ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

June 2025, Volume 34, Number 2 [DOI: 10.13164/re.2025-2]

Show all Hide all

B. Huang, Z. Wang, J. Chen, B. Zhou, Y. Zhu, Y. Liu [references] [full-text] [DOI: 10.13164/re.2025.0181] [Download Citations]
Research on Site Selection and Capacity Determination of Electric Vehicle Public Charging Stations by Integrating K-Means++ and Improved RODDPSO

To address the suboptimal spatial distribution and low comprehensive utilization of existing electric vehicle (EV) public charging infrastructure, this study proposes an innovative charging station placement and capacity determination methodology integrating K-Means++ clustering with an enhanced RODDPSO variant. Building upon conventional K-Means and RODDPSO frameworks, we develop an improved hybrid algorithm incorporating three critical advancements: 1) an adaptive mutation mechanism within the RODDPSO architecture to enhance global search capabilities and prevent premature convergence; 2) synergistic optimization of K-Means++ cluster centroids through the enhanced RODDPSO operator; and 3) a novel cluster validation metric based on real-world utilization patterns. The proposed methodology effectively resolves the inherent limitations of conventional K-Means approaches, particularly their sensitivity to initial centroid selection and tendency toward local optima. Empirical validation through a case study of Nanjing's charging infrastructure demonstrates the algorithm's superior performance: stations sited using the proposed hybrid method exhibit 63.8% greater spatial correlation with high-utilization zones (>15% operational utilization) compared to baseline K-Means implementations. The advancements provide both methodological contributions to spatial optimization algorithms and practical insights for urban EV infrastructure planning.

  1. YUVARAJ, T., DEVABALAJI, K. R., KUMAR, J. A. A comprehensive review and analysis of the allocation of electric vehicle charging stations in distribution networks. IEEE Access, 2024, vol. 12, p. 5404–5461. DOI: 10.1109/ACCESS.2023.3349274
  2. LI, C., ZHANG, L., OU, Z. Robust model of electric vehicle charging station location considering renewable energy and storage equipment. Energy, 2022, vol. 238, p. 1–14. DOI: 10.1016/j.energy.2021.121713
  3. MASTOI, M. S., ZHUANG, S., MUNIR, H. M., et al. An indepth analysis of electric vehicle charging station infrastructure, policy implications, and future trends. Energy Reports, 2022, vol. 8, p. 11504–11529. DOI: 10.1016/j.egyr.2022.09.011
  4. HEMAVATHI, S., SHINISHA, A. A study on trends and developments in electric vehicle charging technologies. Journal of Energy Storage, 2022, vol. 52, p. 1–36. DOI: 10.1016/j.est.2022.105013
  5. ABID, M. S., AHSAN, R., AL ABRI, R., et al. Techno-economic and environmental assessment of renewable energy sources, virtual synchronous generators, and electric vehicle charging stations in microgrids. Applied Energy, 2024, vol. 353, p. 1–16. DOI: 10.1016/j.apenergy.2023.122028
  6. LUO, S., CHU, D., LI, Q., et al. Inverse kinematics solution of 6-DOF manipulator based on multi-objective full-parameter optimization PSO algorithm. Frontiers in Neurorobotics, 2022, vol. 16, p. 1–12. DOI: 10.3389/fnbot.2022.791796
  7. SINGH, N., CHAKRABARTI, T., CHAKRABARTI, P., et al. A new PSO technique used for the optimization of multiobjective economic emission dispatch. Electronics, 2023, vol. 12, no. 13, p. 1–14. DOI: 10.3390/electronics12132960
  8. SUN, J., CHE, Y., YANG, T., et al. Location and capacity determination method of electric vehicle charging station based on simulated annealing immune particle swarm optimization. Energy Engineering, 2022, vol. 120, no. 2, p. 367–384. DOI: 10.32604/ee.2023.023661
  9. RENE, E. A., FOKUI, W. S. T., KOUONCHIE, P. K. N. Optimal allocation of plug-in electric vehicle charging stations in the distribution network with distributed generation. Green Energy and Intelligent Transportation, 2023, vol. 2, no. 3, p. 1–15. DOI: 10.1016/j.geits.2023.100094
  10. ZANGANEH, M., MOGHADDAM, M. S., AZARFAR, A., et al. Multi-area distribution grids optimization using D-FACTS devices by M-PSO algorithm. Energy Reports, 2023, vol. 9, p. 133–147. DOI: 10.1016/j.egyr.2022.11.180
  11. MAGSINO, E., ESPIRITU, F. M. M., GO, K. D. Discovering electric vehicle charging locations based on clustering techniques applied to vehicular mobility datasets. ISPRS International Journal of Geo-Information, 2024, vol. 13, no. 10, p. 1–19. DOI: 10.3390/ijgi13100368
  12. LI, C., DONG, Z., CHEN, G., et al. Data-driven planning of electric vehicle charging infrastructure: A case study of Sydney, Australia. IEEE Transactions on Smart Grid, 2021, vol.12, no.4, p.3289–3304. DOI: 10.1109/TSG.2021.3054763
  13. CELIK, S., OK, S. Electric vehicle charging stations: model, algorithm, simulation, location, and capacity planning. Heliyon, 2024, vol. 10, no. 7, p. 1–19. DOI: 10.1016/j.heliyon.2024.e29153
  14. ABDEL-BASSET, M., GAMAL, A., HEZAM, I. M., et al. Sustainability assessment of optimal location of electric vehicle charge stations: A conceptual framework for green energy into smart cities. Environment, Development and Sustainability, 2024, vol. 26, no. 5, p. 11475–11513. DOI: 10.1007/s10668-023-03373-z
  15. ZAPOTECAS-MARTINEZ, S., ARMAS, R., GARCIA-NAJERA, A. A multi-objective evolutionary approach for the electric vehicle charging stations problem. Expert Systems with Applications, 2024, vol. 240, p. 1–11. DOI: 10.1016/j.eswa.2023.122514
  16. POURVAZIRI, H., SARHADI, H., AZAD, N., et al. Planning of electric vehicle charging stations: an integrated deep learning and queueing theory approach. Transportation Research Part E: Logistics and Transportation Review, 2024, vol. 186, p. 1–23. DOI: 10.1016/j.tre.2024.103568
  17. MEN, J., ZHAO, C. A type-2 fuzzy hybrid preference optimization methodology for electric vehicle charging station location. Energy, 2024, vol. 293, p. 1–12. DOI: 10.1016/j.energy.2024.130701
  18. LIU, W., WANG, Z., LIU, L. X., et al. A novel particle swarm optimization approach for patient clustering from emergency departments. IEEE Transactions on Evolutionary Computation, 2019, vol. 23, no. 4, p. 1–13. DOI: 10.1109/TEVC.2018.2878536
  19. WANG, Y., CAO, Y., YEO, T. S., et al. Joint sequence optimization based OFDM waveform design for integrated radar and communication systems. IEEE Transactions on Vehicular Technology, 2022, vol. 71, no. 12, p. 12734–12748. DOI: 10.1109/TVT.2022.3201210
  20. YU, Z., HUAI, R., LI, H. CPSO-based parameter-identification method for the fractional-order modeling of lithium-ion batteries. IEEE Transactions on Power Electronics, 2021, vol. 36, no. 10, p. 11109–11123. DOI: 10.1109/TPEL.2021.3073810
  21. ZHENG, W., ZHAO, C., ZHANG, G., et al. Multi-birth optimization based on ergodic multi-scale cooperative mutation self adaptive escape PSO for transformer fault diagnosis and location. In Proceedings of the 5th Asia Energy and Electrical Engineering Symposium (AEEES). Chengdu (China), 2023, p. 644–652. DOI: 10.1109/AEEES56888.2023.10114235
  22. JIA, J., LIU, C., WAN, T. Planning of the charging station for electric vehicles utilizing cellular signaling data. Sustainability, 2019, vol. 11,
  23. no. 3, p. 1–16. DOI: 10.3390/su11030643
  24. YUNYEZHUYUN. VRODDPSO Code. [Online]. Available at: https://github.com/Yunyezhuyun/VRODDPSO, 2025

Keywords: K-Means++, variation randomly occurring distributedly delayed particle swarm optimization, public charging station, siting and capacity determination

T. Sivaranjani, B. Sasikumar, G. Sugitha [references] [full-text] [DOI: 10.13164/re.2025.0195] [Download Citations]
Rectified Adam Optimizer and LSTM with Attention Mechanism for ECG-Based Multi-class Classification of Cardiac Arrhythmia

Cardiac Arrhythmia (CA) is one of the most prevalent cardiac conditions and prime reasons for sudden death. The current CA detection methods face challenges in noise removal, R-peak detection, and low-level feature selection, which can impact diagnostic accuracy and signal stability. The research aims to develop an effective framework for detecting and classifying CA using advanced signal processing, feature extraction, feature selection, and classification for reliable medical diagnosis. The input electrocardiogram (ECG) signals are processed using hybrid noise reduction techniques such as cascaded variable step size normalized least mean square and sparse low-rank filter. The complex and high-level features are extracted using higher-order spectral energy distributed image, wavelet transform, and R-wave peak to R-wave peak interval to enhance the representation of cardiac data. Recursive feature elimination is applied to select the most relevant diagnostic features and the Rectified Adam optimizer is used to fine-tune parameters to achieve better training stability. The model integrates long-term memory with an attention mechanism to enhance the classification performance of arrhythmia detection. Simulation results demonstrate that the proposed model achieves 99.40% accuracy, outperforming existing models and showing its efficiency in classifying CA for better diagnosis and early treatments.

  1. KINGMA, J., SIMARD, C., DROLET, B. Overview of cardiac arrhythmias and treatment strategies. Pharmaceuticals, 2023, vol. 16, no. 6, p. 1–20. DOI: 10.3390/ph16060844
  2. BHATIA, K., D'SOUZA, R., MALHAME, I., et al. Anaesthetic considerations in pregnant patients with cardiac arrhythmia. BJA Education, 2023, vol. 23, no. 5, p. 196–206. DOI: 10.1016/j.bjae.2023.01.008
  3. RAKZA, R., GROUSSIN, P., BENALI, K., et al. Quinidine for ventricular arrhythmias: A comprehensive review. Trends in Cardiovascular Medicine, 2025, vol. 35, no. 2, p. 73–81. DOI: 10.1016/j.tcm.2024.07.003
  4. WANG, X., LV, Y., YANG, J., et al. Clinical efficacy and safety of Shensong Yangxin capsule combined with metoprolol for treating cardiac arrhythmia: A meta-analysis of randomized controlled trials. Phytomedicine Plus, 2023, vol. 3, no. 4, p. 1–9. DOI: 10.1016/j.phyplu.2023.100478
  5. GUO, Q., HUO, Y., LIU, Q., et al. Ruxolitinib as a CaMKII inhibitor for treatment of cardiac arrhythmias: Applications and prospects. Heart Rhythm, 2025, vol. 22, no. 1, p. 231–239. DOI: 10.1016/j.hrthm.2024.07.118
  6. FEDERICO, M., VALVERDE, C. A., GONANO, L. A., et al. CaMKII: A link between metabolic disorders and cardiac arrhythmias. Aspects of Molecular Medicine, 2023, vol. 2, p. 1–11. DOI: 10.1016/j.amolm.2023.100022
  7. KONEMANN, H., ELLERMANN, C., ZEPPENFELD, K., et al. Management of ventricular arrhythmias worldwide: Comparison of the latest ESC, AHA/ACC/HRS, and CCS/CHRS guidelines. JACC: Clinical Electrophysiology, 2023, vol. 9, no. 5, p. 715–728. DOI: 10.1016/j.jacep.2022.12.008
  8. KIM, C. J., LEVER, N., COOPER, J. O. Antiarrhythmic drugs and anaesthesia, part 1: Mechanisms of cardiac arrhythmias. BJA Education, 2023, vol. 23, no. 1, p. 8–16. DOI: 10.1016/j.bjae.2022.11.001
  9. AL-SHAMMARY, D., NOAMAN KADHIM, M., MAHDI, A. M., et al. Efficient ECG classification based on Chi-square distance for arrhythmia detection. Journal of Electronic Science and Technology, 2024, vol. 22, no. 2, p. 1–13. DOI: 10.1016/j.jnlest.2024.100249
  10. RAI, H. M., YOO, J., DASHKEVYCH, S. GAN-SkipNet: A Solution for data imbalance in cardiac arrhythmia detection using electrocardiogram signals from a benchmark dataset. Mathematics, 2024, vol. 12, no. 17, p. 1–31. DOI: 10.3390/math12172693
  11. WU, Y., TANG, Q., ZHAN, W., et al. Res-BiANet: A hybrid deep learning model for arrhythmia detection based on PPG signal. Electronics,
  12. 2024, vol. 13, no. 3, p. 1–15. DOI: 10.3390/electronics13030665
  13. ISLAM, M. R., QARAQE, M., QARAQE, K., et al. CAT-Net: Convolution, attention, and transformer-based network for single lead ECG arrhythmia classification. Biomedical Signal Processing and Control, 2024, vol. 93, p. 1–15. DOI: 10.1016/j.bspc.2024.106211
  14. AHMED, A. A., ALI, W., ABDULLAH, T. A. A., et al. Classifying cardiac arrhythmia from ECG signal using CNN deep learning model. Mathematics, 2023, vol. 11, no. 3, p. 1–16. DOI: 10.3390/math11030562
  15. SUN, J. Automatic cardiac arrhythmias classification using CNN and attention-based RNN network. Healthcare Technology Letters, 2023, vol. 10, no. 3, p. 53–61. DOI: 10.1049/htl2.12045
  16. CAÑON-CLAVIJO, R. E., MONTENEGRO-MARIN, C. E., GAONA-GARCIA, P. A., et al. IoT based system for heart monitoring and arrhythmia detection using machine learning. Journal of Healthcare Engineering, 2023, 6401673, p. 1–13. DOI: 10.1155/2023/6401673
  17. DHYANI, S., KUMAR, A., CHOUDHURY, S. Analysis of ECG based arrhythmia detection system using machine learning. Methods X, 2023, vol. 10, p. 1–15. DOI: 10.1016/j.mex.2023.102195
  18. YANG, X., ZHONG, J. Automatic classification method of arrhythmias based on 12-lead electrocardiogram. Sensors, 2023, vol. 23, no. 9, p. 1–16. DOI: 10.3390/s23094372
  19. DAYDULO, Y. D., THAMINENI, B. L., DAWUD, A. A. Cardiac arrhythmia detection using deep learning approach and time frequency representation of ECG signals. BMC Medical Informatics and Decision Making, 2023, vol. 23, p. 1–14. DOI: 10.1186/s12911023-02326-w
  20. FARAG, M. M. A tiny matched filter-based CNN for inter-patient ECG classification and arrhythmia detection at the edge. Sensors, 2023, vol. 23, no. 3, p. 1–23. DOI: 10.3390/s23031365
  21. SANTANDER BAÑOS, F., HERNANDEZ ROMERO, N., MORA, J. C. S. T., et al. A novel hybrid model based on convolutional neural network with particle swarm optimization algorithm for classification of cardiac arrhythmias. IEEE Access, 2023, vol. 11, p. 55515–55532. DOI: 10.1109/ACCESS.2023.3282315
  22. KIM, H. K., SUNWOO, M. H. An automated cardiac arrhythmia classification network for 45 arrhythmia classes using 12-lead electrocardiogram. IEEE Access, 2024, vol. 12, p. 44527–44538, DOI: 10.1109/ACCESS.2024.3380892
  23. DIN, S., QARAQE, M., MOURAD, O., et al. ECG-based cardiac arrhythmias detection through ensemble learning and fusion of deep spatial-temporal and long-range dependency features. Artificial Intelligence in Medicine, 2024, vol. 150, p. 1–10. DOI: 10.1016/j.artmed.2024.102818
  24. MANICKAM, C., GOVINDASAMY, M., MUTHUSAMY, S., et al. A novel method for design and implementation of systolic associative cascaded variable leaky least mean square adaptive filter for denoising of ECG signals. Wireless Personal Communications, 2024, vol. 137, p. 1029–1043. DOI: 10.1007/s11277-024-11450-3
  25. SU, H., ZHANG, H., WU, Z., et al. Relaxed collaborative representation with low-rank and sparse matrix decomposition for hyperspectral anomaly detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, vol. 15, p. 6826–6842. DOI: 10.1109/JSTARS.2022.3193315
  26. MA, Y., LAN, Y., XIE, Y., et al. A spatial–spectral transformer for hyperspectral image classification based on global dependencies of
  27. multi-scale features. Remote Sensing, 2024, vol. 16, no. 2, p. 1–20. DOI: 10.3390/rs16020404
  28. LIU, Z., YAO, G., ZHANG, Q., et al. Wavelet scattering transform for ECG beat classification. Computational and Mathematical Methods in Medicine, 2020, p. 1–11. DOI: 10.1155/2020/3215681
  29. LIU, K., JIAO, Y., DU, C., et al. Driver stress detection using ultra short-term HRV analysis under real world driving conditions. Entropy, 2023, vol. 25, no. 2, p. 1–13. DOI: 10.3390/e25020194
  30. KILMEN, S., BULUT, O. Scale abbreviation with recursive feature elimination and genetic algorithms: An illustration with the test emotions questionnaire. Information, 2023, vol. 14, no. 2, p. 1–13. DOI: 10.3390/info14020063
  31. LIU, B., CHEN, W., WANG, Z., et al. RAdam-DA-NLSTM: A nested LSTM-based time series prediction method for human–computer intelligent systems. Electronics, 2023, vol. 12, no. 14, p. 1–20. DOI: 10.3390/electronics12143084
  32. KANG, Q., CHEN, E. J., LI, Z. C., et al. Attention-based LSTM predictive model for the attitude and position of shield machine in tunnelling. Underground Space, 2023, vol. 13, p. 335–350. DOI: 10.1016/j.undsp.2023.05.006

Keywords: Cardiac arrhythmia, electrocardiogram, sparse low-rank filter, recursive feature elimination, long short-term memory, rectified Adam optimizer, attention mechanism

G. Ma, C. Xu, Z. Xu, X. Song [references] [full-text] [DOI: 10.13164/re.2025.0206] [Download Citations]
An Improved Small Target Detection Algorithm Based on YOLOv8s

Due to challenges such as the small size of targets, complex backgrounds, limited feature extraction capa-bilities, and frequent false positives and false negatives, traditional detection algorithms often perform poorly in small object detection tasks. To address these challenges, this pa¬per proposes an enhanced small object detection algorithm, SOD-YOLO, based on YOLOv8s. First, the S_C2f_CAFM module is integrated into the feature extraction network, enabling the effective capture of fine-grained local features and broad contextual information, while simultaneously reducing model parameters and computational complexity. Second, in the feature fusion stage, the redesigned bidirectional feature pyramid network employs a spatial context awareness module to extract key features, adding a top-down path to optimize feature fusion and enhance discriminative information. In the Neck section, the D_C2f_MSPA module is introduced, which, while being lightweight, accurately models channel dependencies in feature maps, effectively reducing both false positives and false negatives for small objects. Finally, the inclusion of Normalized Wasserstein Distance (NWD) further improves detection accuracy and reduces the model’s sensitivity to small positional deviations in small objects. Experimental results on the DOTAv1.0, VisDrone2019, and TT100K datasets confirm that SOD-YOLO achieves excellent performance, demonstrating the effectiveness of the modifications made to the original YOLOv8 model.

  1. LI, L., MU, X., LI, S., et al. A review of face recognition technology. IEEE Access, 2020, vol. 8, p. 139110–139120. DOI: 10.1109/ACCESS.2020.3011028
  2. ISLAM, S. M. M., BORIĆ-LUBECKE, O., ZHENG, Y., et al. Radar-based non-contact continuous identity authentication. Remote Sensing, 2020, vol. 12, no. 14, p. 1–22. DOI: 10.3390/rs12142279
  3. CORTES, C., VAPNIK, V. Support-vector networks. Machine Learning, 1995, vol. 20, no. 3, p. 273–297. DOI: 10.1007/BF00994018
  4. REN, S., HE, K., GIRSHICK, R., et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, vol. 39, no. 6, p. 1137–1149. DOI: 10.1109/TPAMI.2016.2577031
  5. REDMON, J., DIVVALA, S., GIRSHICK, R., et al. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas (USA), 2016, p. 779–788. DOI: 10.1109/CVPR.2016.91
  6. REDMON, J., FARHADI, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu (USA), 2017, p. 6517–6525. DOI: 10.1109/CVPR.2017.690
  7. REDMON, J., FARHADI, A. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018, p. 1–6. DOI: 10.48550/arXiv.1804.02767
  8. BOCHKOVSKIY, A., WANG, C. Y., LIAO, H. Y. M. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020. DOI: 10.48550/arXiv.2004.10934
  9. ZHU, X., LYU, S., WANG, X., et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Montreal (Canada), 2021, p. 2778–2788. DOI:
  10. 10.1109/ICCVW54120.2021.00312
  11. WANG, C. Y., BOCHKOVSKIY, A., LIAO, H. Y. M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv e-prints, 2022, p. 1–15. DOI: 10.48550/arXiv.2207.02696
  12. TERVEN, J., CORDOVA-ESPARZA, D. A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond. arXiv preprint arXiv:2304.00501, 2023, p.
  13. 1–27. DOI: 10.48550/arXiv.2304.00501
  14. LIU, W., ANGUELOV, D., ERHAN, D., et al. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision. Amsterdam (Netherlands), 2016, p. 21–37. DOI: 10.1007/978-3-319-46448-0_2
  15. WANG, C. Y., YEH, I. H., LIAO, H. Y. YOLOv9: Learning what you want to learn using programmable gradient information. In European Conference on Computer Vision. Cham (Switzerland), 2025, p. 1–21. DOI: 10.1007/978-3-031-72751-1_1
  16. WANG, A., CHEN, H., LIU, L., et al. YOLOv10: Real-time end-to-end object detection. arXiv preprint arXiv:2405.14458, 2024, p. 1–21. DOI: 10.48550/arXiv.2405.14458
  17. GONG, Y., YU, X., DING, Y., et al. Effective fusion factor in FPN for tiny object detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa (HI, USA), 2021, p. 1159–1167. DOI: 10.1109/WACV48630.2021.00120
  18. BAI, Y., ZHANG, Y., DING, M., et al. SOD-MTGAN: Small object detection via multi-task generative adversarial network. In Proceedings of the European Conference on Computer Vision (ECCV). Munich (Germany), 2018, p. 206–221. DOI: 10.1007/978-3-030-01261-8_13
  19. HONG, M., LI, S., YANG, Y., et al. SSPNet: Scale selection pyramid network for tiny person detection from UAV images. IEEE Geoscience and Remote Sensing Letters, 2021, vol. 19, p. 1 to 5. DOI: 10.1109/LGRS.2021.3103069
  20. WANG, Y., ZOU, X., SHI, J., et al. YOLOv5-based dense small target detection algorithm for aerial images using DIOU-NMS. Radioengineering, 2024, vol. 33, no. 1, p. 12–23. DOI: 10.13164/re.2024.0012
  21. [22] CHEN, D., XIONG, S., GUO, L. Research on detection method for
  22. tunnel lining defects based on DCAM-YOLOv5 in GPR B-scan.
  23. Radioengineering, 2023, vol. 32, no. 3, p. 299–311. DOI:
  24. 10.13164/re.2023.0299
  25. YAO, G., ZHU, S., ZHANG, L., et al. HP-YOLOv8: High precision small object detection algorithm for remote sensing images. Sensors, 2024, vol. 24, no. 15, p. 1–23. DOI: 10.3390/s24154858
  26. GE, Z., LIU, S., WANG, F., et al. YOLOX: Exceeding YOLO series in 2021. arXiv preprint arXiv:2107.08430, 2021, p. 1–7. DOI: 10.48550/arXiv.2107.08430
  27. YIN, X., LI, W., WANG, L., et al. Sea surface small target detection on one-dimensional sequential signals. Radioengineering, 2024, vol. 33, no. 3, p. 463–476. DOI: 10.13164/re.2024.0463
  28. GAO, P., LU, J., LI, H., et al. Container: Context aggregation network. arXiv preprint arXiv:2106.01401, 2021, p. 1–12. DOI: 10.48550/arXiv.2106.01401
  29. LIU, W., LU, H., FU, H., et al. Learning to up sample by learning to sample. In Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris (France), 2023, p. 6004 to 6014. DOI: 10.1109/ICCV51070.2023.00554
  30. WANG, J., XU, C., YANG, W., et al. A normalized Gaussian Wasserstein distance for tiny object detection. arXiv preprint arXiv:2110.13389, 2021, p. 1–12. DOI: 10.48550/arXiv.2110.13389
  31. ZHENG, Z., WANG, P., REN, D., et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Transactions on Cybernetics, 2022, vol. 52, no. 8, p. 8574–8586. DOI: 10.1109/TCYB.2021.3095305
  32. WANG, K., LIEW, J. H., ZOU, Y., et al. PANet: Few-shot image semantic segmentation with prototype alignment. In Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul (South Korea), 2019, p. 9196–9205. DOI: 10.1109/ICCV.2019.00929
  33. LIN, T. Y., DOLLAR, P., GIRSHICK, R., et al. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu (HI, USA), 2017, p. 2117–2125. DOI: 10.1109/CVPR.2017.106
  34. LIU, S., QI, L., QIN, H., et al. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City (UT, USA), 2018, p. 8759–8768. DOI: 10.1109/CVPR.2018.00913
  35. LI, X., WANG, W., WU, L., et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. arXiv preprint arXiv:2006.04388, 2020, p. 1–14. DOI: 10.48550/arXiv.2006.04388
  36. SUNKARA, R., LUO, T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Grenoble (France), 2022, part III, p. 443–459. DOI: 10.1007/9783-031-26409-2_27
  37. HU, S., GAO, F., ZHOU, X., et al. Hybrid convolutional and attention network for hyperspectral image denoising. IEEE Geoscience and Remote Sensing Letters, 2024, vol. 21, p. 1–5. DOI: 10.1109/LGRS.2024.3370299
  38. XIONG, Y., LI, Z., CHEN, Y., et al. Efficient deformable convnets: Rethinking dynamic and sparse operator for vision applications. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle (USA), 2024, p. 5652–5661. DOI: 10.1109/CVPR52733.2024.00540
  39. YU, Y., ZHANG, Y., CHENG, Z., et al. Multi-scale spatial pyramid attention mechanism for image recognition: An effective approach. Engineering Applications of Artificial Intelligence, 2024, vol. 133, p. 1–15. DOI: 10.1016/j.engappai.2024.108261
  40. ZHANG, Y., YE, M., ZHU, G., et al. FFCA-YOLO for small object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2024, vol. 62, p. 1–15. DOI: 10.1109/TGRS.2024.3363057
  41. ZHANG, X., ZENG, H., GUO, S., et al. Efficient long-range attention network for image super-resolution. In European Conference on Computer Vision. Tel Aviv (Israel), 2022, part XVII, p. 649–667. DOI: 10.1007/978-3-031-19790-1_39
  42. CAO, Y., XU, J., LIN, S., et al. GCNet: Non-local networks meet squeeze-excitation networks and beyond. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Seoul (South Korea), 2019, p. 1971–1980. DOI: 10.1109/ICCVW.2019.00246
  43. LIU, Y., LI, H., HU, C., et al. LUO, S., LUO, Y., & WEN CHEN, C. Learning to aggregate multi-scale context for instance segmentation in remote sensing images. IEEE Transactions on Neural Networks and Learning Systems, 2025, vol. 36, no. 1, p. 595–609. DOI: 10.1109/TNNLS.2023.3336563
  44. [42] DOTA Dataset. DOTA: A Large-scale Dataset for Object Detection in Aerial Images. [Online] Cited 2024-11-29. Available at: https://captain-whu.github.io/DOTA/dataset.html
  45. VisDrone2019 Dataset. Visdrone-vid2019: The Vision Meets Drone Object Detection in Video Challenge Results. [Online] Cited 2024-11-29. Available at: https://github.com/VisDrone/VisDroneDataset?tab=readme-ov-file
  46. TT100K Dataset. Traffic-sign Detection and Classification in the Wild. [Online] Cited 2024-11-29. Available at: https://cg.cs.tsinghua.edu.cn/traffic-sign/
  47. XIA, G. S., BAI, X., DING, J., et al. DOTA: A large-scale dataset for object detection in aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City (UT, USA), 2018, p. 3974–3983. DOI: 10.1109/CVPR.2018.00418
  48. TIAN, B., CHEN, H. Remote sensing image target detection method based on refined feature extraction. Applied Sciences, 2023, vol. 13, no. 15, p. 1–13. DOI: 10.3390/app13158694
  49. AZIMI, S. M., VIG, E., BAHMANYAR, R., et al. Towards multiclass object detection in unconstrained remote sensing imagery. In 14th Asian Conference on Computer Vision. Perth (Australia), 2018, part III, p. 150–165. DOI: 10.1007/978-3-030-20893-6_10
  50. SELVARAJU, R. R., COGSWELL, M., DAS, A., et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision. Venice (Italy), 2017, p. 618–626. DOI: 10.1109/ICCV.2017.74

Keywords: YOLOv8, small object detection, attention mechanism, feature fusion, loss function

R. Bozovic, V. Orlic, G. Kekovic [references] [full-text] [DOI: 10.13164/re.2025.0224] [Download Citations]
Artificial Bias Induction in Fourth-Order Cumulants Based Automatic Modulation Classification Algorithm in AWGN and Multipath Propagation Channel

Automatic modulation classification (AMC) represents a wide used technique for modulation format recognition of signals considered to be a priori unknown. Due to the low algorithm and hardware complexity, AMC algorithms based on fourth-order cumulants are still very popular. Presence of bias in standard cumulants estimated values of real signals constellations has positive impact on classification score for distinguishing real from complex signals. Therefore, one new approach in AMC is proposed in this paper, with focus on manipulation with theoretical expected cumulant values of real signals constellations, assuming artificially introduced bias will improve AMC performance. Artificial bias induction is done through modifications of standard cumulants mathematical formula. Performance of modified and standard fourth-order cumulants based AMC algorithms were explored in context of real and complex signals constellations. This was done through Monte Carlo simulations in propagation conditions which included Additive White Gaussian Noise (AWGN) and multipath propagation channel with known and unknown impulse response. Evaluation was done through the probability of correct classifications. Presented numerical results confirmed superiority of algorithm based on artificial bias induction in classification of real and complex signals, in each considered propagation scenarios, especially in a radio environment with lower signal-to- noise ratio (SNR) values. The remarkable AMC performance enhancements are up to 25%.

  1. SIMIC, M., STANKOVIC, M., ORLIC, V. Automatic modulation classification of real signals based on sixth order cumulants. Radioengineering, 2014, vol. 30, no. 1, p. 204–214. DOI: 10.13164/re.2021.0204
  2. ELDEMERDASH, Y. A., DOBRE, O. A., ONER, M. Signal identification for multiple-antenna wireless systems: Achievements and challenges. IEEE Communications Surveys & Tutorials, 2016, vol. 18, no. 3, p. 1524–1551. DOI: 10.1109/COMST.2016.2519148
  3. BOZOVIC, R., SIMIC, M. Spectrum sensing based on higher order cumulants and kurtosis statistics tests in cognitive radio. Radioengineering, 2019, vol. 29, no. 2, p. 464–472. DOI: 10.13164/re.2019.0464
  4. ZHANG, T., SHUAI, C., ZHOU, Y. Deep learning for robust automatic modulation recognition method for IoT applications. IEEE Access, 2020, vol. 8, p. 117689–117697. DOI: 10.1109/ACCESS.2020.2981130
  5. PAJIC, M. S., VEINOVIC, M., PERIC, M., et al. Modulation order reduction method for improving the performance of AMC algorithm based on sixth-order cumulants. IEEE Access, 2020, vol. 8, p. 106386–106394. DOI: 10.1109/ACCESS.2020.3000358
  6. WANG, M., FANG, S., FAN, Y., et al. An ultra lightweight neural network for automatic modulation classification in drone communications. Scientific Reports, 2024, vol. 14, p. 1–14. DOI: 10.1038/s41598-024-72867-1
  7. MAROTO, J., BOVET, G., FROSSARD, P. Maximum likelihood distillation for robust modulation classification. In Proceedings of 48th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Rhodos Island (Greece), p. 1–5. DOI: 10.1109/ICASSP49357.2023.10096156
  8. SHULI, D., ZHIPENG, L., LINFENG, Z. A modulation recognition algorithm based on cyclic spectrum and SVM classification. In Proceeding of the 4th IEEE Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Chongqing (China), 2020, p. 2123–2127. DOI: 10.1109/ITNEC48623.2020.9085022
  9. ZHANG, Z., LUO, H., WANG, C., et al. Automatic modulation classification using CNN-LSTM based dual-stream structure. IEEE Transaction on Vehicular Technology, 2020, vol. 69, no. 11, p. 13521–13531. DOI: 10.1109/TVT.2020.3030018
  10. ABDEL-MONEIM, M. A., EL-RABAIE, S., ABD EL-SAMIE, F. E., et al. Efficient CNN-based automatic modulation classification in UWA communication systems using constellation diagrams and Gabor filtering. In Proceeding of the 3rd International Conference on Electronic Engineering (ICEEM). Menouf (Egypt), 2023, p. 1–6. DOI: 10.1109/ICEEM58740.2023.10319475
  11. LI, T., LI, Y., DOBRE, O. A. Modulation classification based on fourth-order cumulants of superposed signal in NOMA systems. IEEE Transaction of Information Forensics and Security, 2021, vol. 16, p. 2885–2897. DOI: 10.1109/TIFS.2021.3068006
  12. PENG, C., CHENG, W., SONG, Z., et al. A noise-robust modulation signal classification method based on continuous wavelet transform. In Proceedings of the 5th IEEE Information Technology and Mechatronics Engineering Conference (ITOEC). Chongqing, (China), 2020, p. 745–750. DOI: 10.1109/ITOEC49072.2020.9141879
  13. LEE, J. H., KIM, J., KIM, B., et al. Robust automatic modulation classification technique for fading channels via deep neural network. Entropy, 2017, vol. 19, no. 9, p. 1–11. DOI: 10.3390/e19090454
  14. LEE, S. H., KIM, K.-Y., SHIN, Y. Effective feature selection method for deep learning-based automatic modulation classification scheme using higher-order statistics. Applied Sciences, 2020, vol. 10, no. 2, p. 1–14. DOI: 10.3390/app10020588
  15. KADOUN, I., KHALEGI BIZAKI, H. Advanced features generation algorithm for MPSK and MQAM classification in flat fading channel. Radioengineering, 2022, vol. 31, no. 1, p. 127–134. DOI: 10.13164/re.2022.0127
  16. DOBRE, O. A., ABDI, A., BAR-NESS, Y., et al. Cyclostationarity based modulation classification of linear digital modulations in flat fading channels. Wireless Personal Communications, 2010, vol. 54, no. 4, p. 699–717. DOI: 10.1007/s11277-009-9776-2
  17. ZUO, X., YANG, Y., YAO, R., et al. An automatic modulation recognition algorithm based on time-frequency features and deep learning with fading channels. Remote Sensing, 2024, vol. 16, no. 23, p. 1–20. DOI: 10.3390/rs16234550
  18. ZHANG, F., LUO, C., XU, J., et al. An efficient deep learning model for automatic modulation recognition based on parameter estimation and transformation, IEEE Communication Letters, 2021, vol. 25, no. 10, p. 3287–3290, DOI: 10.1109/LCOMM.2021.3102656
  19. HERMAWAN, A. P., GINANJAR, R. R., KIM, D.-S., et al. CNN based automatic modulation classification for beyond 5G communications. IEEE Communication Letters, 2020, vol. 24, no. 5, p. 1038–1041. DOI: 10.1109/LCOMM.2020.2970922
  20. PENNACCHIO, A. A., LUSTOSA DA COSTA, J. P. C., BORDINI, V. M., et al. Eigenfilter-based automatic modulation classification with offsets for distributed antenna systems. In XXXIV Simposio Brasilerio de telecomunicacoes e processamento. Sinais, 2016, p. 260–261. DOI: 10.14209/SBRT.2016.8
  21. BOZOVIC, R., ORLIC, V. Estimation of bias in numerical values of normalized sixth-order cumulants’ structures for various signal constellations. In Proceedings of the 2nd IEEE International Conference on Computational Performance Evaluation (ComPE). Shillong (India), 2021, p. 410–414. DOI:
  22. 10.1109/ComPE53109.2021.9752436
  23. PAJIC, M. S., VEINOVIC, M., ORLIC, V. D. Complex signal constellations in cumulants-based AMC: Statistics and performance. Telfor Journal, 2021, vol. 3, no. 2, p. 63–68. DOI: 10.5937/telfor2102063P
  24. PAJIC, M. S., VEINOVIC, M., PERIC, M., et al. Modulation order reduction method for improving the performance of AMC algorithm based on sixth-order cumulants. IEEE Access, 2020, vol. 8, p. 106386–106394. DOI: 10.1109/ACCESS.2020.3000358
  25. GHAURI, S. A., QURESHI, I. M., AZIZ, A., et al. Classification of digital modulated signals using linear discriminant analysis on faded channel. World Applied Sciences Journal, 2014, vol. 29, no. 10, p. 1220–1227. DOI: 10.5829/idosi.wasj.2014.29.10.1540
  26. ZHANG, Y., ANSARI, N., SU, W. Multi-sensor signal fusion based modulation classification by using wireless sensor networks. Wireless Communications and Mobile Computing, 2015, vol. 15, no. 12, p. 1621–1632. DOI: 10.1002/wcm.2450
  27. TEKBIYIK, K., EKTI, A. R., GORCIN, A., et al. Robust and fast automatic modulation classification with CNN under multipath fading channels. In 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). Antwerp (Belgium), 2020, p. 1–6. DOI: 10.1109/VTC2020-Spring48590.2020.9128408
  28. ORLIC, V. D., DUKIC, M. L. Properties of an algorithm for automatic modulation classification based on sixth-order cumulants. In Proceedings of XLIV International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST). Veliko Tarnovo (Bulgaria), 2009, vol. 2, p. 635–638. ISBN: 978-954-438-796-9
  29. ORLIC, V. D., DUKIC, M. L. Automatic modulation classification algorithm using higher-order cumulants under real-world channel conditions. IEEE Communication Letter, 2009, vol. 13, no. 12, p. 917–919. DOI: 10.1109/LCOMM.2009.12.091711
  30. SWAMI, A., SADLER, B. M. Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications, 2000, vol. 48, no. 3, p. 416–429. DOI: 10.1109/26.837045
  31. WU, H. C., SAQUIB, M., YUN, Z. Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Transactions on Wireless Communications, 2008, vol. 7, no. 8, p. 3098–3105. DOI: 10.1109/TWC.2008.070015
  32. HARADA, H., PRASAD, R. Simulation and Software Radio for Mobile Communications. Norwood (USA): Artech House, 2002. ISBN: 978-1580530446
  33. BOZOVIC, R., ORLIC, V. D. Simulation Code for Matlab. [Online] Cited 2025-01-27. Available at https://github.com/RadeBozovic/AMC_Bias-induction.git

Keywords: AMC, AWGN, bias, Binary Phase Shift Keying (BPSK), channel impulse response, cumulants, multipath, Quadrature Amplitude Modulation (QAM)

B. ZHANG, R. YI, Z. WANG, J. PU, . Y. SUN [references] [full-text] [DOI: 10.13164/re.2025.0234] [Download Citations]
An Efficient Optimization Algorithm for Measurement Matrix Based on SVD and Improved Nesterov Accelerated Gradient

In compressed sensing, a measurement matrix having low coherence with a specified sparse dictionary has been shown to be advantageous over a Gaussian random matrix in terms of reconstruction performance. In this paper the problem of efficiently designing the measurement matrix is addressed. The measurement matrix is designed by iteratively minimizing the difference between the Gram matrix of the sensing matrix and a target Gram matrix. A new target Gram matrix is designed by applying singular value decomposition to the sensing matrix and utilizing entry shrinking in the Gram matrix, leading to lower mutual coherence indicators. An improved Nesterov accelerated gradient algorithm is derived to update the measurement matrix, which can improve the convergence behavior. An efficient optimization algorithm for measurement matrix is proposed on the basis of alternating minimization. The experimental results and analysis show that the proposed algorithm performs well in terms of both computational complexity and reconstruction performance.

  1. DONOHO, D. L. Compressed sensing. IEEE Transactions on Information Theory, 2006, vol. 52, no. 4, p. 1289–1306. DOI: 10.1109/TIT.2006.871582
  2. ELAD, M. Optimized projections for compressed sensing. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 12, p. 5695–5702. DOI: 10.1109/TSP.2007.900760
  3. DONOHO, D. L., ELAD, M. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization. Proceedings of the National Academy of Sciences, 2003, vol. 100, no. 5, p. 2197–2202. DOI: 10.1073/pnas.0437847100
  4. ZHAO, R., QIN, Z., HU, S. An optimization method for measurement matrix based on eigenvalue decomposition (in Chinese). Signal Processing (Xinhao Chuli), 2012, vol. 28, no. 5, p. 653–658. DOI: 10.3969/j.issn.1003-0530.2012.05.006
  5. DUARTE-CARVAJALINO, J. M., SAPIRO, G. Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing, 2009, vol. 18, no. 7, p. 1395–1408. DOI: 10.1109/TIP.2009.2022459
  6. AHARON, M., ELAD, M., BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 11, p. 4311–4322. DOI: 10.1109/TSP.2006.881199
  7. XU, J., PI, Y., CAO, Z. Optimized projection matrix for compressive sensing. EURASIP Journal on Advances in Signal Processing, 2010, vol. 2020, p. 1–8. DOI: 10.1155/2010/560349
  8. SUSTIK, M. A., TROPP, J. A., DHILLON, I. S., et al. On the existence of equiangular tight frames. Linear Algebra and Its Applications, 2007, vol. 426, no. 2, p. 619–635. DOI: 10.1016/j.laa.2007.05.043
  9. ABOLGHASEMI, V., FERDOWSI, S., SANEI, S. A gradient based alternating minimization approach for optimization of the measurement matrix in compressive sensing. Signal Processing, 2012, vol. 92, no. 4, p. 999–1009. DOI: 10.1016/j.sigpro.2011.10.012
  10. NOUASRIA, H., ET-TOLBA, M. A fast gradient-based sensing matrix optimization approach for compressive sensing. Signal, Image and Video Processing, 2022, vol. 16, no. 8, p. 2279–2286. DOI: 10.1007/s11760-022-02193-4
  11. LI, G., ZHU, Z., YANG, D., et al. On projection matrix optimization for compressive sensing systems. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 11, p. 2887–2898. DOI: 10.1109/TSP.2013.2253776
  12. ENTEZARI, R., RASHIDI, A. Measurement matrix optimization based on incoherent unit norm tight frame. AEU-International Journal of Electronics and Communications, 2017, vol. 82, p. 321–326. DOI: 10.1016/j.aeue.2017.09.015
  13. HADJI, B., AISSA-EL-BEY, A., FERGANI, L., et al. Joint hybrid precoding and combining design based multi-stage compressed sensing approach for mmwave MIMO channel estimation. IEEE Access, 2023, vol. 11, p. 12398–112413. DOI: 10.1109/ACCESS.2023.3322658
  14. HONG, T., LI, S., BAI, H., et al. An efficient algorithm for designing projection matrix in compressive sensing based on alternating optimization. Signal Processing, 2016, vol. 125, p. 9–20. DOI: 10.1016/j.sigpro.2015.12.015
  15. JIN, S., SUN, W., HUANG, L. Joint optimization methods for Gaussian random measurement matrix based on column coherence in compressed sensing. Signal Processing, 2023, vol. 207, p. 1–13. DOI: 10.1016/j.sigpro.2023.108941
  16. PATEL, S., VAISH, A. An efficient optimization of measurement matrix for compressive sensing. Journal of Visual Communication and Image Representation, 2023, vol. 95, p. 1–10. DOI: 10.1016/j.jvcir.2023.103904
  17. CANDES, E. J., TAO, T. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 2006, vol. 52, no. 12, p. 5406–5425. DOI: 10.1109/TIT.2006.885507
  18. ZHU, Z., LI, Q., TANG, G., et al. Global optimality in low-rank matrix optimization. IEEE Transactions on Signal Processing, 2018, vol. 66, no. 13,
  19. p. 3614–3628. DOI: 10.1109/TSP.2018.2835403
  20. LI, Q., ZHU, Z., TANG, G. The nonconvex geometry of low-rank matrix optimization. Information & Inference: A Journal of the IMA, 2019, vol. 8, no. 1, p. 51–96. DOI: 10.1093/imaiai/iay003
  21. NESTEROV, Y. A method for unconstrained convex minimization problem with the rate of convergence O(1/k2) (in Russian). Doklady Akademii Nauk SSSR, 1983, vol. 269, no. 3, p. 543–547.
  22. TROPP, J. A., GILBERT, A. C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, vol. 53, no. 12, p. 4655–4666. DOI: 10.1109/TIT.2007.909108
  23. ELAD, M., AHARON, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 2006, vol. 15, no. 12, p. 3736–3745. DOI: 10.1109/TIP.2006.881969

Keywords: Compressed sensing, equiangular tight frame, singular value decomposition, mutual coherence, Nesterov accelerated gradient

Fathe Jeribi, R. John Martin [references] [full-text] [DOI: 10.13164/re.2025.0243] [Download Citations]
Adaptive Resource Optimization for IoT-Enabled Disaster-Resilient Non-Terrestrial Networks using Deep Reinforcement Learning

The increasing deployment of IoT devices across sectors such as agriculture, transportation, and infrastructure has intensified the need for connectivity in remote and non-terrestrial regions. Non-terrestrial networks (NTNs), which include maritime and space platforms, face unique challenges for IoT connectivity, including mobility and weather conditions, which are critical for maintaining quality of service (QoS), especially in disaster management scenarios. The dynamic nature of NTNs makes static resource allocation insufficient, necessitating adaptive strategies to address varying demands and environmental conditions during disaster management. In this paper, we propose an adaptive resource optimization approach for disaster-resilient IoT connectivity in non-terrestrial environments using deep reinforcement learning. Initially, we design the chaotic plum tree (CPT) algorithm for clustering IoT nodes to maximize the number of satisfactory connections, ensuring all nodes meet sustainability requirements in terms of delay and QoS. Additionally, unmanned aerial vehicles (UAVs) are used to provide optimal coverage for IoT nodes in disaster areas, with coverage optimization achieved through the non-linear smooth optimization (NLSO) algorithm. Furthermore, we develop the multi-variable double deep reinforcement learning (MVD-DRL) framework for resource management, which addresses congestion and transmission power of IoT nodes to enhance network performance by maximize successful connections. Simulation results demonstrate that our MVD-DRL approach reduces the average end-to-end delay by 50.24% compared to existing approaches. It also achieves a throughput improvement of 13.01%, an energy consumption efficiency of 68.71%, and an efficiency in the number of successful connections of 17.51% compared to current approaches.

  1. CHEN, Q., MENG, W., HAN, S., et al. Spatio-temporal service analysis in multi-layer non-terrestrial networks. Journal of Communications and Information Networks, 2024, vol. 9, no. 1, p. 43–55. DOI: 10.23919/jcin.2024.10494943
  2. SHAMSABADI, A. A., YADAV, A., YANIKOMEROGLU, H. Enhancing next-generation urban connectivity: Is the integrated HAPS-terrestrial network a solution? IEEE Communications Letters, 2024, vol. 28, no. 5, p. 1112–1116. DOI: 10.1109/lcomm.2024.3370698
  3. ZHOU, Y., LEI, L., ZHAO, X., et al. Decomposition and meta DRL based multi-objective optimization for asynchronous federated learning in 6g-satellite systems. IEEE Journal on Selected Areas in Communications, 2024, vol. 42, no. 5, p. 1115–1129. DOI: 10.1109/jsac.2024.3365902
  4. KHENNOUFA, F., ABDELLATIF, K., KARA, F., et al. Error performance analysis of UAV-mounted RIS for NOMA systems with practical constraints. IEEE Communications Letters, 2024, vol. 28, no. 4, p. 887–891. DOI: 10.1109/lcomm.2024.3361378
  5. KIM, Y. J., HA, S. W., CHO, Y. S. A Doppler-tolerant synchronization method for 5G NR-based non-terrestrial networks. IEEE Communications Letters, 2024, vol. 28, no. 3, p. 617–621. DOI: 10.1109/lcomm.2024.3353774
  6. ABBASI, O., YANIKOMEROGLU, H. UxNB-enabled cell-free massive MIMO with HAPS-assisted sub-THz backhauling. IEEE Transactions on Vehicular Technology, 2024, vol. 73, no. 5, p. 6937–6953. DOI: 10.1109/tvt.2023.3347140
  7. XU, J., FAN, X., JIAN, H., et al. YoloOW: A spatial scale adaptive real-time object detection neural network for open water search and rescue from UAV aerial imagery. IEEE Transactions on Geoscience and Remote Sensing, 2024, vol. 62, p. 1–15. DOI: 10.1109/tgrs.2024.3395483
  8. HORYNA, J., KRATKY, V., PRITZL, V., et al. Fast swarming of UAVs in GNSS-denied feature-poor environments without explicit communication. IEEE Robotics & Automation Letters, 2024, vol. 9, no. 6, p. 5284–5291. DOI: 10.1109/lra.2024.3390596
  9. SINGLA, A., CALVERAS, A., BETORZ, F., et al. Enhancing satellite non-terrestrial networks through advanced constellation management: optimizing in-orbit resources for NB-IoT. IEEE Open Journal of the Communications Society, 2024, vol. 5, p. 2113–2131. DOI: 10.1109/ojcoms.2024.3384265
  10. AL-HRAISHAWI, H., REHMAN, J. U., RAZAVI, M., et al. Characterizing and utilizing the interplay between quantum technologies and non-terrestrial networks. IEEE Open Journal of the Communications Society, 2024, vol. 5, p. 1937–1957. DOI: 10.1109/ojcoms.2024.3380508
  11. BOQUET, G., MARTINEZ, B., ADELANTADO, F., et al. Low power satellite access time estimation for internet of things services over non terrestrial networks. IEEE Internet of Things 256 F. JERIBI, R. J. MARTIN, ADAPTIVE RESOURCE OPTIMIZATION FOR IOT-ENABLED DISASTER-RESILIENT NTN USING DRL
  12. Journal, 2024, vol. 11, no. 2, p. 3206–3216. DOI: 10.1109/jiot.2023.3298017
  13. CAO, Y., LIEN, S. Y., LIANG, Y. C., et al. Collaborative computing in non-terrestrial networks: A multi-time-scale deep reinforcement learning approach. IEEE Transactions on Wireless Communications, 2024, vol. 23, no. 5, p. 4932–4949. DOI: 10.1109/twc.2023.3323554
  14. GAO, Y., YAN, Z., ZHAO, K., et al. Joint optimization of server and service selection in satellite-terrestrial integrated edge computing networks. IEEE Transactions on Vehicular Technology, 2024, vol. 73, no. 2, p. 2740–2754. DOI: 10.1109/tvt.2023.3320187
  15. GUPTA, A., TRIVEDI, A., PRASAD, B. Multi-UAV and IRS placement for secure data transmission in NOMA-enabled wireless networks. AEU International Journal of Electronics and Communications, 2024, vol. 178, p. 1–8. DOI: 10.1016/j.aeue.2024.155259
  16. JUNG, D. H., RYU, J. G., CHOI, J. Satellite clustering for non terrestrial networks: Orbital configuration-dependent outage analysis. IEEE Wireless Communications Letters, 2024, vol. 13, no. 2, p. 550–554. DOI: 10.1109/lwc.2023.3335918
  17. KIM, E., KIM, J., KIM, J. H., et al. HiMAQ: Hierarchical multiagent Q-learning-based throughput and fairness improvement for UAV-aided IoT networks. Journal of Network and Computer Applications, 2024, vol. 223, p. 1–11. DOI: 10.1016/j.jnca.2023.103813
  18. KIM, J. B., LEE, I. H., JUNG, H. LEO satellite-aided over-the-air computation for unmanned aerial vehicle swarm sensing. IEEE Communications Letters, 2024, vol. 28, no. 1, p. 143–147. DOI: 10.1109/lcomm.2023.3333892
  19. LIN, K., ULLAH, M. A., ALVES, H., et al. Energy efficiency optimization for subterranean LoRaWAN using a reinforcement learning approach: A direct-to-satellite scenario. IEEE Wireless Communications Letters, 2024, vol. 13, no. 2, p. 308–312. DOI: 10.1109/lwc.2023.3327833
  20. LIU, Y., HUANG, C., CHEN, G., et al. Deep learning empowered trajectory and passive beamforming design in UAV-RIS enabled secure cognitive non-terrestrial networks. IEEE Wireless Communications Letters, 2024, vol. 13, no. 1, p. 188–192. DOI: 10.1109/lwc.2023.3325066
  21. MOSTAFA, A. F., ABDEL-KADER, M., GADALLAH, Y. A UAV-based coverage gap detection and resolution in cellular networks: A machine-learning approach. Computer Communications, 2024, vol. 215, p. 41–50. DOI: 10.1016/j.comcom.2023.12.010
  22. ABOSHSOSHA, A., HAGGAG, A., GEORGE, N., et al. IoT based data-driven predictive maintenance relying on fuzzy system and artificial neural networks. Scientific Reports, 2023, vol. 13, p. 1–13. DOI: 10.1038/s41598-023-38887-z
  23. ALNAKHLI, M. Optimizing spectrum efficiency in 6g multi-UAV networks through source correlation exploitation. EURASIP Journal on Wireless Communications and Networking, 2024, no. 6, p. 1–25. DOI: 10.1186/s13638-023-02332-6
  24. BIRABWA, D. J., RAMOTSOELA, D., VENTURA, N. Multiagent deep reinforcement learning for user association and resource allocation in integrated terrestrial and non-terrestrial networks. Computer Networks, 2023, vol. 231, p. 1–22. DOI: 10.1016/j.comnet.2023.109827
  25. CHAHED, H., USMAN, M., CHATTERJEE, A., et al. AIDA—A holistic AI-driven networking and processing framework for industrial IoT applications. Internet of Things, 2023, vol. 22, p. 1–22. DOI: 10.1016/j.iot.2023.100805
  26. JEREMIAH, S. R., CAMACHO, D., PARK, J. H. Maximizing throughput in NOMA-enabled industrial IoT network using digital twin and reinforcement learning. Journal of Advanced Research, 2024, vol. 66, p. 59–70. DOI: 10.1016/j.jare.2024.04.021
  27. KUMAR, M., MUKHERJEE, P., VERMA, S., et al. A smart privacy-preserving framework for industrial IoT using hybrid meta-heuristic algorithm. Scientific Reports, 2023, vol. 13, p. 1–17. DOI: 10.1038/s41598-023-32098-2
  28. LI, J., XUE, H., WU, M., et al. Energy efficiency performance in RIS-based integrated satellite–aerial–terrestrial relay networks with deep reinforcement learning. EURASIP Journal on Advances in Signal Processing, 2023, no. 121, p. 1–20. DOI: 10.1186/s13634-023-01070-7
  29. PANDEY, A. K., SAXENA, R., AWASTHI, A., et al. Privacy preserved data sharing using blockchain and support vector machine for industrial IoT applications. Measurement: Sensors, 2023, vol. 29, p. 1–7. DOI: 10.1016/j.measen.2023.100891
  30. PAWASE, C. J., CHANG, K. Demodulation reference signal (DM-RS) based channel estimation for non-terrestrial networks to support high mobility. ICT Express, 2024, vol. 10, no. 1, p. 46–52. DOI: 10.1016/j.icte.2023.05.004
  31. YIN, Y., HUANG, C., XIONG, N. N., et al. Joint dynamic routing and resource allocation in satellite-terrestrial integrated networks. Computer Networks, 2023, vol. 231, no. C, p. 1–17. DOI: 10.1016/j.comnet.2023.109823
  32. DING, F., BAO, C., ZHOU, D., et al. Towards autonomous resource management architecture for 6G satellite-terrestrial integrated networks. IEEE Network, 2024, vol. 38, no. 2, p. 113–121. DOI: 10.1109/mnet.2024.3354308
  33. HE, M., WU, H., ZHOU, C., et al. Resource slicing with cross-cell coordination in satellite-terrestrial integrated networks. arXiv (Cornell University), 2024, p. 1–6. DOI: 10.48550/arxiv.2404.13158
  34. LI, J., CHAI, R., LIU, C., et al. Energy-aware joint route selection and resource allocation in heterogeneous satellite networks. IEEE Transactions on Vehicular Technology, 2024, vol. 73, no. 8, p. 12067–12081. DOI: 10.1109/tvt.2024.3381479
  35. TONG, M., LI, S., HAN, W., et al. Online learning-based offloading decision and resource allocation in mobile edge computing-enabled satellite-terrestrial networks. China Communications, 2024, vol. 21, no. 3, p. 230–246. DOI: 10.23919/jcc.fa.2023-0043.202403
  36. SHI, J., CHEN, X., ZHANG, Y., et al. Joint optimization of task offloading and resource allocation in satellite-assisted IoT networks. IEEE Internet of Things Journal, 2024, vol. 11, no. 21, p. 34337–34348. DOI: 10.1109/jiot.2024.3398055
  37. SHI, J., YANG, H., CHEN, X., et al. Resource allocation for integrated satellite‐terrestrial networks based on RSMA. IET Communications, 2025, no. 19, p. 1–12. DOI: 10.1049/cmu2.12745
  38. SUN, J., WANG, H., SUN, J., et al. An online integrated satellite terrestrial IoT task offloading and service deployment strategy. Internet of Things, 2024, no. 26, p. 1–20. DOI: 10.1016/j.iot.2024.101210
  39. TANG, J., LI, J., ZHANG, L., et al. Opportunistic content-aware routing in satellite-terrestrial integrated networks. IEEE Transactions on Mobile Computing, 2024, vol. 23, no. 11, p. 10460–10474. DOI: 10.1109/tmc.2024.3377729
  40. LIN, T., LUO, Z. A self-attention based dynamic resource management for satellite-terrestrial networks. China Communications, 2024, vol. 21, no. 4, p. 136–150. DOI: 10.23919/jcc.fa.2023-0489.202404
  41. VAEZI, M., AZARI, A., KHOSRAVIRAD, S. R., et al. Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G. IEEE Communications Surveys and Tutorials, 2022, vol. 24, no. 2, p. 1117–1174. DOI: 10.1109/comst.2022.3151028
  42. MOHAMMADISARAB, A., NOURUZI, A., KHALILI, A., et al. Resilient disaster relief in industrial IoT: UAV trajectory design and resource allocation in 6G non-terrestrial networks. IEEE Open Journal of the Communications Society, 2024, vol. 5, p. 1827–1845. DOI: 10.1109/ojcoms.2024.3376335

Keywords: Internet of Things (IoT), Disaster Management, Resource Optimization, Deep Reinforcement Learning, Non-Terrestrial Network

F. Titel, M. Belattar, M. Lashab, R. Abd-Alhameed [references] [full-text] [DOI: 10.13164/re.2025.0258] [Download Citations]
Aerial RIS Aided NOMA Networks with Optimized Secrecy Metrics Performance

Reconfigurable Intelligent Surface (RIS) technology is a promising technique for enhancing the performance of reconfigurable next-generation wireless networks. In this paper, we investigate the physical layer security of the downlink in RIS-aided non-orthogonal multiple access (NOMA) networks in the presence of an eavesdropper. To characterize the network performance, the expected value of the new channel statistics is derived for the reflected links in the case of Rayleigh fading distribution. Furthermore, the performance of the proposed network is evaluated in terms of the secrecy outage probability (SOP) and the strictly positive secrecy capacity (SPSC). To optimize these metrics, we employ the multi-objective artificial vultures optimization algorithm (MOAVOA), using the power allocation coefficients of the nearby and distant users as key parameters. Two case studies are considered in simulation: perfect channel state information (CSI) and imperfect CSI.

  1. DING, Z., YANG, Z., FAN, P., et al. On the performance of nonorthogonal multiple access in 5G systems with randomly deployed users. IEEE signal processing letters, 2014, vol. 21, no. 12, p. 1501–1505. DOI: 10.1109/LSP.2014.2343971
  2. ZENG, M., YADAV, A., DOBRE, O. A., et al. Energy-efficient joint user-RB association and power allocation for uplink hybrid NOMA-OMA. IEEE Internet of Things Journal, 2019, vol. 6, no. 3, p. 5119–5131. DOI: 10.1109/JIOT.2019.2896946
  3. HASHEMI, R., BEYRANVAND, H., MILI, M. R., et al. Energy efficiency maximization in the uplink delta-OMA networks. IEEE Transactions on Vehicular Technology, 2021, vol. 70, no. 9, p. 9566–9571. DOI: 10.1109/TVT.2021.3097128
  4. LIU, Y., ZHANG, S., MU, X., et al. Evolution of NOMA toward next generation multiple access (NGMA) for 6G. IEEE Journal on Selected Areas in Communications, 2022, vol. 40, no. 4, p. 1037–1071. DOI: 10.1109/JSAC.2022.3145234
  5. DING, Z., POOR, H. V. A simple design of IRS-NOMA transmission. IEEE Communications Letters, 2020, vol. 24, no. 5, p. 1119–1123. DOI: 10.1109/LCOMM.2020.2974196
  6. HUANG, C., ZAPPONE, A., ALEXANDROPOULOS, G. C., et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Transactions on Wireless Communications, 2019, vol. 18, no. 8, p. 4157–4170. DOI: 10.1109/TWC.2019.2922609
  7. NI, Y., LIU, Y., WANG, J., et al. Performance analysis for RIS assisted D2D communication under Nakagami-m fading. IEEE Transactions on Vehicular Technology, 2021, vol. 70, no. 6, p. 5865–5879. DOI: 10.1109/TVT.2021.3077805
  8. ZUO, J., LIU, Y., BASAR, E., et al. Intelligent reflecting surfaces enhanced millimeter-wave NOMA systems. IEEE Communications Letters, 2020, vol. 24, no. 11, p. 2632–2636. DOI: 10.1109/LCOMM.2020.3009158
  9. YANG, L., YANG, J., XIE, W., et al. Secrecy performance analysis of RIS-aided wireless communication systems. IEEE Transactions on Vehicular Technology, 2020, vol. 69, no. 10, p. 12296–12300. DOI: 10.1109/TVT.2020.3007521
  10. YANG, L., YUAN, Y. Secrecy outage probability analysis for RIS-assisted NOMA systems. Electronics Letters, 2020, vol. 56, no. 23, p. 1254–1256. DOI: 10.1049/el.2020.2284
  11. LIAN, X., YUE, X., LI, X., et al. Reconfigurable intelligent surface assisted non-terrestrial NOMA networks. Wireless Communications and Mobile Computing, 2022, vol. 2022, p. 1–13. DOI: 10.1155/2022/8494630
  12. GONG, S., LU, X., HOANG, D. T., et al. Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey. IEEE Communications Surveys & Tutorials, 2020, vol. 22, no. 4, p. 2283–2314. DOI: 10.1109/COMST.2020.3004197
  13. LIU, Y., OUYANG, C., DING, Z., et al. The road to next generation multiple access: A 50-year tutorial review. Proceedings of the IEEE, 2024, vol. 112, no. 9, p. 1100–1148. DOI: 10.1109/JPROC.2024.3476675
  14. ZHANG, C., YI, W., LIU, Y., et al. Downlink analysis for reconfigurable intelligent surfaces aided NOMA networks. In IEEE Global Communications Conference (GLOBECOM). Taipei (Taiwan), 2020, p. 1–6. DOI: 10.1109/GLOBECOM42002.2020.9322367
  15. CHEN, S., SUN, S., KANG, S. System integration of terrestrial mobile communication and satellite communication — the trends, challenges and key technologies in B5G and 6G. China Communications, 2020, vol. 17, no. 12, p. 156–171. DOI: 10.23919/JCC.2020.12.011
  16. GE, R., BIAN, D., CHENG, J., et al. Joint user pairing and power allocation for NOMA-based GEO and LEO satellite network. IEEE Access, 2021, vol. 9, p. 93255–93266. DOI: 10.1109/ACCESS.2021.3078458
  17. HAN, L., ZHU, W. P., LIN, M. Outage of NOMA-based hybrid satellite-terrestrial multi-antenna DF relay networks. IEEE Wireless Communications Letters, 2021, vol. 10, no. 5, p. 1083–1087. DOI: 10.1109/LWC.2021.3058005
  18. ARANITI, G., IERA, A., PIZZI, S., et al. Toward 6G non terrestrial networks. IEEE Network, 2022, vol. 36, no. 1, p. 113–120. DOI: 10.1109/MNET.011.2100191
  19. GUAN, D., SUN, X., WANG, J., et al. RIS-NOMA-aided LEO satellite communication networks. In 10th International Conference on Information Systems and Computing Technology (ISCTech). Guilin (China), 2022, p. 409–413. DOI: 10.1109/ISCTech58360.2022.00071
  20. LIU, Y., MU, X., LIU, X., et al. Reconfigurable intelligent surface aided multi-user networks: interplay between NOMA and RIS. IEEE Wireless Communications, 2022, vol. 29, no. 2, p. 169–176. DOI: 10.1109/MWC.102.2100363
  21. ALMOHAMAD, A., AL-KABABJI, A., TAHIR, A., et al. On optimizing the secrecy performance of RIS-assisted cooperative networks. In IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). Victoria (BC, Canada), 2020, p. 1–5. DOI: 10.1109/VTC2020-Fall49728.2020.9348668
  22. TRIGUI, I., AJIB, W., ZHU, W. Secrecy outage probability and average rate of RIS-aided communications using quantized phases. IEEE Communications Letters, 2021, vol. 25, no. 6, p. 1820–1824. DOI: 10.1109/LCOMM.2021.3057850
  23. ZHANG, Z., ZHANG, C., JIANG, C., et al. Improving physical layer security for reconfigurable intelligent surface aided NOMA 6G networks. IEEE Transactions on Vehicular Technology, 2021, vol. 70, no. 5, p. 4451–4463. DOI: 10.1109/TVT.2021.3068774
  24. TANG, Z., HOU, T., LIU, Y., et al. Physical layer security of intelligent reflective surface aided NOMA networks. IEEE Transactions on Vehicular Technology, 2022, vol. 71, no. 7, p. 7821–7834. DOI: 10.1109/TVT.2022.3168392
  25. DANG, H. P., VAN NGUYEN, M. S., DO, D. T., et al. Secure performance analysis of aerial RIS-NOMA-aided systems: Deep neural network approach. Electronics, 2022, vol. 11, no. 16, p. 1–19. DOI: 10.3390/electronics11162588
  26. TITEL, F., BELATTAR, M. Security performance optimization of aerial downlink NOMA-IRS aided networks. In International Conference on Electrical Engineering and Advanced Technology (ICEEAT). Batna (Algeria), 2023, p. 1–6. DOI: 10.1109/ICEEAT60471.2023.10426005
  27. BEIGIAN, A., KIANFAR, G., ABOUEI, J., et al. Enhancing security for physical layer communication in RIS-aided MIMO NOMA systems in the presence of an eavesdropper. Physical Communication, 2024, vol. 64, p. 1–17. DOI: 10.1016/j.phycom.2024.102333
  28. LE, T. L., NGUYEN, B. C., HOANG, T. M., et al. Improving secrecy performance of NOMA networks with multiple non colluding eavesdroppers employing multiple aerial reconfigurable intelligent surfaces. Physical Communication, 2024, vol. 63, p. 1–15. DOI: 10.1016/j.phycom.2024.102314
  29. KHODADADI, N., SOLEIMANIAN GHAREHCHOPOGH, F., MIRJALILI, S. MOAVOA: A new multi-objective artificial vultures optimization algorithm. Neural Computing and Applications, 2022, vol. 34, no. 23, p. 20791–20829. DOI: 10.1007/s00521-022-07557-y
  30. WU, C., YAN, S., ZHOU, X., et al. Intelligent reflecting surface (IRS)-aided covert communication with warden’s statistical CSI. IEEE Wireless Communications Letters, 2021, vol. 10, no. 7, p. 1449–1453. DOI: 10.1109/LWC.2021.3069778
  31. ZHAO, W., WANG, G., ATAPATTU, S., et al. Is backscatter link stronger than direct link in reconfigurable intelligent surface assisted system? IEEE Communications Letters, 2020, vol. 24, no. 6, p. 1342–1346. DOI: 10.1109/LCOMM.2020.2980510
  32. ABDOLLAHZADEH, B., GHAREHCHOPOGH, F. S., MIRJALILI, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering, 2021, vol. 158, p. 1–37. DOI: 10.1016/j.cie.2021.107408
  33. TITEL, F., BELATTAR, M. Optimization of NOMA downlink network parameters under harvesting energy strategy using multi objective GWO. Radioengineering, 2023, vol. 32, no 4, p. 492–501. DOI: 10.13164/re.2023.0492

Keywords: Reconfigurable Intelligent Surfaces (RIS), NOMA networks, Secrecy Outage Probability (SOP), Strictly Positive Secrecy Capacity (SPSC), Multi-objective Artificial Vultures Optimization Algorithm (MOAVOA), Multi-Objective Particle Swarm Optimization (MOPSO)

C. L. Zhao, F. F. Yang, H. J. Xu [references] [full-text] [DOI: 10.13164/re.2025.0273] [Download Citations]
Optimized Design of Distributed Generalized Reed-Solomon Coded Generalized Spatial Modulation

To meet the need of modern society for more reliable and efficient communications, this paper applies the generalized spatial modulation (GSM) technique in the distributed generalized Reed-Solomon (GRS) coding to propose a novel distributed GRS coded GSM (DGRSC-GSM) system. In the proposed system, the relay uses the concept of information symbol selection. For different information symbol selections, the destination generates different equivalent linear block codes. To achieve the optimized system design, the optimal information symbol selection (OISS) algorithm by complete search in the relay is proposed to make the destination obtain the best code having the optimal weight distribution. When the GRS codes at the source and relay have large information lengths, the OISS algorithm possesses high complexity. Thus, a low-complexity optimized information symbol selection (LC-OISS) algorithm by incomplete search is put forward. For realizing the effective retrieve of the overall source information, a new joint decoding algorithm in the destination is designed. The results show the superior performance of the proposed DGRSC-GSM system under the OISS and LC-OISS algorithms over that under the random information symbol selection algorithm. Also, the proposed system outperforms the non-cooperative system by 2.6 dB and exhibits more than 2 dB improvement over existing systems.

  1. LIANG, H., LIU, A. J., LIU, X., et al. Construction and optimization for adaptive polar coded cooperation. IEEE Wireless Communications Letters, 2020, vol. 9, no. 8, p. 1187–1190. DOI: 10.1109/LWC.2020.2984738
  2. WAWERU, D. K., YANG, F. F., ZHAO, C. L., et al. Design of optimized distributed Goppa codes and joint decoding at the destination. Telecommunication Systems, 2022, vol. 81, no. 3, p. 341–355. DOI: 10.1007/s11235-022-00948-5
  3. ZHAO, C. L., YANG, F. F., UMAR, R., et al. Two-source asymmetric turbo-coded cooperative spatial modulation scheme with code matched interleaver. Electronics, 2020, vol. 9, no. 1, p. 1–20. DOI: 10.3390/electronics9010169
  4. VAN DER MEULEN, E. C. Three-terminal communication channels. Advances in Applied Probability, 1971, vol. 3, no. 1, p. 120–154. DOI: 10.2307/1426331
  5. LANEMAN, J. N., WORNELL, G. W., TSE, D. N. An efficient protocol for realizing cooperative diversity in wireless networks. In Proceedings of IEEE International Symposium on Information Theory. Washington (DC, USA), 2001, p. 294–294. DOI: 10.1109/ISIT.2001.936157
  6. LANEMAN, J. N., TSE, D. N. C., WORNELL, G. W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 2004, vol. 50, no. 12, p. 3062–3080. DOI: 10.1109/TIT.2004.838089
  7. HUNTER, T. E., NOSRATINIA, A. Diversity through coded cooperation. IEEE Transactions on Wireless Communications, 2006, vol. 5, no. 2, p. 283–289. DOI: 10.1109/TWC.2006.02006
  8. HUNTER, T. E., NOSRATINIA, A. Cooperation diversity through coding. In Proceedings of IEEE International Symposium on Information Theory. Lausanne (Switzerland), 2002, p. 220–220. DOI: 10.1109/ISIT.2002.1023492
  9. ALMAWGANI, A. H. M., SALLEH, M. F. M. RS coded cooperation with adaptive cooperation level scheme over multipath Rayleigh fading channel. In Proceedings of IEEE 9th Malaysia International Conference on Communications (MICC). Kuala Lumpur (Malaysia), 2009, p. 480–484. DOI: 10.1109/MICC.2009.5431555
  10. ALMAWGANI, A. H. M., SALLEH, M. F. M. Coded cooperation using Reed Solomon codes in slow fading channel. IEICE Electronics Express, 2010, vol. 7, no. 1, p. 27–32. DOI: 10.1587/elex.7.27
  11. AL-MOLIKI, Y. M., ALDHAEEBI, M. A., ALMWALD, G. A., et al. The performance of RS and RSCC coded cooperation systems using higher order modulation schemes. In Proceedings of the 6th International Conference on Intelligent Systems, Modelling and Simulation. Kuala Lumpur (Malaysia), 2015, p. 211-214. DOI: 10.1109/ISMS.2015.11
  12. GUO, P. C., YANG, F. F., ZHAO, C. L., et al. Jointly optimized design of distributed Reed-Solomon codes by proper selection in relay. Telecommunication Systems, 2021, vol. 78, no. 3, p. 391 to 403. DOI: 10.1007/s11235-021-00822-w
  13. CHEN, C., YANG, F. F., ZHAO, C. L., et al. Distributed Reed Solomon coded cooperative space-time labeling diversity network. Radioengineering, 2022, vol. 31, no. 4, p. 496–509. DOI: 10.13164/re.2022.0496
  14. ZHU, C. Z., LIAO, Q. Y. The (+)-extended twisted generalized Reed-Solomon code. Discrete Mathematics, 2024, vol. 347, no. 2, p. 1–18. DOI: 10.1016/j.disc.2023.113749
  15. EJAZ, S., YANG, F., XU, H. Split labeling diversity for wireless half-duplex relay assisted cooperative communication systems. Telecommunication Systems, 2020, vol. 75, no. 4, p. 437–446. DOI: 10.1007/s11235-020-00694-6
  16. CHEN, L., WANG, Z. Q., DU, Y., et al. Generalized transceiver beamforming for DFRC with MIMO radar and MU-MIMO communication. IEEE Journal on Selected Areas in Communications, 2022, vol. 40, no. 6, p. 1795–1808. DOI: 10.1109/JSAC.2022.3155515
  17. HUANG, K. Y., XIAO, Y., LIU, L. Z., et al. Integrated spatial modulation and STBC-VBLAST design toward efficient MIMO transmission. Sensors, 2022, vol. 22, no. 13, p. 1–14. DOI: 10.3390/s22134719
  18. YOUNIS, A., SERAFIMOVSKI, N., MESLEH, R., et al. Generalised spatial modulation. In Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers. Pacific Grove (USA), 2010, p. 1498–1502. DOI: 10.1109/ACSSC.2010.5757786
  19. CHEN, C., YANG, F. F., WAWERU, D. K. Optimized-Goppa codes based on the effective selection of Goppa polynomials for coded-cooperative generalized spatial modulation network. Radioengineering, 2024, vol. 33, no. 1, p. 75–88. DOI: 10.13164/re.2024.0075
  20. ZHAO, C. L., YANG, F. F., WAWERU, D. K. Reed-Solomon coded cooperative spatial modulation based on nested construction for wireless communication. Radioengineering, 2021, vol. 30, no. 1, p. 172–183. DOI: 10.13164/re.2021.0172
  21. CHEN, B. C., LIU, H. W. New constructions of MDS codes with complementary duals. IEEE Transactions on Information Theory, 2018, vol. 64, no. 8, p.
  22. 5776–5782. DOI: 10.1109/TIT.2017.2748955
  23. CHEN, C., YANG, F. F., ZHAO, C., et al. Distributed RS coded cooperation: Optimized code construction and decoding by critical SNR aided. Wireless Personal Communications, 2023, vol. 132, no. 1, p. 523–548. DOI: 10.1007/s11277-023-10623-w
  24. GOVENDER, R., PILLAY, N., XU, H. J. Soft-output space-time block coded spatial modulation. IET Communications, 2014, vol. 8, no. 16, p. 2786–2796. DOI: 10.1049/iet-com.2014.0174
  25. WANG, J., ZHANG, S. W., MEI, Z. H., et al. RIS-assisted coded relay cooperation based on LDPC product codes with finite code length. In Proceedings of International Conference on Wireless Communications and Signal Processing (WCSP). Hangzhou, (China), 2023, p. 1038–1043. DOI: 10.1109/WCSP58612.2023.10405032
  26. PAN, Y., ZHANG, S. W. Performance analysis of RIS-assisted coded cooperation system based on polar codes with finite code length. IEEE Signal Processing Letters, 2024, vol. 31, p. 2290 to 2294. DOI: 10.1109/LSP.2024.3453662
  27. JUSTESEN, J. On the complexity of decoding Reed-Solomon codes. IEEE Transactions on Information Theory, 1976, vol. 22, no. 2, p. 237–238. DOI: 10.1109/TIT.1976.1055516
  28. ZHAO, C. L., YANG, F. F., WAWERU, D. K., et al. Distributed QC-LDPC coded spatial modulation for half-duplex wireless communications. Radioengineering, 2022, vol. 31, no. 3, p. 362 to 373. DOI: 10.13164/re.2022.0362

Keywords: Generalized Spatial Modulation (GSM), Generalized Reed-Solomon (GRS) codes, distributed channel coding, optimized information symbol selection

S. Rajesh Kumar, V. Gomathi, K. Vivekrabinson [references] [full-text] [DOI: 10.13164/re.2025.0289] [Download Citations]
Blockchain-Enabled Searchable Encryption for Secure and Efficient Sharing of IoHT-Generated Electronic Medical Records in Cloud-Based Healthcare

Protecting the security of data generated by wearables and monitoring devices is critical in smart wards, especially when healthcare schemes use cloud storage services to save patients' Electronic Medical Records (EMRs). These devices operate in wireless communication environments, where data integrity and transmission security are vital. Despite the fact that encryption helps protect information, it often reduces the benefits of sharing the information generated using Internet of Health Things (IoHT) devices with others. As individuals increasingly share their EMRs with third parties, developing an effective searchable encryption framework for sharable EMRs remains a crucial task. Furthermore, cloud-based access control might result in heavily centralized control. To address this, we proposed a blockchain-assisted technique for sharable EMRs that incorporates a searchable encryption scheme compatible with a resource-constrained wireless system that does not require any secure channel. The encrypted EMRs are saved in the cloud, while the encoded keyword indexes are kept on the blockchain, assuring tamper resistance, integrity, and accountability of the encrypted indexes. Our technique also enables exact recovery of encrypted EMRs using a multi-keyword search, removing the necessity for third-party verification. Compared to prior searchable encryption systems, our technique reduces storage costs while increasing computational efficiency. Furthermore, our system is immune to keyword-guessing attacks, a must-needed one that many previous solutions fail to address wireless medical data security.

  1. CHEN, C. M., LIU, S., LI, X., et al. A provably-secure authenticated key agreement protocol for remote patient monitoring IoMT. Journal of Systems Architecture, 2023, vol. 136, p. 1–11. DOI: 10.1016/j.sysarc.2023.102831
  2. WU, G., WANG, H., YANG, Z., et al. Electronic health records sharing based on consortium blockchain. Journal of Medical Systems, 2020, vol. 48, p. 1–23. DOI: 10.1007/s10916-024-02120-9
  3. ZHANG, G., YANG, Z., LIU, W. Blockchain-based privacy preserving e-health system for healthcare data in cloud. Computer Networks, 2022, vol. 203,
  4. p. 1–9. DOI: 10.1016/j.comnet.2021.108586
  5. XIANG, X., ZHAO, X. Blockchain-assisted searchable attribute based encryption for e-health systems. Journal of Systems Architecture, 2022, vol. 124,
  6. p. 1–9. DOI: 10.1016/j.sysarc.2022.102417
  7. YAN, X., ZHENG, C., TANG, Y., et al. Dynamic forward secure searchable encryption scheme with phrase search for smart healthcare. Journal of Systems Architecture, 2023, vol. 144, p. 1–10. DOI: 10.1016/j.sysarc.2023.103003
  8. XIONG, Y., LUO, M. X. Searchable encryption scheme for large data sets in cloud storage environment. Radioengineering, 2024, vol. 33, no. 2, p. 223–235. DOI: 10.13164/re.2024.0223
  9. WANG, B. Y., LI, H., LIU, X. F., et al. Preserving identity privacy on multi-owner cloud data during public verification. Security and Communication Networks, 2014, vol. 7, no. 12, p. 2104–2113. DOI: 10.1002/sec.922
  10. BENALOH, J., CHASE, M., HORVITZ, E., et al. Patient controlled encryption: Ensuring privacy of electronic medical records. In Proceedings of 2009 ACM Cloud Computing Security Workshop (CCSW ’09). Chicago (USA), 2009, p. 103–114. DOI: 10.1145/1655008.1655024
  11. CHENAM, V. B., ALI, S. T. A designated cloud server-based multi-user certificateless public key authenticated encryption with conjunctive keyword search against IKGA. Computer Standards & Interfaces, 2022, vol. 81, p. 1–21. DOI: 10.1016/j.csi.2021.103603
  12. YANG, N., ZHOU, Q., HUANG, Q., et al. Multi-recipient encryption with keyword search without pairing for cloud storage. Journal of Cloud Computing, 2022, vol. 11, no. 1, p. 1–12. DOI: 10.1186/s13677-022-00283-9
  13. FU, X., WANG, H., SHI, P., et al. Teegraph: A blockchain consensus algorithm based on TEE and DAG for data sharing in IoT. Journal of Systems Architecture, 2022, vol. 122, p. 1–9. DOI: 10.1016/j.sysarc.2021.102344
  14. KHAN, M. A., SALAH, K. IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 2018, vol. 82, p. 395–411. DOI: 10.1016/j.future.2017.11.022
  15. YU, G., WANG, X., YU, K., et al. Survey: Sharding in blockchains. IEEE Access, 2020, vol. 8, p. 14155–14181. DOI: 10.1109/ACCESS.2020.2965147
  16. LI, H., TIAN, H., ZHANG, F., et al. Blockchain-based searchable symmetric encryption scheme. Computers and Electrical Engineering, 2019, vol. 73, p.
  17. 32–45. DOI: 10.1016/j.compeleceng.2018.10.015
  18. KUO, T. T., KIM, J., GABRIEL, R. A. Privacy-preserving model learning on a blockchain network-of-networks. Journal of the American Medical Informatics Association, 2020, vol. 27, no. 3, p. 343–354. DOI: 10.1093/jamia/ocz214
  19. BONEH, D., DI CRESCENZO, G., OSTROVSKY, R., et al. Public key encryption with keyword search. In International Conference on the Theory and Applications of Cryptographic Techniques. 2004, p. 506–522. DOI: 10.1007/978-3-540-24676-3_30
  20. YANG, L., WANG, G., LI, J. Keyword guessing attacks on a public key encryption with keyword search scheme without random oracle and its improvement. Information Sciences, 2019, vol. 479, p. 270–276. DOI: 10.1016/j.ins.2018.12.004
  21. HUANG, Q., LI, H. An efficient public-key searchable encryption scheme secure against inside keyword guessing attacks. Information Sciences, 2017, vol. 403-404, p. 1–14. DOI: 10.1016/j.ins.2017.03.038
  22. QIN, B., CHEN, Y., HUANG, Q., et al. Public-key authenticated encryption with keyword search revisited: Security model and constructions. Information Sciences, 2020, vol. 516, no. C, p. 515–528. DOI: 10.1016/j.ins.2019.12.063
  23. LI, J., WANG, M., YANG, L., et al. ABKS-SKGA: Attribute based keyword search secure against keyword guessing attack. Computer Standards & Interfaces, 2021, vol. 74, p. 1–7. DOI: 10.1016/j.csi.2020.103471
  24. YANG, L., LI, J., ZHANG, Y. Secure channel free certificate based searchable encryption withstanding outside and inside keyword guessing attacks. IEEE Transactions on Services Computing, 2019, vol. 14, no. 6, p. 2041–2054. DOI: 10.1109/TSC.2019.2910113
  25. YANG, L., LI, J. Lightweight public key authenticated encryption with keyword search against adaptively-chosen-targets adversaries for mobile devices. IEEE Transactions on Mobile Computing, 2021, vol. 21, no. 12, p. 4397–4409. DOI: 10.1109/TMC.2021.3077508
  26. PAN, X., LI, F. Public-key authenticated encryption with keyword search achieving both multi-ciphertext and multi-trapdoor indistinguishability. Journal of Systems Architecture, 2021, vol. 115, p. 1–8. DOI: 10.1016/j.sysarc.2021.102075
  27. ZHANG, X., XU, C., WANG, H., et al. FS-PEKS: Lattice-based forward secure public-key encryption with keyword search for cloud-assisted industrial Internet of Things. IEEE Transactions on Dependable and Secure Computing, 2021, vol. 18, no. 3, p. 1019–1032. DOI: 10.1109/TDSC.2019.2914117
  28. LEE, C. Y., LIU, Z. Y., TSO, R., et al. Privacy-preserving bidirectional keyword search over encrypted data for cloud assisted IIoT. Journal of Systems Architecture, 2022, vol. 130, p. 1–11. DOI: 10.1016/j.sysarc.2022.102642
  29. XU, P., TANG, S., XU, P., et al. Practical multi-keyword and boolean search over encrypted e-mail in cloud server. IEEE Transactions on Services Computing, 2021, vol. 14, no. 6, p. 1948–1960. DOI: 10.1109/TSC.2019.2903502
  30. LIU, X., YANG, G., SUSILO, W., et al. Privacy-preserving multi keyword searchable encryption for distributed systems. IEEE Transactions on Parallel and Distributed Systems, 2021, vol. 32, no. 3, p. 561–574. DOI: 10.1109/TPDS.2020.3027003
  31. SHAMSHAD, S., MINAHIL, MAHMOOD, K., et al. A secure blockchain-based e-health records storage and sharing scheme. Journal of Information Security and Applications, 2020, vol. 55, p. 1–17. DOI: 10.1016/j.jisa.2020.102590
  32. ZHANG, L., ZHANG, T., WU, Q., et al. Secure decentralized attribute-based sharing of personal health records with blockchain. IEEE Internet of Things Journal, 2022, vol. 9, no. 14, p. 12482 to 12496. DOI: 10.1109/JIOT.2021.3137240
  33. ZHANG, Y., XU, C., NI, J., et al. Blockchain-assisted public-key encryption with keyword search against keyword guessing attacks for cloud storage. IEEE Transactions on Cloud Computing, 2019, vol. 9, no. 4, p. 1335–1348. DOI: 10.1109/TCC.2019.2923222
  34. JIANG, P., QIU, B., ZHU, L., et al. SearchBC: A blockchain based PEKS framework for IoT services. IEEE Internet of Things Journal, 2020, vol. 8, no.
  35. 6, p. 5031–5044. DOI: 10.1109/JIOT.2020.3036705
  36. YANG, Y., HU, M., CHENG, Y., et al. Keyword searchable encryption scheme based on blockchain in cloud environment. In Proceedings of the 3rd International Conference on Smart Blockchain (SmartBlock). Zhengzhou (China), 2020, p. 1–4. DOI: 10.1109/SmartBlock52591.2020.00013
  37. NIU, S., CHEN, L., WANG, J., et al. Electronic health record sharing scheme with searchable attribute-based encryption on blockchain. IEEE Access, 2019, vol. 8, p. 7195–7204. DOI: 10.1109/ACCESS.2019.2959044
  38. YU, J., LIU, S., XU, M., et al. An efficient revocable and searchable MA-ABE scheme with blockchain assistance for C-IoT. IEEE Internet of Things Journal, 2023, vol. 10, no. 3, p. 2754 to 2766. DOI: 10.1109/JIOT.2022.3213829
  39. SHEN, F., SHI, L., ZHANG, J., et al. BMSE: Blockchain-based multi-keyword searchable encryption for electronic medical records. Computer Standards & Interfaces, 2024, vol. 89, p. 1–10. DOI: 10.1016/j.csi.2023.103824
  40. WU, Q., LAI, T., ZHANG, L., et al. Blockchain-enabled multi authorization and multi-cloud attribute-based keyword search over encrypted data in the cloud. Journal of Systems Architecture, 2022, vol. 129, p. 1–12. DOI: 10.1016/j.sysarc.2022.102569
  41. HE, B., FENG, T., FANG, J., et al. A secure and efficient charitable donation system based on Ethereum blockchain and searchable encryption. IEEE Transactions on Consumer Electronics, 2023, vol. 70, no. 1, p. 263–276. DOI: 10.1109/TCE.2023.3323356
  42. BAO, F., DENG, R. H., ZHU, H. Variations of Diffie-Hellman problem. In Proceedings of Information and Communications Security (ICICS). 2003, p. 301–312. DOI: 10.1007/978-3-54039927-8_28
  43. PEDERSEN, T. P. A threshold cryptosystem without a trusted party. In Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques. 1991, p. 522–526. DOI: 10.1007/3-540-46416-6_47
  44. ANDROULAKI, E., BARGER, A., BORTNIKOV, V., et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Conference. Porto (Portugal), 2018, p. 1–15. DOI: 10.1145/3190508.3190538

Keywords: Blockchain, Electronic Medical Records (EMR), Internet of Health Things (IoHT), Keyword-Guessing Attacks (KGA), multi-keyword search, Searchable Encryption (SE)

M. Adamec, M. Turcanik [references] [full-text] [DOI: 10.13164/re.2025.0303] [Download Citations]
Comparative Analysis of Input Image Characteristics in Convolutional Neural Network-based Signature Detection

The detection of malware represents a primary concern in contemporary computer security and is therefore imperative for the protection of systems and data integrity. This research presents an innovative approach to comparing diverse input image formats with the objective of identifying the optimal methodology for detecting specific malware-related signatures using convolutional neural networks (CNN), which have been specifically developed by the authors for this purpose. Subsequently, machine code instructions are generated and then converted into four distinct image format options. The four image formats, namely 1xN fixed, 1xN scalable, NxN fixed, and NxN scalable, are subsequently employed for the training of the CNN. The study assesses the formats in question in terms of training time, accuracy, and computational complexity. The results demonstrate that the NxN scalable format exhibits the highest accuracy with accelerated training times in comparison to other formats. Furthermore, the scalable format necessitates only 25% of the original pixel count for a 96% classification success rate. The utilization of the NxN scalable format for machine code instruction representation results in enhanced accuracy, accelerated training, and a considerable reduction in pixel usage, indicating a promising avenue for optimizing the efficiency of malware detection.

  1. SIKORSKI, M., HONIG, A. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software.1st ed. USA: No Starch Press, 2012. ISBN: 978-1593272906
  2. HENG, Y., SONG, D. Automatic Malware Analysis: An Emulator Based Approach. New York (USA): Springer, 2013. ISBN: 9781461455226
  3. KUMAR, S., JANET, B., NEELAKANTAN, S. IMCNN: Intelligent Malware Classification using Deep Convolution Neural Networks as Transfer learning and ensemble learning in honeypot enabled organizational network. Computer Communications, 2024, vol. 216, p. 16–33. DOI: 10.1016/j.comcom.2023.12.036
  4. XUE, L., ZHU, T. Hybrid resampling and weighted majority voting for multi-class anomaly detection on imbalanced malware and network traffic data. Engineering Applications of Artificial Intelligence, 2024, vol. 128, p. 1–19. DOI: 10.1016/j.engappai.2023.107568
  5. LIU, J., ZHAO, Y., FENG, Y., et al. SeMalBERT: Semantic-based malware detection with bidirectional encoder representations from transformers. Journal of Information Security and Applications, 2024, vol. 80, p. 1–12. DOI: 10.1016/j.jisa.2023.103690
  6. MEHRBAN, A., AHADIAN, P., Malware Detection in IOT Systems Using Machine Learning Techniques. 12 p. [Online] Available at: https://arxiv.org/pdf/2312.17683, 2024. DOI: 10.48550/arxiv.2312.17683
  7. NASSER, A. R., HASSAN, A. M., HUMAIDI, A. J. DL-AMDet: Deep learning-based malware detector for android. Intelligent Systems with Applications, 2024, vol. 21, p. 1–10. DOI: 10.1016/j.iswa.2023.200318
  8. QUERTIER, T., BARUE, G., Use of Multi-CNNs for Section Analysis in Static Malware Detection. 10 p. [Online] Available at:
  9. https://arxiv.org/pdf/2402.04102, 2024. DOI: 10.48550/arXiv.2402.04102
  10. MONNAPPA, K. A. Learning Malware Analysis: Explore the Concepts, Tools, and Techniques to Analyze and Investigate Windows Malware. Packt Publishing, 2018. ISBN: 9781788392501
  11. AFIANIAN, A., NIKSEFAT, S., N., SADEGHIYAN, B., et al. Malware dynamic analysis evasion techniques: A survey. ACM Computing Surveys, 2019, vol. 52, no. 6, p. 1–28. DOI: 10.1145/3365001
  12. VIDYARTHI, D., KUMAR, C. R. S., RAKSHIT, S., et al. Static malware analysis to identify ransomware properties. International Journal of Computer Science Issues, 2019, vol. 16, no. 3, p. 10–17. DOI: 10.5281/zenodo.3252963
  13. OKTAVIANTO, D., MUHARDIANTO, I. Cuckoo Malware Analysis. Packt Pub Ltd, 2013. ISBN: 978-1782169239
  14. ZHANG, S., WU, J., ZHANG, M., et al. Dynamic malware analysis based on API sequence semantic fusion. Applied Sciences, 2023, vol. 13, no. 11, p. 1–16. DOI: 10.3390/app13116526
  15. TAHIR, R. A study on malware and malware detection techniques. International Journal of Education and Management Engineering, Pakistan, 2018, vol. 8, no. 2, p. 20–30. DOI: 10.5815/ijeme.2018.02.03
  16. JAWAD, A. R., KHAIRONI, Y. S., AMMAR, K. A. N/A and signature analysis for malwares detection and removal. Indian Journal of Science and Technology, 2019, vol. 12, no. 25, p. 1–7. DOI: 10.17485/ijst/2019/v12i25/146005
  17. HOSSAIN FARUK, M. J., SHAHRIAR, H., VALERO, M., et al. Malware detection and prevention using artificial intelligence techniques. In 2021 IEEE International Conference on Big Data (Big Data). Orlando (FL, USA), 2021, p. 5369–5377. DOI: 10.1109/BigData52589.2021.9671434
  18. TURCANIK, M., ADAMEC, M. Malware signatures detection with neural networks. In 2022 New Trends in Signal Processing (NTSP). Liptovsky Mikulas
  19. (Slovakia), 2022, p. 1–8. DOI: 10.23919/NTSP54843.2022.9920380
  20. ROSEBROCK, D. A. Practical Python and OpenCV: An Introductory, Example Driven Guide to Image Processing and Computer Vision. PyImageSearch, 2016.
  21. ROSEBROCK, D. A. Deep Learning for Computer Vision with Python. PyImageSearch, 2017.
  22. STAMP, M., ALAZAB, M., SHALAGINOV, A. Malware Analysis Using Artificial Intelligence and Deep Learning. 1st ed. Springer International, 2021. ISBN: 978-3030625818
  23. ABDELKHALKI, J. E., AHMED, M. B., ABDELHAKIM, B. A. Image malware detection using deep learning. International Journal of Communication Networks and Information Security, 2020, vol. 12, no. 2, p. 180–189. DOI: 10.17762/ijcnis.v12i2.4600
  24. BAKHSHINEJAD, N., HAMZEH, A. Parallel-CNN network for malware detection. IET Information Security, 2020, vol. 14, no. 2, p. 210–219. DOI: 10.1049/iet-ifs.2019.0159
  25. AKHTAR, M. S., FENG, T. Detection of malware by deep learning as CNN-LSTM machine learning techniques in real time. Symmetry, 2022, vol. 14, no. 11, p. 2308–2321. DOI: 10.3390/sym14112308

Keywords: Signature detection, CNN malware detection, machine code visualization, static analysis, interpolation

B. Mehra, A. Datar [references] [full-text] [DOI: 10.13164/re.2025.0313] [Download Citations]
Enhancing WSN Lifespan Based on Efficient-Energy Management Approach for Cluster Head Selection in IoT Application

Wireless sensor networks (WSNs) are one of the most important components in the connected world i.e. Internet of Things (IoT). WSN is a network of distributed sensor nodes that communicate wirelessly to transmit and receive real-time data. These sensor nodes play a crucial role in monitoring various environments, enabling smarter decision-making and improving efficiency across numerous applications. This paper presents an energy-efficient protocol based on low energy adaptive clustering hierarchy (LEACH) for improving the lifetime of WSN. The proposed method modifies the basic LEACH protocol and incorporates the factors of residual energy of the network, number of neighbor nodes, average energy of the network, and threshold distance between the nodes and base station. The proposed work compares the result with the existing methods and has shown the improvement in the network performance parameter metrics. The simulation results show an improvement in the network lifetime due to better energy management, thus increasing the number of data packet transfers.The proposed method has shown improvement by 13% over the first dead (FD) node of EEBC-LEACH, 5% improvement over half dead (HD) node of PEGASIS, and 3% improvement over all dead (AD) nodes of FBCR-LEACH.

  1. MEHTA,R., SAHNI, J., KHANNA, K., et al. Internet of things: Vision, applications and challenges. Procedia Computer Science, 2018, vol. 132, p. 1263–1269. DOI: 10.1016/j.procs.2018.05.042
  2. LAGHARI, A., WU, K., LAGHARI, R. A., et al. RETRACTED ARTICLE: A review and state of art of Internet of Things (IoT). Archives of Computational Methods in Engineering, 2022, vol. 29, p. 1395–1413. DOI: 10.1007/s11831-021-09622-6
  3. DAANOUNE, I., BAGHDAD, A., BALLOUK, A. A comprehensive survey on LEACH-based clustering routing protocols in wireless sensor networks. Ad Hoc Networks, 2021, vol. 114, p. 1–21. DOI: 10.1016/j.adhoc.2020.102409
  4. MEHRA, B., DATAR, A. A review paper on wireless communication technologies for smart community development. In Proceedings of the IEEE International Conference on Power Energy, Environment and Intelligent Control (PEEIC). Greater Noida (India), 2023, p. 366–370. DOI: 10.1109/PEEIC59336.2023.10451167
  5. MEHRA, B., DATAR, A. Evaluation of the quality of service parameters for IoT in outdoor environment. In Proceedings of the IEEE 5th International Conference on Smart Electronics and Communication (ICOSEC). Tamil Nadu (India). 2024, p. 839–844. DOI: 10.1109/ICOSEC61587.2024.10722251
  6. SINGH, S. K., KUMAR, P., SINGH, J. P. A survey on successors of LEACH protocol. IEEE Access, 2017, vol. 5, p. 4298–4328. DOI: 10.1109/ACCESS.2017.2666082
  7. CHAN, Y.-K. Challenges and opportunities of Internet of Things. In IEEE Asia and South Pacific Design Automation Conference. Sydney (Australia), 2012, p. 383–388. DOI: 10.1109/ASPDAC.2012.6164978
  8. MOTLAGALYOUSUF, R. S. Analysis and comparison on algorithmic functions of LEACH protocol in wireless sensor networks. In IEEE Third International Conference on Smart Systems and Inventive Technology (ICSSIT). Tirunelveli (India), 2020, p. 1349–1355. DOI: 10.1109/ICSSIT48917.2020.9214149
  9. KANDRIS, D., EVANGELAKOS, E. A., ROUNTOS, D., et al. LEACH-based hierarchical energy efficient routing in wireless sensor networks. AEU-International Journal of Electronics and Communications, 2023, vol. 169, p. 1–12. DOI: 10.1016/j.aeue.2023.154758
  10. BEHERA, T. M., SAMAL, U. C., MOHAPATRA, S. K., et al. Energy-efficient routing protocols for wireless sensor networks: Architectures, strategies, and performance. Electronics Journal, 2022, vol. 11, p. 1–26. DOI: 10.3390/electronics11152282
  11. SHOKOUHIFAR, M., JALALI, A. A new evolutionary based application specific routing protocol for clustered wireless sensor networks. AEU-International Journal of Electronics and Communications, 2015, vol. 69, no. 1, p. 432–441. DOI: 10.1016/j.aeue.2014.10.023
  12. JUWAIED, A., JACKOWSKA-STRUMILLO, L. Improving performance of cluster heads selection in DEC protocol using K-means algorithm for WSN. Sensors, 2024, vol. 24, no. 19, p. 1–18. DOI: 10.3390/s24196303
  13. HEINZELMAN, W. R., CHANDRAKASAN, A. P., BALAKRISHNAN, H. Energy-efficient communication protocol for wireless microsensor networks. In IEEE Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. Maui (USA), 2000, p. 10. DOI: 10.1109/HICSS.2000.926982
  14. HEINZELMAN, W. R., CHANDRAKASAN, A. P., BALAKRISHNAN, H. An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 2002, vol. 1, no. 4, p. 660–670. DOI: 10.1109/TWC.2002.804190
  15. BSOUL, M., AL-KHASAWNEH, A., ABDALLAH, A. E. et al. An energy-efficient threshold-based clustering protocol for wireless sensor networks. Wireless Personal Communications, 2013, vol. 70, p. 99–112. DOI: 10.1007/s11277-012-0681-8
  16. BEIRANVAND, Z., PATOOGHY, A., FAZELI, M. I-LEACH: An efficient routing algorithm to improve performance & to reduce energy consumption in wireless sensor networks. In IEEE 5th Conference on Information and Knowledge Technology. Shiraz (Iran), 2013, p. 13–18. DOI: 10.1109/IKT.2013.6620030
  17. KARMAKER, A., ALAMM, M. S., HASAN, M., et al. An energy efficient and balanced clustering approach for improving throughput of wireless sensor networks. International Journal of Communication Systems, 2020, vol. 33, no. 3, p. 1–9. DOI: 10.1002/dac.4195
  18. HANDY, M. J.,HAASE, M., TIMMERMANN, D. Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In IEEE4th International Workshop on Mobile and Wireless Communications Network (MWCN). Stockholm (Sweden), 2002, p. 368–372. DOI: 10.1109/MWCN.2002.1045790
  19. KANG, S. H., NGUYEN, T. Distance-based thresholds for cluster head selection in wireless sensor networks. IEEE Communications Letters, 2012, vol. 16, no. 9, p. 1396–1399. DOI: 10.1109/LCOMM.2012.073112.120450
  20. DAANOUNE, I., BAGHDAD, A., BALLOUK, A. BRE-LEACH: A new approach to extend the lifetime of wireless sensor networks. In IEEE Third International Conference on Intelligent Computing in Data Sciences (ICDS). Marrakech (Morocco), 2019, p. 1–6. DOI: 10.1109/ICDS47004.2019.8942253
  21. WADII, J., HADDAD, R., BOUALLEGUE, R. Energy-efficient path construction for data gathering using mobile data collectors in wireless sensor networks. Radioengineering, 2023, vol. 32, no. 4, p. 502–510. DOI: 10.13164/re.2023.0502
  22. KARMAKER, A., HASAN, M. M., MONI, S. S., et al. An efficient cluster head selection strategy for provisioning fairness in wireless sensor networks. In IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). Pune (India), 2016, p. 217–220. DOI: 10.1109/WIECON-ECE.2016.8009121
  23. LINDSEY, S., RAGHAVENDRA, C. S. PEGASIS: Power efficient gathering in sensor information systems. In IEEE Aerospace Conference. Big Sky (USA), 2002, p. 3–1125. DOI: 10.1109/AERO.2002.1035242
  24. YOUNIS, O., FAHMY, S. HEED: A hybrid, energy-efficient, distributed clustering approach for ad-hoc sensor networks. IEEE Transactions on Mobile Computing, 2004, vol. 3, no. 4, p. 366–379. DOI: 10.1109/TMC.2004.41
  25. LOSCRI, V., MORABITO, G., MARANO, S. A two-level hierarchy for low-energy adaptive clustering hierarchy (TL-LEACH). In IEEE Vehicular Technology Conference (VTC). Dallas (USA), 2005, p. 1809–1813. DOI: 10.1109/VETECF.2005.1558418
  26. LEI, Y., SHANG, F., LONG, Z., et al. An energy efficient multiple-hop routing protocol for wireless sensor networks. In IEEE International Conference on Intelligent Networks and Intelligent Systems (ICINIS). Wuhan (China), 2008, p. 147–150. DOI: 10.1109/ICINIS.2008.69
  27. ARUMUGAM, G. S., PONNUCHAMY, T. EE-LEACH: Development of energy-efficient LEACH protocol for data gathering in WSN. EURASIP Journal on Wireless Communications and Networking, 2015, p. 1–9. DOI: 10.1186/s13638-015-0306-5
  28. LIU, Y., WU,Q., ZHAO,T., et al. An improved energy-efficient routing protocol for wireless sensor networks. Sensors, 2019, vol. 19, no. 20, p. 1–20. DOI: 10.3390/s19204579
  29. PANCHAL, A., SING, R. K. Energy aware distance based cluster head selection and routing protocol for wireless sensor networks. Journal of Circuits, Systems and Computers, 2020, vol. 19, no. 20, p. 218–266. DOI: 10.1142/S0218126621500638
  30. SENNAM, S., KIRUBASRI, ALOTAIBI, Y., et al. EACRLEACH: Energy-aware cluster-based routing protocol for WSN based IoT. Computers, Materials & Continua, 2022, vol. 72, no. 2, p. 1546–2218. DOI: 10.32604/cmc.2022.025773
  31. SURESH, B., PRASAD, G. S. C. An energy efficient secure routing scheme using LEACH protocol in WSN for IoT networks. Measurement: Sensors, 2023, vol. 30, p. 1–10. DOI: 10.1016/j.measen.2023.100883
  32. NADERLOO, A., FATEMI AGHDA, S. A., MIRFAKHRAEI, M. Fuzzy-based cluster routing in wireless sensor network. Soft Computing, 2023, vol. 27, no. 10, p. 6151–6158. DOI: 10.1007/s00500-02307976-6
  33. ROY, N. R., CHANDRA, P. A note on optimum cluster estimation in LEACH protocol. IEEE Access, 2018, vol. 6, p. 65690–65696. DOI: 10.1109/ACCESS.2018.2877704
  34. BEHERA, T. M., MOHAPATRA, S. K., SAMAL, U. C., et al. Residual energy based cluster-head selection in WSNs for IoT application. IEEE Internet of Things Journal, 2019, vol. 6, no. 3, p. 5132–5139. DOI: 10.1109/JIOT.2019.2897119
  35. ULLAH, Z., MOSTARDA, L., GAGLIARDI, R., et al. A comparison of HEED based clustering algorithms- Introducing ER-HEED. In IEEE 30th International Conference on Advanced Information Networking and Applications (AINA). Crans-Montana (Switzerland), 2016, p. 339–345. DOI: 10.1109/AINA.2016.87

Keywords: Internet of Things (IoT), Wireless Sensor Network (WSN), LEACH, Cluster Head (CH) selection, proximity, network energy

Q. Z. Fang, S. B. Gu, J. G. Wang, L. L. Zhang [references] [full-text] [DOI: 10.13164/re.2025.0324] [Download Citations]
A Feature Dynamic Enhancement and Global Collaboration Guidance Network for Remote Sensing Image Compression

Deep learning-based remote sensing image compression methods show great potential, but traditional convolutional networks mainly focus on local feature extraction and show obvious limitations in dynamic feature learning and global context modeling. Remote sensing images contain multiscale local features and global low-frequency information, which are challenging to extract and fuse efficiently. To address this, we propose a Feature Dynamic Enhancement and Global Collaboration Guidance Network (FDEGCNet). First, we propose an Omni-Dimensional Attention Model (ODAM), which dynamically captures the key salient features in the image content by adaptively adjusting the feature extraction strategy to enhance the model’s sensitivity to key information. Second, a Hyperprior Efficient Attention Model (HEAM) is designed to combine multi-directional convolution and pooling operations to efficiently capture cross-dimensional contextual information and facilitate the interaction and fusion of multi-scale features. Finally, the Multi-Kernel Convolutional Attention Model (MCAM) integrates global branching to extract frequency domain context and enhance local feature representation through multi-scale convolutions. The experimental results show that FDEGCNet achieves significant improvement and maintains low computational complexity regarding image quality evaluation metrics (PSNR, MSSSIM, LPIPS, and VIFp) compared to the advanced compression models. Code is available at https://github.com/shiboGu12/FDEGCNet

  1. HUANG, B., ZHAO, B., SONG, Y. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sensing of Environment, 2018, vol. 214, p. 73–86. DOI: 10.1016/j.rse.2018.04.050
  2. LI, J., HOU, X. Object-fidelity remote sensing image compression with content-weighted bitrate allocation and patch-based local attention. IEEE Transactions on Geoscience and Remote Sensing, 2024, vol. 62, p. 1–14. DOI: 10.1109/TGRS.2024.3395708
  3. WANG, D., CAO, W., ZHANG, F., et al. A review of deep learning in multiscale agricultural sensing. Remote Sensing, 2022, vol. 14, no. 3, p. 1–27. DOI: 10.3390/rs14030559
  4. LU, X., WANG, B., ZHENG, X., et al. Exploring models and data for remote sensing image caption generation. IEEE Transactions on Geoscience and Remote Sensing, 2017, vol. 56, no. 4, p. 2183–2195. DOI: 10.1109/TGRS.2017.2776321
  5. BASCONES, D., GONZALEZ, C., MOZOS, D. Hyper spectral image compression using vector quantization, PCA and JPEG2000. Remote Sensing, 2018, vol. 10, no. 6, p. 1–13. DOI: 10.3390/rs10060907
  6. JPEG COMMITTEE JPEG2000 Official Software OpenJPEG. [Online] Cited 2024-11-01. Available at: https://jpeg.org/jpeg2000/software.html
  7. GOOGLE. WebP Image Format. [Online] Cited 2024-11-23. Available at: https://developers.google.com/speed/webp/
  8. BELLARD, F. BPG Image Format.[Online]Cited2024-11-25. Available at: http://bellard.org/bpg/
  9. PAN, T., ZHANG, L., SONG, Y., et al. Hybrid attention compression network with light graph attention module for remote sensing images. IEEE Geoscience and Remote Sensing Letters, 2023, vol. 20, p. 1–5. DOI: 10.1109/LGRS.2023.3275948
  10. CHENG, Z., SUN, H., TAKEUCHI, M., et al. Learned image compression with discretized gaussian mixture likelihoods and attention modules. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle (USA), 2020, p. 7939–7948. DOI: 10.1109/CVPR42600.2020.00796
  11. BALLE, J., MINNEN, D., SINGH, S., et al. Variational image compression with a scale hyperprior. arXiv Preprint, 2018, p. 1–23. DOI: 10.48550/arXiv.1802.01436
  12. HE, D., YANG, Z., PENG, W., et al. Elic: efficient learned image compression with unevenly grouped space-channel contextual adaptive coding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans (USA), 2022, p. 5718–5727. DOI: 10.48550/arXiv.2203.10886
  13. CHEN, T., LIU, H., MA, Z., et al. End-to-end learnt image compression via non-local attention optimization and improved context modeling. IEEE Transactions on Image Processing, 2021, vol. 30, p. 3179–3191. DOI: 10.1109/TIP.2021.3058615
  14. LIU, J., YUAN, F., XUE, C., et al. An efficient and robust underwater image compression scheme based on autoencoder. IEEE Journal of Oceanic Engineering, 2023, vol. 48, no. 3, p. 925–945. DOI: 10.1109/JOE.2023.3249243
  15. XU, Q., XIANG, Y., DI, Z., et al. Synthetic aperture radar image compression based on a variational autoencoder. IEEE Geoscience and Remote Sensing Letters, 2021, vol. 19, p. 1–5. DOI: 10.1109/LGRS.2021.3097154
  16. TANG, Z., WANG, H., YI, X., et al. Joint graph attention and asymmetric convolutional neural network for deep image compression. IEEE Transactions on Circuits and Systems for Video Technology, 2022, vol. 33, no. 1, p. 421–433. DOI: 10.1109/TCSVT.2022.3199472
  17. ZHANG, L., HU, X., PAN, T., et al. Global priors with anchored stripe attention and multiscale convolution for remote sensing images compression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, vol. 17, p. 138–149. DOI: 10.1109/JSTARS.2023.3326957
  18. PAN, T., ZHANG, L., QU, L., et al. A coupled compression generation network for remote-sensing images at extremely low bitrates. IEEE Transactions on Geoscience and Remote Sensing, 2023, vol.61, p. 1–14. DOI: 10.1109/TGRS.2023.3270271
  19. ZHANG, L., WANG, X., LIU, J., et al. A low-complexity transformer CNN hybrid model combining dynamic attention for remote sensing image compression. Radioengineering, 2024, vol. 33, no. 4, p. 642–659. DOI: 10.13164/re.2024.0642
  20. LI, C., ZHOU, A., YAO, A. Omni-dimensional dynamic convolution. In Proceedings of the International Conference on Learning Representations (ICLR). Virtual Event, 2022, p. 1–20. DOI: 10.48550/arXiv.2209.07947
  21. BALLE, J., LAPARRA, V., SIMONCELLI, E. P. End-to-end optimized image compression. arXiv Preprint, 2016, p. 1–14. DOI: 10.48550/arXiv.1611.01074
  22. ZOU, R., SONG, C., ZHANG, Z. The devil is in the details: Window-based attention for image compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans (US), 2022, p. 17492–17501. DOI: 10.48550/arXiv.2203.08450
  23. KIM, J.-H., HEO, B., LEE, J.-S. Joint global and local hierarchical priors for learned image compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans (US), 2022, p. 5992–6001. DOI: 10.48550/arXiv.2112.04487
  24. CUI, Y., REN, W., KNOLL, A. Omni-kernel network for image restoration. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, vol. 38, no. 2, p. 1426–1434. DOI: 10.1609/aaai.v38i2.27907
  25. DING, J., XUE, N., XIA, G.-S., et al. Object detection in aerial images: A large-scale benchmark and challenges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, vol. 44, no. 11, p. 7778–7796. DOI: 10.1109/TPAMI.2021.3117983
  26. YANG, Y., NEWSAM, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. San Jose (USA), 2010, p. 270–279. DOI: 10.1145/1869790.1869829
  27. CHENG, G., HAN, J., LU, X. Remote sensing image scene classification: Benchmark and state of the art. Proceedings of the IEEE, 2017, vol. 105, no. 10, p. 1865–1883. DOI: 10.1109/JPROC.2017.2675998
  28. JPEG. JPEG XL Reference Software. [Online] Cited 2024-11-25. Available at: https://gitlab.com/wg1/jpeg-xl/
  29. AOM WORKING GROUP. AV1 image file format (AVIF). [Online] Cited 2024-12-10. Available at: https://aomediacodec.github.io/av1avif/
  30. JIANG, W., YANG, J., ZHAI, Y., et al. MLIC: Multi-reference entropy model for learned image compression. In Proceedings of the 31st ACM International Conference on Multimedia. Ottawa(Canada), 2023, p. 7618–7627. DOI: 10.1145/3581783.3611694
  31. LIU, J., SUN, H., KATTO, J. Learned image compression with mixed transformer-cnn architectures. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver (Canada), 2023, p. 14388–14397. DOI: 10.1109/CVPR52729.2023.01383
  32. LIU, Y., YANG, W., BAI, H., et al. Region-adaptive transform with segmentation prior for image compression. arXiv Preprint, 2024, p. 1–19. DOI: 10.48550/arXiv.2403.00628
  33. BEGAINT, J., RACAPE, F., FELTMAN, S., et al. Compress AI: A PyTorch library and evaluation platform for end to-end compression research. arXiv Preprint, 2020, p. 1–19. DOI: 10.48550/arXiv.2011.03029
  34. KINGMA, D. P., BA, J. Adam: A method for stochastic optimization. arXiv Preprint, 2014, p. 1–15. DOI: 10.48550/arXiv.1412.6980
  35. WANG, Z., SIMONCELLI, E. P., BOVIK, A. C. Multiscale structural similarity for image quality assessment. In Proceedings of the Thirty-Seventh Asilomar Conference on Signals, Systems & Computers. Pacific Grove (USA), 2003, p. 1398–1402. DOI: 10.1109/ACSSC.2003.1292216
  36. BJONTEGAARD, G. Calculation of Average PSNR Differences Between RD-Curves. ITU SG16 Doc. VCEG-M33, 2001. [Online]. Available at: https://www.itu.int/wftp3/av-arch/videosite/0104_Aus/VCEG-M33.doc

Keywords: Remote sensing image compression, convolutional networks, multiscale convolution, attention model, multiscale local features, global low-frequency information

H. Zafor, T. A. Sheikh, N. Mazumdar, A. Nag [references] [full-text] [DOI: 10.13164/re.2025.0342] [Download Citations]
An Effective Routing Algorithm to Minimize the UAV Routing Time and Extend the Network Lifetime in Clustered IoT Network

Recently, unmanned aerial vehicles (UAVs) have become more popular due to their ease of adaptability and capability to carry out a variety of activities, including the delivery of services, monitoring and surveillance in military and civilian contexts. One of the most significant challenges in UAV operation is ensuring maximum network lifetime and management of their limited battery life. To solve these problems, we have proposed an effective routing algorithm that finds the best route to minimize UAV routing time and extend network lifetime. This is performed using the Ant Colony Optimization with Local Search (ACO-LS) algorithm for data collection from the clustered IoT network by UAV to ensure maximum network lifetime. It solved the routing problem in the minimum time in the presence of multiple charging stations and optimized the routing path. The simulation was carried out using various performance metrics: network lifetime (NT), energy consumption (EC), number of alive nodes (NAN), and packet delivery percentage (PDP). These parameters were compared with some existing algorithms such as Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) and found that our proposed algorithm performs better in terms of higher NT, less EC, more NAN, and higher PDP than the existing algorithms ACO, PSO, and GA.

  1. MOHSAN, S. A. H., OTHMAN, N. Q. H., LI, Y., et al. Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. Intelligent Service Robotics, 2023, vol. 16, no. 1, p. 109–137. DOI: 10.1007/s11370-022-00452-4
  2. FAN, B., LI, Y., ZHANG, R., et al. Review on the technological development and application of UAV systems. Chinese Journal of Electronics, 2020, vol. 29, no. 2, p. 199–207. DOI: 10.1049/cje.2019.12.006
  3. ZAFOR, H., SHEIKH, T. A., MAZUMDER, N., et al. Data collection and recharging of sensor node by mobile sink in wireless sensor network. International Journal of Sensors, Wireless Communications and Control, 2024, [In Press]. DOI: 10.2174/0122103279324801240826131750
  4. BORAH,J., SHEIKH,T.A., BORA,J. Dynamiccell sleeping mechanism: An energy-efficient approach for mobile 5G HetCN. International Journal of Communication Systems, 2023, vol. 36, no. 5, p. 1–14. DOI: 10.1002/dac.5422
  5. MENG, K., WU, Q., XU, J., et al. UAV-enabled integrated sensing and communication: Opportunities and challenges. IEEE Wireless Communications, 2024, vol. 31, no. 2, p. 97–104. DOI: 10.1109/MWC.131.2200442
  6. MU, J., ZHANG, R., CUI, Y., et al. UAV meets integrated sensing and communication: Challenges and future directions. IEEE Communications Magazine, 2023, vol. 61, no. 5, p. 62–67. DOI: 10.1109/MCOM.008.2200510
  7. ZAFOR, H., MAZUMDAR, N., NAG, A. A comparative study of survey papers based on energy efficient, coverage-aware, and fault tolerant in static sink node of WSN. In Proceedings of the IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). Uttar Pradesh (India), 2022, p. 1–6. DOI: 10.1109/UPCON56432.2022.9986459
  8. CELIK, A., USTAOMER, E., SATOGLU, S. Single-drone energy efficient coverage path planning with multiple charging stations for surveillance. An International Journal of Optimization and Control: Theories and Applications, 2023, vol. 13, no. 2, p. 1–10. DOI: 10.11121/ijocta.2023.1332
  9. BACANLI,S. S., ELGELDAWI, E., TURGUT, B., et al. UAV charging station placement in opportunistic networks. Drones, 2023, vol. 6, no. 10, p. 1–21. DOI: 10.3390/drones6100293
  10. JLASSI, W., HADDAD, R., BOUALLEGUE, R., et al. Increase of the lifetime of wireless sensor network using clustering algorithm and optimal path selection method. Radioengineering, 2022, vol. 31, no. 3, p. 301–311. DOI: 10.13164/re.2022.0301
  11. SANTIN, R., ASSIS, L., VIVAS, A., et al. Matheuristics for multi UAV routing and recharge station location for complete area coverage. Sensors, 2021, vol. 21, no. 5, p. 1–34. DOI: 10.3390/s21051705
  12. LIN, N., BAI, L., HAWBANI, A., et al. Deep reinforcement learning based computation off loading for servicing dynamic demand in multi UAV-assisted IoT network. IEEE Internet of Things Journal, 2024, vol. 11, no. 10, p. 17249–17263. DOI: 10.1109/JIOT.2024.3356725
  13. LIU, C. H., PIAO, C., TANG, J. Energy-efficient UAV crowd sensing with multiple charging stations by deep learning. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM). Toronto (Canada), 2020, p. 199–208. DOI: 10.1109/INFOCOM41043.2020.9155535
  14. RIBEIRO, R. G., COTA, L. P., EUZEBIO, T. A., et al. Unmanned aerial-vehicle routing problem with mobile charging stations for assisting search and rescue missions in post disaster scenarios. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, vol. 52, no. 11, p. 6682–6696. DOI: 10.1109/TSMC.2021.3088776
  15. LYU, T., AN, J., LI, M., et al. UAV-assisted wireless charging and data processing of power IoT devices. Computing, 2024, vol. 106, no. 3, p. 1–31. DOI: 10.1007/s00607-023-01245-y
  16. OJHA, T., RAPTIS, T. P., PASSARELLA, A., et al. Wireless power transfer with unmanned aerial vehicles: state of the art and open challenges. Pervasive and Mobile Computing, 2023, vol. 93, p. 1–34. DOI: 10.1016/j.pmcj.2023.101820
  17. KIM, S., KWAK, J. H., OH, B., et al. An optimal routing algorithm for unmanned aerial vehicles. Sensors, 2021, vol. 21, no. 4, p. 1–15. DOI: 10.3390/s21041219
  18. BAEK, J., HAN, S. I., HAN, Y. Optimal UAV route in wireless charging sensor networks. IEEE Internet of Things Journal, 2019, vol. 7, no. 2, p. 1327–1335. DOI: 10.1109/JIOT.2019.2954530
  19. FAN, M., WU, Y., LIAO, T., et al. Deep reinforcement learning for UAV routing in the presence of multiple charging stations. IEEE Transactions on Vehicular Technology, 2023, vol. 72, no. 5, p. 5732–5746. DOI: 10.1109/TVT.2022.3232607
  20. HUANG, H., SAVKIN, A. V. Deployment of charging stations for drone delivery assisted by public transportation vehicles. IEEE Transactions on Intelligent Transportation Systems, 2021, vol. 23, no. 9, p. 15043–15054. DOI: 10.1109/TITS.2021.3136218
  21. RIBEIRO, R. G., JUNIOR, J. R., COTA, L. P., et al. Unmanned aerial vehicle location routing problem with charging stations for belt conveyor inspection system in the mining industry. IEEE Transactions on Intelligent Transportation Systems, 2019, vol. 21, no. 10, p. 4186–4195. DOI: 10.1109/TITS.2019.2939094
  22. KUMAR, P., AMGOTH, T., ANNAVARAPU, C. S. R. ACO-based mobile sink path determination for wireless sensor networks under non-uniform data constraints. Applied Soft Computing, 2018, vol. 69, p. 528–540. DOI: 10.1016/j.asoc.2018.05.008
  23. MOHAJERANI, A., GHARAVIAN, D. An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks. Wireless Networks, 2016, vol. 22, p. 2637–2647. DOI: 10.1007/s11276-015-1061-6
  24. SALEHPOUR, A. A., MIRMOBIN, B., AFZALI-KUSHA, A., et al. An energy efficient routing protocol for cluster-based wireless sensor networks using ant colony optimization. In Proceedings of the International Conference on Innovations in Information Technology (IIT). Al Ain (UAE). 2008, p. 455–459.
  25. DOI: 10.1109/INNOVATIONS.2008.4781748
  26. DU, P., SHI, Y., CAO, H., et al. AI-enabled trajectory optimization of logistics UAVs with wind impacts in smart cities. IEEE Transactions on Consumer Electronics, 2024, vol. 70, no. 1, p. 3885-3897. DOI: 10.1109/TCE.2024.3355061
  27. LU, F., CHEN, N., LING, B. A deep reinforcement learning approach for solving the pickup and delivery problem with drones and time windows. SSRN, 2024, p. 1–23. DOI: 10.2139/ssrn.4684209
  28. SASIKUMAR, P., KHARA, S. K-means clustering in wireless sensor networks. In Proceedings of the Fourth International Conference on Computational Intelligence and Communication Networks (CICN). Mathura (India), 2012, p. 140–144. DOI: 10.1109/CICN.2012.136
  29. ZHOU, W., GANG, W. An enhanced ACO-based mobile sink path determination for data gathering in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2022, p.1–13. DOI: 10.1186/s13638-022-02145-z
  30. MAZUMDAR,N.,ROY,S., NAG, A., et al. A buffer-aware dynamic UAV trajectory design for data collection in resource-constrained IoT frameworks. Computers and Electrical Engineering, 2022, vol. 100, no. C, p. 1–13. DOI: 10.1016/j.compeleceng.2022.107934
  31. LIANHAI, L., WANG, Z., TIAN, L., et al. A PSO-based energy efficient data collection optimization algorithm for UAV mission planning. PLOS One, 2024, vol. 19, no. 1, p. 1–24. DOI: 10.1371/journal.pone.0297066
  32. BENMAD, I., DRIOUCH, E., KARDOUCHI, M. Data collection in UAV-assisted wireless sensor networks powered by harvested energy. In Proceedings of the IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Helsinki (Finland), 2021, p. 1351–1356. DOI: 10.1109/PIMRC50174.2021.9569295
  33. DIETRICH, I., DRESSLER, F. On the lifetime of wireless sensor networks. ACM Transactions on Sensor Networks, 2009, vol. 5, no. 1, p. 1–39. DOI: 10.1145/1464420.1464425
  34. KRISHNA, M., YUN, S., JUNG, Y. M. Enhanced clustering and ACO-based multiple mobile sinks for efficiency improvement of wireless sensor networks. Computer Networks, 2019, vol. 160, p. 33–40. DOI: 10.1016/j.comnet.2019.05.019

Keywords: Internet of Things (IoT), Data Collection (DC), Unmanned Aerial Vehicles (UAVs), Ant Colony Optimization (ACO), Local Search (LS), Particle-Swarm Optimization (PSO), Genetic Algorithm (GA).

S. N. Srinivasan, P. Suresh Kumar, S. Duraisamy [references] [full-text] [DOI: 10.13164/re.2025.0353] [Download Citations]
Performance Analysis of Relay Model-based Energy Harvesting in CR-WBAN

An emerging technique was introduced to extend the network lifetime of energy-limited relay nodes in wireless networks. In this paper, the spectral and energy efficiency of Wireless Body Area Networks (WBAN) is investigated. A novel Relay model-based WBAN with Energy Harvesting for enhancing spectrum utilization using Cognitive Radio (CR) technology. This approach involves the surrounding of RF signals, allowing the nodes to gather energy and process data within a WBAN, specifically for medical monitoring purposes enabling the coexistence of diverse implanted devices while maintaining their QoS. It facilitates the simultaneous operation of distinct sensor nodes for primary and secondary networks in on-body CR-WBAN, categorizing nodes based on medical and non-medical applications. The proposed protocols designed for energy harvesting notably Time Switching System (TSS) and Power-Splitting System (PSS) are utilized to enable the cooperation of secondary nodes with the primary network, allowing them to access the spectrum in exchange. The numerical analysis of proposed overlay CR-WBAN in aspects of outage probability, coverage analysis, throughput analysis, and energy efficiency performances considering a delay-limited scenario are examined. The numerical simulations confirm the validity of all the developed theoretical analyses and underscore the efficacy of the considered scheme by verifying using Monte Carlo simulations.

  1. KHASAWNEH, M., AZAB, A., ALRABAEE, S., et al. Convergence of IoT and cognitive radio networks: A survey of applications, techniques, and challenges. IEEE Access, 2023, vol. 11, p. 71097–71112. DOI: 10.1109/ACCESS.2023.3294091
  2. QADRI, Y. A., NAUMAN, A., ZIKRIA, Y. B., et al. The future of healthcare internet of things: A survey of emerging technologies. IEEE Communications Surveys & Tutorials, 2020, vol. 22, no. 2, p. 1121–1167. DOI: 10.1109/COMST.2020.2973314
  3. SALAYMA, M., AL-DUBAI, A., ROMDHANI, I., et al. Wireless body area network (WBAN): A survey on reliability, fault tolerance, and technologies coexistence. ACM Computing Surveys (CSUR), 2018, vol. 50, no. 3, p. 1–38. DOI:10.1145/3041956
  4. LI, S., YANG, H. C., XU, F., et al. Energy-efficient relay transmission for WBAN: Energy consumption minimizing design with hybrid supervised/reinforcement learning. IEEE Internet of Things Journal, 2024, vol. 11, no. 10, p. 17770–17779. DOI: 10.1109/JIOT.2024.3361772
  5. PREETHICHANDRA, D. M. G., PIYATHILAKA, L., IZHAR, U., et al. Wireless body area networks and their applications—a review. IEEE Access, 2023, vol. 11, p. 9202–9220. DOI: 10.1109/ACCESS.2023.3239008
  6. GHOSH, B., ADHIKARY, S., CHATTOPADHYAY, S., et al. Achieving energy efficiency and impact of SAR in a WBAN through optimal placement of the relay node. Wireless Personal Communications, 2023, vol. 130, p. 1861–1884. DOI: 10.1007/s11277-023-10361-z
  7. TALEB, H., NASSER, A., ANDRIEUX, G., et al. Energy consumption improvement of a healthcare monitoring system: application to LORAWAN. IEEE Sensors Journal, 2022, vol. 22, no. 7, p. 7288–7299. DOI: 10.1109/JSEN.2022.3150716
  8. OLATINWO, D. D., ABU-MAHFOUZ, A. M., HANCKE, G. P., et al. Energy efficient priority-based hybrid mac protocol for IoT enabled WBAN systems. IEEE Sensors Journal, 2023, vol. 23, no. 12, p. 13524–13538. DOI: 10.1109/JSEN.2023.3273427
  9. CAVALLARI, R., MARTELLI, F., ROSINI, R., et al. A survey on wireless body area networks: Technologies and design challenges. IEEE Communications Surveys & Tutorials, 2014, vol. 16, no. 3, p. 1635–1657. DOI: 10.1109/SURV.2014.012214.00007
  10. ZHUMAYEVA, M., DAUTOV, K., HASHMI, M., et al. Wireless energy and information transfer in WBAN: A comprehensive state of-the-art review. Alexandria Engineering Journal, 2023, vol. 85, p. 261–285. DOI: 10.1016/j.aej.2023.11.030
  11. ALI, H., RIAZ, M., BILAL, A., et al. Comparison of energy harvesting techniques in wireless body area network. International Journal of Multidisciplinary Sciences and Engineering, 2016, vol. 7, no. 6, p. 20–24. ISSN: 2045-7057
  12. GUO, W., HOU, Y., GAN, Y., et al. Efficient data transmission mechanisms in energy harvesting wireless body area networks: A survey. Computer Networks, 2024, vol. 254, p. 1–31. DOI: 10.1016/j.comnet.2024.110769
  13. CHAUDHARY, S., AGARWAL, A., MISHRA, D., et al. Enhancing longevity: Sustainable channel modeling for wireless powered implantable bans. Ad Hoc Networks, 2024, vol. 163, p. 1–10. DOI: 10.1016/j.adhoc.2024.103584
  14. HU, J., XU, G., HU, L., et al. A cooperative transmission scheme in radio frequency energy-harvesting WBANs. Sustainability, 2023, vol. 15, p. 1–13. DOI: 10.3390/su15108367
  15. PADHY, A., JOSHI, S., BITRAGUNTA, S., et al. A survey of energy and spectrum harvesting technologies and protocols for next generation wireless networks. IEEE Access, 2020, vol. 23, no. 9, p. 1737–1769. DOI: 10.1109/ACCESS.2020.3046770
  16. HUANG, X., SHAN, H., SHEN, X. On energy efficiency of cooperative communications in wireless body area network. In IEEE Wireless Communications and Networking Conference. Cancun (Mexico), 2011, p. 1097–1101. DOI: 10.1109/WCNC.2011.5779313
  17. TRAN, L. C., MERTINS, A., HUANG, X., et al. Comprehensive performance analysis of fully cooperative communication in WBANs. IEEE Access, 2016, vol. 4, p. 8737–8756. DOI: 10.1109/ACCESS.2016.2637568
  18. LI, S., HU, F., MAO, Z., et al. Sum-throughput maximization by power allocation in WBAN with relay cooperation. IEEE Access, 2019, vol. 7, p. 124727–124736. DOI: 10.1109/ACCESS.2019.2938331
  19. MOSAVAT-JAHROMI, H., MAHAM, B., TSIFTSIS, T. A. Maximizing spectral efficiency for energy harvesting-aware WBAN. IEEE Journal of Biomedical and Health Informatics, 2016, vol. 21, no. 3, p. 732–742. DOI: 10.1109/JBHI.2016.2536642
  20. GURJAR, D. S., SINGH, U., UPADHYAY, P. K. Energy harvesting in hybrid two-way relaying with direct link under Nakagami-m fading. In IEEE Wireless Communications and Networking Conference (WCNC).Barcelona (Spain), 2018, p. 1–6. DOI: 10.1109/WCNC.2018.8377371
  21. LI, S., HU, F., MAO, Z., et al. Joint power allocation for energy harvesting to maximize throughput in classified WBAN. In IEEE Global Communications Conference (GLOBECOM). Waikoloa (HI, USA), 2019, p. 1–6. DOI: 10.1109/GLOBECOM38437.2019.9013828
  22. LIU, L., ZHANG, R., CHUA, K. C. Wireless information and power transfer: A dynamic power splitting approach. IEEE Transactions on Communications, 2013, vol. 61, no. 9, p. 3990–4001. DOI: 10.1109/TCOMM.2013.071813.130105
  23. HU, F., LIU, X., SUI, D., et al. Performance analysis of reliability in wireless body area networks. IET Communications, 2017, vol. 11, no. 6, p. 925–929. DOI: 10.1049/iet-com.2016.0997
  24. ALKHAYYAT, A., JAWAD, S. F., SADKHAN, S. B. Cooperative communication based: Efficient power allocation for wireless body area networks. In The 1st AL-Noor International Conference for Science and Technology (NICST). Sulimanyiah (Iraq), 2019, p. 106–111. DOI: 10.1109/NICST49484.2019.9043843
  25. SODAGARI, S., BOZORGCHAMI, B., AGHVAMI, H. Technologies and challenges for cognitive radio enabled medical wireless body area networks. IEEE Access, 2018, vol. 6, p. 29567 to 29586. DOI: 10.1109/ACCESS.2018.2843259
  26. HAN, Y., PANDHARIPANDE, A., TING, S. H. Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Transactions on Wireless Communications, 2009, vol. 8, no. 10, p. 4945–4950. DOI: 10.1109/TWC.2009.081484
  27. GHOSH, S., ACHARYA, T., MAITY, S. P. Outage analysis in SWIPT enabled cooperative AF/DF relay assisted two-way spectrum sharing communication. IEEE Transactions on Cognitive Communications and Networking, 2022, vol. 8, no. 3, p. 1434–1443. DOI: 10.1109/TCCN.2022.3171223
  28. ZHANG, C., GE, J., LI, J., et al. A unified approach for calculating the outage performance of two-way AF relaying over fading channels. IEEE Transactions on Vehicular Technology, 2014, vol. 64, no. 3, p. 1218–1229. DOI: 10.1109/TVT.2014.2329853
  29. YANG, L., ALOUINI, M. S., QARAQE, K. On the performance of spectrum sharing systems with two-way relaying and multiuser diversity. IEEE Communications Letters, 2012, vol. 16, no. 8, p. 1240–1243. DOI: 10.1109/LCOMM.2012.052112.120746
  30. SHUKLA, A, K., UPADHYAY P, K., SRIVASTAVA, A., et al. Enabling co-existence of cognitive sensor nodes with energy harvesting in body area networks. IEEE Sensors Journal, 2021, vol. 21, no. 9, p. 11213–11223. DOI: 10.1109/JSEN.2021.3062368
  31. NASIR, A. A., ZHOU, X., DURRANI, S., et al. Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 2013, vol. 12, no. 7, p. 3622–3636. DOI: 10.1109/TWC.2013.062413.122042
  32. SUI, D., HU, F., ZHOU, W., et al. Relay selection for radio frequency energy-harvesting wireless body area network with buffer. IEEE Internet of Things Journal, 2018, vol. 5, no.2, p. 1100–1107. DOI: 10.1109/JIOT.2017.2788207
  33. LIU, Y., DING, Z., ELKASHLAN, M., et al. Cooperative non orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 2016, vol. 34, no. 4, p. 938–953. DOI: 10.1109/JSAC.2016.2549378
  34. TUNG, N. T., NAM, P. M., TIN, P. T., et al. Performance evaluation of a two-way relay network with energy harvesting and hardware noises. Digital Communications and Networks, 2021, vol. 7, no. 1, p. 45–54. DOI: 10.1016/j.dcan.2020.04.003

Keywords: Wireless Body Area Networks (WBAN), Energy Harvesting (EH), Time Switching System (TSS), Power Splitting System (PSS), outage probability, cognitive radio

G. Sugitha, R. Vasanthi, A. Solairaj, A. V. Kalpana [references] [full-text] [DOI: 10.13164/re.2025.0366] [Download Citations]
SeCo2: Secure Cognitive Semantic Communication in 6G-IoT Networks Using Key-Policy Attribute-Based Encryption and Elliptic Curve Cryptography

Secure and efficient data transmission is crucial for maintaining seamless system operations and user trust in the rapidly evolving Internet of Things (IoT) environments. However, IoT networks consistently suffer from data integrity breaches, security vulnerabilities at various network layers, and a high computational cost. Bridging the gap between IoT applications and network infrastructure is essential to addressing these issues. This paper introduces SeCo2, a secure cognitive semantic communication framework for 6G-IoT networks. The framework incorporates a blockchain-based system to provide a secure and privacy-preserving data transmission mechanism. Data preprocessing is conducted using the IoT-Sense dataset, and then encryption is done through a hybrid combination of Key-Policy Attribute-Based Encryption (KP-ABE) and Elliptic Curve Cryptography (ECC). Access control and data permissions are implemented via smart contracts to ensure secure transmission. Additionally, a blockchain security layer utilizing Proof of Stake with Fixed Staking Amounts (PoS-FSA) enhances network security and energy efficiency. For further protection of data integrity, tamper-proof provenance logging prevents unauthorized tampering. Experimental results demonstrate ultra-low latency data transmis¬sion (in the microsecond range), with a transmission delay as low as 0.003001 s for data sizes ranging from 1 GB to 50 GB, and a network security rate of 98%, ensuring more reliable and privacy-preserving IoT ecosystems.

  1. LIWEN, Z., QAMAR, F., LIAQAT, M., et al. Towards efficient 6G IoT networks: A perspective on resource optimization strategies, challenges, and future directions. IEEE Access, 2024, vol. 12, no. 2, p. 76606–76633. DOI: 10.1109/ACCESS.2024.3405487
  2. GHARAVI, H., GRANJAL, J., MONTEIRO, E. Post-quantum blockchain security for the Internet of Things: Survey and research directions. IEEE Communications Surveys & Tutorials, 2024, vol. 26, no. 3, p. 1748–1774. DOI: 10.1109/COMST.2024.3355222
  3. ISLAM, A., CHANG, K. Navigating the future of wireless networks: A multidimensional survey on semantic communications. ICT Express, 2024, vol. 10, no. 4, p. 747–773. DOI: 10.1016/j.icte.2024.06.001
  4. LIU, Y., WANG, X., NING, Z., et al. A survey on semantic communications: Technologies, solutions, applications and challenges. Digital Communications and Networks, 2023, vol. 10, no. 3, p. 528–545. DOI: 10.1016/j.dcan.2023.05.010
  5. DU, H., WAN, F., MORDACHEV, V., et al. Nonlinear testing based EMI characterization of wireless communication transmitter with microwave power amplifier. Progress In Electromagnetics Research C, 2024, vol. 147, p. 27–37. DOI: 10.2528/PIERC24061002
  6. ABADEH, M. N. A semantic axiomatic design for integrity in IoT. Transactions on Emerging Telecommunications Technologies, 2024, vol. 35, no. 9. DOI: 10.1002/ett.5032
  7. BOBDE, Y., NARAYANAN, G., JATI, M., et al. Enhancing industrial IoT network security through blockchain integration. Electronics, 2024, vol. 13,
  8. no. 4, p. 1–23. DOI: 10.3390/electronics13040687
  9. KHAN, I., MAJIB, Y., ULLAH, R., et al. Blockchain application for Internet of Things and future prospect—A survey. Internet of Things, 2024, vol. 27, no. 3, p. 1–27. DOI: 10.1016/j.iot.2024.101254
  10. WANG, Z., WANG, Q., DANG, X. Altitude range and throughput analysis for directional UAV-assisted backscatter communications networks. Radioengineering, 2024, vol. 33, no. 3, p. 368–375. DOI: 10.13164/re.2024.0368
  11. TITEL, F., BELATTAR, M. Optimization of NOMA downlink network parameters under harvesting energy strategy using multiobjective GWO. Radioengineering, 2023, vol. 32, no. 4, p. 493–501. DOI: 10.13164/re.2023.0492
  12. GETU, T. M., SAAD, W., KADDOUM, G., et al. Performance limits of a deep learning-enabled text semantic communication under interference. IEEE Transactions on Wireless Communications, 2024, vol. 23, no. 8, p. 10213–10228. DOI: 10.1109/TWC.2024.3370497
  13. FARAH, M. B., AHMED, Y., MAHMOUD, H., et al. A survey on blockchain technology in the maritime industry: Challenges and future perspectives. Future Generation Computer Systems, 2024, vol. 157, no. 2, p. 618–637. DOI: 10.1016/j.future.2024.03.046
  14. CHERBAL, S., ZIER, A., HEBAL, S., et al. Security in Internet of Things: A review on approaches based on blockchain, machine learning, cryptography, and quantum computing. The Journal of Supercomputing, 2024, vol. 80, no. 3, p. 3738–3816. DOI: 10.1007/s11227-023-05616-2
  15. AHMID, M., KAZAR, O., BARKA, E. Internet of Things overview: Architecture, technologies, application, and challenges. In Boulila, W., Ahmad, J., Koubaa, A., et al. (eds.) Decision Making and Security Risk Management for IoT Environments. Chapter 1, p. 1–19. Cham: Springer International Publishing. DOI: 10.1007/978-3-031-47590-0_1
  16. PIRON, M., WU, J., FEDELE, A., et al. Industry 4.0 and life cycle assessment: Evaluation of the technology applications as an asset for the life cycle inventory. Science of The Total Environment, 2024, vol. 916, no. 3, p. 1–16. DOI: 10.1016/j.scitotenv.2024.170263
  17. XU, W., YANG, Z., NG, D. W. K., et al. Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing. IEEE Journal of Selected Topics in Signal Processing, 2023, vol. 17, no. 1, p. 9–39. ttps://doi.org/10.1109/JSTSP.2023.3239189
  18. YI, P., CAO, Y., KANG, X., et al. Deep learning-empowered semantic communication systems with a shared knowledge base. IEEE Transactions on Wireless Communications, 2023, vol. 23, no. 6, p. 6174–6187. DOI: 10.1109/TWC.2023.3330744
  19. CHEN, J., SKATCHKOVSKY, N., SIMEONE, O. Neuromorphic wireless cognition: Event-driven semantic communications for remote inference. IEEE Transactions on Cognitive Communications and Networking, 2023, vol. 9, no. 2, p. 252–265. DOI: 10.1109/TCCN.2023.3236940
  20. YANG, Z., CHEN, M., LI, G., et al. Secure semantic communications: Fundamentals and challenges. IEEE Network: The Magazine of Global Internetworking, 2024, vol. 38, no. 6, p. 513–520. DOI: 10.1109/MNET.2024.3411027
  21. ZHENG, G., NI, Q., NAVAIE, K., et al. Semantic communication in satellite-borne edge cloud network for computation offloading. IEEE Journal on Selected Areas in Communications, 2024, vol. 42, no. 5, p. 1145–1158. DOI: 10.1109/JSAC.2024.3365879
  22. SAGDUYU, Y. E., ERPEK, T., YENER, A., et al. Joint sensing and semantic communications with multi-task deep learning. IEEE Communications Magazine, 2024, vol. 62, no. 9, p. 74–81. DOI: 10.1109/MCOM.002.2300640
  23. LIN, Y., MURASE, T., JI, Y., et al. Blockchain-based knowledge aware semantic communications for remote driving image transmission. Digital Communications and Networks, 2024, vol. 24, no. 1, p. 1–9. DOI: 10.1016/j.dcan.2024.08.007
  24. CHACCOUR, C., SAAD, W., DEBBAH, M., et al. Less data, more knowledge: Building next-generation semantic communication networks. IEEE Communications Surveys & Tutorials, 2024, vol. 27, no. 1, p. 37–76. DOI: 10.1109/COMST.2024.3412852
  25. WANG, L., WU, W., ZHOU, F., et al. Adaptive resource allocation for semantic communication networks. IEEE Transactions on Communications, 2024, vol. 72, no. 11, p. 6900–6916. DOI: 10.1109/TCOMM.2024.3405355
  26. KAVITHA, P., KAVITHA, K. Hybrid NOMA for latency minimization in wireless federated learning for 6G networks. Radioengineering, 2023, vol. 32, no. 4, p. 594–602. DOI: 10.13164/re.2023.0594
  27. LUO, F., WANG, H., YAN, X., et al. Key-policy attribute-based encryption with switchable attributes for fine-grained access control of encrypted data. IEEE Transactions on Information Forensics and Security, 2024, vol. 19, no. 2, p. 7245–7258. DOI: 10.1109/TIFS.2024.3432279
  28. AIYSHWARIYA DEVI, R., ARUNACHALAM, A. R. Enhancement of IoT device security using an Improved Elliptic Curve Cryptography algorithm and malware detection utilizing deep LSTM. High-Confidence Computing, 2023, vol. 3, no. 2, p. 1–23. DOI: 10.1016/j.hcc.2023.100117
  29. QIN, Z., GAO, F., LIN, B., et al. A generalized semantic communication system: From sources to channels. IEEE Wireless Communications, 2023, vol. 30, no. 3, p. 18–26. DOI: 10.1109/MWC.013.2200553
  30. IoT Sense Dataset. [Online] Available at: https://data.world/project029/ciot3291
  31. TON_IoT Dataset. [Online] Available at: https://research.unsw.edu.au/projects/toniot-datasets
  32. ALSLMAN, Y., ALNAGI, E., AHMAD, A., et al. Hybrid encryption scheme for medical imaging using autoencoder and advanced encryption standard. Electronics, 2022, vol. 11, no. 23, p. 1–15. https://doi.org/10.3390/electronics11233967
  33. SHARMA, K., AGRAWAL, A., PANDEY, D., et al. RSA based encryption approach for preserving confidentiality of big data. Journal of King Saud University-Computer and Information Sciences, 2022, vol. 34, no. 5, p. 2088–2097. DOI: 10.1016/j.jksuci.2019.10.006
  34. ANNAMALAI, C., VIJAYAKUMARAN, C., PONNUSAMY, V., et al. Optimal ElGamal encryption with hybrid deep-learning-based classification on secure Internet of Things environment. Sensors, 2023, vol. 23, no. 12, p. 1–15. https://doi.org/10.3390/s23125596
  35. Source code: https://github.com/Project007-MA/CSC-2403.git

Keywords: 6G-IoT, blockchain, cognitive semantic communication, elliptic curve cryptography, key-policy attribute-based encryption