ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)



Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile

June 2016, Volume 25, Number 2 [DOI: 10.13164/re.2016-2]

Show all Hide all

J. Havlicek, M. Svanda, J. Machac, M. Polivka [references] [full-text] [DOI: 10.13164/re.2016.0219] [Download Citations]
Improvement of Reading Performance of Frequency-Domain Chipless RFID Transponders

This review paper presents the summary of our investigations in several topics of frequency-domain chipless RFID transponders. The performance comparison of various types of scatterers used in the literature and recently proposed by the authors is presented. The issue of proper location of adjacent resonant elements in the scatterer array to reduce the mutual coupling and consequently ensure the robust RCS response for reliable reading of coded information is addressed. A major improvement in RCS response of transponders is proposed, using slot-in-plate type transponders. Advantages and drawbacks of the proposed solutions are discussed and several open challenges in the field are emphasized.

  1. DEY, S., SAHA, J., KARMAKAR, N. Smart sensing: Chipless RFID solutions for the Internet of everything. IEEE Microwave Magazine, 2015, vol. 16, no. 10, p. 26–39. DOI: 10.1109/MMM.2015.2465711
  2. HARROP, P., DAS, R. Printed and Chipless RFID Forecasts, Technologies & Players 2011-2021. [Online] Cited 2016-04-25. Available at: 000254.asp.
  3. PRERADOVIC, S., KARMAKAR, N. Fully Printable Chipless RFID Tag. In Advanced Radio Frequency Identification Design and Applications. Ed. S. Preradovic. InTech, 2011. ISBN: 978- 953-307-168-8
  4. PRERADOVIC, S., KARMAKAR, N. Chipless RFID: Bar code of the future. IEEE Microwave Magazine, 2010, vol. 11, no. 7, p. 87 to 97. DOI: 10.1109/MMM.2010.938571
  5. HARMA, S., PLESSKY, V. P. Surface Acoustic Wave RFID Tags. In Development and Implementation of RFID Technology. Ed. C. Turcu. InTech, 2009. ISBN: 978-3-902613-54-7
  6. NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, JAPAN. Printing of Organic Thin-Film Transistor Arrays on Flexible Substrates. [Online] Cited 2016-04-25. Available at: latest_research/2008/20080728/20080728.html
  7. GUPTA, S., NIKFAL, B., CALOZ, C. RFID system based on pulse-position modulation using group delay engineered microwave C-sections. In 2010 Asia-Pacific Microwave Conference. Yokohama (Japan), 2010, p. 203-206. ISBN: 978-1-4244-7590-2
  8. HERRAIZ-MARTINEZ, F. J., PAREDES, F., GONZALEZ, G.Z., MARTIN, F., BONACHE, J. Printed magnetoinductive-wave (MIW) delay lines for chipless RFID applications. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 11, p. 5075–5082. DOI: 10.1109/TAP.2012.2207681
  9. VIOLINO, B. Firewall Protection for Paper Documents. RFID Journal. [Online] Cited 2016-04-25. Available at:
  10. JONES, K. C. Invisible RFID Ink Safe for Cattle and People, Company Says. Information Week. [Online] Cited 2016-04-25. Available at:
  11. MCVAY, J., HOORFAR, A., ENGHETA, N. Space-filling curve RFID tags. In 2006 IEEE Radio and Wireless Symposium. San Diego (CA, USA), 2006, p. 199–202. DOI: 10.1109/RWS.2006.1615129
  12. PRERADOVIC, S., KARMAKAR, N. Multiresonator-Based Chipless RFID. Springer, 2012. ISBN: 978-1-4614-2094-1
  13. VENA, A., PERRET, E., TEDJINI, S. A fully printable chipless RFID tag with detuning correction technique. IEEE Microwave and Wireless Components Letters, 2012, vol. 22, no. 4. DOI: 10.1109/LMWC.2012.2188785
  14. VENA, A., PERRET, E., TEDJINI, S. A depolarizing chipless RFID tag for robust detection and its FCC compliant UWB reading system. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 8, p. 2982–2994. DOI: 10.1109/TMTT.2013.2267748
  15. COSTA, F., GENOVESI, S., MONORCHIO, A. Chipless RFIDs for metallic objects by using cross polarization encoding. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 8, p. 4402–4407. DOI: 10.1109/TAP.2014.2326421
  16. REZAIESARLAK, R., MANTEGHI, M. Design of chipless RFID tags based on Characteristic Mode Theory (CMT). IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 2, p. 711–718. DOI: 10.1109/TAP.2014.2382640
  17. SOMARK INNOVATIONS, INC. About Us. [Online] Cited 2016- 04-25. Available at:
  18. GUILLET, A., VENA, A., PERRET, E., TEDJINI, S. Design of a chipless RFID sensor for water level detection. In 15th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM 2012). Toulouse (France), 2012, 4 p. DOI: 10.1109/ANTEM.2012.6262372
  19. AMIN, E. M., KARMAKAR, N. Partial discharge monitoring of High Voltage equipment using chipless RFID sensor. In AsiaPacific Microwave Conference 2011. Melbourne (VIC, Australia), 2011, p. 1522–1525. ISBN: 978-1-4577-2034-5
  20. FENG, Y., XIE, L., CHEN, Q., ZHENG, L. R. Low-cost printed chipless RFID humidity sensor tag for intelligent packaging. IEEE Sensors Journal, 2015, vol. 15, no. 6, p. 3201–3208. DOI: 10.1109/JSEN.2014.2385154
  21. POLIVKA, M., MACHAC, J. Improvement of backscatter properties of C-shaped dipole scatterer for chipless RFID. In Proceedings of Asia-Pacifc Microwave Conference. Sendai (Japan), 2014, p. 962–964.
  22. POLIVKA, M., MACHAC, J. Novel size-reduced unit cells for uniplanar chipless RFID tags. In Proceedings of Asia-Pacific Microwave Conference. Seoul (Korea), 2013, p. 908–910. DOI: 10.1109/APMC.2013.6694970
  23. BEST, S. R., MORROW, J. D. On the significance of current vector alignment in establishing the resonant frequency of small space-filling wire antennas. IEEE Antennas and Wireless Propagation Letters, 2003, vol. 2, no. 1, p. 201–204. DOI: 10.1109/LAWP.2003.819686
  24. POLIVKA, M., HAVLICEK, J., SVANDA, M., MACHAC, J. Improvement of RCS response of U-shaped strip-based chipless RFID tags. In Proceedings of European Microwave Conference (EuMC 2015). Paris (France), 2015, p. 107–110. DOI: 10.1109/EuMC.2015.7345711
  25. POLIVKA, M., SVANDA, M., MACHAC, J. Chipless RFID tag with an improved RCS response. In Proceedings of the 44th European Microwave Conference (EuMC 2014). Rome (Italy), 2014, p. 770–773. DOI: 10.1109/EuMC.2014.6986548
  26. RF SPIN S.R.O. Model DRH20 - Double Ridge Waveguide Horn. [Online] Cited 2016-04-25. Available at: antennas/drh20.php

Keywords: Chipless RFID, mutual coupling, monostatic RCS measurement, scatterer

V. Prajzler, P. Hyps, R. Mastera, P. Nekvindova [references] [full-text] [DOI: 10.13164/re.2016.0230] [Download Citations]
Properties of Siloxane Based Optical Waveguides Deposited on Transparent Paper and Foil

In this paper, we present the properties of flexible planar optical waveguides made of siloxane-based polymer deposited on Xerox transparent paper and PLEXIGLAS foil substrate. Measurement of optical properties such as the waveguiding properties and refractive index is carried out by the prism coupling technique for five wavelengths (473, 632.8, 964, 1311 and 1552 nm) and propagation optical loss were measured by the fibre probe technique at a wavelength of 632.8 nm (He-Ne laser). The measurement proved waveguiding properties for all measured wavelengths and the losses generally did not exceed 0.40 dB/cm; the best samples had optical losses around 0.24 dB/cm.

  1. BAMIEDAKIS., N., CHEN, J., PENTY, R.V., et al. Bandwidth studies on multimode polymer waveguides for ≥ 25 Gb/s optical interconnects. IEEE Photonics Technology Letters, 2014, vol. 26, no. 20, p. 2004–2007. DOI: 10.1109/LPT.2014.2342881
  2. UHLIG, S., ROBERTSSON, M. Limitations to and solutions for optical loss in optical backplanes. Journal of Lightwave Technology, 2006, vol. 24, no. 4, p. 1710–1724. DOI: 10.1109/JLT.2006.870978
  3. YOSHITAKE, N., TERAKAWA, Y., HOSOKAWA, H. Polymer optical waveguide devices for FTTH. In Proceedings of the OptoElectronics and Communications Conference. Sydney (Australia). 2008, p. 305–306. ISBN:978-0-85825-863-1
  4. KOBAYASHI, J., YAGI, S., HATAKEYAMA, Y., et al. Low loss polymer optical waveguide replicated from flexible film stamp made of polymeric material. Japanese Journal of Applied Physics, 2013, vol. 52, no. 7, UNSP 072501. DOI: 10.7567/JJAP.52.072501
  5. PAVESI, L., LOCKWOOD, D.J. Silicon Photonics. Berlin Heidelberg New York: Springer-Verlag, 2004. ISBN: 3-540-21022-9
  6. LOCKWOOD, D. J. Silicon Photonics II. Heidelberg Dordrecht London New York: Springer, 2011. ISBN: 978-3-642-10506-7
  7. BOOTH, B. L. Low-loss channel wave-guides in polymers. Journal of Lightwave Technology, 1989, vol. 7, no. 10, p. 1445–1453. DOI: 10.1109/50.39079
  8. WONG, W.H., LIU, K.K., CHAN, K.S., et al. Polymer devices for photonics applications. Journal of Crystal Growth, 2006, vol. 288, no. 1, p. 100–104. DOI: 10.1016/j.jcrysgro.2005.12.017
  9. LYUTAKOV, O., TUMA, J., PRAJZLER, V., et al. Preparation of rib channel waveguides on polymer in electric field. Thin Solid Films, 2010, vol. 519, no. 4, p. 1452–1457. DOI: 10.1016/j.tsf.2010.08.019
  10. MA, H., JEN, A.K.Y., DALTON, L. R. Polymer based optical waveguides: Materials, processing and devices. Advanced Materials, 2002, vol. 14, no. 19, p. 1339–1365. DOI: 10.1002/1521-4095
  11. ELDADA, L. Optical communication components. Review of Scientific Instruments, 2004, vol. 75, no. 3, p. 575–593. DOI: 10.1063/1.1647701
  12. PRAJZLER, V., KLAPUCH, J., LYUTAKOV, O., et al. Design. fabrication and properties of rib poly (methylmethacrylimide) optical waveguides. Radioengineering, 2011, vol. 20, no. 2, p. 479–485. ISSN: 1210-2512.
  13. PRAJZLER, V., NEKVINDOVA, P., HYPS, P., et al. Properties of the optical planar polymer waveguides deposited on printed circuit boards. Radioengineering, 2015, vol. 24, no. 2, p. 442–448. DOI: 10.13164/re.2015.0442
  14. PRAJZLER, V., NEKVINDOVA, P., HYPS, P., et al. Flexible polymer planar optical waveguides. Radioengineering, 2014, vol. 23, no. 3, p. 776–782. ISSN: 1210-2512.
  15. SWATOWSKI, B.W., AMB, C.M., BREED, S.K., et al. Flexible, stable, and easily processable optical silicones for low loss polymer waveguides. In Proceedings of SPIE Conference on Organic Photonic Materials and Devices XV. San Francisco (USA), 2013, vol. 8622, Article number: 862205. DOI: 10.1117/12.2007419
  16. BOSMAN, E., Van STEENBERGE, G., HENDRICKX, N., et al. Multimode optical interconnections embedded in flexible electronics. In Proceedings of the 16th European Microelectronics and Packaging Conference EMPC. Oulu (Finland), 2007, p. 155–160. ISBN: 978-952-99751-1-2.
  17. LightLinkTM data sheets: Micro Resist Technology GmbH. Available at:
  18. MOYNIHAN, M., SICARD, B., HO, T., et al. Progress towards board-level optical interconnect technology. Proceedings of SPIE, 2005, vol. 5731, p. 50–62. DOI: 10.1117/12.594675
  19. ANZURES, E., DANGEL, R., BEYELER, R., et al. Flexible optical interconnects based on silicon-containing polymers. Proceedings of SPIE, 2009, vol. 7221, Article Number 72210I. ISBN: 978-0-8194-7467-4. DOI: 10.1117/12.808396
  21. PRAJZLER, V., NEKVINDOVA, P., HYPS, P., et al. Optical properties of polymer planar waveguides deposited on flexible foils. Journal of Optoelectronics and Advanced Materials, 2015 vol. 17, no. 11-12, p.1597–1602. ISSN: 1454-4164.
  22. NOURSHARGH, N., STARR, E. M., FOX, N. I., et al. Simple technique for measuring attenuation of integrated optical waveguides. Electronics Letters, 1985, vol. 21, no. 18, p. 818–820. DOI: 10.1049/el:19850577
  23. MOYNIHAN, M., ALLEN, C., HO, T., et al. Hybrid inorganicorganic aqueous base compatible waveguide materials for optical interconnect applications. Proceedings of SPIE, 2003, vol. 5212, p. 50–60. DOI: 10.1117/12.508142
  24. ELMOGI, A., BOSMAN, E., MISSINNE, J., et al. Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography. Optical Materials, 2016, vol. 52, p. 26–31. DOI: 10.1016/j.optmat.2015.12.009

Keywords: Optical planar waveguides, siloxane polymer, flexible foil, prism coupling technique

M. Li, K. Qin, H. He [references] [full-text] [DOI: 10.13164/re.2016.0236] [Download Citations]
Miniaturized Dual-Band Aperture Coupled Microstrip Antenna Using Corrugated Ground

A novel dual-band aperture coupled microstrip antenna with corrugated ground plane is proposed to improve radiation performance in this letter. The dual-band operation is obtained by embedding a S-shaped slot in the radiating patch. To achieve the high gain and the reduced half power beam bandwidth (HPBW) for each frequency, the double- periodic corrugated ground plane is utilized. Both the simulation and measurement results show that the gain of the proposed antenna is increased by 4.7 dB and 5.6 dB at each frequency correspondingly and the half power beam width (HPBW) of E-plane is reduced by 140 degrees and 150 degrees, respectively.

  1. SIM, C. Y. D., CHANG, C. C., ROW, J. S. Dual-feed dualpolarized patch antenna with low cross polarization and high isolation. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 10, p. 3321–3324. DOI: 10.1109/TAP.2009.2028702
  2. NASIMUDDIN, CHEN, Z. N., QING, X. M. Dual band circularly polarized S-shaped slotted patch antenna with a small frequency ratio. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 6, p. 2112–2115. DOI: 10.1109/TAP.2010.2046851
  3. CHANG, T. N., LIN, J. M. Serial aperture-coupled dual band circularly polarized antenna. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 6, p. 2419–2423. DOI: 10.1109/TAP.2011.2144553
  4. BAO, X. L., AMMANN, M. J. Dual-frequency circularlypolarized patch antenna with compact size and small frequency ratio. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 7, p. 2104–2107. DOI: 10.1109/TAP.2007.900271
  5. EBBESEN, T. W., LEZEC, H. J., GHAEMI, H. F., THIO, T., WOLFF, P. A. Extraordinary optical transmission through subwavelength hole arrays. Nature, 1998, vol. 391, no. 2, p. 667–669. DOI: 10.1038/35570
  6. HUANG, C., ZHAO, Z., LUO, X. G. Application of “bull’s eye” corrugated grooves integrated with artificially soft surfaces structure in the patch antenna to improve radiation performance. Microwave and Optical Technology Letters, 2009, vol. 51, no. 7, p. 1676–1679. DOI: 10.1002/mop.24443
  7. BERUETE DIAZ, M., CAMPILLO, I., DOLADO, J. S., et al. Dual-band low-profile corrugated feeder antenna. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 2, p. 340–350. DOI: 10.1109/TAP.2005.863380
  8. BERUETE DIAZ, M., CAMPILLO, I., DOLADO, J. S., et al. Very low profile and dielectric loaded feeder antenna. IEEE Antennas and Wireless Propagation Letters, 2007, vol. 6, p. 544– 548. DOI: 10.1109/LAWP.2007.909969
  9. QIN, K., LI, M. Q., XIA, H. M., WANG, J. A new compact aperture coupled microstrip antenna with corrugated ground plane. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 807–810. DOI: 10.1109/LAWP.2012.2208212
  10. HUANG, C., ZHAO, Z., FENG, Q., LUO, X.G. A high-gain antenna consisting of two slot elements with a space larger than a wavelength. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 159–162. DOI: 10.1109/LAWP.2010.2044863

Keywords: Microstrip antenna, dual-band, aperture coupled, corrugated ground plane

Qiang Fu, Cheng-Li Fan, Si-Jia Li, Gang Wang, Xiang-Yu Cao [references] [full-text] [DOI: 10.13164/re.2016.0241] [Download Citations]
Ultra-Broad Band Radar Cross Section Reduction of Waveguide Slot Antenna with Metamaterials

To reduce the radar cross section of a waveguide slot antenna, a three-layer metamaterial is presented based on orthogonal double split-ring resonators. The absorption characteristics of three-layer metamaterial are demonstrated by simulation. Moreover, the metamaterials have been loaded on common waveguide slot antenna according to the surface current distribution. The ultra-broad band radar cross section reduction of the antenna with metamaterials had been theoretically and experimentally investigated by radiating and scattering performances. Experimental and simulated results showed that the proposed antenna with metamaterials performed broadband radar cross section reduction from 3.9 GHz to 18 GHz and the gain had been improved due to the coupling effect between slot and the period structure. The maximal radar cross section reduction achieved 17.81 dB at 8.68 GHz for x-polarized incidence and 21.79 dB at 6.25 GHz for y-polarized waves.

  1. GENOVESI, S., COSTA, F., MONORCHIO, A. Wideband radar cross section reduction of slot antennas arrays. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 1, p. 163–173. DOI: 10.1109/TAP.2013.2287888
  2. JIA, Y. T., LIU, Y., WANG, H., LI, K., et al. Low-RCS, high-gain, and wideband mushroom antenna. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, no. 1, p. 277–279. DOI: 10.1109/ LAWP.2014.2363071
  3. ZHANG, J. J., WANG, J. H., CHEN, M. E., et al. RCS reduction of patch array antenna by electromagnetic band-gap structure. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, no. 1, p. 1048–1051. DOI: 10.1109/LAWP.2012.2215832
  4. PAQUAY, M., IRIARTE, J. C., EDERRA, I., et al. Thin AMC structure for radar cross-section reduction. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 12, p. 3630–3638. DOI: 10.1109/TAP.2007.910306
  5. ZHAO, Y., CAO, X.-Y., GAO, J., et al. Broadband RCS reduction and high gain waveguide slot antenna with orthogonal array of polarisation-dependent AMC. Electronics Letters, 2013, vol. 49, no. 21, p. 1312–1313. DOI: 10.1049/el.2013.2417
  6. IRIARTE GALARREGUI, J. C., TELLECHEA PEREDA, A., MARTINEZ DE FALCON, J. L., et al. Broadband radar crosssection reduction using AMC technology. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 12, p. 6136–6143. DOI: 10.1109/TAP.2013.2282915
  7. LI, Y. Q., ZHANG, H., FU, Y. Q., et al. RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, no. 1, p. 473–476. DOI: 10.1109/LAWP.2008.2001548
  8. LANDY, N. I., SAJUYIGBE, S., MOCK, J. J., et al. A perfect metamaterial absorber. Physical Review Letters, 2008, vol. 100, p. 207402. DOI: 10.1103/PhysRevLett.100.207402
  9. LI, L., YANG, Y., LIANG, C. H. A wide-angle polarizationinsensitive ultra-thin metamaterial absorber with three resonant modes. Journal of Applied Physics, 2011, vol. 110, no. 6, p. 063702. DOI: 10.1063/1.3638118
  10. LI, S. J., GAO, J., CAO, X. Y., ZHANG, Z. Loaded metamaterial perfect absorber using substrate integrated cavity. Journal of Applied Physics, 2014, vol. 115, no. 21, p. 213703. DOI: 10.1063/1.4881115
  11. SUN, L. K., CHENG, H. F., ZHOU, Y. J., WANG, J. Broadband metamaterial absorber based on coupling resistive frequency selective surface. Optics Express, 2012, vol. 20, no. 4, p. 4675–4680. DOI: 10.1364/OE.20.004675
  12. YOO, M., LIM, S. Polarization-independent and ultra wide band metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 5, p. 2652–2658. DOI: 10.1109/TAP.2014.2308511
  13. LI, S. J., GAO, J., CAO, X. Y., ZHANG, Z., ZHENG, Y. J., et al. Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial. Optics Express, 2015, vol. 23, no. 3, p. 3523–3533. DOI: 10.1364/OE.23. 003523
  14. LIU, T., CAO, X. Y., GAO, J., et al. RCS reduction of waveguide slot antenna with metamaterial absorber. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 4, p. 2327–2335, DOI: 10.11 09/TAP.2012.2231922
  15. LI, S. J., GAO, J., CAO, X. Y., et al. Loading metamaterial perfect absorber method for in-band radar cross section reduction based on the surface current distribution of array antennas. IET Microwave Antennas and Propagation, 2015, vol. 9, no. 5, p. 399–406. DOI: 10.1049/iet-map.2014.0490
  16. LI, S. J., GAO, J., CAO, X. Y., et al. Polarization-insensitive and thin stereometamaterial with broadband angular absorption for oblique incidence. Applied Physics A, 2015, vol. 119, no. 1, p. 371–378. DOI: 10.1007/s00339-014-8978-y
  17. LI, S. J., GAO, J., CAO, X. Y., et al. Analysis and design of three layers perfect metamaterial-inspired absorber based on double split-serration-rings structure. IEEE Transaction on Antennas and Propagation, 2015, vol. 63, no. 11, p. 5155–5160. DOI: 10.1109/TAP.2015.2475634
  18. TAN, Y., YUAN, N., YANG, Y., et al. Improved RCS and efficient waveguide slot antenna. Electronics Letters, 2011, vol. 47, no. 10, p. 582–583. DOI: 10.1049/el.2011.0842
  19. JIANG, W., ZHANG, Y., DENG, Z. B., et al. Novel technique for RCS reduction of circularly polarized microstrip antennas. Journal of Electromagnetic Waves and Applications, 2013, vol. 27, no. 9, p. 1077–1088. DOI: 10.1080/09205071.2013.800461

Keywords: Ultra-broad band, radar cross section reduction, metamaterial, gain enhancement

A. O. Nwajana, K. S. K. Yeo [references] [full-text] [DOI: 10.13164/re.2016.0247] [Download Citations]
Microwave Diplexer Purely Based on Direct Synchronous and Asynchronous Coupling

A diplexer realized purely based on direct coupling is presented. No cross-coupling is involved in the design process. The microwave diplexer is achieved by coupling a dual-band bandpass filter onto two individual channel filters. This design eliminates the need for employing external junctions in diplexer design, as opposed to the conventional design approach which requires separate junctions for energy distribution. A 10-pole (10th order) diplexer has been successfully designed, simulated, fabricated and measured. The diplexer is composed of 2 poles from the dual-band filter, 4 poles from the Tx bandpass filter, and the remaining 4 poles from the Rx bandpass filter. The design was implemented using synchronously and asynchronously tuned microstrip square open-loop resonators. The simulation and measurement results show that an isolation of 50 dB is achieved between the diplexer Tx and Rx bands. The minimum insertion loss is 2.88 dB for the transmit band, and 2.95 dB for the receive band.

  1. YUN, S.H., UHM, M.S., YOM, I.B. Design of multiplication free high power Ka-band diplexer with an E-plane T-junction. In IEEE Asia-Pacific Conference on Communications. Perth (Australia), 3- 5 October 2005, p. 582–585. DOI: 10.1109/APCC.2005.1554128
  2. UHM, M.S., LEE, J. BAE, D., et al. Ka band waveguide diplexer using E-plane T-junction with inductive iris. In Proceedings of the 2002 Asia-Pacific Microwave Conference (APMC). 2002, vol. 1, p. 508–511.
  3. LIU, H., XU, W., ZHANG, Z., et al. Compact diplexer using slotline stepped impedance resonator. IEEE Microwave Wireless Components Letters, 2013, vol. 23, no. 2, p. 75–77. DOI: 10.1109/LMWC.2013.2238912
  4. SHI, J., CHEN, J.-X., BAO, Z.-H. Diplexers based on microstrip line resonators with loaded elements. Progress in Electromagnetic Research, 2011, vol. 115, p. 423–439. DOI: 10.2528/PIER11031516
  5. YANG, T., CHI, P.-L., ITOH, T. High isolation and compact diplexer using the hybrid resonators. IEEE Microwave Wireless Components Letters, 2010, vol. 20, no. 10, p. 551–553. DOI: 10.1109/LMWC.2010.2052793
  6. XU, W.-Q., HO, M.-H., HSU, C.G. UMTS diplexer design using dual-mode stripline ring resonators. IET Electronics Letters, 2007, vol. 43, no. 13, p. 721–722. DOI: 10.1049/el:20070747
  7. WU, K.-L., MENG, W. A direct synthesis approach for microwave filters with a complex load and its application to direct diplexer design. IEEE Transactions on Microwave Theory and Techniques, 2007, vol. 55, no. 5, p. 1010–1016. DOI: 10.1109/TMTT.2007.895175
  8. BASTIOLI, S., MARCACCIOLI, L., SORRENTINO, R. An original resonant Y-junction for compact waveguide diplexers. In IEEE MTT-S International Microwave Symposium Digest. Boston (USA), 7-12 June 2009, p. 1233–1236. DOI: 10.1109/MWSYM.2009.5165926
  9. HE, J., GAO, K., SHAO, Z. A novel compact Ka-band highrejection diplexer based on substrate integrated waveguide. In IEEE International Conference on Computational Problemsolving (ICCP). Leshan (China), October 2012, p. 193–197. DOI: 10.1109/ICCPS.2012.6384320
  10. SAAVEDRA, C.E. Diplexer using a circulator and interchangeable filters. In IEEE Proceeding of the 7th International Caribbean Conference on Devices, Circuits and Systems. Mexico, 28-30 April 2008, p. 1–5. DOI: 10.1109/ICCDCS.2008.4542631
  11. KODERA, T., CALOZ, C. Integrated leaky-wave antennaduplexer/diplexer using CRLH uniform ferrite-loaded open waveguide. IEEE Transactions on Microwave Antennas Propagation, 2010, vol. 58, no. 8, p. 2508–2514. DOI: 10.1109/TAP.2010.2050449
  12. CAMERON R.J., YU, M. Design of manifold-coupled multiplexers. IEEE Microwave Magazine, 2007, vol. 8, no. 5, p. 46–59. DOI: 10.1109/MMM.2007.904715
  13. LI, J., HUANG, H., ZHANG, Z., et al. A novel X-band diplexer based on overmoded circular waveguides for high-power microwaves. IEEE Transactions on Plasma Science, 2013, vol. 41, no. 10, p. 2724–2728. DOI: 10.1109/TPS.2013.2258473
  14. HENG, Y., GUO, X., CAO, B., et al. A narrowband superconducting quadruplexer with high isolation. IEEE Transactions on Applied Superconductivity, 2014, vol. 24, no. 2, p. 1–6. DOI: 10.1109/TASC.2014.2304886
  15. GUGLIELMI, M. Optimum CAD procedure for manifold diplexers. In IEEE MTT-S International Microwave Symposium Digest. Atlanta (USA), 14-18 June 1993, p. 1081–1084. DOI: 10.1109/MWSYM.1993.277054
  16. CHUANG, M.-L., WU, M.-T. Microstrip diplexer design using common T-shaped resonator. IEEE Microwave Wireless Component Letters, 2011, vol. 21, no. 11, p. 583–585. DOI: 10.1109/LMWC.2011.2168949
  17. CHEN, C.-F., HUANG, T.-Y., CHOU, C.-P., et al. Microstrip diplexer design with common resonator sections for compact size, but high isolation. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 5, p. 1945–1952. DOI: 10.1109/TMTT.2006.873613
  18. YANG, T., REBEIZ, G.M. Three-pole 1.3-2.4-GHz diplexer and 1.1-2.45-GHz dual-band filter with common resonator topology and flexible tuning capabilities. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 10, p. 3613–3624. DOI: 10.1109/TMTT.2013.2279381
  19. WANG, R., XU, J. Synthesis and design of microwave diplexers with a common resonator junction. In IEEE International Conference on Microwave and Millimeter Wave Techniques, (ICMMT). Shenzhen (China), 2012, vol. 2, p. 1–4. DOI: 10.1109/ICMMT.2012.6230019
  20. HONG, J.-S. Microstrip Filters for RF/Microwave Applications. 2nd ed., New York: Wiley, 2011. ISBN: 0470408774.
  21. YEO, K.S.K., NWAJANA, A.O. A novel microstrip dual-band bandpass filter using dual-mode square patch resonators. Progress in Electromagnetic Research C, 2013, vol. 36, p. 233–247. DOI: 10.2528/PIERC12120312
  22. HUNTER, I.C., BILLONET, L., JARRY, B., et al. Microwave filters-applications and technology. IEEE Transactions on Microwave Theory and Techniques, 2002, vol. 50, no. 3, p. 794 to 805. DOI: 10.1109/22.989963
  23. HONG, J.-S., LANCASTER, M.J. Coupling of microstrip square open-loop resonators for cross-coupled planar microwave filters. IEEE Transactions on Microwave Theory and Techniques, 1996, vol. 44, no. 12, p. 2099–2109. DOI: 10.1109/22.543968

Keywords: Bandpass filters, diplexer, dual-band filter, coupling, microstrip, square open-loop resonators (SOLR)

F. Venneri, S. Costanzo, G. Di Massa, A. Borgia, A. Raffo [references] [full-text] [DOI: 10.13164/re.2016.0253] [Download Citations]
Frequency Agile Radial-Shaped Varactor-Loaded Reflectarray Cell

An equivalent circuit approach is adopted in this paper to analyze a novel varactor loaded phasing line, specifically designed to improve the frequency agility features of reconfigurable aperture-coupled reflectarray cell, through the use of a couple of microstrip radial stubs. The proposed analysis method is fruitfully implemented to perform a fast and preliminary investigation on the improvements provided by the radial shaped phasing line in terms of frequency agility of the reflectarray unit cell. The method is adopted to compare frequency performances of radial and linear phasing line geometries, allowing to effectively demonstrate the radial line geometry contribution to the enhancement of the unit cell frequency performances.

  1. HUANG, J., ENCINAR, J. Reflectarray Antennas. Wiley-IEEE Press, 2008. ISBN: 9780470084915.
  2. HUM, S.V., PERRUISSEAU-CARRIER, J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 1, p. 183–198. DOI: 10.1109/TAP.2013.2287296
  3. NAYERI, P., YANG, F., ELSHERBENI, A. Z. Beam-scanning reflectarray antennas: a technical overview and state of the art. IEEE Antennas and Propagation Magazine, 2015, vol. 57, no. 4, p. 32–47. DOI: 10.1109/MAP.2015.2453883
  4. GIANVITTORIO, J. P., RAHMAT-SAMII, Y. Reconfigurable patch antennas for steerable reflectarray applications. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 5, p. 1388–1392. DOI: 10.1109/TAP.2006.874311
  5. COSTANZO, S., SPADAFORA, F., BORGIA, A., MORENO, O.H., COSTANZO, A., DI MASSA, G. High resolution software defined radar system for target detection. Advances in Intelligent Systems and Computing, 2013, vol. 206 AISC, p. 997–1005. DOI: 10.1007/978-3-642-36981-0_94
  6. COSTANZO, S., SPADAFORA, F., BORGIA, A., MORENO, H.O., COSTANZO, A., DI MASSA, G. High resolution software defined radar system for target detection. Journal of Electrical and Computer Engineering, 2013, art. no. 573217, 7 p. DOI: 10.1155/2013/573217
  7. PERRUISSEAU-CARRIER, J. Dual-polarized and polarization flexible reflective cells with dynamic phase control. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 5, p. 1494–1502. DOI: 10.1109/TAP.2010.2044333
  8. GUCLU, C., PERRUISSEAU-CARRIER. J., CIVI, O. Proof of concept of a dual-band circularly-polarized RF MEMS beam switching reflectarray. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 11, p. 5451–5455. DOI: 10.1109/TAP.2012.2207690
  9. RODRIGO, D., JOFRE, L., PERRUISSEAU-CARRIER, J. Unit cell for frequency tunable beam scanning reflectarrays. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 12, p. 5992–5999. DOI: 10.1109/TAP.2013.2281375
  10. VENNERI, F., COSTANZO, S., DI MASSA, G. Reconfigurable aperture-coupled reflectarray element tuned by a single varactor diode. Electronics Letters, 2012, vol. 48, no. 2, p. 68–69. DOI: 10.1049/el.2011.3691
  11. VENNERI, F., COSTANZO, S., DI MASSA, G., BORGIA, A., CORSONELLO, P., SALZANO, M. Design of a reconfigurable reflectarray based on a varactor tuned element. In Proceedings of the 6th European Conference on Antennas and Propagation (EuCAP). Prague (CZ), 2012. DOI: 10.1109/EuCAP.2012.6206624
  12. VENNERI, F., COSTANZO, S., DI MASSA, G., MAROZZO, E., BORGIA, A., CORSONELLO, P., SALZANO, M. Beam-scanning reflectarray based on a single varactor-tuned element. International Journal of Antennas and Propagation, 2012, art. no. 290285. DOI: 10.1155/2012/290285
  13. VENNERI, F., COSTANZO, S., DI MASSA, G. Design and validation of a reconfigurable single varactor-tuned reflectarray. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 2, p. 635–645. DOI: 10.1109/TAP.2012.2226229
  14. COSTANZO, S., VENNERI, F., RAFFO, A., DI MASSA, G., CORSONELLO, P. Active reflectarray element with large reconfigurability frequency range. In Proceedings of the 9th European Conference on Antennas and Propagation (EuCAP), Lisbon (Portugal), 2015.
  15. SORRENTINO, R., ROSELLI, L. A new simple and accurate formula for microstrip radial stub. IEEE Microwave and Guided Letters, 1992, vol. 2, no. 12, p. 480–482. DOI: 10.1109/75.173401
  16. COSTANZO, S., DI MASSA, G. An integrated probe for phaseless near-field measurements. Measurement: Journal of the International Measurement Confederation, 2002, vol. 31, p. 123–129. DOI: 10.1016/S0263-2241(01)00036-7
  17. GUNEL, T., KENT, S. Numerical modeling of microstrip radial stub. Journal of Microwave Power and Electromagnetic Energy, 1997, vol. 32, p. 246–250. ISSN: 0832-7823
  18. COSTANZO, S. Synthesis of multi-step coplanar waveguide tomicrostrip transition. Progress in Electromagnetics Research, 2011, vol. 113, p. 111–126. DOI: 10.2528/PIER10112908
  19. GUPTA, K. C., GARG, R., BAHL, I., BHARTIA, P. Microstrip Lines and Slotlines. 2nd ed., rev. London (UK): Artech House, 1996. ISBN: 9780890067666.

Keywords: Microstrip radial line, varactor, reflectarray.

S. Meesomklin, P. Chomtong, P. Akkaraekthalin [references] [full-text] [DOI: 10.13164/re.2016.0258] [Download Citations]
A Compact Multiband BPF Using Step-impedance Resonators with Interdigital Capacitors

A compact multiband band-pass filter design for applications of GSM, Wi-MAX and WLAN systems is presented. The design is based on the resonant characteristics of step-impedance and interdigital capacitor resonators with overlap cross coupling structure. The fabricated filter has been operated at the fundamental, first and second harmonic resonant frequencies of 1.8 GHz, 3.7 GHz, and 5.2 GHz, respectively. The experimental results of the fabricated filter agree very well with the simulation expectations using IE3D package. The proposed filter has good performances, while the resonator size can be reduced from λ/2 to λ/8, resulting in the most compact multiband band-pass filter compared with the others using transmission line resonators .

  1. APRIYANA, A. A. A., PING, Z. Y. A dual-band BPF for concurrent dual-band wireless transceiver. In Proceedings of the 5th Electronics Packaging Technology Conference, 2003, p. 143–145. DOI: 10.1109/EPTC.2003.1271506
  2. CHANG, S.-F., JENG, Y.-H., CHEN, J.-L. Dual-band stepimpedance bandpass filter for multimode wireless LAN. IEEE Electronics Letters, 2004, vol. 40, no. 1, p. 38–39. DOI: 10.1049/el:20040065
  3. KUO, J. T., YEH, T.-H., YEH, C.-C. Design of microstrip bandpass filter with a dual-passband response. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 4, p. 1331–1337. DOI: 10.1109/TMTT.2005.845765
  4. LIN, X. M., CHU, Q. X. Design of triple-band bandpass filter using tri-section stepped-impedance resonators. In International Conference on Microwave and Millimeter Wave Technology (ICMMT 2007). Guilin (China), 2007, p. 1–3. DOI: 10.1109/ICMMT.2007.381479
  5. CHEN, Y.-C., HSIEH, Y.-H., LEE, C.H., HSU, C.-I. G. Tri-band microstrip BPF design using tri-section SIRs. In Antennas and Propagation Society International Symposium. Honolulu (HI, USA), 2007, p. 3113–3116. DOI: 10.1109/APS.2007.4396195
  6. YANG, X., DAI, L., ZHOU, R. The tri-band filter design based on SIR. In International Conference on Audio, Language and Image Processing (ICALIP 2008). Shanghai, 2008, p. 211–214. DOI: 10.1109/ICALIP.2008.4589998
  7. CHU, Q.-X., LIN, X. M. Advanced triple-band bandpass filter using tri-section SIR. IEEE Electronics Letters, Feb 2008, vol. 44, no. 4, p. 295–296. DOI: 10.1049/el:20083096
  8. HSU, C.-I. G., LEE, C.-H., HSIEH, Y.-H. Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 1, p. 19–21. DOI: 10.1109/LMWC.2007.911976
  9. CHEN, F. C., CHU, Q. X. Design of compact tri-band bandpass filters using assembled resonators. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 1, p. 165–171. DOI: 10.1109/TMTT.2008.2008963
  10. HONG, J. S., LANCASTER, M. J. Theory and experiment of novel microstrip slow-wave open-loop resonator filters. IEEE Transactions on Microwave Theory and Techniques, 1997, vol. 45, no. 12, p. 2358–2365. DOI: 10.1109/22.643844
  11. HONG, J. S., LANCASTER, M. J. End-coupled microstrip slowwave resonator filter. IEEE Electronics Letters, 1996, vol. 32, no. 16, p. 1494–1496. DOI: 10.1049/el:19960959
  12. GU, J., ZHANG, F., WANG, C., et al. Miniaturization and harmonic suppression open-loop resonator bandpass filter with capacitive terminations. In 2006 IEEE MTT-S International Microwave Symposium Digest. San Francisco (CA, USA), June 2006, p. 373–376. DOI: 10.1109/MWSYM.2006.249547
  13. CHOMTONG, P., MAHATTHANAJATUPHAT, C., AKKARAEKTHALIN, P. A dual-band bandpass filter with overlap stepimpedance and capacitively loaded hairpin resonators for wireless LAN system. Hindawi International Journal of Microwave Science and Technology, 2011, 9 p. DOI: 10.1155/2011/812078
  14. CHOMTONG, P., AKKARAEKTHALIN, P. A triple band bandpass filter using tri-section step-impedance and capacitively loaded step-impedance resonators for GSM, WiMAX, and WLAN systems. Frequenz Journal, 2014, vol. 68, no. 5–6, p. 227–234. DOI: 10.1515/freq-2013-0126
  15. YANG, R.-Y., WENG, M.-H., HUNG, C.-Y., et al. Novel compact microstrip interdigital bandstop filters. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2004, vol. 51, no. 8, p. 1022–1025. DOI: 10.1109/TUFFC.2004.1324407
  16. XU, F.-L., LIU, X.-G., GUO, H.-P., et al. A compact dual mode BPF based on interdigital structure. In Proceeding of the IEEE Microwave and Millimeter Wave Technology International Conference (ICMMT). Chengdu (China), 2010, p. 1595–1597. DOI: 10.1109/ICMMT.2010.5524850
  17. HONG, J. S., LANCASTER, M. J. Couplings of microstrip square open loop resonators for cross-coupled planar microwave filters. IEEE Transactions on Microwave Theory and Techniques, 1996, vol. 44, no. 11, p. 2099–2109. DOI: 10.1109/22.543968
  18. HONG, J. S., LANCASTER, M. J. Cross–coupled microstrip hairpin resonator filter. IEEE Transactions on Microwave Theory and Techniques, 1998, vol. 46, no. 1, p. 118–122. DOI: 10.1109/22.654931
  19. AMARI, S. Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique. IEEE Transactions on Microwave Theory and Techniques, 2000, vol. 48, no. 9, p. 1559–1564. DOI: 10.1109/22.869008
  20. COLLIN, R. E. Theory and design of wide-band multisection quarter-wave transformers. Proceedings of the IRE, Feb. 1955, vol. 43, no. 2, p. 179–185. DOI: 10.1109/JRPROC.1955.278076
  21. MEESOMKLIN, S. CHOMTONG, P., AKKARAEKTHALIN, P. A multi-section and tapered feeding system for multiband BPF. In Proceedings of the Asia-Pacific Conference on Antenna and Propagation (APCAP 2013). Chiangmai (Thailand), August 2013.
  22. HONG, J. S. Microstrip Filters for RF/Microwave Applications. Hoboken (NJ, USA): John Wiley & Sons, 2011. ISBN: 978-0-470- 40877-3
  23. SWANSON, D. G. Jr. Narrow-band microwave filter design. IEEE Microwave Magazine, 2007, vol. 8, no. 5, p. 105–114. DOI: 10.1109/MMM.2007.904724

Keywords: Multiband BPF, step-impedance resonator, interdigital capacitor, overlap cross coupling

Bo Tang [references] [full-text] [DOI: 10.13164/re.2016.0268] [Download Citations]
Micro-Doppler Effect of Extended Streamlined Targets Based on Sliding Scattering Centre Model

The scattering center of extended streamlined targets can slide when the direction of radiation is changed. The sliding scattering center has influence on the micro-Doppler effect of micro-motion of the extended streamlined target. This paper focused on the micro-Doppler of the extended streamlined target for the bistatic radar. Based on the analysis, the analytical expressions of the micro-Doppler of coning motion with sliding scattering center model were given for bistatic radar. And the results were validated by the simulated results of the scattering field based on the full-wave method of the electromagnetic computation. The results showed that the sliding of the scattering center can make the micro-Doppler be less and distorted, and the influence of the sliding is different for two different types of the sliding scattering centers: sliding on the surface and sliding on the bottom circle. The analytical expressions of the micro-Doppler are helpful to analyze the time-frequency presentations (TFR) of the coning motion of the extended streamlined target and to estimate the parameters of the target.

  1. CHEN, V. C., LI, F., HO, S.S., et al. Analysis of micro-Doppler signatures. IEE Proceedings – Radar, Sonar and Navigation, 2003, vol. 150, no. 4, p. 271–276. DOI: 10.1049/ip-rsn:20030743
  2. CHEN, V. C. Micro-Doppler effect of micro-motion dynamics: a review. Proceedings of SPIE, 2003, vol. 5102, p. 240–249. DOI: 10.1117/12.488855
  3. CHEN, V. C. The Micro-Doppler Effect in Radar. London (UK): Artech House, 2011. ISBN: 1608070573.
  4. CHEN, V. C., LI, F., HO, S. S., et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study. IEEE Transactions on Aerospace and Electronic Systems, 2006, vol. 42, no. 1, p. 2–21. DOI: 10.1109/TAES.2006.1603402
  5. RAM, S. S., CHRISTIANSON, C., KIM, Y., LING, H. Simulation and analysis of human micro-Dopplers in through-wall environments. IEEE Transactions on Geoscience and Remote Sensing, 2010, vol. 48, no. 4, p. 2015–2023. DOI: 10.1109/TGRS.2009.2037219
  6. SURESH, P., THAYAPARAN, T., OBULESU, T., VENKATARAMANIAH, K. Extracting micro-Doppler radar signatures from rotating targets using Fourier–Bessel transform and time–frequency analysis. IEEE Transactions on Geoscience and Remote Sensing, 2014, vol. 52, no. 6, p. 3204–3210. DOI: 10.1109/TGRS 2013.2271706
  7. CHEN, V. C. Advances in applications of radar micro-Doppler signatures. In IEEE Conference on Antenna Measurements and Applications (CAMA). Antibes Juan-les-Pins, 2014, p. 1-4. DOI: 10.1109/ CAMA.2014.7003362
  8. VAN DORP, P., GROEN, F. C. A. Human walking estimation with radar. IEE Proceedings – Radar, Sonar and Navigation, 2003, vol. 150, no. 5, p. 356–365. DOI: 10.1049/ip-rsn:20030568
  9. MOLCHANOV, P., EGIAZARIAN, K., ASTOLA, J., et al. Classification of small UAVs and birds by micro-Doppler signatures. In Proceedings of the 10th European Radar Conference. Nuremberg, Germany, 2013, p. 172–175. DOI: 10.1017/S1759078714000282
  10. THAYAPARAN, T., ABROL, S., RISEBOROUGH, E., et al. Analysis of radar micro-Doppler signatures from experimental helicopter and human data. IET Radar, Sonar and Navigation, 2007, vol. 1, no. 4, p. 289–299. DOI: 10.1049/iet-rsn:20060103
  11. ZHANG, Q., YEO, T. S., TAN, H. S., et al. Imaging of a moving target with rotating parts based on the Hough transform. IEEE Transactions on Geoscience and Remote Sensing, 2007, vol. 42, no. 4, p. 291–299. DOI: 10.1109/TGRS.2007.907105
  12. KIM, Y., LING, H. Human activity classification based on microdoppler signatures using a support vector machine. IEEE Transactions on Geoscience and Remote Sensing, 2009, vol. 47, no. 5, p. 1328–1337. DOI: 10.1109/TGRS.2009.2012849
  13. AI, X., ZOU, X., LI, Y., et al. Bistatic scattering centres of cone-shaped targets and target length estimation. Science China Information Sciences, 2012, vol. 55, no. 12, p. 2888–2898. DOI: 10.1007/s11432-012-4749-6
  14. AI, X., ZOU, X., LIU, J., et al. Bistatic high range resolution profiles of precessing cone-shaped targets. IET Radar Sonar Navigation, 2013, vol. 7, no. 6, p. 615–622. DOI: 10.1049/iet-rsn.2012.0168
  15. QU, Q.Y., GUO, K.Y., SHENG, X.Q. An accurate bistatic scattering center model for extended cone-shaped targets. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 10, p. 5209–5218. DOI: 10.1109/TAP.2014.2342761
  16. QU, Q.Y., GUO, K.Y., SHENG, X.Q. Scattering centers induced by creeping waves on cone-shaped targets in bistatic mode. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 7, p. 3257–3262. DOI: 10.1109/TAP.2015.2424455
  17. MA, L., LIU, J., WANG, T., et al. Micro-Doppler characteristics of sliding scattering center on rotationally symmetric target. Science China Information, 2011, vol. 54, no. 9, p. 1957–1967. DOI: 10.1007/s11432-011-4254-3
  18. GUO, K.Y., LI, Q.F., SHENG, X.Q., GASHINOVA, M. Sliding scattering center model for extended streamlined targets. Progress In Electromagnetics Research, 2013, vol. 139, p. 499–516. DOI: 10.2528/PIER13032111
  19. QU, Q.Y., GUO, K.Y., SHENG, X.Q. Applications of sliding scattering centers in feature extraction. In IEEE International Conference on Computational Electromagnetics (ICCEM). Hong Kong, 2015, p. 264–266. DOI: 10.1109/COMPEM.2015.7052628
  20. SHENG, X. Q., JIN, J. M., SONG, J. M., et al. On the formulation of the hybrid finite-element boundary-integral methods for 3D scattering. IEEE Transactions on Antennas and Propagation, 1998, vol. 46, no. 3, p. 303–311. DOI: 10.1109/8.662648
  21. SHENG, X. Q., YUNG, E. K.-N., CHAN, C.H., et al. Scattering from a large body with cracks and cavities by the fast and accurate finite-element boundary-integral method. IEEE Transactions on Antennas and Propagation, 2000, vol. 48, no. 8, p. 1153–1160. DOI: 10.1109/8.884482
  22. GUO, K. Y., SHENG, X. Q. How to predict scattering and range profiles using complex targets with cavities. IEEE Transactions on Aerospace and Electronic Systems, 2011, vol. 47, no. 1, p. 155 to 165. DOI: 10.1109/TAES.2011.5705666
  23. CHEN, V. C., LING, H. Time-Frequency Transforms for Radar Imaging and Signal Analysis. Boston (US): Artech House Radar Library, Artech House, 2002. ISBN: 1-58053-288-8
  24. PAPANDREOU-SUPPAPPOLA, A. (ed.) Applications in TimeFrequency Signal Processing. 1st ed. Boca Raton (US): CRC Press, 2003, p. 16–33. ISBN-10: 0849300657
  25. Time-Frequency Toolbox. Available at:

Keywords: Micro-Doppler, sliding scattering centre, extended streamlined targets

H. Ja’afar, M. T. Ali, A. N. Dagang, I. P. Ibrahim, N. A. Halili, H. M. Zali [references] [full-text] [DOI: 10.13164/re.2016.0275] [Download Citations]
Reconfigurable Plasma Antenna Array by Using Fluorescent Tube for Wi-Fi Application

This paper presents a new design of reconfigurable plasma antenna array using commercial fluorescent tube. A round shape reconfigurable plasma antenna array is proposed to collimate beam radiated by an omnidirectional antenna (monopole antenna) operates at 2.4GHz in particular direction. The antenna design is consisted of monopole antenna located at the center of circular aluminum ground. The monopole antenna is surrounded by a cylindrical shell of conducting plasma. The plasma shield consists of 12 commercial fluorescent tubes aligned in series containing a mixture of Argon gas and mercury vapor which upon electrification forms plasma columns. The plasma behaves as a conductor and acts as a reflector in radiation, in the condition where plasma frequency,ωp is higher than operating frequency. From this concepts, when all plasma elements are activated or switched to ON, the radiation signal from monopole antenna will trapped inside the plasma blanket and meanwhile when one or more plasma elements is deactivated (switched OFF), the radiation from monopole antenna will escape. This antenna has the capability to change its patterns with beam direction at 0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300° and 330° at frequency 2.4 GHz. The proposed antenna has been successfully fabricated and measured with conclusive results.

  1. BOGAERTS, A., NEYTS, E., GIJBELS, E., et al. Gas discharge plasmas and their applications, Spectrochimica Acta Part B, 2002, vol. 57, no. 4, p. 609–658.
  2. SADEGHIKIA, F. Characteristics of plasma antennas under radial and axial density variations. In Proceedings of Progress in Electromagnetics Research Symposium (PIERS). Moscow (Russia), August 2012, p. 1212–1215.
  3. KUMAR, R., BORA, D. Experimental study of parameters of a plasma antenna. Plasma Science and Technology, 2010, vol. 12, no. 5, p. 592–600. DOI: 10.1088/1009-0630/12/5/17
  4. HUAN QUING YE, MIN GAO, CHANG JIAN TANG. Radiation theory of the plasma antenna. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 5, p. 1497–1502. DOI: 10.1109/TAP.2011.2123051
  5. BORG, G. G., HARRIS, J. H., MILJAK, D. J., et al. Application of plasma columns to radiofrequency antennas. Applied Physics Letter, 2014, vol. 74, no. 22, p. 3272–3274. DOI: 10.1063/1.123317
  6. ANDERSON, T. Theory, measurements, and prototypes of plasma antennas. In IEEE Antennas and Propagation Society International Symposium (APSURSI). Memphis (TN, USA), 2014, p. 567–568. DOI: 10.1109/APS.2014.6904614
  7. LISTER, G. G., COE, S. E. GLOMAC : a one dimensional numerical model for steady state low pressure mercury-noble gas discharges. Computer Physics Communications, Apr. 1993, vol. 75, no. 1–2, p. 160–184. DOI: 10.1016/0010-4655(93)90173-A
  8. JAAFAR, H., ALI, M. T., HALILI, N. A., ZALI, H. M., Analysis and design between plasma antenna and monopole antenna. In 1st IEEE International Symposium on Telecommunication Technologies (ISTT). Kuala Lumpur (Malaysia), 2001, p. 47–51. DOI: 10.1109/ISTT.2012.6481563
  9. ZHANG TING, LI HONG BO, LIU, GUO-QUIANG. Research of plasma antennas basic characteristics. Journal of Information Engineering University, 2006, vol. 7, no. 3, p. 241–244 (in Chinese).
  10. MANHEIMER, W. M., FERNSLER, R. F., GILTEN, M. N. High power, fast, microwave components based on beam generated plasmas. IEEE Transactions on Plasma Science, Oct. 1998, vol. 26, no. 5, p. 1543–1555. DOI: 10.1109/27.736059
  11. KUMAR, V., MISHRA, M., JOSHI, N. K. Study of a fluorescent tube as plasma antenna. Progress In Electromagnetics Research Letter, 2011, vol. 24, p 17–26. DOI:10.2528/PIERL11030201
  12. JUNWEI LV, YINGSONG LI, ZILI CHEN. A self consistent model on cylindrical monopole plasma antenna excited by surface wave based on the Maxwell-Boltzmann equation. Journal of Electromagnetic Analysis and Applications, 2011, vol. 3, no. 8, p. 297–304. DOI:10.4236/jemaa.2011.38048
  13. SHEN, W., SCHARER, J. E., LAM, N. T., Properties of a vacuum ultraviolet laser created plasma sheet for a microwave reflector. Journal of Applied Physics, 1995, vol. 78, no. 12, p. 6974–6979.
  14. KANG, W. L., RADER, M., ALEXEFF, I. A conceptual study of stealth plasma antenna. In Proceedings of the 1996 IEEE International Conference on Plasma Science. Boston (USA), June 1996, p. 261. DOI: 10.1109/PLASMA.1996.551505

Keywords: Plasma elements, reconfigurable radiation pattern, monopole antenna

S. Pejoski, V. Kafedziski [references] [full-text] [DOI: 10.13164/re.2016.0283] [Download Citations]
Improved Asymptotic Capacity Lower Bound for OFDM System with Compressed Sensing Channel Estimation for Bernoulli Gaussian Channel

We propose an improved capacity lower bound for OFDM system with compressed sensing channel estimation for Bernoulli-Gaussian channel. We improve the known capacity lower bound which is based on Lasso compressed sensing channel estimation, by replacing the Lasso based estimate with an MMSE estimate, known to be optimal in the MMSE sense and achievable with practical algorithms for a broad range of system parameters setup. Additionally, for the system with equi-powered pilot subcarriers we optimize the capacity lower bound by finding the optimal average fraction of pilot subcarriers used for channel estimation and optimal pilot to data power ratio given the average symbol power per subcarrier, and propose an optimization procedure with polynomial complexity.

  1. COSOVIC, I., AUER, G. Capacity of MIMO-OFDM with pilotaided channel estimation. EURASIP Journal on Wireless Commommunications and Networking, 2007, vol. 2007, no. 1, p. 1–12. ISSN: 1687-1499. DOI: 10.1155/2007/32460
  2. VIKALO, H., HASSIBI, B., HOCHWALD, B., et al. On the capacity of frequency- selective channels in training-based transmission schemes. IEEE Transactions on Signal Processing, Sep. 2004, vol. 52, no. 9, p. 2572–2583. ISSN: 1053-587X. DOI: 10.1109/TSP.2004.832020
  3. NAJJAR, L. On optimality limits of channel-structured estimation in multicarrier systems. IEEE Transactions on Vehicular Technology, Jun. 2012, vol. 61, no. 5, p. 2382–2387. ISSN: 0018-9545. DOI: 10.1109/TVT.2012.2192947
  4. HU, D., WANG, X., HE, L. A new sparse channel estimation and tracking method for time-varying OFDM systems. IEEE Transactions on Vehicular Technology, Nov. 2013, vol. 62, no. 9, p. 4648–4653. ISSN: 0018-9545. DOI: 10.1109/TVT.2013.2266282
  5. BERGER, C., ZHOU, S., PREISIG, J., et al. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing. IEEE Transactions on Signal Processing, Mar. 2010, vol. 58, no. 3, p. 1708–1721. ISSN: 1053-587X. DOI: 10.1109/TSP.2009.2038424
  6. TAUBOCK, G., HLAWATSCH, F., EIWEN, D., et al. Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing. IEEE Journal of Selected Topics in Signal Processing, Apr. 2010, vol. 4, no. 2, p. 255–271. ISSN: 1932-4553. DOI: 10.1109/JSTSP.2010.2042410
  7. GUI, G., ADACHI, F. Improved least mean square algorithm with application to adaptive sparse channel estimation. EURASIP Journal on Wireless Communications and Networking, 2013, vol. 2013, no. 1, p. 1–18. ISSN: 1687-1499. DOI: 10.1186/1687-1499-2013-204
  8. MENG, J., YIN, W., LI, Y., et al. Compressive sensing based highresolution channel estimation for OFDM system. IEEE Journal of Selected Topics in Signal Processing, Feb. 2012, vol. 6, no. 1, p. 15–25. ISSN: 1932-4553. DOI: 10.1109/JSTSP.2011.2169649
  9. BAJWA, W., HAUPT, J., SAYEED, A., et al. Compressed channel sensing: A new approach to estimating sparse multipath channels. Proceedings of the IEEE, Jun. 2010, vol. 98, no. 6, p. 1058–1076. ISSN: 1058-1076. DOI: 10.1109/JPROC.2010.2042415
  10. QI, C., YUE, G., WU, L., et al. Pilot design for sparse channel estimation in OFDM-based cognitive radio systems. IEEE Transactions on Vehicular Technology, Feb. 2014, vol. 63, no. 2, p. 982–987. ISSN: 0018-9545. DOI: 10.1109/TVT.2013.2280655
  11. PEJOSKI, S., KAFEDZISKI, V. Estimation of sparse time dispersive channels in pilot aided OFDM using atomic norm. IEEE Wireless Communications Letters, Aug. 2015, vol. 4, no. 4, p. 397–400. ISSN: 2162-2337. DOI: 10.1109/LWC.2015.2425410
  12. CHENG, P., CHEN, Z., RUI, Y., et al. Channel estimation for OFDM systems over doubly selective channels: A distributed compressive sensing based approach. IEEE Transactions on Communications, Oct. 2013, vol. 61, no. 10, p. 4173–4185. ISSN: 0090-6778. DOI: 10.1109/TCOMM.2013.072813.120758
  13. PEJOSKI, S., KAFEDZISKI, V. Asymptotic capacity lower bound for an OFDM system with Lasso compressed sensing channel estimation for Bernoulli-Gaussian channel. IEEE Communications Letters, Mar. 2015, vol. 19, no. 3, p. 379–382. ISSN: 1089-7798. DOI: 10.1109/LCOMM.2014.2385074
  14. TULINO, A., CAIRE, G., VERDU, S., et al. Support recovery with sparsely sampled free random matrices. IEEE Transactions on Information Theory, Jul. 2013, vol. 59, no. 7, p. 4243–4271. ISSN: 0018-9448. DOI: 10.1109/TIT.2013.2250578
  15. RANGAN, S., FLETCHER, A., GOYAL, V. Asymptotic analysis of MAP estimation via the replica method and applications to compressed sensing. IEEE Transactions on Information Theory, Mar. 2012, vol. 58, no. 3, p. 1902–1923. ISSN: 0018-9448. DOI: 10.1109/TIT.2011.2177575
  16. HASSIBI, B., HOCHWALD, B. How much training is needed in multiple-antenna wireless links? IEEE Transactions on Information Theory, Apr. 2003, vol. 49, no. 4, p. 951–963. ISSN: 0018-9448. DOI: 10.1109/TIT.2003.809594
  17. MA, J., YUAN, X., PING, L. Turbo compressed sensing with partial DFT sensing matrix. IEEE Signal Processing Letters, Feb. 2015, vol. 22, no. 2, p. 158–161. ISSN: 1070-9908. DOI: 10.1109/LSP.2014.2351822
  18. MA, J., YUAN, X., PING, L. On the performance of turbo signal recovery with partial DFT sensing matrices. IEEE Signal Processing Letters, Oct. 2015, vol. 22, no. 10, p. 1580–1584. ISSN: 1070-9908. DOI: 10.1109/LSP.2015.2414951
  19. WEN, C. K., WONG, K. K. Analysis of compressed sensing with spatially-coupled orthogonal matrices. CoRR Journal, 2014, vol. 1402.3215, no. 1, p. 1–5. [Online]. Cited 2015-12-31. Available at:

Keywords: Pilot aided channel estimation, OFDM, Lasso compressed sensing, turbo compressed sensing, replica method, capacity lower bound

B. Prasad, S. D. Roy, S. Kundu [references] [full-text] [DOI: 10.13164/re.2016.0289] [Download Citations]
Performance of a Cognitive Relay Network under AF Relay Selection Scheme with Imperfect Channel Estimation

In this paper outage performance of a secondary user (SU) is evaluated under amplify and forward (AF) relay selection scheme with an imperfect channel state information (CSI)while sharing spectrum in an underlay cognitive radio network (CRN). In underlay, the SU coexists with primary user (PU) in the same band provided the interference produced by SU at the PU receiver is below the interference threshold of PU which limits the transmission power of SU and coverage area. Relays help to improve the performance of SU in underlay. However relays are also constrained in transmit power due to interference constraint imposed by PU. Closed form expression of the outage probability of SU with maximum transmit power constraint of relay under imperfect CSI is derived. A scaling factor based power control is used for the SU transmitter and the relay in order to maintain the interference constraint at PU receiver due to imperfect CSI. The impact of different parameters viz. correlation coefficient, channel estimation error, tolerable interference threshold, number of relays and the maximum transmit power constraint of relay on SU performance is investigated. A MATLAB based test bed has also been developed to carry out simulation in order to validate the theoretical result.

  1. HAYKIN, S. Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communication, 2005, vol. 23, no. 2, p. 201–220. DOI: 10.1109/JSAC.2004.839380
  2. FCC Spectrum Policy Task Force Report, FCC02-155. Nov. 2002.
  3. GHASEMI, A., SOUSA, E. S. Fundamental limits of spectrumsharing in fading environments. IEEE Transactions on Wireless Communication, 2007, vol. 6, no. 2, p. 649–658. DOI: 10.1109/TWC.2007.05447
  4. MOLISCH, A. F., GREENSTEIN, L. J., SHAFI, M. Propagation issues for cognitive radio. Proceedings of the IEEE, 2009, vol. 97, no. 5, p. 787–804. DOI: 10.1109/JPROC.2009.2015704
  5. LANEMAN, J.N., TSE, D.N.C., WORNELL, W. G. Cooperative diversity in wireless networks: Efficient protocols and outage behaviour. IEEE Transactions on Information Theory, 2004, vol. 50, no. 12, p.3062–3080. DOI: 10.1109/TIT.2004.838089
  6. ZHANG, Q., JIA, J., ZHANG, J. Cooperative relay to improve diversity in cognitive radio networks. IEEE Communication Magazine, 2009, vol. 47, no. 2, p. 111–117. DOI: 10.1109/MCOM.2009.4785388
  7. ZHANG, W., BEN LETAIEF, K. Cooperative communications for cognitive radio networks. Proceedings of IEEE, 2009, vol. 97, no. 5, p. 878–893. DOI: 10.1109/JPROC.2009.2015716
  8. RENK, T., JAEKEL, H., JONDRAL, F.K., GOLDSMITH, A., et al. Do decode-and-forward relaying protocols beat transmit diversity?. In 2010 European Wireless Conference (EW). Lucca (Italy), 2010, p. 294–300. DOI: 10.1109/EW.2010.5483434
  9. DING, H., GE, J., DA COSTA, D.B., JIANG, Z. Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum sharing scenario. IEEE Transactions on Vehicular. Technology, 2011, vol. 60, no. 2, p. 457–472. DOI: 10.1109/TVT.2010.2100053
  10. LEE, J., WANG, H., ANDREWS, J., HONG, D., et al. Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communication, 2011, vol. 10, no. 2, p. 390–395. DOI: 10.1109/TWC.2010.120310.090852
  11. YUAN FU, WANG, Z., XIANG, L.J., ZHENG, L.H., et al. Outage performance of cognitive relay networks using interweaveunderlay approach. In Second International Conference on Digital Manufacturing and Automation (ICDMA). Hunan (China), 2011, p. 833–836. DOI: 10.1109/ICDMA.2011.205
  12. HUSSAIN, S. I., ABDALLAH, M. M., ALOUINI, M. S., HASNA M. O., et al. Best relay selection using SNR and interference quotient for underlay cognitive networks. In Proceedings of the IEEE International Conference on Communications (ICC). Ottawa (Canada), 2012, p. 4176–4180. DOI: 10.1109/ICC.2012.6364463
  13. TRAN, H., ZEPERNICK, H.J., PHAN, H. Cognitive proactive and reactive DF relaying schemes under joint outage and peak transmit power constraints. IEEE Transactions on Wireless Communication, 2011, vol. 17, no. 8, p. 1548–1551. DOI: 10.1109/LCOMM.2013.062113.130573
  14. HUANG, H.Y., SI, J.B., LI, Z., HAO, B.J., et al. Performance analysis of cognitive relay networks under both average and peak interference power constraints. In Proceedings of the IEEE International Conference on Communications in China (ICCC). 2013, p. 297–302. DOI: 10.1109/ICCChina.2013.6671132
  15. DUONG, T.Q., BAO, V.N.Q., ALEXANDROPOULOS, G.C., ZEPERNICK, H.J., et al. Cooperative spectrum sharing networks with AF relay and selection diversity. Electronics Letters, 2011, vol. 47, no. 20, p. 1149–1151. DOI: 10.1049/el.2011.2592
  16. DUONG, T.Q., BAO, V.N.Q., ZEPERNICK, H.-J. Exact outage probability of cognitive AF relaying with underlay spectrum sharing. Electronics Letters, 2011, vol. 47, no. 17, p. 1001–1002. DOI: 10.1049/el.2011.1605
  17. YU, H., TANG, W., LI, S. Outage probability and SER of amplifyand-forward cognitive relay networks. IEEE Wireless Communication Letter, 2013, vol. 2, no. 2, p. 219–222. DOI: 10.1109/WCL.2013.012513.120834
  18. SURAWEERA, H. A., SMITH, P. J., SHAFI, M. Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Transactions on Vehicular. Technology, 2010, vol. 59, no. 4, p. 1811–1822. DOI: 10.1109/TVT.2010.2043454
  19. MUSAVIAN, L., AISSA, S. Fundamental capacity limits of cognitive radio in fading environments with imperfect channel information. IEEE Transactions on Communications, 2009, vol. 57, no. 11, p. 3472–3480. DOI: 10.1109/TCOMM.2009.11.070410
  20. CHEN, J., SI, J., LI, Z., HUANG, H. On the performance of spectrum sharing cognitive relay networks with imperfect CSI. IEEE Communications Letters, 2012, vol. 16, no. 7, p. 1002–1005. DOI: 10.1109/LCOMM.2012.042512.120100
  21. ZHANG, X., XING, J., YAN, Z., GAO, Y., et al. Outage performance study of cognitive relay networks with imperfect channel knowledge. IEEE Communications Letters, 2013, vol. 17, no. 1, p. 27–30. DOI: 10.1109/LCOMM.2012.112812.121371
  22. PRASAD, B., ROY, S.D., KUNDU, S. Outage performance of cognitive relay network with imperfect channel estimation under proactive DF relaying. In Proceedings of IEEE National Conference on Communications (NCC). Kanpur, 2014, 6 p. DOI: 10.1109/NCC.2014.6811257
  23. HADZI-VELKOV, Z., MICHALOPOULOS, D. S., KARAGIANNIDIS, G. K., SCHOBER, R. Dual-hop amplify-and-forward transmission with imperfect channel estimates at the relay. In IEEE International Conference on Communications (ICC). Ottawa (Canada), 2012, p. 4110–4115. DOI: 10.1109/ICC.2012.6364439
  24. XU, D., FENG, Z., ZHANG, P. On the impacts of channel estimation errors and feedback delay on the ergodic capacity for spectrum sharing cognitive radio. Wireless Personal Communications, 2013, vol. 72, no. 4, p 1875–1887. DOI: 10.1007/s11277-013-1100-5
  25. SIMON, M. K., ALOUINI, M. S. Digital Communication over Fading Channels. New York: Wiley, 2000. ISBN: 978- 0471649533
  26. GRADSHTEYN, I., RYZHIK, I. Table of Integrals, Series, and Products. Washington: Academic Press, 2007. ISBN: 0-12- 373637-4
  27. ZHAO, Y., ADVE, R., LIM, T. J. Improving amplify-and forward relay networks: optimal power allocation versus selection. IEEE Transactions on Wireless Communication, 2007, vol. 6, no. 8, p. 3114–3123. DOI: 10.1109/TWC.2007.06026
  28. YAN, Z., ZHANG, X., WANG, W. Exact outage performance of cognitive relay networks with maximum transmit power limits. IEEE Communication Letter, 2011, vol. 15, no. 12, p. 1317–1319. DOI: 10.1109/LCOMM.2011.103111.111563

Keywords: Cognitive radio, Amplify and forward relay, imperfect CSI

A. Naderi Saatlo [references] [full-text] [DOI: 10.13164/re.2016.0297] [Download Citations]
High-Precision CMOS Analog Computational Circuits Based on a New Linearly Tunable OTA

Implementation of CMOS current-mode analog computational circuits are presented in this paper. A new Linearly Tunable OTA is employed in a modified structure as a basic building block for implementation of the circuits either linear or nonlinear functions. The proposed trans-conductance amplifier provides a constant Gm over a wide range of input voltage which allows the implementation of high precision computational circuits including square rooting, squaring, multiplication and division functions. Layout pattern of the proposed circuit confirms that the circuit can be implemented in 102μm*69μm active area. In order to verify the performance of the circuits, the post layout simulation results are presented through the use of HSPICE and Cadence with TSMC level 49 (BSIM3v3) parameters for 0.18 μm CMOS technology, where under supply voltage of 1.8 V, the maximum relative error of the circuits within 500 µA of input range is about 11 μA (2.2 % error) and the THD remains as low as 1.2 % for the worst case. Moreover, the power dissipation of the complete structure is found to be 0.66 mW.

  1. KI, H. J., SONG, Y. S., PAIK, W. H., et al. A low power adaptive equalizer for PRML disk-drive read channels. Analog Integrated Circuits and Signal Processing, 2003, vol. 34, no. 3, p. 211–220. DOI: 10.1023/A:1022501600665
  2. LI, F., YANG, H., LIU, F., et al. Dual-mode gain control for a 1 V CMOS hearing aid device with enhanced accuracy and efficiency. Analog Integrated Circuits and Signal Processing, 2012, vol. 72, no. 2, p. 495–504. DOI: 10.1007/s10470-012-9844-5
  3. PINI, F., MCCARTHY, K. Capacitive instrumentation amplifier for low-power bio potential signal detection. In IET Irish Signals and Systems Conference (ISSC 2010). Cork (Ireland), 2010, p. 54–58. DOI: 10.1049/cp.2010.0487
  4. YUCE, E. Multiplier, frequency doubler and squarer circuits based on voltage controlled resistors. International Journal of Electronics and Communication, 2011, vol. 65, no. 3, p. 244–249. DOI: 10.1016/j.aeue.2010.02.016
  5. COU, D., WILSON, G. A four-quadrant subthreshold mode multiplier for analog neural-network applications. IEEE Transactions on Neural Networks, 1996, vol. 7, no. 5, p. 1212–1219. DOI: 10.1109/72.536315
  6. NADERI, A., KHOEI, A., HADIDI, KH. Circuit implementation of high-resolution rational-powered membership functions in standard CMOS technology. Analog Integrated Circuits and Signal Processing, 2010, vol. 65, no. 2, p. 217–223. DOI: 10.1007/s10470-009-9443-2
  7. GILBERT, B. Translinear circuits: A proposed classification. Electronics Letters, 1975, vol. 11, no. 1, p. 14–16. DOI: 10.1049/el:19750011
  8. SEEVINCK, E., WIEGERINK, R.J. Generalized translinear circuit principle. IEEE Journal of Solid-State Circuits, 1991, vol. 26, no. 8, p. 1098–1102. DOI: 10.1109/4.90062
  9. ANDREOU, A., BOAHN, A. Translinear circuits in subthreshold CMOS. Analog Integrated Circuits and Signal Processing, 1996, vol. 9, no. 2, p. 141–166. DOI: 10.1007/BF00166411
  10. FARSHIDI, E., NEJAD, T. A new two-quadrant squarer/divider circuit for true RMS-to-DC converters in MOS technology. Journal of Measurement, 2012, vol. 45, no. 4, p. 778–784. DOI: 10.1016/j.measurement.2011.12.009
  11. NADERI, A., MOJARRAD, H. GHASEMZADEH, H. et al. Fourquadrant CMOS analog multiplier based on new current squarer circuit with high-speed. In IEEE Eurocon. St. Petersburg (Russia), 2009, p. 282–287. DOI: 10.1109/EURCON.2009.5167644
  12. SEON, J. Design and application of precise analog computational circuits. Analog Integrated Circuits and Signal Processing, 2008, vol. 71, no. 1, p. 55–66. DOI: 10.1007/s10470-007-9119-8
  13. CHAISAYUN, I., PIANGPONG, S., DEJHAN, K. Versatile analog squarer and multiplier free from body effect. Analog Integrated Circuits and Signal Processing, 2012, vol. 71, no. 3, p. 539–547. DOI: 10.1007/s10470-011-9701-y
  14. IBARAGI, E., HYOGO, A., SEKINE, K. A CMOS analog multiplier free from mobility reduction and body effect. Analog Integrated Circuits and Signal Processing, 2000, vol. 25, no. 3, p. 281–290. DOI: 10.1023/A:1008377914605
  15. PANIGRAHI, A., PAUL, P. A novel bulk-input low voltage, low power four-quadrant analog multiplier in weak inversion. Analog Integrated Circuits and Signal Processing, 2013, vol. 75, no. 2, p. 237–243. DOI: 10.1007/s10470-012-9951-3
  16. LIU, W., LIU, S.I. Design of a CMOS low-power and low-voltage four-quadrant analog multiplier. Analog Integrated Circuits and Signal Processing, 2010, vol. 63, no. 2, p. 307–312. DOI: 10.1007/s10470-009-9382-y
  17. POPA, C. R. Synthesis of Computational Structures for Analog Signal Processing. 1st ed. New York: Springer publisher, 2009, p. 363-364. ISBN 978-1-4614-0403-3.
  18. ABUELMATTI, M. T. Universal CMOS current-mode analog function synthesizer. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Application, 2002, vol. 49, no. 10, p. 1468–1474. DOI: 10.1109/TCSI.2002.803356
  19. BHAT, M.S., REKHA, S., JAMADAGNI, H.S. Extrinsic analog synthesis using piecewise linear current-mode circuits. In 19th International Conference on VLSI Design, 2006, p. 6. DOI: 10.1109/VLSID.2006.88
  20. ABUELMATTI, M. T., ABUELMATTI, A. A new current mode CMOS analog programmable arbitrary nonlinear function synthesizer. Microelectronics Journal, 2012, vol. 43, no. 11, p. 802–808. DOI: 10.1016/j.mejo.2012.07.003
  21. CARLOS, A., MARTIN, A. Novel low-power high-dB range CMOS pseudo-exponential cells. ETRI Journal, 2006. vol. 28, no. 6, p. 732–738. DOI: 10.4218/etrij.06.0106.0121
  22. CHANG, C., LIU, S. Pseudo-exponential function for MOSFETs in saturation. IEEE Transactions on Circuits and Systems II, 2000, vol. 47, no. 11, p. 1318–1321. DOI: 10.1109/82.885141
  23. POPA, C. Low-voltage CMOS current-mode exponential circuit with 70 dB output range. Microelectronics Journal, 2013, vol. 44, no. 12, p. 1348–1357. DOI: 10.1016/j.mejo.2013.09.005
  24. POPA, C. Improved accuracy pseudo-exponential function generator with applications in analog signal processing. IEEE Transactions on Very Large Scale Integration Systems, 2008, vol. 16, no. 3, p. 318–321. DOI: 10.1109/TVLSI.2007.915495
  25. ZARABADI, S., ISMAIL, M., HUNG, C. High performance analog VLSI computational circuits. Journal of Solid-State Circuits, 1998, vol. 33, no. 4, p. 644–649. DOI: 10.1109/4.663572
  26. VLASSIS, S., SISKOS, S. Design of voltage-mode and currentmode computational circuits using floating-gate MOS transistors. IEEE Transactions on Circuits and Systems I, 2004. vol. 51, no. 2, p. 329–341. DOI: 10.1109/TCSI.2003.822401
  27. RIEWRUJA, V. Simple square-rooting circuit using OTAs. Electronics Letters, 2008, vol. 44, no. 17, p. 1000–1002. DOI: 10.1049/el:20081739
  28. KAEWDANG, K., FONGSAMUT, C., SURAKAMPNTORN, W. A wide-band current-mode OTA-based analog multiplier-divider. In Proceedings of International Symposium on Circuits and Systems (ISCAS 2003). Bangkok (Thailand), 2003, vol. 1, p. 349– 352. DOI: 10.1109/ISCAS.2003.1205572
  29. HIDAYAT, R., DEJHAN, K., MOUNGNOUL, P., et al. OTAbased high frequency CMOS multiplier and squaring circuit. Intelligent Signal Processing and Communications Systems, 2009, p. 1–4. DOI: 10.1109/ISPACS.2009.4806748
  30. KAEWDANG, K., SURAKAMPONTORN, W. On the realization of electronically current-tunable CMOS OTA. International Journal of Electronics and Communications, 2007, vol. 61, no. 5, p. 300–306. DOI: 10.1016/j.aeue.2006.05.011
  31. NADERI, A., KHOEI, A., HADIDI, K. H., GHASEMZADEH, H. A new high speed and low power four-quadrant CMOS analog multiplier in current mode. International Journal of Electronics and Communications, 2009, vol. 63, no. 9, p. 769–775. DOI: 10.1016/j.aeue.2008.06.002
  32. PARVEEN, T. Textbook of Operational Transconductance Amplifier and Analog Integrated Circuits, New Delhi: International Publishing House, 2009, p. 16-41. ISBN: 9380026552
  33. FILANOVSKY, I. M., ALLAM, A. Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Application, 2001, vol. 48, no. 7, p. 876–884. DOI: 10.1109/81.933328

Keywords: Computational circuits, trans-conductance circuit, analog design, current mode

D. Lee, H. Jeong, M. Lee [references] [full-text] [DOI: 10.13164/re.2016.0305] [Download Citations]
Design of 12-phase, 2-stage Harmonic Rejection Mixer for TV Tuners

A two-stage 12-phase harmonic rejection mixer (HRM) for TV tuners is proposed in order to reject the local oscillator (LO) harmonics up to the ninth order. The proposed weighing scheme for 12-phase, 2-stage harmonic mixing can reduce the harmonic rejection (HR) sensitivity to the amplitude error caused by irrational numbers such as . To verify this HR, the 2-stage HR circuit is designed with baseband gm weighting in order to save power and improve the HR ratios without calibration. The proposed HRM achieves the third to ninth worst HR ratios, more than 55 dB, according to Monte Carlo simulations. It consumes 6.5 mA under a 2.5 V supply voltage.

  1. CHEN, C., WU, J., HUANG, C., et al. A CMOS switched load harmonic rejection mixer for DTV tuner application. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, vol. 60, no. 2, p. 428–436. DOI: 10.1109/ TCSI.2012.2215695
  2. WELDON, J., NARAYANASWAMI, R., RUDELL, J., et al. A 1.75-GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers. IEEE Journal of Solid-State Circuits, 2001, vol. 36, no. 12, p. 2003–2015. DOI: 10.1109/4. 972151
  3. LERSTAVEESIN, S., GUPTA, M., KANG, D., et al. A 48–860 MHz CMOS low-IF direct-conversion DTV tuner. IEEE Journal of Solid-State Circuits, 2008, vol. 43, no. 9, p. 2013–2024. DOI: 10.1109/JSSC.2008.2001900
  4. ANDREWS, C., DIAMENTE, L., YANG, D., et al. A wideband receiver with resonant multi-phase LO and current reuse harmonic rejection baseband. IEEE Journal of Solid-State Circuits, 2013, vol. 48, no. 5, p. 1188–1198. DOI: 10.1109/JSSC. 2013.2254535
  5. RU, Z., MOSELEY, N., KLUMPERINK, E., et al. Digitally enhanced software-defined radio receiver robust to out-of-band interference. IEEE Journal of Solid-State Circuits, 2009, vol. 44, no. 12, p. 3359–3375. DOI: 10.1109/JSSC.2009.2032272
  6. LIN, F., MAK, P.-I., MARTINS, R. An RF-to-BB-current-reuse wideband receiver with parallel N-path active/passive mixers and a single-MOS pole-zero LPF. IEEE Journal of Solid-State Circuits, 2014, vol. 49, no. 11, p. 2547–2559. DOI: 10.1109/JSSC.2014.2354647
  7. RAFI, A. A., VISWANATHAN, T.R. Harmonic rejection mixing techniques using clock-gating. IEEE Journal of Solid-State Circuits, 2013, vol. 48, no. 8, p. 1862–1874. DOI: 10.1109/JSSC.2013.2259032
  8. PULLELA, R., SOWLATI, T., ROZENBLIT, D. Low flickernoise quadrature mixer topology. In IEEE International Solid-State Circuits Conference, ISSCC Digest of Technical Papers. San Francisco (USA), 2006, p.1870–1879. DOI: 10.1109/ ISSCC.2006.1696244
  9. LEE, D., LEE, M. Low flicker noise, odd-phase master LO active mixer using a low switching frequency scheme. IEEE Journal of Solid-State Circuits, 2015, vol. 50, no. 10, p. 2281–2293. DOI: 10.1109/JSSC.2015.2449556

Keywords: Harmonic rejection mixer, multiphase, TV tuner, direct conversion, active mixer

L. Kadlcik, P. Horsky [references] [full-text] [DOI: 10.13164/re.2016.0312] [Download Citations]
A Low-Dropout Voltage Regulator with a Fractional-Order Control

This paper presents a 5 V / 50 mA low-dropout voltage regulator (LDO). The LDO uses a fractional-order control for its regulation loop to achieve a high DC gain (for a tight DC regulation) while avoiding (for a good stability) a high gain at high frequency. No compensation zeros are needed. The unity gain frequency of the regulation loop also changes adaptively with the output current to maintain it below the frequency of non-dominant poles. The LDO is stable with any external capacitance larger than 50 nF, and is expected to operate in a harsh automotive environment, with junction temperature ranging from -40°C to 170°C and with supply voltage from 7 V to 36 V. The operation of the LDO has been verified by realizing it in the 350 nm I3T50 ON Semiconductor technology.

  1. CHAVA, C.K., SILVA-MARTINEZ, J. A frequency compensation scheme for LDO voltage regulators. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, vol. 51, no. 6, p. 1041–1050. DOI: 10.1109/TCSI.2004.829239
  2. KA NANG LEUNG, MOK, P.K.T., SAI IT LAU. A low-voltage CMOS low-dropout regulator with enhanced loop response. In Proceedings of the 2004 International Symposium on Circuits and Systems (ISCAS '04). Vancouver (Canada), 2004, vol. 1, p. 385–388. DOI: 10.1109/ISCAS.2004.1328212
  3. MILLIKEN, R.J., SILVA-MARTINEZ, J., SANCHEZSINENCIO, E. Full on-chip CMOS low-dropout voltage regulator. IEEE Transactions on Circuits and Systems I: Regular Papers, 2007, vol. 54, no. 9, p. 1879–1890. DOI: 10.1109/TCSI.2007.902615
  4. WONSEOK OH, BAKKALOGLU, B. A CMOS low-dropout regulator with current-mode feedback buffer amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 2007, vol. 54, no. 10, p. 922–926. DOI: 10.1109/TCSII.2007.901621
  5. AL-SHYOUKH, M., HOI LEE, PEREZ, R. A transient-enhanced low-quiescent current low-dropout regulator with buffer impedance attenuation. IEEE Journal of Solid-State Circuits, 2007, vol. 42, no. 8, p. 1732–1742. DOI: 10.1109/JSSC.2007.900281
  6. HAZUCHA, P., KARNIK, T., BLOECHEL, B.A., PARSONS, C., FINAN, D., BORKAR, S. Area-efficient linear regulator with ultra-fast load regulation. IEEE Journal of Solid-State Circuits, 2005, vol. 40, no. 4, p. 933–940. DOI: 10.1109/JSSC.2004.842831
  7. MONJE, C.A., CHEN, Y.Q., VINAGRE, B.M., XUE, D., FELIU BATLLE, V. Fractional-order Systems and Control – Fundamentals and Applications. 2010, 430 p. ISBN 978-1-84996-334-3. DOI: 10.1007/978-1-84996-335-0
  8. CHEN, Y.Q. PETRAS, I., XUE, D. Fractional order control – A tutorial. In American Control Conference (ACC '09). St. Louis (USA), 2009, p. 1397–1411. DOI: 10.1109/ACC.2009.5160719
  9. VALSA, J., DVORAK, P., FRIEDL, M. Network model of the CPE. Radioengineering, 2011, vol. 20, no. 3, p. 619–626. DOI: 10.13164/re
  10. PETRZELA, J. Posouvace faze zalozene na vyuziti pasivnich realizaci fraktalnich kapacitoru (Phase Shifters Using Passive Realizations of Fractal Capacitors). Slaboproudy obzor, 2014, no. 2, p. 6–12. ISSN 2336-5773 (In Czech).
  11. PETRAS, I. Fractional-order feedback control of a DC motor. Journal of Electrical Engineering, 2009, vol. 60, no. 3, p. 117–128. ISSN 1335-3632

Keywords: Fractional-order control, error amplifier, RC ladder, low-dropout regulator, frequency compensation

G. Nagy, D. Arbet, V. Stopjakova, M. Kovac [references] [full-text] [DOI: 10.13164/re.2016.0321] [Download Citations]
Novel CMOS Bulk-driven Charge Pump for Ultra Low Input Voltage

In this paper, a novel bulk-driven cross-coupled charge pump designed in standard 90 nm CMOS technology is presented. The proposed charge pump is based on a dynamic threshold voltage inverter and is suitable for integrated ultra-low voltage converters. Due to a latchup risk, bulk-driven charge pumps can safely be used only in low-voltage applications. For the input voltage below 200 mV and output current of 1 uA, the proposed bulk-driven topology can achieve about 10 % higher efficiency than the conventional gate-driven cross-coupled charge pump. Therefore, it can be effectively used in DC-DC converters, which are the basic building blocks of on-chip energy harvesting systems with ultra-low supply voltage.

  1. RAGHUNATHAN, V., CHOU, P. Design and power management of energy harvesting embedded systems. In International Symposium on Low Power Electronics and Design (ISLPED). Tegernsee (Germany), Oct. 2006, p. 369–374. DOI: 10.1109/LPE.2006.4271870
  2. LU, C., RAGHUNATHAN, V., ROY, K. Micro-scale energy harvesting: A system design perspective. In 15th Asia and South Pacific Design Automation Conference (ASP-DAC). Taipei (Taiwan), 2010, p. 89–94. DOI: 10.1109/ASPDAC.2010.5419913
  3. PAN, F., SAMADDAR, T. Charge pump circuit design. New York (USA): McGraw-Hill Professional, 2006. ISBN: 978-0071470452
  4. PALUMBO, G., PAPPALARDO, D. Charge pump circuits: An overview on design strategies and topologies. IEEE Circuits and Systems Magazine, 2010, vol. 10, no. 1, p. 31–45. ISSN: 1531-636X. DOI: 10.1109/MCAS.2009.935695
  5. GUZINSKI, A., BIALKO, M., MATHEAU, J. C. Body-driven differential amplifier for application in continuous-time active C-filter. In European Conference on Circuit Theory and Design (ECCTD). Paris (France), Sep. 1987, p. 315–320.
  6. RAIKOS, G., VLASSIS, S. 0.8 V bulk-driven operational amplifier. Analog integrated circuits and signal processing, 2010, vol. 63, no. 3, p. 425–432. ISSN: 1573-1979. DOI: 10.1007/s10470-009-9425-4
  7. KHATEB, A., MUSIL, V., PROKOP, R. Rail-to-rail bulk-driven amplifier. In Electronics. Sozopol (Bulgaria), Sep. 2005.
  8. YANI, L., YINTANG, Y., ZHANGMING, Z. A novel low-voltage low-power bulk-driven cascade current mirror. In International Conference on Advanced Computer Theory and Engineering (ICACTE). Chengdu (China), Aug. 2010, vol. 3, p. 78–83. ISSN: 2154-7491. DOI: 10.1109/ICACTE.2010.5579714
  9. ZHANG, X., EL-MASRY, E. I. A regulated body-driven CMOS current mirror for low-voltage applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2004, vol. 51, no. 10, p. 571–577. ISSN: 1549-7747. DOI: 10.1109/TCSII.2004.834536
  10. KHATEB, F., BIOLEK, D., KHATIB, N., VAVRA, J. Utilizing the bulk-driven technique in analog circuit design. In IEEE 13th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS). Vienna (Austria), 2010, p. 16–19. DOI: 10.1109/DDECS.2010.5491827
  11. KHATEB, F., KHATIB, N., KUBANEK, D. Novel low-voltage low-power high-precision CCII± based on bulk-driven folded cascode OTA. Microelectronics Journal, May 2011, vol. 42, no. 5, p. 622–631. ISSN: 00262692. DOI: 10.1016/j.mejo.2011.03.010
  12. GRECH, I., MICALLEF, J., AZZOPARDI, G., DEBONO, C. J. A low voltage wide-input-range bulk-input CMOS OTA. Analog Integrated Circuits and Signal Processing, May 2005, vol. 43, no. 2, p. 127–136. ISSN: 1573-1979. DOI: 10.1007/s10470-005-6786-1
  13. VLASSIS, S., RAIKOS, G. Bulk-driven differential voltage follower. Electronics Letters, Dec. 2009, vol. 45, no. 25, p. 1276–1277. ISSN: 0013-5194. DOI: 10.1049/el.2009.1551
  14. HAGA, Y., KALE, I. Bulk-driven flipped voltage follower. In IEEE International Symposium on Circuits and Systems (ISCAS). Taipei (Taiwan), May 2009, p. 2717–2720. ISBN: 978-1-4244-3827-3. DOI: 10.1109/ISCAS.2009.5118363
  15. JIANG, Y., RAUT, R. A low–voltage low–power voltage–to–current transconductor using bulk–driven CMOS transistors. In 5th International Conference on VLSI and CAD. Seoul (Korea), 1997, p. 451–453.
  16. JANG, S.-L., HUANG, S-H., LIU, C.-C., JUANG, M.-H. CMOS Colpitts quadrature VCO using the body injection-locked coupling technique. IEEE Microwave and Wireless Components letters, Apr. 2009, vol. 19, no. 4, p. 230–232. ISSN: 1531-1309. DOI: 10.1109/LMWC.2009.2015506
  17. LO, Y.-L., YANG, W.-B., CHAO, T.-S., CHENG, K.-H. Designing an ultralow-voltage phase-locked loop using a bulk-driven technique. IEEE Transactions on Circuits and Systems II: Express Briefs, May 2009, vol. 56, no. 5, p. 339–343. ISSN: 1549-7747. DOI: 10.1109/TCSII.2009.2019160
  18. ASSADERAGHI, F., SINITSKY, D., PARKE, S. A., BOKOR, J., KO, P. K., HU, C. Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI. IEEE Transactions on Electron Devices, Mar. 1997, vol. 44, no. 3, p. 414–422. DOI: 10.1109/16.556151
  19. SOLEIMANI, S., SAMMAK, A., FOROUZANDEH, B. A novel ultra-low-energy bulk dynamic threshold inverter scheme. In International Multi Conference of Engineers and Computer Scientists (IMECS). Hong Kong (Chinese), Mar. 2009, vol. 1, ISBN: 978-988-17012-2-0
  20. WENG, Y.-H., TSAI, H.-W., KER, M.-D. Design of charge pump circuit in low-voltage CMOS process with suppressed return-back leakage current. In IEEE International Conference on IC Design and Technology (ICICDT). Grenoble (France), Jun. 2010, p. 155–158. DOI: 10.1109/ICICDT.2010.5510271
  21. KER, M.-D., CHEN, S.-L., TSAI, C.-S. Design of charge pump circuit with consideration of gate-oxide reliability in low-voltage CMOS processes. IEEE Journal of Solid-State Circuits, May 2006, vol. 41, no. 5, p. 1100–1107. ISSN: 0018-9200. DOI: 10.1109/JSSC.2006.872704
  22. DENG, Q. Comparing regulated charge-pump and inductorbased DC/DC converters. Bodo’s Power Systems, 2007, p. 42–44. ISSN: 1863-5597
  23. HUANG, M.-H., FAN, P.-C., CHEN, K.-H. Low-ripple and dual-phase charge pump circuit regulated by switched-capacitorbased bandgap reference. IEEE Transactions on Power Electronics, May 2009, vol. 24, no. 5, p. 1161–1172. ISSN: 0885-8993. DOI: 10.1109/TPEL.2008.2010546
  24. RAMADASS, Y. K., CHANDRAKASAN, A. P. A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage.IEEE Journal of Solid-State Circuits, Jan. 2011, vol. 46, no. 1, p. 333–341. ISSN: 0018-9200. DOI: 110.1109/JSSC.2010.2074090
  25. TYAGI, A., GOPI, C., BALDI, et al. CNFET-based 0.1 V to 0.6 V DC/DC converter. In Recent Advances in Engineering and Computational Sciences (RAECS). Chandigarh (India), Mar. 2014, p. 1–5. DOI: 10.1109/RAECS.2014.6799605
  26. CARLSON, E. J., STRUNZ, K., OTIS, B. P. A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE Journal of Solid-State Circuits, Apr. 2010, vol. 45, no. 4, p. 741–750. ISSN: 0018-9200. DOI: 10.1109/JSSC.2010.2042251
  27. PO-HUNG C., ISHIDA, K., IKEUCHI, K., et al. A 95 mV-startup step-up converter with Vth-tuned oscillator by fixed-charge programming and capacitor pass-on scheme. In IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco (USA), Feb. 2011, p. 216–218. ISSN: 0193-6530. DOI: 10.1109/ISSCC.2011.5746290
  28. RICHELLI, A., COLALONGO, L., TONOLI, S., et al. A 0.2– 1.2 V DC/DC boost converter for power harvesting applications. IEEE Transactions on Power Electronics, Jun. 2009, vol. 24, no. 6, p. 1541–1546. ISSN: 0885-8993. DOI: 10.1109/TPEL.2009.2013224
  29. YOON, E.-J., PARK, J.-T., YU, C.-G. Thermoelectric energy harvesting circuit using DC-DC boost converter. Journal of IKEEE, Sep. 2013, vol. 17, no. 3, p. 284–293. ISSN: 1226-7244. DOI: 10.1155/2013/232438
  30. ABDELFATTAH, M., MOHIELDIN, A., EMIRA, A., et al. A low-voltage charge pump for micro scale thermal energy harvesting. In IEEE International Symposium on Industrial Electronics (ISIE). Gdansk (Poland), Jun. 2011, p. 76–80. ISBN: 978-1-4244-9310-4 . DOI: 10.1109/ISIE.2011.5984136
  31. PO-HUNG C., ISHIDA, K., XIN Z., et al. 0.18-V input charge pump with forward body biasing in startup circuit using 65 nm CMOS. In Custom Integrated Circuits Conference (CICC). San Jose (USA), Sep. 2010, p. 1–4. ISBN: 978-1-4244-5758-8. DOI: 10.1109/CICC.2010.5617444
  32. YI-CHUN S., OTIS, B. P. An inductorless DC-DC converter for energy harvesting with a 1.2-µW bandgap-referenced output controller. IEEE Transactions on Circuits and Systems II: Express Briefs, Dec. 2011, vol. 58, no. 12, p. 832–836. ISSN: 1549-7747. DOI: 10.1109/TCSII.2011.2173967
  33. DOMS, I., MERKEN, P., VAN HOOF, C., et al. Capacitive power management circuit for micropower thermoelectric generators with a 1.4 µA controller. IEEE Journal of Solid-State Circuits, Oct. 2009, vol. 44, no. 10, p. 2824–2833. ISSN: 0018-9200. DOI: 10.1109/JSSC.2009.2027546
  34. PENG, F., YUNLONG, L., NANJIAN, W. A high effi- ciency charge pump circuit for low power applications. Journal of Semiconductors, Jan. 2010, vol. 31, no. 1, p. 1–5. DOI: 10.1088/1674-4926/31/1/015009
  35. NAGY, G., STOPJAKOVA, V., ARBET, D. Analysis and evaluation of charge-pumps realizable in 90 nm CMOS technology. In 24th International Conference Radioelektronika. Bratislava (Slovakia), Apr. 2014, p. 1–4. ISBN: 978-1-4799-3714-1. DOI: 10.1109/Radioelek.2014.6828414

Keywords: Charge pump, CMOS, Bulk-driven, Low-power, Energy harvesting

M. Drinovsky, J. Hospodka [references] [full-text] [DOI: 10.13164/re.2016.0332] [Download Citations]
Triangle/Square Waveform Generator Using Area Efficient Hysteresis Comparator

A function generator generating both square and triangle waveforms is proposed. The generator employs only one low area comparator with accurate hysteresis set by a bias current and a resistor. Oscillation frequency and its non-idealities are analyzed. The function of the proposed circuit is demonstrated on a design of 1 MHz oscillator in STMicroelectronics 180 nm BCD technology. The designed circuit is thoroughly simulated including trimming evaluation. It consumes 4.1 μA at 1.8 V and takes 0.0126 mm2 of silicon area. The temperature variation from -40°C to 125°C is ±1.5 % and the temperature coefficient is 127 ppm/°C.

  1. HUANG, K.-K., WENTZLOFF, D. D. A 1.2-MHz 5.8- µW temperature-compensated relaxation oscillator in 130-nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, vol. 61, no. 5, p. 334–338. ISSN: 1549-7747. DOI: 10.1109/TCSII.2014.2312634
  2. CHIANG, Y.-H., LIU, S.-I. A submicrowatt 1.1-MHz CMOS relaxation oscillator with temperature compensation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, vol. 60, no. 12, p. 837–841. ISSN: 1549-7747. DOI: 10.1109/TCSII.2013.2281920
  3. BEHJATI, H., NIU, L., DAVOUDI, A., et al. Alternative timeinvariant multi-frequency modeling of PWM DC-DC converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, vol. 60, no. 11, p. 3069–3079. ISSN: 1549-8328. DOI: 10.1109/TCSI.2013.2252641
  4. RAMIREZ-ANGULO, J. A compact current controlled CMOS waveform generator. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1992, vol. 39, no. 12, p. 883–885. ISSN: 1057-7130. DOI: 10.1109/82.208587
  5. BERNARD, S., AZAIS, F., BERTRAND, Y., et al. A high accuracy triangle-wave signal generator for on-chip ADC testing. In Proceedings of the Seventh IEEE European Test Workshop, 2002, p. 89–94. DOI: 10.1109/ETW.2002.1029644
  6. GARIMELLA, A., KALYANI-GARIMELLA, L. M., ROMERO, R., et al. New compact and versatile wide tuning range CMOS voltage controlled oscillator. In 48th Midwest Symposium on Circuits and Systems, 2005, p. 515–518. DOI: 10.1109/MWSCAS.2005.1594151
  7. CHUNG, W.-S., CHA, H.-W., KIM., H.-J. Triangular/squarewave generator with independently controllable frequency and amplitude. IEEE Transactions on Instrumentation and Measurement, 2005, vol. 54, no. 1, p. 105–109. ISSN: 0018-9456. DOI: 10.1109/TIM.2004.840238
  8. PAL, D., SRINIVASULU, A., PAL, B. B., et al. Current conveyor-based square/triangular waveform generators with improved linearity. IEEE Transactions on Instrumentation and Measurement, 2009, vol. 58, no. 7, p. 2174–2180. ISSN: 0018-9456. DOI: 10.1109/TIM.2008.2006729
  9. SILAPAN, P., SIRIPRUCHYANUN, M. Fully and electronically controllable current-mode Schmitt triggers employing only single MOCCCDTA and their applications. Analog Integrated Circuits and Signal Processing, 2011, vol. 68, no. 1, p. 111–128. ISSN: 1573-1979. DOI: 10.1007/s10470-010-9593-2
  10. CHIEN, H.-C. Voltage-controlled dual slope operation square/triangular wave generator and its application as a dual mode operation pulse width modulator employing differential voltage current conveyors. Microelectronics Journal, 2012, vol. 43, no. 12, p. 962–974. ISSN: 0026-2692. DOI: 10.1016/j.mejo.2012.08.005
  11. SOTNER, R., JERABEK, J., HERENCSAR, N. Voltage differencing buffered/inverted amplifiers and their applications for signal generation. Radioengineering, 2013, vol. 22, no. 2, p. 490–504. ISSN: 1805-9600
  12. SOTNER, R., JERABEK, J., HERENCSAR, N., et al. Design of Z-copy controlled-gain voltage differencing current conveyor based adjustable functional generator. Microelectronics Journal, 2015, vol. 46, no. 2, p. 143–152. ISSN: 0026-2692. DOI: 10.1016/j.mejo.2014.11.008
  13. JERABEK, J., SOTNER, R., DOSTAL, T., et al. Simple resistorless generator utilizing Z-copy controlled gain voltage differencing current conveyor for PWM generation. Elektronika ir Elektrotechnika, 2015, vol. 21, no. 5, p. 28–34. ISSN: 1392-1215. DOI: 10.5755/j01.eee.21.5.13322
  14. PELGROM, M. J., DUINMAIJER, A. C., WELBERS, A. P. Matching properties of MOS transistors. IEEE Journal of Solid-State Circuits, 1989, vol. 24, no. 5, p. 1433–1439. ISSN: 0018-9200. DOI: 10.1109/JSSC.1989.572629

Keywords: Function generator, triangle and square wave generator, hysteresis comparator

M. Mabrouk, M. A. Boujemaa, F. Choubani [references] [full-text] [DOI: 10.13164/re.2016.0338] [Download Citations]
Grey Box Non-Linearities Modeling and Characterization of a BandPass BAW Filter

In this work, the non-linearities of a 3G/UMTS geared BandPass Bulk Acoustic Wave ladder filter composed of five resonators were modeled using non-linear modified Butterworth-Van Dyke model. The non-linear characteristics were measured and simulated, and they were compared and found to be fairly identical. The filter's central frequency is 2.12 GHz, the corresponding bandwidth is 61.55 MHz, and the quality factor is 34.55.

  1. AIGNER, R. SAW and BAW technologies for RF filter applications: A review of the relative strengths and weaknesses. In IEEE International Ultrasonic Symposium (IUS). Beijing (China), 2-5 November 2008, p. 582–589. DOI:10.1109/ULTSYM.2008.0140
  2. CONSTANTINESCU, F., GHEORGHE, A., STROE, G., et al. A nonlinear circuit model for a three BAW resonator filter working at high power level. In Proceedings of the 2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD). Seville, (Spain), 19-21 September 2012, p. 233–236. DOI: 10.1109/SMACD.2012.6339382
  3. STROE, G., CONSTANTINESCU, F., GHEORGHE, A., et al. Measurement and modeling of nonlinear effects for power BAW filters with AlN. In 8th International Advanced Topics in Electrical Engineering (ATEE). Bucharest (Romania), 23-25 May 2013, p. 1–4. DOI: 10.1109/ATEE.2013.6563473
  4. MISU, K., IBATA, K., WADAKA, S., et al. Acoustic field analysis of surface acoustic wave dispersive delay lines using inclined chirp IDT. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 1st May 2007, vol. E90-A, no 5, p. 1014–1020. ISSN: 0916-8508 DOI: 10.1093/ietfec/e90–a.5.1014
  5. MORGAN, D. P. History of SAW devices. In Proceedings of the 1998 IEEE International Frequency Control Symposium. Pasadena (CA, USA), 27-29 May 1998, p. 439–460. DOI: 10.1109/FREQ.1998.717937
  6. OLIVARES, J., WEGMANN, E., CAPILLA, J., et al. Sputtered SiO2 as low acoustic impedance material for Bragg mirror fabrication in BAW resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control (UFFC), January 2010, vol. 57, no. 1, p. 23–29. ISSN: 0885-3010. DOI: 10.1109/TUFFC.2010.1374
  7. MOREIRA, C. P., SHIRAKAWA, A. A., KERHERVE, E., et al. Design of a fully-integrated BiCMOS/FBAR reconfigurable RF receiver front-end. In Proceedings of the 18th Symposium on Integrated Circuits and Systems Design. Florianopolis (Santa Catarina, Brazil), 4-7 September 2005, p. 138–143. DOI: 10.1109/SBCCI.2005.4286846
  8. LARSON, J. D., RUBY, J. D., BRADLEY, R. C., et al. Power handling and temperature coefficient studies in fbar duplexers for the 1900 MHz PCS band. In IEEE International Ultrasonic Symposium (IUS). San Juan, 22-25 October 2000, vol. 1, p. 869–874. DOI:10.1109/ULTSYM.2000.922680
  9. FELD, D. A. One-parameter nonlinear Mason model for predicting 2nd and 3rd order nonlinearities in BAW devices. In IEEE International Ultrasonic Symposium (IUS). Roma (Italy), 20-24 April 2009, p. 1082–1087. DOI:10.1109/ULTSYM.2009.5441599
  10. FRICKEY, D. Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances. IEEE Transactions on Microwave Theory and Techniques (MTT), February 1994, vol. 42, no. 2, p. 205–211, ISSN: 0018-9480. DOI: 10.1109/22.275248
  11. DUBCAKOVA, R. Eureqa: software review. Genetic Programming and Evolvable Machines, 2011, vol. 12, no. 2, p. 173–178. DOI: 10.1007/s10710-010-9124-z

Keywords: Band pass filter, bulk acoustic wave (BAW), modified Butterworth-van Dyke model, non linearities

P. Hartl, M. Kuban, P. Horsky [references] [full-text] [DOI: 10.13164/re.2016.0345] [Download Citations]
Reduction of EMC Emissions in Mixed Signal Integrated Circuits with Embedded LIN Driver

This paper describes several methods for reduction of electromagnetic emissions (EME) of mixed signal integrated circuits (IC). The focus is on the impact that a LIN bus communication block has on a complex IC which contains analog blocks, noisy digital block, micro-core (µC) and several types of memories. It is used in an automotive environment, where EMC emission reduction is one of the key success factors. Several proposed methods for EME reduction are described and implemented on three test chips. These methods include current consumption reduction, internal on-chip decoupling, ground separation and different linear voltage regulator topologies. Measurement results of several fabricated test chips are shown and discussed.

  1. LAUDE, D. IC design considerations for the harsh automotive environment. In Proceedings of the IEEE Custom Integrated Circuits Conference. San Diego (CA, USA), 1994, p.319–326. DOI: 10.1109/CICC.1994.379710
  2. SICARD, E., BENDHIA, S., RAMDANI, M. Electromagnetic Compatibility for Integrated Circuits. Springer, 2006. ISBN: 9780387266015.
  3. FIORI, F.L. Reducing SoC electromagnetic emissions by design. In 15th IEEE International Conference on Electronic, Circuits and Systems. 2008, p. 422–425. DOI: 10.1109/ICECS.2008.4674880
  4. HORSKY, P. DRE1 - Design of Analog ICs. Brno (Czech Rep.): Brno University of Technology, 2008. Textbook, 128 p.
  5. BEN DHIA, S., RAMDANI, M., SICARD, E. Electromagnetic Compatibility of Integrated Circuits: Techniques for Low Emission and Susceptibility. Berlin: Springer, 2006, 473 p. ISBN: 0-387- 26600-3.
  6. FIORI, F., MERLIN, M. A new grounding scheme to reduce the electromagnetic emission of smart-power system-on-chip. IEEE Transactions on Power Electronics, 2012, vol. 27, p. 224–243. DOI: 10.1109/TPEL.2010.2068312
  7. DEUTSCHMANN, B., ILLIING, R., AUER, B. Edge shaping to reduce the electromagnetic emissions. In Proceedings of 10th International Symposium on Electromagnetic Compatibility. York (UK), 2011. p. 742–745. ISBN: 978-1-4577-1709-3.
  8. JOGHOON KIM, HYUNGSOO KIM, WOONGHWAN RYU, et al. Effects of on-chip and off-chip decoupling capacitors on electromagnetic radiated emission. In 48th IEEE Electronic Components and Technology Conference. Seattle (USA), 1998, vol. 2, p. 610–614. DOI:10.1109/ECTC.1998.678758
  9. FUJI, H., KOBAYASHI, Y., SUDO, T. Evaluation of power supply noise reduction by implementing on-chip capacitance. In 8th Workshop on Electromagnetic Compatibility of Integrated Circuits (EMC Compo). Dubrovnik (Croatia), 2011, p. 219–223. ISBN: 978-1-4577-0862-6.
  10. MERLIN, M., FIORI, F. Impact of package parasitics on the EMC performance of smart power SoCs. In IEEE European Microelectronics and Packaging Conference (EMPC 2009). Rimini (Italy), 2009, p. 1–6. ISBN: 978-1-4244-4722-0.
  11. CISPR 25: Limits and Methods of Measurement of Radio Disturbance Characteristics for the Protection of Receivers used on Board Vehicles. 2nd ed. 2002
  12. RINCON-MORA, G. Analog IC Design with Low-Dropout Regulators. New York: McGraw-Hill, 2009, 372 p. ISBN: 978- 0071608930.
  13. MILLIKEN, R. J., SILVA-MARTINEZ, J., SANCHEZ-SINENCIO, E. Full on-chip CMOS low-dropout voltage regulator. IEEE Transactions on Circuits and Systems, 2007, vol. 54, no. 9, p. 1879–1890. DOI: 10.1109/TCSI.2007.902615
  14. CHAVA, C. K., SILVA-MARTINEZ, J. A frequency compensation scheme for LDO voltage regulators. IEEE Transactions on Circuits and Systems, 2004, vol. 51, no. 6, p. 1041–1050. DOI: 10.1109/TCSI.2004.829239
  15. LAVERY, K., SMITH, R. Impact of linear regulator topology on integrated circuit emissions. In IEEE International Symposium on Electromagnetic Compatibility. Honolulu (HI, USA), 2007, vol. 2, p. 1–4. DOI: 10.1109/ISEMC.2007.82

Keywords: EMC, emissions, ground splitting, linear voltage regulator, automotive industry, LIN bus driver

P. J. Osuch, T. Stander [references] [full-text] [DOI: 10.13164/re.2016.0351] [Download Citations]
A Geometric Approach to Group Delay Network Synthesis

All-pass networks with prescribed group delay are used for analog signal processing and equalisation of transmission channels. The state-of-the-art methods for synthesising quasi-arbitrary group delay functions using all-pass elements lack a theoretical synthesis procedure that guarantees minimum-order networks. We present an analytically-based solution to this problem that produces an all-pass network with a response approximating the required group delay to within an arbitrary minimax error. For the first time, this method is shown to work for any physical realisation of second-order all-pass elements, is guaranteed to converge to a global optimum solution without any choice of seed values as an input, and allows synthesis of pre-defined networks described both analytically and numerically. The proposed method is also demonstrated by reducing the delay variation of a practical system by any desired amount, and compared to state-of-the-art methods in comparison examples.

  1. GUPTA, S., PARSA, A., PERRET, E., et al. Group-delay engineered noncommensurate transmission line all-pass network for analog signal processing. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 9, p. 2392–2407. ISSN: 0018-9480. DOI: 10.1109/TMTT.2010.2058933
  2. KERTIS, R., HUMBLE, J., DAUN-LINDBERG, M., et al. A 35 GS/s 5-Bit SiGe BiCMOS flash ADC with offset corrected exclusive-or comparator. In IEEE 2008 Bipolar/BiCMOS Circuits and Technology Meeting. Monterey (USA), 2008, p. 252–255. DOI: 10.1109/BIPOL.2008.4662755
  3. GUPTA, S., SOUNAS, D. L., ZHANG, Q., et al. All‐pass dispersion synthesis using microwave C‐sections. International Journal of Circuit Theory and Applications, 2014, vol. 42, no. 12, p. 1228–1245. DOI: 10.1002/cta.1916
  4. ZHANG, Q., GUPTA, S., CALOZ, C. Synthesis of broadband dispersive delay structures formed by commensurate C‐and D‐sections. International Journal of RF and Microwave Computer‐Aided Engineering, 2014, vol. 24, no. 3, p. 322–331. DOI: 10.1002/mmce.20764
  5. ZHANG, Q., BANDLER, J. W., CALOZ, C. Design of dispersive delay structures (DDSs) formed by coupled C-sections using predistortion with space mapping. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 12, p. 4040–4051. DOI: 10.1109/TMTT.2013.2287678
  6. ZISKA, P., LAIPERT, M. Band-pass filter group delay equalization. In Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory. Cookeville (USA), 2006, p. 483–487. DOI: 10.1109/SSST.2006.1619130
  7. OSUCH, P. J., STANDER, T. An on-chip post-production tunable group delay equaliser. In International Conference on Actual Problems of Electron Devices Engineering (APEDE). Saratov (Russia), 2014, p. 177–184. DOI: 10.1109/APEDE.2014.6958742
  8. WILSON, C., WARDORP, B. Strip-line group delay equalisers. In 1st European Microwave Conference. London (England), 1969, p. 319–322. DOI: 10.1109/EUMA.1969.331885
  9. LEVY, R. Realization of practical lumped element all-pass networks for delay equalization of RF and microwave filters. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 12, p. 3307–3311. DOI: 10.1109/TMTT.2011.2172809
  10. AL-HASHIMI, B., DUDEK, F., MONIRI, M. Current-mode group-delay equalisation using pole-zero mirroring technique. IEE Proceedings - Circuits, Devices and Systems. Stevenage (UK), 2000, p. 257–263. DOI: 10.1049/ip-cds:20000426
  11. FREDENALL, G. Delay equalization in color television. Proceedings of the IRE, 1954, vol. 42, no. 1, p. 258–262. ISSN: 0096-8390. DOI: 10.1109/JRPROC.1954.274635
  12. SCANLAN, S., RHODES, J. Microwave allpass networks–part I. IEEE Transactions on Microwave Theory and Techniques, 1968, vol. 16, no. 2, p. 62–72. DOI: 10.1109/TMTT.1968.1126610
  13. HELLERSTEIN, S. Synthesis of all-pass delay equalizers. IRE Transactions on Circuit Theory, 1961, vol. 8, no. 3, p. 215–222. ISSN: 0096-2007. DOI: 10.1109/TCT.1961.1086821
  14. CRANE, R. All-pass network synthesis. IEEE Transactions on Circuit Theory, 1968, vol. 15, no. 4, p. 474–478. DOI: 10.1109/TCT.1968.1082861
  15. VERGELLI, G., CHAKRABORTY, D. Computer-aided group delay equalization for broad-band satellite transponder applications. IEEE Transactions on Communications, 1973, vol. 21, no. 10, p. 1152–1156. DOI: 10.1109/TCOM.1973.1091553
  16. SAAL, R., ULBRICH, E. On the design of filters by synthesis. IRE Transactions on Circuit Theory, 1958, vol. 5, no. 4, p. 284–327. DOI: 10.1109/TCT.1958.1086481
  17. BUNKER, W. Symmetrical equal-ripple delay and symmetrical equal-ripple phase filters. IEEE Transactions on Circuit Theory, 1970, vol. 17, no. 3, p. 455–458. DOI: 10.1109/TCT.1970.1083107
  18. TSIVIDIS, Y. Integrated continuous-time filter design - an overview. IEEE Journal of Solid-State Circuits, 1994, vol. 29, no. 3, p. 166–176. DOI: 10.1109/4.278337
  19. POZAR, D. M. Microwave Engineering. Amherst (USA): John Wiley & Sons, 2009. ISBN: 978-0-470-63155-3.
  20. DALPATADU, R., MOUTHAAN, K. Active transversal S-band filter using lumped elements in standard 0.13 µm CMOS. In The 7th German Microwave Conference. Ilmenau (Germany), 2012, p. 1–4. ISBN: 978-1-4577-2096-3.
  21. FAYED, A., ISMAIL, M. Adaptive Techniques for Mixed Signal System on Chip. Dordrecht (The Netherlands): Springer, 2006. ISBN: 0-387-32154-3.
  22. YEONG-LIN LAI., CHUN-YI ZHENG. A novel folded active inductor for wireless communication SoC. In 2013 International SoC Design Conference. Busan (South Korea), 2013, p. 306–309. DOI: 10.1109/ISOCC.2013.6864034
  23. SOORAPANTH, T., WONG, S. S. A 0-dB IL 2140±30 MHz bandpass filter utilizing Q-enhanced spiral inductors in standard CMOS. IEEE Journal of Solid-State Circuits, 2002, vol. 37, no. 5, p. 579–586. DOI: 10.1109/4.997850
  24. GEORGESCU, B., PEKAU, H., HASLETT, J., et al. Tunable coupled inductor Q-enhancement for parallel resonant LC tanks. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2003, vol. 50, no. 10, p. 705–713. DOI: 10.1109/TCSII.2003.818366

Keywords: All-pass circuits, approximation problem, analog signal processing, delay ripple equalisation, group delay engineering, linear phase filters

Z. Martinasek, V. Zeman, L. Malina, J. Martinasek [references] [full-text] [DOI: 10.13164/re.2016.0365] [Download Citations]
k-Nearest Neighbors Algorithm in Profiling Power Analysis Attacks

Power analysis presents the typical example of successful attacks against trusted cryptographic devices such as RFID (Radio-Frequency IDentifications) and contact smart cards. In recent years, the cryptographic community has explored new approaches in power analysis based on machine learning models such as Support Vector Machine (SVM), RF (Random Forest) and Multi-Layer Perceptron (MLP). In this paper, we made an extensive comparison of machine learning algorithms in the power analysis. For this purpose, we implemented a verification program that always chooses the optimal settings of individual machine learning models in order to obtain the best classification accuracy. In our research, we used three datasets, the first containing the power traces of an unprotected AES (Advanced Encryption Standard) implementation. The second and third datasets are created independently from public available power traces corresponding to a masked AES implementation (DPA Contest v4). The obtained results revealed some interesting facts, namely, an elementary k-NN (k-Nearest Neighbors) algorithm, which has not been commonly used in power analysis yet, shows great application potential in practice.

  1. JOYE, M., OLIVIER, F., Side-channel analysis. In Encyclopedia of Cryptography and Security, 2nd ed. 2011, p. 1198–1204. DOI: 10.1007/978-1-4419-5906-5_516
  2. KOCHER, P. C., JAFFE, J., JUN, B. Differential power analysis. In CRYPTO ’99: Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology. London (UK), 1999. p. 388–397.
  3. MANGARD, S., OSWALD, E., POPP, T. Power Analysis Attacks: Revealing the Secrets of Smart Cards. 1st ed. Secaucus (USA): Springer US, 2007. ISBN: 978-0-387-30857-9. DOI: 10.1007/978-0-387-38162-6
  4. MARTINASEK, Z., CLUPEK, V., TRASY, K. General scheme of differential power analysis. In 36th International Conference on Telecommunications and Signal Processing (TSP), 2013. Rome (Italy), July 2013. p. 358–362. DOI: 10.1109/TSP.2013.6613952
  5. CHARI, S., RAO, J., ROHATGI, P. Template attacks. In Cryptographic Hardware and Embedded Systems - CHES 2002. Redwood Shores (USA), 2003. p. 13–28. DOI: 10.1007/3-540-36400-5_3
  6. CHOUDARY, O., KUHN, M. G. Efficient template attacks. In Smart Card Research and Advanced Applications - 12th International Conference, CARDIS. Berlin (Germany), November 2013. p. 253–270. DOI: 10.1007/978-3-319-08302-5_17
  7. SCHINDLER, W., LEMKE, K., PAAR, C. A stochastic model for differential side channel cryptanalysis. In Proceedings of 7th International Workshop on Cryptographic Hardware and Embedded Systems - CHES 2005. Edinburgh (UK), September 2005. p. 30–46. DOI: 10.1007/11545262_3
  8. SCHINDLER, W. On the optimization of side-channel attacks by advanced stochastic methods. In Public Key Cryptography - PKC 2005, 8th International Workshop on Theory and Practice in Public Key Cryptography, Les Diablerets (Switzerland), January 2005. p. 85–103. DOI:10.1007/978-3-540-30580-4_7
  9. RECHBERGER, C., OSWALD, E. Practical template attacks. In Information Security Applications, 2005. p. 440–456. ISBN: 978-3-540-24015-0. DOI: 10.1007/978-3-540-31815-6_35
  10. HANLEY, N., TUNSTALL, M., MARNANE, W. Using templates to distinguish multiplications from squaring operations. International Journal of Information Security, 2011, vol. 10, no. 4, p. 255–266. ISSN: 1615-5262. DOI: 10.1007/s10207-011-0135-4
  11. ARCHAMBEAU, C., PEETERS, E., STANDAERT, F.-X., et al. Template attacks in principal subspaces. In Cryptographic Hardware and Embedded Systems - CHES 2006. Yokohama (Japan), 2006, p. 1–14. DOI: 10.1007/11894063_1
  12. BAR, M., DREXLER, H., PULKUS, J. Improved template attacks. In COSADE 2010 - First International Workshop on Constructive Side-Channel Analysis and Secure Design. 2010, p. 81–89.
  13. BHASIN, S., DANGER, J.-L., GUILLEY, S., et al. Side-channel leakage and trace compression using normalized inter-class variance. In Proceedings of the Third Workshop on Hardware and Architectural Support for Security and Privacy. New York (USA), 2014, p. 1–9. DOI: 10.1145/2611765.2611772
  14. GIERLICHS, B., LEMKE-RUST, K., PAAR, C. Templates vs. stochastic methods. In Cryptographic Hardware and Embedded Systems - CHES 2006. Yokohama (Japan), 2006, p. 15–29. DOI:10.1007/11894063_2
  15. BATINA, L., HOGENBOOM, J., VAN WOUDENBERG, J. G. J. Getting more from PCA: First results of using principal component analysis for extensive power analysis. In Proceedings of the 12th Conference on Topics in Cryptology. San Francisco (USA), 2012, p. 383–397. DOI: 10.1007/978-3-642-27954-6_24
  16. AKKAR, M.-L., BEVAN, R., DISCHAMP, P., et al. Power analysis, what is now possible. . . In Advances in Cryptology - ASIACRYPT 2000. Kyoto (Japan), 2000, p. 489–502. DOI: 10.1007/3-540-44448-3_38
  17. HAJNY, J., MALINA, L. Anonymous credentials with practical revocation. In Satellite Telecommunications (ESTEL), IEEE First AESS European Conference on. Rome (Italy), 2012, p. 1–6. DOI: 10.1109/ESTEL.2012.6400081
  18. BRIER, E., CLAVIER, C., OLIVIER, F. Correlation power analysis with a leakage model. In Cryptographic Hardware and Embedded Systems - CHES 2004. Cambridge (USA), 2004, p. 16–29. DOI: 10.1007/978-3-540-28632-5_2
  19. OSWALD, E., MANGARD, S., PRAMSTALLER, N. Secure and efficient masking of AES - a mission impossible?, 2004. [Online] Cited 2015-07-17. Available at:
  20. GOLIC, J., TYMEN, C. Multiplicative masking and power analysis of AES. In Cryptographic Hardware and Embedded Systems CHES 2002. Redwood Shores (USA), 2003, p. 198–212. DOI: 10.1007/3-540-36400-5_16
  21. OSWALD, E., MANGARD, S., PRAMSTALLER, N., et al. A side-channel analysis resistant description of the AES S-box. In Fast Software Encryption. Paris (France), 2005, p. 413–423. DOI: 10.1007/11502760_28
  22. CANRIGHT, D., BATINA, L. A very compact "perfectly masked" S-box for AES. In Proceedings of the 6th International Conference on Applied Cryptography and Network Security. New York (USA), 2008, p. 446–459. DOI: 10.1007/978-3-540-68914-0_27
  23. NASSAR, M., SOUISSI, Y., GUILLEY, S., et al. RSM: A small and fast countermeasure for AES, secure against 1st and 2ndorder zero-offset SCAs. In Design, Automation Test in Europe Conference Exhibition (DATE. Dresden (Germany), 2012, p. 1173–1178. DOI: 10.1109/DATE.2012.6176671
  24. YE, X., EISENBARTH, T. On the vulnerability of low entropy masking schemes. In Smart Card Research and Advanced Applications. Berlin (Germany), 2014, p. 44–60. DOI: 10.1007/978-3-319-08302-5_4
  25. BHASIN, S., DANGER, J.-L., GUILLEY, S., et al. A lowentropy first-degree secure provable masking scheme for resourceconstrained devices. In Proceedings of the Workshop on Embedded Systems Security. New York (USA), 2013, p. 1–10. DOI: 10.1145/2527317.2527324
  26. PROUFF, E., RIVAIN, M. A generic method for secure Sbox implementation. In Information Security Applications. Jeju Island (Korea), 2007, p. 227–244. DOI: 10.1007/978-3-540-77535-5_17
  27. BHASIN, S., BRUNEAU, N., DANGER, et al. Analysis and improvements of the DPA contest v4 implementation. In Security, Privacy, and Applied Cryptography Engineering. Pune (India), 2014, p. 201–218. DOI: 10.1007/978-3-319-12060-7_14
  28. GROSSO, V., STANDAERT, F.-X., PROUFF, E. Low entropy masking schemes, revisited. In Smart Card Research and Advanced Applications. Berlin (Germany), 2014, p. 33–43. DOI: 10.1007/978-3-319-08302-5_3
  29. GUILLEYHO, S. DPA contest v4, 2013. [Online] Cited 2015-07-17. Available at:
  30. MESSERGES, T. Using second-order power analysis to attack DPA resistant software. In Cryptographic Hardware and Embedded Systems CHES 2000. Worcester (USA), 2000. DOI: 10.1007/3-540-44499-8_19
  31. MANGARD, S., PRAMSTALLER, N., OSWALD, E. Successfully attacking masked AES hardware implementations. In Cryptographic Hardware and Embedded Systems CHES 2005. Edinburgh (UK), 2005, p. 157–171. DOI: 10.1007/11545262_12
  32. ANDERSON, J. R., MICHALSKI, R. S., CARBONELL, J. G., et al. Machine Learning: An Artificial Intelligence Approach. Springer-Verlag Berlin Heidelberg, 1983. ISBN: 978-3-662-12405-5
  33. KOTSIANTIS, S. B. Supervised machine learning: A review of classification techniques. In Proceedings of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies. Amsterdam (Netherlands), 2007, p. 3–24. ISBN: 978-1-58603-780-2
  34. HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J. Unsupervised learning. In The Elements of Statistical Learning. 2009, p. 485–585. ISBN: 978-0-387-84857-0. DOI: 10.1007/978-0-387-84858-7_14
  35. QUISQUATER, J.-J., SAMYDE, D. Automatic code recognition for smart cards using a Kohonen neural network. In Proceedings of the 5th Conference on Smart Card Research and Advanced Application Conference - Volume 5. Berkeley (USA), 2002, p. 6–6.
  36. KUR, J., SMOLKA, T., SVENDA, P. Improving resiliency of java card code against power analysis. In Mikulasska kryptobesidka, Sbornik prispevku, 2009, p. 29–39.
  37. YANG, S., ZHOU, Y., LIU, J., et al. Back propagation neural network based leakage characterization for practical security analysis of cryptographic implementations. In Information Security and Cryptology - ICISC 2011. Seoul (Korea), 2011, p. 169–185. DOI: 10.1007/978-3-642-31912-9_12
  38. LERMAN, L., BONTEMPI, G., MARKOWITCH, O. Side channel attack: an approach based on machine learning. In COSADE 2011 - Second International Workshop on Constructive Side-Channel Analysis and Secure Design. Darmstadt (Germany), 2011, p. 29–41.
  39. LERMAN, L., BONTEMPI, G., MARKOWITCH, O.. Power analysis attack: an approach based on machine learning. International Journal of Applied Cryptography, 2014, vol. 3, no. 2, p. 97–115. ISSN: 1753-0563. DOI: 10.1504/IJACT.2014.062722
  40. HOSPODAR, G., GIERLICHS, B., DE MULDER, E., et al. Machine learning in side-channel analysis: a first study. Journal of Cryptographic Engineering, 2011, vol. 1, no. 4, p. 293–302. DOI: 10.1007/s13389-011-0023
  41. HOSPODAR, G., DE MULDER, E., GIERLICHS, B., et al. Least squares support vector machines for side-channel analysis. In COSADE 2011 - Second International Workshop on Constructive Side-Channel Analysis and Secure Design. Darmstadt (Germany), 2011, p. 293–302.
  42. HEUSER, A., ZOHNER, M. Intelligent machine homicide - breaking cryptographic devices using support vector machines. In Constructive Side-Channel Analysis and Secure Design: Third International Workshop, COSADE. Darmstadt (Germany), 2012, p. 249–264. DOI: 10.1007/978-3-642-29912-4_18
  43. BARTKEWITZ, T., LEMKE-RUST, K. Efficient template attacks based on probabilistic multi-class support vector machines. In Smart Card Research and Advanced Applications. Graz (Austria), 2013, p. 263–276. DOI: 10.1007/978-3-642-37288-9_18
  44. MLADENIC, D., BRANK, J., GROBELNIK, M., et al. Feature selection using support vector machines. In The 27th Annual International ACM SIGIR Conference (SIGIR 2004). 2004, p. 234–241.
  45. LERMAN, L., BONTEMPI, G., TAIEB, S. B., et al. A time series approach for profiling attack. In Proceedings of the Third International Conference Security, Privacy, and Applied Cryptography Engineering SPACE. Kharagpur (India), 2013, p. 75–94. DOI: 10.1007/978-3-642-41224-0_7
  46. HE, H., JAFFE, J.,ZOU, L. Side channel cryptanalysis using machine learning. Stanford, 2012.
  47. LERMAN, L., MEDEIROS, S. F., BONTEMPI, G., et al. A machine learning approach against a masked AES. In Proceedings of the 12th International Conference of Smart Card Research and Advanced Applications CARDIS. Berlin (Germany), 2013, p. 61–75. DOI: 10.1007/978-3-319-08302-5_5
  48. MARTINASEK, Z., ZEMAN, V. Innovative method of the power analysis. Radioengineering, 2013, vol. 22, no. 2, p. 586–594. ISSN: 1210-2512
  49. MARTINASEK, Z., HAJNY, J., MALINA, L. Optimization of power analysis using neural network. In Proceedings of the 12th International Conference Smart Card Research and Advanced Applications CARDIS. Berlin (Germany), 2013, p. 94–107. DOI: 10.1007/978-3- 319-08302-5_7
  50. LERMAN, L., MEDEIROS, S. F., VESHCHIKOV, et al. Semisupervised template attack. In Proceedings of the 4th International Workshop Constructive Side-Channel Analysis and Secure Design COSADE. Paris (France), p. 184–199. DOI: 10.1007/978-3-642- 40026-1_12
  51. CHOU, J.-W., CHU, M.-H., TSAI, Y.-L., et al. Advances in Knowledge Discovery and Data Mining. Springer Berlin Heidelberg, 2013. (An unsupervised learning model to perform side channel attack). ISBN: 978-3-642-37452-4. DOI: 10.1007/978-3-642-37453-1_34
  52. HEYSZL, J., IBING, A., MANGARD, S., et al. Clustering algorithms for non-profiled single-execution attacks on exponentiations. In Proceedings of the 12th International Conference Smart Card Research and Advanced Applications CARDIS 2013. Berlin (Germany), 2013, p. 79–93. DOI: 10.1007/978-3-319-08302-5_6
  53. ZHANG, Z., WU, L., WANG, A., et al. Improved leakage model based on genetic algorithm. IACR Cryptology ePrint Archive, 2014.
  54. PERIN, G., IMBERT, L., TORRES, L., et al. Attacking randomized exponentiations using unsupervised learning. In Proceedings of the 4th International Workshop Constructive Side-Channel Analysis and Secure Design COSADE. Paris (France), 2014, p. 144–160. DOI: 10.1007/978-3-319-10175-0_11
  55. AUMONIER, S. Generalized correlation power analysis. In Proceedings of the Ecrypt Workshop Tools for Cryptanalysis, 2007.
  56. JAP, D.,BREIER, J. Overview of machine learning based side-channel analysis methods. In 14th International Symposium on Integrated Circuits (ISIC). 2014, p. 38–41. DOI: 10.1109/ISICIR.2014.7029524
  57. WHITNALL, C., OSWALD, E. Robust profiling for DPA-style attacks. In 17th International Workshop Cryptographic Hardware and Embedded Systems - CHES. Saint-Malo (France), 2015, p. 3–21. DOI: 10.1007/978-3-662-48324-4_1
  58. STANDAERT, F.-X., MALKIN, T. G., YUNG, M. A unified framework for the analysis of side-channel key recovery attacks. In Proceedings of the 28th Annual International Conference on Advances in Cryptology: the Theory and Applications of Cryptographic Techniques. Berlin, (Germany), 2009, p. 443–461. DOI: 10.1007/978-3-642-01001-9_26
  59. FEI, Y., LUO, Q., DING, A. A statistical model for DPA with novel algorithmic confusion analysis. In Cryptographic Hardware and Embedded Systems, CHES 2012. Leuven (Belgium), 2012, p. 233–250. DOI: 10.1007/978-3-642-33027-8_14
  60. TSOUMAKAS, G., KATAKIS, I. Multi-label classification: An overview.International Journal of Data Warehousing and Mining. Idea Group Publishing, vol. 3, no. 3, 2007, p. 1–13. ISSN: 1548-3924
  61. READ, J., PFAHRINGER, B., HOLMES, G., et al. Classi- fier chains for multi-label classification. Machine Learning, 2011, vol. 85, no. 3, p. 333–359. DOI: 10.1007/s10994-011-5256-5
  62. ALTMAN, N. S. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 1992, vol. 46, no. 3, p. 175–185. DOI: 10.2307/2685209
  63. EVERITT, B., LANDAU, S., LEESE, M., et al. Cluster Analysis. 5th ed. Wiley, 2011. ISBN: 9780470749913. DOI: 10.1002/9780470977811
  64. MORADI, A., GUILLEY, S., HEUSER, A. Detecting hidden leakages. In Proceedings of the 12th International Conference Applied Cryptography and Network Security: ACNS 2014. Lausanne (Switzerland), 2014, p. 324–342. DOI: 10.1007/978-3-319-07536-5_20
  65. HOFMANN, M., KLINKENBERG, R. RapidMiner: Data Mining Use Cases and Business Analytics Applications. CRC Press, 2013. ISBN: 9781482205497
  66. SOKOLOVA, M., LAPALME, G. A systematic analysis of performance measures for classification tasks. Information Processing and Management, 2009, vol. 45, no. 4, p. 427–437. ISSN: 0306-4573. DOI: 10.1016/j.ipm.2009.03.002
  67. NABNEY, I. T. NETLAB: Algorithms for Pattern Recognition. Advances in Pattern Recognition. Springer-Verlag New York, Inc., New York (USA), 2002. ISBN: 978-1-85233-440-6
  68. FAWCETT, T. An introduction to ROC analysis. Pattern Recognition Letters, 2006, vol. 27, no. 8, p. 861–874. ISSN: 0167-8655. DOI: 10.1016/j.patrec.2005.10.010

Keywords: Power Analysis, Machine Learning, Template Attack, Comparison, Smart Cards

A. Aggarwal, T. K. Rawat, M. Kumar, D. K. Upadhyay [references] [full-text] [DOI: 10.13164/re.2016.0383] [Download Citations]
Efficient Design of Digital FIR Differentiator using $L_1$-Method

In this paper, an efficient design of FIR digital differentiator using the $L_1$-optimality criterion is proposed. We present a technique based on the modified Newton method to solve the design problem so that the optimal differentiator coefficients are obtained by minimizing the absolute error. The novel $L_1$-error function leads to a flat response at low-frequencies. Extensive simulations are carried out to validate the proposed design. The superiority of the proposed design is evident by comparing it with other conventional design techniques such as, windowing, minimax and the least-squares approach.

  1. SKOLNIK, M. I. Introduction to Radar Systems. New York (USA): McGraw- Hill, 1980. ISBN: 9780070579095
  2. XU, Y., DAI, T., SYCARA, K., et al. Service level differentiation in multi-robots control. In IEEE/RSJ International Conference on Intelligent Robots and Systems. Oct. 2010, p. 2224–2230. ISSN: 2153-0858. DOI: 10.1109/IROS.2010.5649366
  3. FUJIOKA, H. Characterizing approximated differentiators in digital control. In 11th International Conference on Control Automation Robotics and Vision. Dec. 2010, p. 923–926. DOI: 10.1109/ICARCV.2010.5707379
  4. MORGERA, S. D. Digital filtering and prediction for communications systems time synchronization. IEEE Journal of Oceanic Engineering, 1982, vol. 7, no. 3, p. 110–119. DOI: 10.1109/JOE.1982.1145524
  5. LAGUNA, P., THAKOR, N. V., CAMINAL, P., et al. Low-pass differentiator for biological signals with known spectra: Application to ECG signal processing. IEEE Transactions on Biomedical Engineering, Apr. 1990, vol. 37, no. 4, p. 420–425. ISSN: 0018-9294. DOI: 10.1109/10.52350
  6. AL-ALAOUI, M. A. Novel FIR approximations of IIR differentiators with applications to image edge detection. In 18th IEEE International Conference on Electronics, Circuits and Systems (ICECS). Dec. 2011, p. 554–558. DOI: 10.1109/ICECS.2011.6122335
  7. ZUBAIDAH, T., KANATA, B., RAMADHANI, C., et al. Comprehensive geomagnetic signal processing for sucessful earthquake prediction. In International Conference on Quality in Research (QiR). Jun. 2013, p. 212–219. DOI: 10.1109/QiR.2013.6632567
  8. KUMAR, B., ROY, S. C. D. Design of eficient FIR digital differentiators and Hilbert transformers for midband frequency ranges. International Journal of Circuit Theory and Applications, 1989, vol. 17, no. 4, p. 483–488. ISSN: 1097-007X. DOI: 10.1002/cta.4490170409
  9. KUMAR, B., ROY, S. C. D. Maximally linear FIR digital differentiators for high frequencies. IEEE Transactions on Circuits and Systems, Jun. 1989, vol. 36, no. 6, p. 890–893. ISSN: 0098-4094. DOI: 10.1109/31.90411
  10. ALAOUI, M. A. Novel digital integrator and differentiator. Electronics Letters, Feb. 1993, vol. 29, no. 4, p. 376–378. ISSN: 0013-5194. DOI: 10.1049/el:19930253
  11. BIHAN, J. L. Novel class of digital integrators and differentiators. Electronics Letters, May 1993, vol. 29, no. 11, p. 971–973. ISSN: 1053-587X. DOI: 10.1109/TSP.2008.929668
  12. UPADHYAY, D. K. Class of recursive wideband digital differentiators and integrators. Radioengineering, Sep. 2012, vol. 21, no. 3, p. 904–910. ISSN: 1805-9600
  13. JAIN, M., GUPTA, M., JAIN, N. Linear phase second order recursive digital integrators and differentiators. Radioengineering, Jun. 2012, vol. 21, no. 2, p. 712–717. ISSN: 1805-9600
  14. NGO, N. Q. A new approach for the design of wideband digital integrator and differentiator. IEEE Transactions on Circuits and Systems II: Express Briefs, Sep. 2006, vol. 53, no. 9, p. 936–940. ISSN: 1549-7747. DOI: 10.1109/TCSII.2006.881806
  15. GUPTA, M., JAIN, M., KUMAR, B. Recursive wideband digital integrator and differentiator. International Journal of Circuit Theory and Applications, 2011, vol. 39, no. 7, p. 775–782. ISSN: 1097-007X. DOI: 10.1002/cta.658
  16. UPADHYAY, D. K. Recursive wideband digital differentiators. Electronics Letters, Dec. 2010, vol. 46, no. 25, p. 1661–1662. ISSN: 0013- 5194. DOI: 10.1049/el.2010.2113
  17. UPADHYAY, D. K., SINGH, R. K. Recursive wideband digital differentiators and integrators. Electronics Letters, 2011, vol. 47, no. 11, p. 647–648. ISSN: 0013-5194. DOI: 10.1049/el.2011.0420
  18. AL-ALAOUI, M. A. Class of digital integrators and differentiators. IET Signal Processing, 2011, vol. 5, no. 2, p. 251–260. ISSN: 1751-9675. DOI: 10.1049/iet-spr.2010.0107
  19. AL-ALAOUI, M. A., BAYDOUN, M. Novel wide band digital differentiators and integrators using different optimization techniques. In International Symposium on Signals, Circuits and Systems (ISSCS). Jul. 2013, p. 1–4. DOI: 10.1109/ISSCS.2013.6651225
  20. KUMAR, M., RAWAT, T. K. Optimal design of FIR fractional order differentiator using cuckoo search algorithm. Expert Systems with Applications, 2015, vol. 42, no. 7, p. 3433–3449. ISSN: 0957-4174. DOI: 10.1016/j.eswa.2014.12.020
  21. GUPTA, M., RELAN, B., YADAV, R., et al. Wideband digital integrators and differentiators designed using particle swarm optimisation. IET Signal Processing, Aug. 2014, vol. 8, no. 6, p. 668–679. ISSN: 1751-9675. DOI: 10.1049/iet-spr.2013.0011
  22. GROSSMANN, L. D., ELDAR, Y. C. An L1-method for the design of linear-phase FIR digital filters. IEEE Transactions on Signal Processing, Nov. 2007, vol. 55, no. 11, p. 5253–5266. ISSN: 1053-587X. DOI: 10.1109/TSP.2007.896088
  23. AGGARWAL, A., KUMAR, M., RAWAT, T. K. L1 error criterion based optimal FIR filters. In Annual IEEE India Conference INDICON. Dec. 2014, p. 1–6. ISSN: 2325-940X. DOI: 10.1109/INDICON.2014.7030639
  24. AGGARWAL, A., RAWAT, T. K., KUMAR, M., et al. Intelligent Systems Technologies and Applications: Volume 1. 1st ed. Springer International Publishing, 2016. (An L1-method: Application to digital symmetric type-II FIR filter design.) p. 335–343. ISBN: 978-3-319-23036-8. DOI: 10.1007/978-3-319-23036-8_29
  25. AGGARWAL, A., RAWAT, T. K., KUMAR, M., et al. Optimal design of FIR high pass filter based on L1 error approximation using real coded genetic algorithm. International Journal Engineering Science and Technology, 2015, vol. 18, no. 4, p. 594–602. ISSN: 2215-0986. DOI: 10.1016/j.jestch.2015.04.004

Keywords: FIR differentiator, $L_1$-method, digital filter, magnitude response

S. Matejka [references] [full-text] [DOI: 10.13164/re.2016.0390] [Download Citations]
Analysis of Intermodulation Distortion in OFDM Based Transmitter Using EER Technique

During the last two decades, new digital modulation systems have appeared in the audio broadcasting. Such broadcasting systems require new transmitters’ concepts to enable the transmission of digitally modulated signals. Moreover, the selected modulation schemes (e.g. orthogonal frequency division multiplexing) require a high linearity power stage, which typically exhibits low efficiency due to high peak-toaverage power ratio of the modulated signal. One of the promising transmitter concepts is the Kahn envelope elimination and restoration technique, where the original Cartesian in-phase and quadrature baseband signals are transformed to the envelope and phase signals. The main advantage of this technique is an ability to employ suitable types of highly efficient amplitude modulation transmitters for envelope amplification, while the phase modulated carrier is produced by an additional phase modulator. The substantial drawback of envelope elimination and restoration is nonideal recombination of linearly distorted amplitude signal and phase modulated carrier at the output power stage. The aim of this paper is twofold. Firstly, to analyze the effect of the envelope and phase signals bandwidth limitation on the modulated signal in-channel distortion and out-ofchannel emission. Secondly, to present the performance results as a reference for transmitter designers to properly set the envelope and phase paths to reach required in-channel signal quality and suppress out-of-channel products.

  1. ETSI Standard. Digital Radio Mondiale (DRM); System Specification. ETSI ES 201 980 V4.1.1, January 2014.
  2. iBiquity Digital Corporation. HD Radio Air Interface Design Description – Layer 1 AM. Doc. No. SY_IDD_1012s rev. F, August 2011.
  3. LIU, W., LAU, J., CHENG, R. Considerations on applying OFDM in a highly efficient power amplifier. IEEE Transactions on Circuits Systems II, 1999, vol. 46, no. 11 , p. 1329–1336. DOI: 10.1109/82.803472
  4. HOVERSTEN, J., SCHAFER, S., ROBERG, M., et al. Codesign of PA, supply, and signal processing for linear supplymodulated RF transmitters. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 6, p. 2010–2020. DOI: 10.1109/TMTT.2012.2187920
  5. SEBASTIAN, J., MIAJA, P. F., GONZALEZ, F. J. O., et al. Design of a two-phase buck converter with fourth-order output filter for envelope amplifiers of limited bandwidth. IEEE Transactions on Power Electronics, 2014, vol. 29, no. 11, p. 5933–5948. DOI: 10.1109/TPEL.2013.2295035
  6. JOOSEUNG, K., DONGSU, K., YUNSUNG, C., et al. Analysis of envelope-tracking power amplifier using mathematical modeling. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 6, p. 1352–1362. DOI: 10.1109/TMTT.2014.2321356
  7. HARRIS CORP. Advances in AM Modulation Techniques to Improve Digital Transmission of HD Radio and DRM. Harris Broadcast Communications, February 2004.
  8. TRANSRADIO AG. 750 kW Solid State LF Broadcast Transmitter TRAM 750 LS LCD. TRANSRADIO Sender Systeme Berlin AG, March 2013.
  9. KAHN, L. R. Single sideband transmission by envelope elimination and restoration. In Proceedings of the IRE, 1952, vol. 40, no. 7, p. 803–806. DOI: 10.1109/JRPROC.1952.273844
  10. VASIĆ, M., GARCIA, O., OLIVER, J. A., et al. High efficiency power amplifier based on envelope elimination and restoration technique. In IEEE Energy Conversion Congress and Exposition (ECCE), 2010, p. 3833–3840. DOI: 10.1109/ECCE.2010.5617763
  11. WANG, F., KIMBALL, D. F., POPP, J. D., et al. An improved poweradded efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11g WLAN applications. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 12, p. 4086–4099. DOI: 10.1109/TMTT.2006.885575
  12. NESIMOGLU, T., MORRIS, K. A., PARKER, S. C., et al. Improved EER transmitters for WLAN. In IEEE Radio and Wireless Symposium, 2006, p. 239–242. DOI: 10.1109/RWS.2006.1615139
  13. BADAROU, A., REED, S., NDONG, D., et al. Power amplifier design challenges in UHF and VHF transmitters. In IEEE 11th International New Circuits and Systems Conference (NEWCAS), Paris, June 2013, p. 1–4. DOI: 10.1109/NEWCAS.2013.6573615
  14. ROHDE & SCHWARZ GMBH & CO. KG R&S THU9/R&S THV9 Liquid-cooled Transmitter Families, Efficiency Redefined. Rohde & Schwarz GmbH & Co. KG, Munich, Germany, February 2015.
  15. GODBOLE, B. B., NIKAM, R. H. FPGA implementation of CORDIC algorithm used in DDS based modulators. International Journal of Advanced Research in Computer and Communication Engineering, Jan. 2015, vol. 4, no. 1, p. 94–97. DOI: 10.17148/IJARCCE.2015.4119
  16. DOBES, J. Using Volterra series for an estimation of fundamental intermodulation products. Radioengineering, 2008, vol. 17, no. 4, p. 59–64. WOS: 000262104800008
  17. RABB, F. H. Intermodulation distortion in Kahn-technique transmitters. IEEE Transactions on Microwave Theory and Techniques, Dec. 1996, vol. 44, no. 12, p. 2273–2278. DOI: 10.1109/22.556466
  18. DOBES, J. Advanced types of the sensitivity analysis in frequency and time domains. AEU – International Journal of Electronics and Communications, 2009, vol. 63, no. 1, p. 52–64. DOI: 10.1016/J.AEUE.2007.10.008
  19. RUDOLPH, D. Out-of-band emissions of digital transmissions using Kahn EER technique. IEEE Transactions on Microwave Theory and Techniques, 2002, vol. 50, no. 8, p. 1979–1983. DOI: 10.1109/TMTT.2002.801349
  20. RUDOLPH, D. Kahn EER technique with single-carrier digital modulations. IEEE Transactions on microwave theory and techniques, 2003, vol. 51, no. 2, p. 548–552. DOI: 10.1109/TMTT.2002.807810
  21. MIAJA, P. F., SEBASTIAN, J., MARANTE, R., et al. A Linear assisted switching envelope amplifier for a UHF polar transmitter. IEEE Transactions on Power Electronics, 2014, vol. 29, no. 4, p. 1850–1861. DOI: 10.1109/TPEL.2013.2270916
  22. MATEJKA, S. All digital FPGA based PWM modulator for radio frequency transmitters. In Konference Radioelektronika 2015, Pardubice (Czech Republic), Apr. 2015, p. 244–247. DOI: 10.1109/RADIOELEK.2015.7129022
  23. FEDORENKO, P. Phase Distortion in Envelope Elimination and Restoration Radio Frequency Power Amplifiers. Ph.D. Thesis, Georgia Institute of Technology, August 2009.
  24. MIDDLETON, D. An Introduction to Statistical Communication Theory. New York: McGraw-Hill, 1960.
  25. LATHI, B. P. Modern Digital and Analog Communication Systems. 3rd ed. New York, Oxford: Oxford University Press, 1998. ISBN: 0195110099
  26. PEEBELS, P. Z. Probability, random Variables and Random Signal Principles. 4th ed. McGraw-Hill Publishing Company, 2001. ISBN: 0073660078
  27. BANELLI, P., CACOPARDI, S. Theoretical analysis and performance of OFDM signals in nonlinear AWGN channels. IEEE Transactions on Communications, 2000, vol. 48, no. 3, p. 430–441. DOI: 10.1109/26.837046
  28. EBU TECHNICAL REPORT. Technical Bases for DRM Services Coverage Planning. EBU – Tech 3330, Geneva, June 2008.
  29. ETSI Standard. Electromagnetic compatibility and Radio spectrum Matters (ERM); Transmitting Equipment for the Digital Radio Mondiale (DRM) Broadcasting Service; Part 1: Technical Characteristics and Test Methods. ETSI EN 302 245-1 V1.1.1, January 2005.
  30. ETSI Standard. Electromagnetic Compatibility and Radio Spectrum Matters (ERM); Transmitting Equipment for the Digital Radio Mondiale (DRM) Broadcasting Service; Part 2: Harmonized EN under Article 3.2 of the R&TTE Directive. ETSI EN 302 245-2 V1.1.1, January 2005.
  31. COLANTONIO, P., GIANNINI, F., LIMITI, E. High Efficiency RF and Microwave Solid State Power Amplifiers. John Wiley & Sons, 2009. ISBN: 978-0-470-51300-2

Keywords: Envelope Elimination and Restoration (EER), Orthogonal Frequency Division Multiplex (OFDM), transmitter, amplitude and phase modulation, intermodulation distortion, Error Vector Magnitude (EVM)

S. Kumar, J. S. Yadav [references] [full-text] [DOI: 10.13164/re.2016.0399] [Download Citations]
Segmentation of Moving Object Using Background Subtraction Method in Complex Environments

Background subtraction is an extensively used approach to localize the moving object in a video sequence. However, detecting an object under the spatiotemporal behavior of background such as rippling of water, moving curtain and illumination change or low resolution is not a straightforward task. To deal with the above-mentioned problem, we address a background maintenance scheme based on the updating of background pixels by estimating the current spatial variance along the temporal line. The work is focused to immune the variation of local motion in the background. Finally, the most suitable label assignment to the motion field is estimated and optimized by using iterated conditional mode (ICM) under a Markovian framework. Performance evaluation and comparisons with the other well-known background subtraction methods show that the proposed method is unaffected by the problem of aperture distortion, ghost image, and high frequency noise.

  1. RADKE, R. J., ANDRA, S., AL-KOFAHI, O., et al. Image change detection algorithm: a systematic survey. IEEE Transactions on Image Processing, 2005, vol. 14, no. 3, p. 294–307. DOI:10.1109/TIP/2004.838698
  2. PAUL, M., HAQUE, S. M, CHAKRABORTY, S. Human detection in surveillance videos and its application - a review. EURASIP Journal on Advances in Signal Processing, 2013, no. 11, p. 1–25. DOI: 10.1186/1687-6180-2013-176
  3. MANDELLOS, N. A., KERAMITSOGLU, I., KIRANOUDIS, C. T. A background subtraction algorithm for detecting and tracking vehicles. Expert System with Applications, 2011, vol. 38, no. 3, p. 1619–1631. DOI:10.1016/j.eswa.2010.07.083
  4. ZHANG, W., ZHANG, Y., GAO, C., et al. Action recognition by joint spatial-temporal motion feature. Journal of Applied Mathematics, 2013, vol. 2013, 9 p. DOI: 10.1155/2013/605469
  5. LUCAS, B. D, KANADE, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI). Vancouver (British Columbia), August 1981, vol. 81, p. 674–679.
  6. SPAGNOLO, P., D’ORAZIO, T., LEO, M., DISTANTE, A. Moving object segmentation by background subtraction and temporal analysis. Image and Vision Computing, 2006, vol. 24, no. 5, p. 411–423. DOI: 10.1016/j.imavis.2006.01.001
  7. ORAL, M., DENIZ, U. Centre of mass model – A novel approach to background modeling for segmentation of moving objects. Image and Vision Computing, 2007, vol. 25, no. 8, p. 1365–1376. ISSN: 0262-885 6. DOI:10.1016/j.imavis.2006.10.001
  8. HUANG, S.C. An advanced motion detection algorithm with video quality analysis for video surveillance systems. IEEE Transactions on Circuits and Systems for Video Technology, 2011, vol. 21, no. 1, p. 1–14. DOI: 10.1109/TCSVT.2010.2087812
  9. XUE, G., SUN, J., SONG, L. Background subtraction based on phase feature and distance transforms. Pattern Recognition Letters, 2012, vol. 33, no. 12, p. 1601–1613. DOI: 101016/j.patrec. 2012.05.009
  10. VOSTERS, L., SHAN, C., GRITTI, T. Real-time robust background subtraction under rapidly changing illumination conditions. Image and Vision Computing, 2012, vol. 30, no. 12, p. 1004–1015. DOI: 10.1016/j.imavis.2012.08.017
  11. MANZANERA, A., RICHEFEU, J. C. A new motion detection algorithm based on Σ–Δ background estimation. Pattern Recognition Letters, 2007, vol. 28, no. 3, p. 320–328. DOI: 10.1016/j.patrec.2006.04.007
  12. MCFARLANE, N. J., SCHOFIELD, C. P. Segmentation and tracking of piglets in images. Machine Vision and Applications, 1995, vol. 8, no. 3, p. 187–193. DOI: 10.1007/BF01215814
  13. ZHONG, J., SCLAROFF, S. Segmenting foreground objects from a dynamic textured background via a robust Kalman filter. In Proceedings of the 9th IEEE International Conference on Computer Vision. Nice (France), 2003, vol. 1, p. 44–50. DOI: 10.1109/ICCV.2003.1238312
  14. WREN, C. R., AZARBAYEJANI, A., DARRELL, T., PENTLAND, A. P. Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, vol. 19, no. 7, p. 780–785. DOI: 10.1109/34.598236
  15. CHEUNG, S. C. S., KAMATH, C. Robust background subtraction with foreground validation for urban traffic video. EURASIP Journal on Advances in Signal Processing, 2005, p. 2330–2340. DOI: 10.1155/ASP.2005.2330
  16. CUCCHIARA, R., GRANA, C., PICCARDI, M., Detecting moving objects, ghosts, and shadows in video streams. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, vol. 25, no. 10, p. 1337–1342. DOI: 10.1109/TPAMI2003.1233909
  17. DO, B. H., HUANG, S. C. Dynamic background modeling based on radial basis function neural networks for moving object detection. In IEEE International Conference on Multimedia and Expo. Barcelona (Spain), 2011, 4 p. DOI: 10.1109/ICME.2011.6012085
  18. NIKOLOV, B., KOSTOV, N. Motion detection using adaptive temporal averaging method. Radioengineering, 2014, vol. 23, no. 2, p. 652–658. ISSN:1210-2512
  19. RAHMAN, F. Y. A., HUSSAIN, A., ZAKI, et al. Enhancement of background subtraction techniques using a second derivative in gradient direction filter. Journal of Electrical and Computer Engineering, 2013, no. 21, 12 p. DOI: 10.1155/2013/598708
  20. MANZANERA, A., RICHEFEU, J. C. A robust and computationally efficient motion detection algorithm based on Σ-Δ background estimation. In Proceedings of the Fourth Indian Conference on Computer Vision, Graphics and Image Processing. Kolkata (India), 2004, p. 46–51. ISBN: 81-7764-7075
  21. STAUFFER, C., GRIMSON, W. E. L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, vol. 22, no. 8, p. 747–757. DOI: 10.1109/34.868677
  22. EVANGELIO, R. H., SIKORA, T. Static object detection based on a dual background model and a finite-state machine. EURASIP Journal on Image and Video Processing, 2010, 11 p. DOI: 10.1155/2011/ 858502
  23. HUANG, S. S., FU, L. C., HSIAO, P. Y. Region-level motionbased background modeling and subtraction using MRFs. IEEE Transactions on Image Processing, 2007, vol. 16, no. 5, p. 1446–1456. DOI: 10.1109/TIP.2007.894246
  24. BOUWMANS, T. Traditional and recent approaches in background modeling for foreground detection: An overview. Computer Science Review, 2014, vol. 11–12, p. 31–66. DOI: 10.1016/j.cosrev.2014.04.001
  25. ZHAO, Z., BOUWMANS, T., ZHANG, X., et al. A fuzzy background modeling approach for motion detection in dynamic backgrounds. Multimedia and Signal Processing, 2012, Springer Berlin Heidelberg, vol. 346, p. 177–185. DOI: 10.1007/978-3-642- 35286-7_23
  26. LIN, L., XU, Y., LIANG, X., LAI, J. Complex background subtraction by pursuing dynamic spatio-temporal models. IEEE Transactions on Image Processing, 2014, vol. 23, no. 7, p. 3191–3202. DOI: 10.1109/TIP.2014.2326776
  27. BESAG, J. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society. Series B (Methodological), 1986, vol. 48, no. 3, p. 259–302. DOI: 10.2307/2345426
  28. HALIM, S. Modified Ishin model for generating binary images. Jurnal Informatika, 2008, vol. 8, no. 2, p. 115–118, ISSN: 1411- 0105
  29. REDDY, V., SANDERSON, C., LOVELL, B. C. A low-complexity algorithm for static background estimation from cluttered image sequences in surveillance contexts. Journal on Image and Video Processing, 2011, p. 1–14. DOI: 10.1155/2011/164956

Keywords: Background subtraction, background modeling, initial motion field, morphology.