013. ISBN:978-3- 7315-0071-1
  35. MENG, H., CHEN, S., GUAN, Y. L., LAW, C. L., SO, P. L., GUNAWAN, E., LIE, T. T. Modeling of transfer characteristics for the broadband power line communication channel. IEEE Transactions on Power Delivery, 2004, vol. 19, no. 3, p. 1057–1064. DOI: 10.1109/TPWRD.2004.824430
  36. GONZALEZ, G. Microwave Transistor Amplifiers. 2nd ed. Englewood Cliffs (NJ): Prentice-Hall, 1997. ISBN: 9780132543354
  37. Standard on Low-Voltage Electrical Installations in the Frequency Range 3 kHz to 148.5 kHz, Part One, CENELEC Std. EN50065- 1:19 917A1:1992, 1992.
  38. TONELLO, A. M., PITTOLO, A. Considerations on narrowband and broadband power line communication for smart grids. In IEEE International Conference on Smart Grid Communications (SmartGridComm). Miami (FL, USA), 2015. DOI: 10.1109/SmartGridComm.2015.7436269

Keywords: Bit-error-rate, busbar, channel capacity, channel modeling, M2M, narrow band, parameter optimization, power line communication, smart grid, S-parameters.