ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

December 2024, Volume 33, Number 4 [DOI: 10.13164/re.2024-4]

Show all Hide all

P. Han, Z. Wang, H. Liu, M. Gao, S. Fang [references] [full-text] [DOI: 10.13164/re.2024.0487] [Download Citations]
A Novel Balanced Nonreciprocal Bandpass Filter Based on Stepped-Impedance Resonator and Time-Modulated Resonator

A novel balanced nonreciprocal bandpass filter based on the stepped impedance resonator and the time-modulated resonator is proposed in this paper. The balanced nonreciprocal bandpass filter is fabricated on a single PCB board, and the compact structure is achieved through the gap coupling structure of the microstrip resonators. Utilizing the quarter-wavelength transformer and gap coupling structure, good isolation between RF and modulated signals is achieved without adding lumped elements. Relying on the efficient modulation circuit and the half-wavelength stepped impedance resonator’s inherent resonance characteristic, an excellent nonreciprocal characteristic of the differential signal and effective suppression of common-mode noise are achieved. A balanced microstrip nonreciprocal bandpass filter operating at the center frequency of 1.5 GHz is designed, simulated, and experimentally verified. The measured reverse isolation is greater than 20 dB with a bandwidth of 48.8 MHz. The measured forward differential-mode insertion loss is 3.7 dB at the center frequency of 1.5 GHz. In the range of 1.2–1.8 GHz, the measured common-mode noise suppression is larger than 60.4 dB.

  1. KORD, A., SOUNAS, D., ALÙ, A. Achieving full-duplex communication: Magnetless parametric circulators for full-duplex communication systems. IEEE Microwave Magazine, 2018, vol. 19, no. 1, p. 84–90. DOI: 10.1109/MMM.2017.2759638
  2. ZHOU, J., REISKARIMIAN, N., DIAKONIKOLAS, J., et al. Integrated full duplex radios. IEEE Communications Magazine, 2017, vol. 55, no. 4, p. 142–151. DOI: 10.1109/MCOM.2017.1600583
  3. GHAFFAR, F., BRAY, J., VASEEM, M., et al. Theory and design of tunable full-mode and half-mode ferrite waveguide isolators. IEEE Transactions on Magnetics, 2019, vol. 55, no. 8, p. 1–8. DOI: 10.1109/TMAG.2019.2910028
  4. FAY, C., COMSTOCK, R. Operation of the ferrite junction circulator. IEEE Transactions on Microwave Theory and Techniques, 1965, vol. 13, no. 1, p. 15–27. DOI: 10.1109/TMTT.1965.1125923
  5. ASHLEY, A., PSYCHOGIOU, D. RF co-designed bandpass filters/isolators using nonreciprocal resonant stages and microwave resonators. IEEE Transactions on Microwave Theory and Techniques, 2021, vol. 69, no. 4, p. 2178–2190. DOI: 10.1109/TMTT.2021.3061431
  6. CHANG, J., KAO, J., LIN, Y., et al. Design and analysis of 24-GHz active isolator and quasi-circulator. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 8, p. 2638 to 2649. DOI: 10.1109/TMTT.2015.2442976
  7. CARCHON, G., NANWELAERS, B. Power and noise limitations of active circulators. IEEE Transactions on Microwave Theory and Techniques, 2000, vol. 48, no. 2, p. 316–319. DOI: 10.1109/22.821785
  8. WEI, F., YU, J., ZHANG, C., et al. Compact balanced dual-band BPFs based on short and open stub loaded resonators with wide common-mode suppression. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, vol. 67, no. 12, p. 3043–3047. DOI: 10.1109/TCSII.2020.2994632
  9. PAN, B., FENG, W., SHI, Y., et al. High-performance wideband balanced bandpass filter based on transversal signal-interference techniques. IEEE Transactions on Plasma Science, 2020, vol. 48, no. 12, p. 4119–4126. DOI: 10.1109/TPS.2020.3035558
  10. WEI, F., ZHANG, C., ZENG, C., et al. A reconfigurable balanced dual-band bandpass filter with constant absolute bandwidth and high selectivity. IEEE Transactions on Microwave Theory and Techniques, 2021, vol. 69, no. 9, p. 4029–4040. DOI: 10.1109/TMTT.2021.3093907
  11. CHEN, X., YANG, T., CHI, P. Arbitrary-order balanced filter with reflection less characteristics for both common- and differential mode signals. IEEE Microwave and Wireless Components Letters, 2021, vol. 31, no. 6, p. 553–556. DOI: 10.1109/LMWC.2021.3068469
  12. WU, X., LIU, X., HICKLE, M., et al. Isolating bandpass filters using time-modulated resonators. IEEE Transactions on Microwave Theory and Techniques, 2019, vol. 67, no. 6, p. 2331–2345. DOI: 10.1109/TMTT.2019.2908868
  13. WU, X., NAFE, M., MELCON, A., et al. Frequency tunable nonreciprocal bandpass filter using time-modulated microstrip λg/2 resonators. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, vol. 68, no. 2, p. 667–671. DOI: 10.1109/TCSII.2020.3014499
  14. WU, X., NAFE, M., MELCON, A., et al. A nonreciprocal microstrip bandpass filter based on spatio-temporal modulation. In IEEE MTT-S International Microwave Symposium. Boston (MA, USA), 2019, p. 9–12. DOI: 10.1109/MWSYM.2019.8700732
  15. CHAUDHARY, G., JEONG, Y. Nonreciprocal bandpass filter using mixed static and time-modulated resonators. IEEE Microwave and Wireless Components Letters, 2022, vol. 32, no. 4, p. 297–300. DOI: 10.1109/LMWC.2021.3123306
  16. ALVAREZ-MELCON, A., WU, X., ZANG, J., et al. Coupling matrix representation of nonreciprocal filters based on time modulated resonators. IEEE Transactions on Microwave Theory and Techniques, 2019, vol. 67, no. 12, p. 4751–4763. DOI: 10.1109/TMTT.2019.2945756
  17. DUTTA, P., KUMAR, G. A., RAM, G. Numerical design of nonreciprocal bandpass filters with the aid of 3D coupling matrix for 5G bands. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, vol. 69, no. 7, p. 3334–3338. DOI: 10.1109/TCSII.2022.3157644
  18. SIMPSON, D., VRYONIDES, P., NIKOLAOU, S., et al. Nonreciprocal balanced bandpass filters with quasi-elliptic response. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, vol. 69, no. 12, p. 5159–5163. DOI: 10.1109/TCSII.2022.3202860
  19. HONG, J. Microstrip Filters for RF/Microwave Applications. 2nd ed., rev. Hoboken (NJ, USA): Wiley, 2011. DOI: 10.1002/9780470937297

Keywords: Balanced bandpass filters, nonreciprocal filter, stepped-impedance resonators, time-modulated resonators, common-mode noise suppression

Z. Zheng, J. Lai, Q. Zhang, J. Guo [references] [full-text] [DOI: 10.13164/re.2024.0494] [Download Citations]
Gridless Sparse Recovery-based Wind Speed Estimation for Wind-shear Detection Using Airborne Phased Array Radar

The accuracy of wind speed estimation is an important factor affecting wind-shear detection in airborne weather radar. Aiming at the problem that dictionary mismatch in the sparse recovery-based wind speed estimation leads to the performance degradation, this paper proposes a wind speed estimation method based on atomic norm minimization for airborne array weather radar. The method first constructs joint sparse recovery measurements by compensating multiple array element data with wind-shear orientation information, and then the wind speed is estimated on continuous parameter domain using atomic norm minimization with multiple compensated measurements. Simulation experiments demonstrate that the proposed method can effectively improve the accuracy of wind speed estimation under dictionary mismatch, and the performance is better than that of the existing sparse recovery-based method of wind speed estimation with the pre-set discretized dictionary.

  1. LUCCHI, G. A new airborne weather radar systems. Journal of Aircraft, 2015, vol. 19, no. 3, p. 239–245. DOI: 10.2514/6.1981-237
  2. BAXA, E. G. Airborne pulsed Doppler radar detection of low altitude windshear – A signal processing problem. Digital Signal Processing, 1991, vol. 1, no. 4, p. 186–197. DOI: 10.1016/1051-2004(91)90112-X
  3. LIN, C., ZHANG, K., CHEN, X., et al. Overview of low-level wind shear characteristics over Chinese mainland. Atmosphere, 2021, vol. 12, no. 5, p. 1–19. DOI: 10.3390/atmos12050628
  4. BRACALENTE, M., BRITT, L., JONES, R. Airborne Doppler radar detection of low altitude windshear. Journal of Aircraft, 1990, vol. 27, no. 2, p. 151–157. DOI: 10.2514/3.45911
  5. BAXA, E. G., LAI, Y. C., KUNKEL, M. W. New signal processing developments in the detection of low-altitude windshear with airborne Doppler radar. The Record of the 1993 IEEE National Radar Conference. Lynnfield (USA), 1993, p. 269 to 274. DOI: 10.1109/NRC.1993.270452
  6. RTCA. Minimum Operational Performance Standards (MOPS) for Airborne Weather Radar with Forward-Looking Windshear and Turbulent Detection Capability. 212 pages. [Online] Cited 2018-08-17. Available at: https://products.rtca.org/21dimut/
  7. BAXA, E. G., DESHPANDE, M. D. Signal Processing Techniques for Clutter Filtering and Wind Shear Detection (NASA Report). 44 pages. [Online] Cited 2013-09-06. Available at: https://ntrs.nasa.gov/citations/19910014841
  8. KLEMM, R. Principle of Space-time Adaptive Processing. 3rd ed. London (UK): IET Publishers, 2006. ISBN: 9780863415661
  9. ZHANG, Y., WANG, S. Remote relative wind velocity estimation using airborne Doppler radar and spectrum analysis. IEEE Transactions on Aerospace and Electronic Systems, 2001, vol. 47, no. 3, p. 1648–1667. DOI: 10.1109/TAES.2011.5937256
  10. LI, H., CHEN, Y., FENG, K., et al. Low-altitude windshear wind speed estimation method based on KASPICE-STAP. Sensors, 2023, vol. 23, no. 54, p. 1–17. DOI: 10.3390/s23010054
  11. OSEGUERA, R. M., BOWLES, R. L., ROBINSON, P. A. Airborne in situ computation of the wind shear hazard index. AIAA Journal, 1992. DOI: 10.2514/6.1992-291
  12. BAXA, E. G., LEE, J. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar. (NASA Report) 42 pages. [Online] Cited 2013-09-06. Available at: https://ntrs.nasa.gov/citations/19910018088
  13. BRITT, C., HARRAH, T., GRITTENDEN, L. Microburst hazard detection performance of the NASA experimental windshear radar system. In Aircraft Design, Systems, and Operations Meeting. Monterey (USA), 1993. DOI: 10.2514/6.1993-3943
  14. LI, H., ZHOU, M., GUO, Q., et al. Compressive sensing-based wind speed estimation for low-altitude wind-shear with airborne phased array radar. Multidimensional Systems and Signal Processing, 2018, vol. 29, no. 2, p. 719–732. DOI: 10.1007/s11045-016-0448-6
  15. CANDES, E. J., WAKIN, M. B. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, vol. 25, no. 2, p. 21–30. DOI: 10.1109/MSP.2007.914731
  16. TANG, G., BHASKAR, B., SHAH, P., et al. Compressed sensing off the grid. IEEE Transactions on Information Theory, 2013, vol. 59, no. 11, p. 7465–7490. DOI: 10.1109/TIT.2013.2277451
  17. CANDES, E. J., FERNANDEZ-GRANDA, C. Towards a mathematical theory of super-resolution. Communications on Pure and Applied Mathematics, 2014, vol. 67, no. 6, p. 906–956. DOI: 10.1002/cpa.21455
  18. FAN, Y., WU, R., MENG, Z., et al. Wind shear signal simulation of the airborne weather radar. In Proceedings of the 2011 IEEE Radar Conference. Kansas City (USA), 2011, p. 710–713. DOI: 10.1109/RADAR.2011.5960630

Keywords: Wind speed estimation, wind-shear detection, airborne phased array weather radar

A. M. A. Mirza, A. Khawaja, S. Mughal, R. A. Butt [references] [full-text] [DOI: 10.13164/re.2024.0502] [Download Citations]
Distributed Symmetric Turbo Coded OFDM Scheme Incorporated with STBC-MIMO Antennas for Coded-Cooperative Wireless Communication under Wideband Noise Jamming Environment

This research paper proposes a novel anti-jamming technique based on a single-relay distributed symmetric Turbo coded orthogonal frequency division multiplexing (DSTC-OFDM) scheme. The stated scheme is incorporated with Alamouti space-time block code (STBC) multiple-input multiple-output (MIMO) 2×2 antennas for coded-cooperative wireless communication system under wideband noise jamming environment. As a suitable benchmark for comparison, a conventional symmetric Turbo coded OFDM (STC-OFDM) scheme incorporated with Alamouti STBC-MIMO (2×2) antennas is also developed for non-cooperative wireless communication system under the same jamming environment. Moreover, both the proposed MIMO schemes are compared with the corresponding single-antenna schemes. In this research, the modulation techniques employed are binary phase-shift keying and M-ary quadrature amplitude modulation while soft-demodulators are used at the destination node along with a joint iterative soft-input/soft-output decoding tech-nique. According to the Monte Carlo simulation results, the proposed DSTC-OFDM-MIMO (coded-cooperative) scheme with Alamouti-STBC (2×2) antennas outperforms the STC-OFDM-MIMO (non-cooperative) scheme by a gain that ranges between 0.5–6 dB for different jamming scenarios in the high SNR simulated region under the same conditions, i.e., the code rates Rc = 1/3 and data frame lengths l = 512 bits for both the proposed schemes. However, in the low SNR simulated region, the STC-OFDM-MIMO scheme shows similar performance as the DSTC-OFDM-MIMO scheme, under identical conditions. Furthermore, the proposed distributed scheme with STBC-MIMO (2×2) antennas incorporates both coding gain and cooperative diversity gain.

  1. PIRAYESH, H., ZENG, H. Jamming attacks and anti-jamming strategies in wireless networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 2022, vol. 24, no. 2, p. 767–809. DOI: 10.1109/COMST.2022.3159185
  2. ZOU, Y., ZHU, J., WANG, X., et al. A survey on wireless security: Technical challenges, recent advances, and future trends. Proceedings of the IEEE, 2016, vol. 104, no. 9, p. 1727–1765. DOI: 10.1109/JPROC.2016.2558521
  3. ZHANG, L., RESTUCCIA, F., MELODIA, T., et al. Jam sessions: Analysis and experimental evaluation of advanced jamming attacks in MIMO networks. In Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc). 2019, p. 61–70. DOI: 10.1145/3323679.3326504
  4. JAGANNATH, A., JAGANNATH, J., DROZD, A. High rate reliability beamformer design for 2×2 MIMO-OFDM system under hostile jamming. In Proceedings of 2020 29th International Conference on Computer Communications and Networks (ICCCN). Honolulu (HI, USA), 2020, p. 1–9. DOI: 10.1109/ICCCN49398.2020.9209635
  5. LIANG, Y., REN, J., LI, T. Secure OFDM system design and capacity analysis under disguised jamming. IEEE Transactions on Information Forensics and Security, 2020, vol. 15, p. 738–752. DOI: 10.1109/TIFS.2019.2929449
  6. CHOI, H., PARK, S., LEE, H. N. Covert anti‐jamming communication based on Gaussian coded modulation. Applied Sciences (Switzerland), 2021, vol. 11, no. 9, p. 1–28. DOI: 10.3390/app11093759
  7. SKLAR, B. Digital Communications: Fundamentals and Applications. 2nd ed. Prentice Hall, 2017. ISBN: 978-0134724058
  8. MALEKI, M., MALIK, M., FOLKESSON, P., et al. Modeling and evaluating the effects of jamming attacks on connected automated road vehicles. In Proceedings of 2022 IEEE 27th Pacific Rim International Symposium on Dependable Computing (PRDC). Bejing (China), 2022, p. 12–23. DOI: 10.1109/PRDC55274.2022.00016
  9. SIDEK, O., YAHYA, A. Reed-Solomon coding for frequency hopping spread spectrum in jamming environment. American Journal of Applied Sciences, 2008, vol. 5, no. 10, p. 1281–1284. DOI: 10.3844/ajassp.2008.1281.1284
  10. BALDI, M., BIANCHI, M., CHIARALUCE, F., et al. Advanced coding schemes against jamming in telecommand links. In Proceedings of IEEE Military Communications Conference (MILCOM 2013). San Diego (CA, USA), 2013, p. 1220–1226. DOI: 10.1109/MILCOM.2013.208
  11. DAI, J., GUO, W., XU, D. The performance of LDPC coded frequency hopping system under follower jamming. In 2014 International Conference on Information and Communications Technologies (ICT 2014). Nanjing (China), 2014, p. 1–6. DOI: 10.1049/cp.2014.0613
  12. KAPLAN, A., CAN, M., ALTUNBAS, I., et al. Comparative performance evaluation of LDPC coded OFDM-IM under jamming attack. IEEE Transactions on Vehicular Technology, 2023, vol. 72, no. 5, p. 6209–6224. DOI: 10.1109/TVT.2022.3232491
  13. TAVAKKOLI, R. Performance evaluation of turbo code system under jamming environment. Journal of Soft Computing and Decision Support Systems (JSCDSS), 2015, vol. 2, no. 3, p. 14–19. ISSN: 2289-8603
  14. PURWAR, A., JOSHI, D., CHAUBEY, V. K. GPS signal jamming and anti-jamming strategy. In 2016 IEEE Annual India Conference (INDICON). Bangalore (India), 2016, p. 1–6. DOI: 10.1109/INDICON.2016.7838933
  15. AHMED, E. S., HUSSEIN, A. A. Turbo code performance in the presence of jamming signals. In The 11th Scientific Conference of the University of Babylon. Baghdad (Iraq), 2009, p. 29–39. [Online]. Available at: https://www.researchgate.net/publication/215466329_Turbo_Code_Performance_in_the_Presence_of_Jamming_Signals
  16. BERROU, C., GLAVIEUX, A., THITIMAJSHIMA, P. Near Shannon limit error-correcting coding and encoding: Turbo-codes (1). In IEEE International Conference on Communications. Geneva (Switzerland), 1993, p. 1064–1070. DOI: 10.1109/icc.1993.397441
  17. MUGHAL, S., YANG, F., EJAZ, S., et al. Asymmetric turbo code for coded-cooperative wireless communication based on matched interleaver with channel estimation and multi-receive antennas at the destination. Radioengineering, 2017, vol. 26, no. 3, p. 878 to 889. DOI: 10.13164/re.2017.0878
  18. UMAR, R., YANG, F., XU, H. J., et al. Distributed turbo coded spatial modulation based on code matched interleaver for MIMO system. Wireless Networks, 2023, vol. 29, no. 5, p. 1995–2013. DOI: 10.1007/s11276-023-03256-1
  19. SENDONARIS, A., ERKIP, E., AAZHANG, B. User cooperation diversity. Part I. System description. IEEE Transactions on Communications, 2003, vol. 51, no. 11, p. 1927–1938. DOI: 10.1109/TCOMM.2003.818096
  20. SENDONARIS, A., ERKIP, E., AAZHANG, B. User cooperation diversity. Part II: Implementation aspects and performance analysis. IEEE Transactions on Communications, 2003, vol. 51, no. 11, p. 1939–1948. DOI: 10.1109/TCOMM.2003.819238
  21. LANEMAN, J. N., WORNELL, G. W., TSE, D. N. C. An efficient protocol for realizing cooperative diversity in wireless networks. In IEEE International Symposium on Information Theory - Proceedings. Washington (USA), 2001, p. 294–294. DOI: 10.1109/ISIT.2001.936157
  22. SOLIMAN, T., YANG, F., EJAZ, S., et al. Decode-and-forward polar coding scheme for receive diversity: A relay partially perfect retransmission for half-duplex wireless relay channels. IET Communications. 2017, vol. 11, no. 2, p. 185–191. DOI: 10.1049/iet-com.2016.0915
  23. SIMOENS, S., MUÑOZ-MEDINA, O., VIDAL, J., et al. Compress-and-forward cooperative mimo relaying with full channel state information. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 2, p. 781–791. DOI: 10.1109/TSP.2009.2030622
  24. MESLEH, R. Y., HAAS, H., SINANOVIĆ, S., et al. Spatial modulation. IEEE Transactions on Vehicular Technology, 2008, vol. 57, no. 4, p. 2228–2241. DOI: 10.1109/TVT.2007.912136
  25. TASHATOV, N. N., SEKSEMBAYEVA, M. A., OVECHKIN, G. V., et al. Interference immunity and energy efficiency of digital communications systems in multipath channel with fading. Indonesian Journal of Electrical Engineering and Computer Science, 2022, vol. 27, no. 3, p. 1412–1418. DOI: 10.11591/ijeecs.v27.i3.pp1412-1418
  26. SU, W., SAFAR, Z., OLFAT, M., et al. Obtaining full-diversity space-frequency codes from space-time codes via mapping. IEEE Transactions on Signal Processing, 2003, vol. 51, no. 11, p. 2905 to 2916. DOI: 10.1109/TSP.2003.818200
  27. ALAMOUTI, S. M. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 1998, vol. 16, no. 8, p. 1451–1458. DOI: 10.1109/49.730453
  28. HUO, P., CAO, L. Distributed STBC with soft information relay based on Gaussian approximation. IEEE Signal Processing Letters, 2012, vol. 19, no. 10, p. 599–602. DOI: 10.1109/LSP.2012.2206383
  29. MHEIDAT, H., UYSAL, M., AL-DHAHIR, N. Distributed space time block coded OFDM for relay-assisted transmission. In IEEE International Conference on Communications. Istanbul (Turkey), 2006, vol. 10, p. 4513–4519. DOI: 10.1109/ICC.2006.255350
  30. LIN, J. C. H., STEFANOV, A. Coded cooperation for OFDM systems. In 2005 International Conference on Wireless Networks, Communications and Mobile Computing, 2005, p. 7–10. DOI: 10.1109/WIRLES.2005.1549376
  31. UMAR, R., YANG, F., MUGHAL, S. BER performance of a polar coded OFDM over different channel models. In Proceedings of 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST). Islamabad (Pakistan), 2018, p. 764–769. DOI: 10.1109/IBCAST.2018.8312308
  32. HUNTER, T. E., NOSRATINIA, A. Diversity through coded cooperation. IEEE Transactions on Wireless Communications, 2006, vol. 5, no. 2, p. 283–289. DOI: 10.1109/TWC.2006.1611050
  33. GAWANDE, P. D., LADHAKE, S. A. Optimal performance of convolution coded OFDM. In Proceedings of the 2016 IEEE International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). Chennai (India), 2016, p. 335–338. DOI: 10.1109/WiSPNET.2016.7566150
  34. ELFITURI, M., HAMOUDA, W., GHRAYEB, A. A convolutional-based distributed coded cooperation scheme for relay channels. IEEE Transactions on Vehicular Technology, 2009, vol. 58, no. 2, p. 655–669. DOI: 10.1109/TVT.2008.927033
  35. TANG, L., YANG, F., ZHANG, S., et al. Joint iterative decoding for LDPC-coded multi-relay cooperation with receive multi antenna in the destination. IET Communications, 2013, vol. 7, no. 1, p. 1–12. DOI: 10.1049/iet-com.2012.0038
  36. HU, J., DUMAN, T. M. Low-density parity-check codes over wireless relay channels. IEEE Transactions on Wireless Communications, 2007, vol. 6, no. 9, p. 3384–3394. DOI: 10.1109/TWC.2007.06083
  37. UMAR, R., YANG, F., MUGHAL, S. Turbo coded OFDM combined with MIMO antennas based on matched interleaver for coded cooperative wireless communication. Information, 2017, vol. 8, no. 2, p. 1–16. DOI: 10.3390/info8020063
  38. SOLIMAN, T. H. M., YANG, F., EJAZ, S. Interleaving gains for receive diversity schemes of distributed turbo codes in wireless half-duplex relay channels. Radioengineering, 2015, vol. 24, no. 2, p. 481–488. DOI: 10.13164/re.2015.0481
  39. EJAZ, S., YANG, F. F. Jointly optimized Reed-Muller Codes for multi-level multi-relay coded-cooperative VANETS. IEEE Transactions on Vehicular Technology, 2016, vol. 66, no. 5, p. 4017–4028. DOI: 10.1109/TVT.2016.2604320
  40. UMAR, R., YANG, F. F., MUGHAL, S. Distributed Reed-Muller code with multiple relays for cooperative broadband wireless networks. Radioelectronics and Communications Systems, 2019, vol. 62, no. 9, p. 449–461. DOI: 10.3103/S0735272719090024
  41. MUGHAL, S., UMAR, R., YANG, F. F., et al. Distributed Reed‑Muller coded‑cooperative spatial modulation. Wireless Personal Communications, 2022, vol. 124, no. 3, p. 2785–2807. DOI: 10.1007/s11277-022-09489-1
  42. SOLIMAN, T., YANG, F., EJAZ, S. Decode and forward polar coding for half-duplex two-relay channels based on multilevel construction. International Journal of Electronics, 2016, vol. 104, no. 4, p. 539–554. DOI: 10.1080/00207217.2016.1218068
  43. UMAR, R., YANG, F., MUGHAL, S., et al. Distributed polar coded OFDM based on Plotkin’s construction for half duplex wireless communication. International Journal of Electronics, 2018, vol. 105, no. 7, p. 1097–1116. DOI: 10.1080/00207217.2018.1426118
  44. SOLIMAN, T., YANG, F. Cooperative punctured polar coding (CPPC) scheme based on Plotkin’s construction. Radioengineering, 2016, vol. 25, no. 3, p. 482–489. DOI: 10.13164/re.2016.0482
  45. CHRONOPOULOS, S. K., CHRISTOFILAKIS, V., TATSIS, G., et al. Performance of turbo coded OFDM under the presence of various noise types. Wireless Personal Communications, 2016, vol. 87, no. 4, p. 1319–1336. DOI: 10.1007/s11277-015-3055-1
  46. UMAR, R., YANG, F. F., XU, H. J., et al. Distributed polar code based on Plotkin's construction with MIMO antennas in frequency selective Rayleigh fading channels. Wireless Personal Communications, 2019, vol. 104, no. 1, p. 287–306. DOI: 10.1007/s11277-018-6020-y
  47. VAN DER MEULEN, E. C. Three-terminal communication channels. Advances in Applied Probability, 1971, vol. 3, no. 1, p. 120–154. DOI: 10.2307/1426331
  48. BENEDETTO, S., DIVSALAR, D., MONTORSI, G., et al. A soft input soft-output APP module for iterative decoding of concatenated codes. IEEE Communications Letters, 1997, vol. 1, no. 1, p. 22–24. DOI: 10.1109/4234.552145
  49. PICKHOLTZ, R. L., SCHILLING, D. L., MILSTEIN, L. B. Theory of spread-spectrum communications - A tutorial. IEEE Transactions on Communications, 1982, vol. 30, no. 5, p. 855 to 884. DOI: 10.1109/TCOM.1982.1095533
  50. SCHILLING, D. L., MILSTEIN, L. B., PICKHOLTZ, R. L., et al. Optimization of the processing gain of an M-ary DSSS communication system. IEEE Transactions on Communications, 1980, vol. 28, no. 8, p. 1389–1398. DOI: 10.1109/TCOM.1980.1094782
  51. THOMPSON, S. C., PROAKIS, J. G., ZEIDLER, J. R., et al. Constant envelope OFDM in multipath Rayleigh fading channels. In Proceedings of the IEEE Military Communications Conference MILCOM. Washington (USA), 2006, p. 1–7. DOI: 10.1109/MILCOM.2006.302187
  52. IEEE. IEEE STD 802.11A, Supplement to IEEE Standard for Information Technology - Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks - Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY). IEEE, 1999, p. 1-102. DOI: 10.1109/IEEESTD.1999.90606
  53. DO, T. T., BJORNSON, E., LARSSON, E. G., et al. Jamming resistant receivers for the massive MIMO uplink. IEEE Transactions on Information Forensics and Security, 2018, vol. 13, no. 1, p. 210–223. DOI: 10.1109/TIFS.2017.2746007

Keywords: Alamouti space-time block coding, anti-jamming technique, distributed symmetric turbo code, multiple-input multiple-output, orthogonal frequency division multiplexing, wideband noise jamming