ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)



Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile

September 2020, Volume 29, Number 3 [DOI: 10.13164/re.2020-3]

Show all Hide all

M. Komanec, D. Dousek, D. Suslov, S. Zvanovec [references] [full-text] [DOI: 10.13164/re.2020.0417] [Download Citations]
Hollow-Core Optical Fibers

Today hollow-core optical fibers (HCF) are on the verge of surpassing the attenuation benchmark of silica single-mode optical fibers used in optical communication. Compared to solid-core optical fibers, HCFs exhibit ultra-low nonlinearity, high damage threshold, low latency and temperature insensitivity, making them ideal candidates for high-speed data communication, high-resolution sensing, high-power delivery and precise interferometry. The main challenges of low insertion loss, suppressed back-reflections and fundamental mode coupling must be addressed to incorporate HCFs into existing fiber-optic systems to fully exploit their potential. This paper provides an overview of the HCF history, from early papers in the 1980s, over the invention of photonic-bandgap HCFs, to the recent achievements with antiresonant HCFs. Then light guiding mechanisms are presented and key HCF properties are discussed. Interconnection techniques to standard optical fibers are compared with respect to possible HCF applications. Fusion splicing results are presented with an~alternative interconnection solution based on a modified fiber-array technique newly developed by our team. Finally, cutting-edge HCF applications that take advantage of our HCF interconnection, are discussed.

  1. ELLIS, A. D., MCCARTHY, M. E., KHATEEB, M. A. Z. A., et al. Performance limits in optical communications due to fiber nonlinearity. Advances in Optics and Photonics, 2017, vol. 9, no. 3, p. 429–503. DOI: 10.1364/AOP.9.000429
  2. TAMURA, Y., SAKUMA, H., MORITA, K., et al. The first 0.14-dB/km loss optical fiber and its impact on submarine transmission. Journal of Lightwave Technology, 2018, vol. 36, no. 1, p. 44–49. DOI: 10.1109/JLT.2018.2796647
  3. ROBERTS, P., COUNY, F., BIRKS, T., et al. Achieving low loss and low nonlinearity in hollow core photonic crystal fibers. Lasers and Electro-Optics, 2005, vol. 2, p. 1240–1242. DOI: 10.1109/CLEO.2005.202085
  4. KUSCHNEROV, M., MANGAN, B. J., GONG, K., et al. Transmission of commercial low latency interfaces over hollow-core fiber. Journal of Lightwave Technology, 2016, vol. 34, no. 2, p. 314–320. DOI: 10.1109/JLT.2015.2469144
  5. SHEPHARD, J., COUNY, F., RUSSELL, P., et al. Improved hollowcore photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications. Applied Optics, 2005, vol. 44, no. 21, p. 4582–4588. DOI: 10.1364/AO.44.004582
  6. POLETTI, F. Nested antiresonant nodeless hollow core fiber. Optics Express, 2014, vol. 22, no. 20, p. 23807–23828. DOI: 10.1364/OE.22.023807
  7. SLAVIK, R., MARRA, G., FOKOUA, E. N., et al. Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres. Scientific Reports, 2015, vol. 5, p. 1–7. DOI: 10.1038/srep15447
  8. PRYAMIKOV, A. D., BIRIUKOV, A. S., KOSOLAPOV, A. F., et al. Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm. Optics Express, 2011, vol. 19, no. 2, p. 1441–1448. DOI: 10.1364/OE.19.001441
  9. BENABID, F., COUNY, F., KNIGHT, J. C., et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature, 2005, vol. 434, no. 7032, p. 488–491. DOI: 10.1038/nature03349.
  10. HUMBERT, G., KNIGHT, J. C., BOUWMANS, G., et al. Hollow core photonic crystal fibers for beam delivery. Optics Express, 2004, vol. 12, no. 8, p. 1477–1484. DOI: 10.1364/opex.12.001477
  11. GEROME, F., DUPRIEZ, P., CLOWES, J., et al. High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling. Optics Express, 2008, vol. 16, no. 4, p. 2381–2386. DOI: 10.1364/OE.16.002381
  12. COUNY, F., BENABID, F., ROBERTS, P. J., et al. Generation and photonic guidance of multi-octave optical-frequency combs. Science, 2007, vol. 318, no. 5853, p. 1118–1121. DOI: 10.1126/science.1149091
  13. WHEELER, N. V., HEIDT, A. M., BADDELA, N. K., et al. Lowloss and low-bend-sensitivity mid-infrared guidance in a hollowcore-photonic-bandgap fiber. Optics Letters, 2014, vol. 39, no. 2, p. 295–298. DOI: 10.1364/OL.39.000295
  14. NAMPOOTHIRI, A. V. V., JONES, A. M., FOURCADE-DUTIN, C., et al. Hollow-core Optical Fiber Gas Lasers (HOFGLAS): A review [Invited]. Optical Materials Express, 2012, vol. 2, no. 7, p. 948–961. DOI: 10.1364/OME.2.000948
  15. TERREL, M. A., DIGONNET, M. J. F., FAN, S. Resonant fiber optic gyroscope using an air-core fiber. Journal of Lightwave Technology, 2012, vol. 30, no. 7, p. 931–937. DOI: 10.1109/JLT.2011.2177959
  16. DING, M., KOMANEC, M., SUSLOV, D., et al. Long-length and thermally stable high-finesse Fabry-Perot interferometers made of hollow core optical fiber. Journal of Lightwave Technology, 2020, vol. 38, no. 8, p. 2423–2427. DOI: 10.1109/JLT.2020.2973576
  17. JASION, G. T., BRADLEY, T. D., HARRINGTON, K., et al. Hollow Core NANF with 0.28 dB/km attenuation in the C and L bands. In Optical Fiber Communication Conference and Exhibition Postdeadline Papers. San Diego (USA), 2020, p. 1–3. DOI: 10.1364/OFC.2020.Th4B.4
  18. CHEN, Y., LIU, Z., SANDOGHCHI, S. R., et al. Multikilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission. Journal of Lightwave Technology, 2016, vol. 34, no. 1, p. 104–113. DOI: 10.1109/JLT.2015.2476461
  19. JASION, G. T., POLETTI, F., SHRIMPTON, J. S., et al. Volume manufacturing of hollow core photonic band gap fibers: Challenges and opportunities. In Optical Fiber Communication Conference and Exhibition. Los Angeles (USA), 2015, p. 1–3. DOI: 10.1364/OFC.2015
  20. GAO, S., WANG, Y., TIAN, C., et al. Splice loss optimization of a photonic bandgap fiber via a high V-number fiber. IEEE Photonics Technology Letters, 2014, vol. 26, no. 21, p. 2134–2137. DOI: 10.1109/LPT.2014.2349519
  21. COUNY, F., BENABID, F., LIGHT, P. S., Reduction of Fresnel backreflection at splice interface between hollow core PCF and singlemode fiber. IEEE Photonics Technology Letters, 2007, vol. 19, no. 13, p. 1020–1022. DOI: 10.1109/LPT.2007.898770
  22. MILLER, G. A., CRANCH, G. A., Reduction of intensity noise in hollow core optical fiber using angle-cleaved splices. IEEE Photonics Technology Letters, 2016, vol. 28, no. 4, p. 414–417. DOI: 10.1109/LPT.2015.2496873
  23. KOMANEC, M., SUSLOV, D., ZVANOVEC, S., et al. Low-loss and low-back-reflection hollow-core to standard fiber interconnection. IEEE Photonics Technology Letters, 2019, vol. 31, no. 10, p. 723–726. DOI: 10.1109/LPT.2019.2902635
  24. THOMSON, J. J. Notes on Recent Researches in Electricity and Magnetism: Intended as a Sequel to Professor Clerk-Maxwell’s Treatise on Electricity and Magnetism. 1893. ISBN: 978-1332470754
  25. LORD RAYLEIGH F. R. S. XVIII. On the passage of electric waves through tubes, or the vibrations of dielectric cylinders. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1897, vol. 43, no. 261, p. 125–132. DOI: 10.1080/14786449708620969
  26. MARCATILI, E. A. J., SCHMELTZER, R. A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. The Bell System Technical Journal, 1964, vol. 43, no. 4, p. 1783–1809. DOI: 10.1002/j.1538-7305.1964.tb04108.x
  27. HIDAKA, T., MORIKAWA, T., SHIMADA, J. Hollow-core oxideglass cladding optical fibers for middle-infrared region. Journal of Applied Physics. 1981, vol. 52, no. 7, p. 4467–4471. DOI: 10.1063/1.329373
  28. NAGANO, N., SAITO, M., MIYAGI, M., et al. TiO2-SiO2 based glasses for infrared hollow waveguides. Applied Optics, 1991, vol. 30, no. 9, p. 1074–1079. DOI: 10.1364/AO.30.001074
  29. SAITO, Y., KANAYA, T., NOMURA, A., et al. Experimental trial of a hollow-core waveguide used as an absorption cell for concentration measurement of NH3 gas with a CO2 laser. Optics Letters, 1993, vol. 18, no. 24, p. 2150–2152. DOI: 10.1364/OL.18.002150
  30. SIRKIS, J. S., BRENNAN, D. D., PUTMAN, M. A., et al. In-line fiber etalon for strain measurement. Optics Letters, 1993, vol. 18, no. 22, p. 1973–1975. DOI: 10.1364/OL.18.001973
  31. RENN, M. J., MONTGOMERY, D., VDOVIN, O., et al. Laser-guided atoms in hollow-core optical fibers. Physical Review Letters, 1995, vol. 75, no. 18, p. 3253–3256. DOI: 10.1103/PhysRevLett.75.3253
  32. TEMELKURAN, B., HART, S. D., BENOIT, G., et al. Wavelengthscalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature, 2002, vol. 420, no. 6916, p. 650–653. DOI: 10.1038/nature01275
  33. VIENNE, G., XU, Y., JAKOBSEN, C., et al. Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nanosupports. Optics Express, 2004, vol. 12, no. 15, p. 3500–3508. DOI: 10.1364/OPEX.12.003500
  34. KNIGHT, J. C., BIRKS, T. A., RUSSELL, P. S. J., et al. Allsilica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, vol. 21, no. 19, p. 1547–1549. DOI: 10.1364/OL.21.001547
  35. YABLONOVITCH, E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, vol. 58, no. 20, p. 2059–2062. DOI: 10.1103/PhysRevLett.58.2059
  36. JOHN, S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, vol. 58, no. 23, p. 2486–2489. DOI: 10.1103/PhysRevLett.58.2486
  37. BIRKS, T. A., KNIGHT, J. C., RUSSELL, P. S. J. Endlessly singlemode photonic crystal fiber. Optics Letters, 1997, vol. 22, no. 13, p. 961–963. DOI: 10.1364/OL.22.000961
  38. MOGILEVTSEV, D., BIRKS, T. A., RUSSELL, P. S. J. Groupvelocity dispersion in photonic crystal fibers. Optics Letters, 1998, vol. 23, no. 21, p. 1662–1664. DOI: 10.1364/OL.23.001662
  39. RANKA, J. K., WINDELER, R. S., STENTZ, A. J. Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000, vol. 25, no. 1, p. 25–27. DOI: 10.1364/OL.25.000025
  40. CREGAN, R., MANGAN, B., KNIGHT, J., et al. Single-mode photonic band gap guidance of light in air. Science, 1999, vol. 285, no. 5433, p. 1537–1539. DOI: 10.1126/science.285.5433.1537
  41. PENNETTA, R., XIE, S., LENAHAN, F., et al. Fresnelreflection-free self-aligning nanospike interface between a stepindex fiber and a hollow-core photonic-crystal-fiber gas cell. Physical Review Applied, 2017, vol. 8, no. 1, p. 1–6. DOI: 10.1103/PhysRevApplied.8.014014
  42. DADASHZADEH, N., THIRUGNANASAMBANDAM, M. P., WEERASINGHE, H. W. K., et al. Near diffraction-limited performance of an OPA pumped acetylene-filled hollow-core fiber laser in the mid-IR. Optics Express, 2017, vol. 25, no. 12, p. 13351–13358. DOI: 10.1364/OE.25.013351
  43. KLIMCZAK, M., DOBRAKOWSKI, D., GHOSH, A. N., et al. Nested capillary anti-resonant silica fiber with mid-infrared transmission and low bending sensitivity at 4000 nm. Optics Letters, 2019, vol. 44, no. 17, p. 4395–4398. DOI: 10.1364/OL.44.004395
  44. VENKATARAMAN, N., GALLAGHER, M. T., SMITH, C. M., et al. Low loss (13 dB/km) air core photonic band-gap fibre. In European Conference on Optical Communication (ECOC). Copenhagen (Denmark), 2002, p. 1–2.
  45. MANGAN, B. J., FARR, L., LANGFORD, A., et al. Low loss (1.7 dB/km) hollow core photonic bandgap fiber. In Optical Fiber Communication Conference (OFC). Los Angeles (USA), 2004, p. 1–3.
  46. ROBERTS, P. J., COUNY, F., SABERT, H., et al. Ultimate low loss of hollow-core photonic crystal fibres. Optics Express, 2005, vol. 13, no. 1, p. 236–244. DOI: 10.1364/OPEX.13.000236
  47. BENABID, F., KNIGHT, J. C., ANTONOPOULOS, G., et al. Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 2002, vol. 298, no. 5592, p. 399–402, DOI: 10.1126/science.1076408
  48. PEARCE, G. J., WIEDERHECKER, G. S., POULTON, C. G., et al. Models for guidance in Kagome-structured hollow-core photonic crystal fibres. Optics Express, 2007, vol. 15, no. 20, p. 12680–12685. DOI: 10.1364/OE.15.012680
  49. WANG, Y. Y., COUNY, F., ROBERTS, P. J., et al. Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF. In Conference on Lasers and Electro-Optics (CLEO/QELS). San Jose (USA), 2010, p. 1–2. DOI: 10.1364/CLEO.2010
  50. WHEELER, N., BRADLEY, T., HAYES, J., et al. Low loss Kagome fiber in the 1 µm wavelength region. In Speciality Optical Fibers Meeting at the Advanced Photonics Congress. Vancouver (Canada), 2016, p. 1. DOI: 10.1364/sof.2016.som3f.2
  51. FEVRIER, S., BEAUDOU, B., VIALE, P. Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification. Optics Express, 2010, vol. 18, no. 5, p. 5142–5150. DOI: 10.1364/OE.18.005142
  52. YU, F., WADSWORTH, W. J., KNIGHT, J. C. Low loss silica hollow core fibers for 3–4 µm spectral region. Optics Express, 2012, vol. 20, no. 10, p. 11153–11158. DOI: 10.1364/OE.20.011153
  53. DEBORD, B., AMSANPALLY, A., CHAFER, M., et al. Ultralow transmission loss in inhibited-coupling guiding hollow fibers. Optica, 2017, vol. 4, no. 2, p. 209–217. DOI: 10.1364/OPTICA.4.000209
  54. GAO, S. F., WANG, Y. Y., DING, W., et al. Hollow-core conjoinedtube negative-curvature fibre with ultralow loss. Nature Communications, 2018, vol. 9, no. 1, p. 1–6. DOI: 10.1109/IPCon.2016.7831157
  55. BRADLEY, T. D., HAYES, J. R., CHEN, Y., et al. Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre. In European Conference on Optical Communication (ECOC). Rome (Italy), 2018, p. 1–3. DOI: 10.1109/ECOC.2018.8535324
  56. BRADLEY, T. D., JASION, G. T., HAYES, J. R., et al. Antiresonant hollow core fibre with 0.65 dB/km attenuation across the C and L telecommunication bands. In 45th European Conference on Optical Communication (ECOC). Dublin (Ireland), 2019, p. 1–4. DOI: 10.1049/cp.2019.1028
  57. JASION, G. T., SANDOGHCHI, S. R., CHEN, Y., et al. Novel fluid dynamics model to predict draw of hollow core photonic band-gap fibres. In European Conference on Optical Communication (ECOC). Cannes (France), 2014, p. 1–3. DOI: 10.1109/ECOC.2014.6964003
  58. RUSSELL, P. S. Photonic-crystal fibers. Journal of Lightwave Technology, 2006, vol. 24, no. 12, p. 4729–4749. DOI: 10.1109/JLT.2006.885258
  59. POLETTI, F., PETROVICH, M. N., RICHARDSON, D. J. Hollow-core photonic bandgap fibers: technology and applications. Nanophotonics, 2013, vol. 2, no. 5–6, p. 315–340. DOI: 10.1515/nanoph-2013-0042
  60. BARKOU, S. E., BROENG, J., BJARKLEV, A. Silica–air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect. Optics Letters, 1999, vol. 24, no. 1, p. 46–48. DOI: 10.1364/OL.24.000046
  61. MARADUDIN, A., MCGURN, A. Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium. Journal of Modern Optics, 1994, vol. 41, no. 2, p. 275–284. DOI: 10.1080/09500349414550321
  62. BROENG, J., BARKOU, S. E., SØNDERGAARD, T., et al. Analysis of air-guiding photonic bandgap fibers. Optics Letters, 2000, vol. 25, no. 2, p. 96–98. DOI: 10.1364/OL.25.000096
  63. MORTENSEN, N. A., NIELSEN, M. D. Modeling of realistic cladding structures for air-core photonic bandgap fibers. Optics Letters, 2004, vol. 29, no. 4, p. 349–351. DOI: 10.1364/OL.29.000349
  64. ZAMANI AGHAIE, K., FAN, S., DIGONNET, M. J. F. Birefringence analysis of photonic-bandgap fibers using the hexagonal Yee’s cell. IEEE Journal of Quantum Electronics, 2010, vol. 46, no. 6, p. 920–930. DOI: 10.1109/JQE.2010.2040369
  65. LITCHINITSER, N. M., ABEELUCK, A. K., HEADLEY, C., et al. Antiresonant reflecting photonic crystal optical waveguides. Optics Letters, 2002, vol. 27, no. 18, p. 1592–1594. DOI: 10.1364/OL.27.001592
  66. RENVERSEZ, G., BOYER, P., SAGRINI, A. Antiresonant reflecting optical waveguide microstructured fibers revisited: A new analysis based on leaky mode coupling. Optics Express, 2006, vol. 14, no. 12, p. 5682–5687. DOI: 10.1364/OE.14.005682
  67. WEI, C., WEIBLEN, R. J., MENYUK, C. R., et al. Negative curvature fibers. Advances in Optics and Photonics, 2017, vol. 9, no. 3, p. 504–561. DOI: 10.1364/AOP.9.000504
  68. CHOUDHURY, P., YOSHINO, T. A rigorous analysis of the power distribution in plastic clad annular core optical fibers. Optik, 2002, vol. 113, no. 11, p. 481–488. DOI: 10.1078/0030-4026-00195
  69. WEI, C., ALVAREZ, O., CHENARD, F., et al. Empirical glass thickness for chalcogenide negative curvature fibers. In IEEE Summer Topicals Meeting Series (SUM). Nassau (Bahamas), 2015, p. 187–188. DOI: 10.1109/PHOSST.2015.7248259
  70. JUNG, Y., SLEIFFER, V. A. J. M., BADDELA, N., et al. First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing. In Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC). Anaheim (USA), 2013, p. 1–3. DOI: 10.1364/OFC.2013
  71. MORIOKA, T., AWAJI, Y., RYF, R., et al. Enhancing optical communications with brand new fibers. IEEE Communications Magazine, 2012, vol. 50, no. 2, p. 31–42. DOI: 10.1109/MCOM.2012.6146483
  72. NICHOLSON, J. W., YABLON, A. D., FINI, J. M., et al. Measuring the modal content of large-mode-area fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2009, vol. 15, no. 1, p. 61–70. DOI: 10.1109/JSTQE.2008.2010239
  73. RIKIMI, S., CHEN, Y., BRADLEY, T., et al. Long-term behaviour of water vapour absorption in hollow core fibres. In Sixth International Workshop on Specialty Optical Fibers and Their Applications (WSOF). Charleston (USA), 2019, p. 1–6.
  74. XIAO, L., JIN, W., DEMOKAN, M. S., et al. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. Optics Express, 2005, vol. 13, no. 22, p. 9014–9022. DOI: 10.1364/OPEX.13.009014
  75. THAPA, R., KNABE, K., CORWIN, K. L., et al. Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells. Optics Express, 2006, vol. 14, no. 21, p. 9576–9583. DOI: 10.1364/OE.14.009576
  76. WU, C., SONG, J., ZHANG, Z., et al. High strength fusion splicing of hollow-core photonic bandgap fiber and single-mode fiber. In Australian Conference on Optical Fibre Technology. Sydney (Australia), 2016. DOI: 10.1364/ACOFT.2016.AW4C.7
  77. NICHOLSON, J. W., MANGAN, B., MENG, L., et al. Low-loss, low return-loss coupling between SMF and single-mode, hollow-core fibers using connectors. In Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications. San Jose (USA), 2014, p. 1–2. DOI: 10.1364/CLEO.AT.2014
  78. SUSLOV, D., KOMANEC, M., ZVANOVEC, S., et al. Highlyefficient and low return-loss coupling of standard and antiresonant hollow-core fibers. In Frontiers in Optics + Laser Science. Washington, DC (USA), 2019. DOI: 10.1364/FIO.2019.FW5B.2
  79. JUNG, Y., KIM, H., CHEN, Y., et al. Compact micro-optic based components for hollow core fibers. Optics Express, 2020, vol. 28, no. 2, p. 1518–1525. DOI: 10.1364/OE.28.001518
  80. HUANG, W., CUI, Y., LI, X., et al. Low-loss coupling from single-mode solid-core fibers to anti-resonant hollow-core fibers by fiber tapering technique. Optics Express, 2019, vol. 27, no. 26, p. 37111–37121. DOI: 10.1364/OE.27.037111
  81. WOOLER, J. P., GRAY, D., POLETTI, F., et al. Robust low loss splicing of hollow core photonic bandgap fiber to itself. In Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC). Anaheim (USA), 2013, p. 1–3. DOI: 10.1364/OFC.2013.OM3I.5
  82. NAZERI, K., AHMED, F., AHSANI, V., et al. Hollow-core photonic crystal fiber mach-zehnder interferometer for gas sensing. Sensors, 2020, vol. 20, p. 1–12. DOI: 10.3390/s20102807
  83. SAKR, H., BRADLEY, T. D., HONG, Y., et al. Ultrawide bandwidth hollow core fiber for interband short reach data transmission. In Optical Fiber Communications Conference and Exhibition (OFC). San Diego (USA), 2019, p. 1–3. DOI: 10.1109/JLT.2019.2943178
  84. NESPOLA, A., STRAULLU, S., BRADLEY, T., et al. Record PM16QAM and PM-QPSK transmission distance (125 and 340 km) over hollow-core-fiber. In 45th European Conference on Optical Communication (ECOC). Dublin (Ireland), 2019, p. 1–4. DOI: 10.1049/cp.2019.1019
  85. DEBORD, B., FOUED, A., VINCETTI, L., et al. Hollow-core fiber technology: The rising of "Gas Photonics". Fibers, 2019, vol. 7, p. 1–16. DOI: 10.3390/fib7020016
  86. YANG, F., JIN, W., CAO, Y., et al. Towards high sensitivity gas detection with hollow-core photonic bandgap fibers. Optics Express, 2014, vol. 22, no. 20, p. 24894–24907. DOI: 10.1364/OE.22.024894
  87. KNEBL, A., YAN, D., POPP, J., et al. Fiber enhanced raman gas spectroscopy. TrAC Trends in Analytical Chemistry, 2018, vol. 103, p. 230–238. DOI:

Keywords: Hollow-core fibers, photonic crystal fibers, antiresonant, photonic bandgap, interconnection, Fabry-Perot

M. Bazargani, B. Gharekhanlou, M. Banihashemi [references] [full-text] [DOI: 10.13164/re.2020.0431] [Download Citations]
Design of Optical 2-Channel Demultiplexer Using Selective Optofluidic Infiltration within Photonic Crystal Structure

In the current study, a compact demultiplexer for telecommunication applications using 2D photonic crystals with a hexagonal lattice structure is presented. This demultiplexer consists of two L6 resonant cavities as filters and 6 holes around each cavity for optofluidic infiltration. Through the use of this structure, the communication wavelengths of 1550 nm and 1567 nm with the transmission coefficient of 84% and 96% respectively can be selected without any change on the size of radius of holes. The average value of crosstalk between two channels is -18.35(dB). The plane wave expansion method is employed in order to extract the photonic band gap and the finite difference time domain method is implemented to study the behavior of propagation of light in the structure.

  1. DELPHI, G. H., OLYAEE, S., SEIFOURI, M., et al. Design of low crosstalk and high quality factor 2-channel and 4-channel optical demultiplexers based on photonic crystal nano ring resonator. Photonic Network Communications, 2019, vol. 38, no. 2, p. 250–257. DOI: 10.1007/s11107-019-00852-0
  2. VENKATACHALAM, K., SRIRAM KUMAR, D., ROBINSON, S. Investigation on 2D photonic crystal based eight-channel wavelength-division demultiplexer. Photonic Network Communications, 2017, vol. 34, no. 1, p. 100–110. DOI: 10.1007/s11107-016-0675-7
  3. TAVOUSI, A., MANSOURI-BIRJANDIS, M. A. Study on the similarity of photonic crystal ring resonator cavity modes and whispering gallery-like modes in order of designing more efficient optical power dividers. Photonic Network Communications, 2016, vol. 32, no. 1, p. 160–170. DOI: 10.1007/s11107-015-0592-1
  4. MEHDIZADEH, F., SOROOSH, M. A new proposal for eightchannel optical demultiplexer based on photonic crystal resonant cavities. Photonic Network Communications, 2015, vol. 31, no. 1, p. 65–70. DOI: 10.1007/s11107-015-0531-1
  5. ALIPOUR-BANAEI, H., MEHDIZADEH, F., AMINI, B. All optical communication filter based on photonic crystal structure. International Journal of Future Computer and Communication, 2015, vol. 4, no. 5, p. 346–349. DOI: 10.18178/ijfcc.2015.4.5.414
  6. SEIFOURI, M., FALLAHI, V., OLYAEE, S. Ultra high-Q optical filter based on photonic crystal ring resonator. Photonic Network Communications, 2018, vol. 35, no. 2, p. 225–230. DOI: 10.1007/s11107-017-0732-x
  7. SVALUTO MOREOLO, M., MORRA, V., CINCOTTI, G. Design of photonic crystal delay lines based on enhanced coupled cavity waveguides. Journal of Optics, 2008, vol. 10, no. 6, p. 1–6. DOI: 10.1088/1464-4258/10/6/064002
  8. LIU, T., ZAKHARIAN, A. R., FALLAHI, M., et al. Design of a compact photonic crystal based polarizing beam splitter. IEEE Photonics Technology Letters, 2005, vol. 17, no. 7, p. 1435–1437. DOI: 10.1109/LPT.2005.848278
  9. GHAFFARI, A., MONIFI, F., DJAVID, M., et al. Analysis of photonic crystal power splitters with different configurations. Journal of Applied Sciences, 2008, vol. 8, no. 8, p. 1416–1425. DOI: 10.3923/jas.2008.1416.1425
  10. RAO, W., SONG, Y., LIU, M., et al. All optical switch based on photonic crystal microcavity with multi resonant modes. Optik, 2010, vol. 121, no. 21, p. 1934–1936. DOI: 10.1016/j.ijleo.2009.05.018
  11. THOMSON, D. J., GARDES, F. Y., HU, Y., et al. High contrast 40 Gbit/s optical modulation in silicon. Optics Express, 2011, vol. 19, no. 12, p. 11507–11516. DOI: 10.1364/oe.19.011507
  12. MOHEBZADEH-BAHABADY, A., OLYAEE, S. All optical NOT and XOR logic gates using a photonic crystal nano-resonator and based on interference effect. IET Optoelectronics, 2018, vol. 12, no. 4, p. 191–195. DOI: 10.1049/iet-opt.2017.0174
  13. MOHEBZADEH-BAHABADY, A., OLYAEE, S. Two curve shaped biosensor for detecting glucose concentration and salinity of seawater based on photonic crystal nano-ring resonator. Sensor Letters, 2015, vol. 13, no. 9, p. 774–777. DOI: 10.1166/sl.2015.3517
  14. REZAEE, S., ZAVVARI, M., ALIPOUR-BANAEI, H. A novel optical filter based on H-shaped photonic crystal ring resonator. Optik, 2015, vol. 126, no. 20, p. 2535–2538. DOI: 10.1016/j.ijleo.2015.06.043
  15. NAGHIZADE, S., SATTARI-ESFAHLAN, S. M. Excellent quality factor ultra-compact optical communication filter on ringshaped cavity. Journal of Optical Communications, 2017, vol. 40, no. 1, p. 1–5. DOI: 10.1515/joc-2017-0035
  16. WANG, Y., CHEN, D., ZHANG, G., et al. A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors. Optics Communications, 2016, vol. 363, p. 13–20. DOI: 10.1016/j.optcom.2015.10.070
  17. ZHUANG, Y., JI, K., ZHOU, W., et al. Design of a DWDM multi/demultiplexer based on 2-D photonic crystals. IEEE Photonic Technology Letters, 2016, vol. 28, no. 15, p. 1669–1672. DOI: 10.1109/LPT.2016.2566662
  18. NAGHIZADE, S., SATTARI-ESFAHLAN, S. M. An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications. Journal of Optical Communications, 2018, vol. 41, no. 1, p. 1–7. DOI: 10.1515/JOC-2017-0129
  19. BENDJELLOUL, R., BOUCHEMAT, T., BOUCHEMAT, M., et al. New design of T-shaped channel drop filter based on photonic crystal ring resonator. Journal of Nanoscience and Nanotechnology, 2016, vol. 6, no. 1A, p. 13–17. DOI: 10.5923/c.nn.201601.02
  20. VAISI, A., SOROOSH, M., MAHMOUDI, A. Low loss and highquality factor optical filter using photonic crystal-based resonant cavity. Journal of Optical Communications, 2017, vol. 39, no. 3, p. 285–288. DOI: 10.1515/joc-2016-0135
  21. JOHNSON, S. G., JOANNOPOULOS, J. D. Block-iterative frequency domain methods for Maxwell's equations in a plane wave basis. Optics Express, 2001, vol. 8, no. 3, p. 173–190. DOI: 10.1364/OE.8.000173
  22. TAFLOVE, A., HEGNESS, S. C. Computational Electrodynamics: The Finite Difference Time Domain Method. 3rd ed., rev. London (UK): Artech House, 2005. ISBN: 9781580538329
  23. SAUNDERS, J. E., SANDERS, C., CHEN, H., et al. Refractive indices of common solvents and solutions at 1550 nm. Applied Optics, 2016, vol. 55, no. 4, p. 947–953. DOI: 10.1364/AO.55.000947
  24. TEKESTE, M. Y., YARRISON-RICE, J. M. High efficiency photonic crystal based wavelength demultiplexer. Optics Express, 2006, vol. 14, no. 17, p. 7931–7942. DOI: 10.1364/OE.14.007931
  25. DJAVID, M., MONIFI, F., GHAFFARI, A., et al. Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Optics Communications, 2008, vol. 281, no. 15–16, p. 4028–4032. DOI: 10.1016/j.optcom.2008.04.045
  26. ZHANG, X., LIAO, Q., YU, T., et al. Novel ultracompact wavelength division demultiplexer based on photonic band gap. Optics Communications, 2011, vol. 285, no. 3, p. 274–276. DOI: 10.1016/J.OPTCOM.2011.10.001
  27. BOUAMAMI, S., NAOUM, R. Compact WDM demultiplexer for seven channels in photonic crystal. Optik, 2012, vol. 124, no. 16, p. 2373–2375. DOI: 10.1016/j.ijleo.2012.08.008
  28. MANSOURI-BIRJANDI, M. A., RAKHSHANI, M. R. A new design of tunable four port wavelength demultiplexer by photonic crystal ring resonators. Optik, 2013, vol. 124, no. 23, p. 5923–5926. DOI: 10.1016/j.ijleo.2013.04.128
  29. ALIPOUR-BANAEI, H., SERAJMOHAMMADI, S., MEHDIZADEH, F. Effect of scattering rods in the frequency response of photonic crystal demultiplexers. Journal of Optoelectronics and Advanced Materials, 2015, vol. 17, n. 3–4, p. 259–263. ISSN: 1454-4164
  30. RAKHSHANI, M. R., MANSOURI-BIRJANDI, M. A. Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Physica E, 2013, vol. 50, p. 97–101. DOI: 10.1016/jphyse.2013.03.003

Keywords: Photonic crystal, band gap, optofluidic, demultiplexer, resonant cavity

H. N. Parajuli, E. Udvary, J. Poette [references] [full-text] [DOI: 10.13164/re.2020.0438] [Download Citations]
Experimental Demonstration of the Potential 5G Based Multiplexed Radio Frequency Signals Transmission in Passive Optical Network

Future passive optical network (PON) designs with 5G have been expected to provide simultaneous multiple wireless signals to the end-users. In this regard, this paper for the first time proposes and experimentally demonstrates the simultaneous transmission of baseband 4-pulse amplitude modulation (4-PAM), and radiofrequency (RF) filter bank multicarrier (FBMC), and universal filter orthogonal frequency division multiplexing (UF-OFDM) signals in a PON. A single optical wavelength from a laser source is used to demonstrate the signal transmission over a PON. The proposed system applies in one wavelength using one laser source for the PON. In contrast with conventional on-off keying (OOK) modulation format, 4-PAM modulation format can provide double bandwidth efficiency. Due to the property of high suppression for out of band emission, UF-OFDM and FBMC are considered as potential 5G modulation formats. In the optical line terminal (OLT), the composite signal consisting of 4-PAM, FBMC, and UF-OFDM is designed, generated, and transmitted using optical intensity modulation. The received signal is extracted in the optical network unit (ONU) and demodulated using digital signal processing techniques. Each of the above-mentioned modulation formats mentioned above is designed with a 2 Gbps data rate constituting a total of 6 Gbps aggregate data rate. The bit error rate (BER) and error vector magnitude (EVM) values have been measured after 25 km fiber length. Measurement results show EVM values below 12.5 % as a figure of merit as proposed by 3GPP LTE for 16 QAM modulation.

  1. SUNG, J. Y., CHOW, C. W., YEH, C. H., et al. Cost-effective mobile backhaul network using existing ODN of PONs for the 5G wireless systems. IEEE Photonics Journal, 2015, vol. 7, no. 6, p. 1–6. DOI: 10.1109/JPHOT.2015.2497222
  2. SKUBIC, B., FIORANI, M., TOMBAZ, S., et al. Optical transport solutions for 5G fixed wireless access [Invited]. IEEE/OSA Journal of Optical Communications and Networking, 2017, vol. 9, no. 9, p. D10–D18. DOI: 10.1364/JOCN.9.000D10
  3. LIU, X., EFFENBERGER, F. Emerging optical access network technologies for 5G wireless [Invited]. IEEE/OSA Journal of Optical Communications and Networking, 2016, vol. 8, no. 12, p. B70–B79. DOI: 10.1364/JOCN.8.000B70
  4. RAPPAPORT, T. S., SUN, S., MAYZUS, R., et al. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 2013, vol. 1, p. 335–349. DOI: 10.1109/ACCESS.2013.2260813
  5. TZANAKAKI, A., ANASTASOPOULOS, M., BERBERANA, I., et al. Wireless-optical network convergence: Enabling the 5G architecture to support operational and end-user services. IEEE Communications Magazine, 2017, vol. 55, no. 10, p. 184–192. DOI: 10.1109/MCOM.2017.1600643
  6. MARTIN, E. P., SHAO, T., VUJICIC, V., et al. 25-Gb/s OFDM 60-GHz radio over fiber system based on a gain switched laser. Journal of Lightwave Technology, 2015, vol. 33, no. 8, p. 1635–1643. DOI: 10.1109/JLT.2015.2391994
  7. SHAMS, H., ZHAO, J. First investigation of fast OFDM radio over fibre system at 60 GHz using direct laser modulation. In Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference (CLEO EUROPE/IQEC). Munich (Germany), 2013, p. 1–1. DOI: 10.1109/CLEOEIQEC.2013.6801274
  8. BANELLI, P., BUZZI, S., COLAVOLPE, G., et al. Modulation formats and waveforms for 5G networks: Who will be the heir of OFDM? An overview of alternative modulation schemes for improved spectral efficiency. IEEE Signal Processing Magazine, 2014, vol. 31, no. 6, p. 80–93. DOI: 10.1109/MSP.2014.2337391
  9. ZHANG, J. J., XU, M., WANG, J., et al. Full-duplex quasi-gapless carrier aggregation using FBMC in centralized radio-over-fiber heterogeneous networks. Journal of Lightwave Technology, 2017, vol. 35, no. 4, p. 989–996. DOI: 10.1109/JLT.2016.2608138
  10. NGUYEN, T. T., LE, S. T., HE, Q., et al. Multicarrier approaches for high-baudrate optical-fiber transmission systems with a single coherent receiver. IEEE Photonics Journal, 2017, vol. 9, no. 2, p. 1–10. DOI: 10.1109/JPHOT.2017.2672041
  11. XU, M., ZHANG, J., LU, F., et al. FBMC in next-generation mobile fronthaul networks with centralized pre-equalization. IEEE Photonics Technology Letters, 2016, vol. 28, no. 18, p. 1912–1915. DOI: 10.1109/LPT.2016.2575060
  12. BELLANGER, M., LE RUYET, D., ROVIRAS, D., et al. FBMC physical layer: A primer. PHYDYAS, Project Document, Jan. 2010, p. 1–31. [Online] Available at:
  13. PARAJULI, H. N., SHAMS, H., GONZALEZ, L., et al. Experimental demonstration of multi-Gbps multi sub-bands FBMC transmission in mm-wave radio over a fiber system. Optics Express, 2018, vol. 26, no. 6, p. 7306–7312. DOI: 10.1364/OE.26.007306
  14. SCHAICH, F., WILD, T. Waveform contenders for 5G - OFDM vs. FBMC vs. UFMC. In 6th International Symposium on Communications, Control and Signal Processing (ISCCSP). Athens (Greece), 2014, p. 457–460. DOI: 10.1109/ISCCSP.2014.6877912
  15. WILD, T., SCHAICH, F., CHEN, Y. 5G air interface design based on Universal Filtered (UF-) OFDM. In 19th International Conference on Digital Signal Processing. Hong Kong, 2014, p. 699–704. DOI: 10.1109/ICDSP.2014.6900754
  16. SCHAICH, F., WILD, T., CHEN, Y. Waveform contenders for 5G - Suitability for short packet and low latency transmissions. In IEEE 79th Vehicular Technology Conference (VTC Spring). Seoul (South Korea), 2014, p. 1–5. DOI: 10.1109/VTCSpring.2014.7023145
  17. LAZAROU, I., DRIS, S., BAKOPOULOS, P., et al. Full-duplex 4- PAM transmission for capacity upgrade in loop-back PONs. IEEE Photonics Technology Letters, 2013, vol. 25, no. 12, p. 1125–1128. DOI: 10.1109/LPT.2013.2260533
  18. SHIM. H. K., KIM, H., CHUNG, Y. C. 20-Gb/s polar RZ 4-PAM transmission over 20-km SSMF using RSOA and direct detection. IEEE Photonics Technology Letters, 2015, vol. 27, no. 10, p. 1116–1119. DOI: 10.1109/LPT.2015.2408376
  19. STAMATIADIS, C., MATSUMOTO R., YOSHIDA, Y., et al. Full-duplex RSOA-based PONs using 4-PAM with preequalization. IEEE Photonics Technology Letters, 2015, vol. 27, no. 1, p. 73–76. DOI: 10.1109/LPT.2014.2361922
  20. SALJOGHEI, A., GUTIERREZ, F. A., PERRY, P., et al. Experimental comparison of FBMC and OFDM for multiple access uplink PON. Journal of Lightwave Technology, 2017, vol. 35, no. 9, p. 1595–1604. DOI: 10.1109/JLT.2017.2654319
  21. JUNG, S. Y., JUNG, S. M., HAN, S. K. AMO-FBMC for asynchronous heterogeneous signal integrated optical transmission. IEEE Photonics Technology Letters, 2015, vol. 27, no. 2, p. 133–136. DOI: 10.1109/LPT.2014.2363197
  22. BROWNING, C., FARHANG, A., SALJOGHEI, A., et al. 5G wireless and wired convergence in a passive optical network using UF-OFDM and GFDM. In IEEE International Conference on Communications Workshops (ICCWorkshops). Paris (France), 2017, p. 386–392. DOI: 10.1109/ICCW.2017.7962688
  23. PARAJULI, H. N., UDVARY, E. Wired-wireless converged passive optical network with 4-PAM and multi-sub-bands FBMC. Infocommunications Journal, 2018, vol. 10, no. 2, p. 1–6. ISSN: 2061-2079
  24. PARAJULI, H. N., SHAMS, H., UDVARY, E. Synchronization and channel estimation in experimental M-QAM OFDM radio over fiber systems using CAZAC based training preamble. In International Conference on Optical Network Design and Modeling (ONDM). Budapest (Hungary), 2017, p. 1–6. DOI: 10.23919/ONDM.2017.7958533
  25. STOHR, A., SHIH, B., ABRAHA, S. T., et al. High spectralefficient 512-QAM-OFDM 60 GHz CRoF system using a coherent photonic mixer (CPX) and an RF envelope detector. In Optical Fiber Communications Conference and Exhibition (OFC). Anaheim (CA, USA), 2016, p. 1–3. ISBN: 978-1-943580-07-1

Keywords: 5G, FBMC, passive optical network, radio over fiber, UF-OFDM, wired-wireless convergence , optical communication

M. S. P. dos S. Lima Junior, M. P. Halapi, E. Udvary [references] [full-text] [DOI: 10.13164/re.2020.0445] [Download Citations]
Design of a Real-Time Indoor Positioning System Based on Visible Light Communication

In this paper a real-time Indoor Positioning System (IPS) based on Visible Light Communication (VLC) is proposed, deployed and studied. It is composed of nine LED-based VLC transmitters instaled in the ceilling of an indoor invironment, each of them transmitting different ID codes that are detected by a photodiode-based mobile correlator receiver. The receiver is able to measure the distance between itself and the transmitters and use this information to estimate its own position in the environment. The distances are measured using Received Signal Strength (RSS), where initial experiments were executed in order to determine physical parameters of the system. Then, the 2D or 3D position is estimated by the receiver using multilateration in real-time. This paper also brings tests and discussions regarding the accuracy achieved by the deployed system.

  1. SAND, S., DAMMANN, A., MENSING, C. Positioning in Wireless Communications Systems. 1st ed. Chichester (UK): Wiley, 2014. ISBN: 978-0-4707-7064-1
  2. ZANDBERGEN, P. A., BARBEAU, S. J. Positional accuracy of assisted GPS data from high-sensitivity GPS-enabled mobile phones. The Journal of Navigation, 2011, vol. 64, no. 3, p. 381–399. DOI: 10.1017/S0373463311000051
  3. LUO, J., FAN, L., LI, H. Indoor positioning systems based on visible light communication: State of the art. IEEE Communications Surveys & Tutorials, 2017, vol. 19, no. 4, p. 2871–2893. DOI: 10.1109/COMST.2017.2743228
  4. HASSAN, N. U., NAEEM, A., PASHA, M. A., et al. Indoor positioning using visible led lights: A survey. ACM Computing Surveys, 2015, vol. 48, no. 2, p. 1–32. DOI: 10.1145/2835376
  5. WANG, W., HUANG, J., CAI, S., et al. Design and implementation of synchronization-free TDOA localization system based on UWB. Radioengineering, 2019, vol. 28, no. 1, p. 320–330. DOI: 10.13164/re.2019.0320
  6. KARASEK, R., VEJRAZKA, F. The DVB–T–based positioning system and single frequency network offset estimation. Radioengineering, 2018, vol. 27, no. 4, p. 1155–1165. DOI: 10.13164/re.2018.1155
  7. GHASSEMLOOY, Z., ALVES, L. N., ZVANOVEC, S., et al. Visible Light Communications: Theory and Applications. 1st ed. New York (USA): CRC Press, 2017. ISBN: 978-1-4987-6753-8
  8. KHAN, L. U. Visible light communication: Applications, architecture, standardization, and research challenges. Digital Communications and Networks, 2017, vol. 3, no. 2, p. 78–88. DOI: 10.1016/j.dcan.2016.07.004
  9. UYSAL, M., CAPSONI, C., GHASSEMLOOY, Z., et al. (Eds.) Optical Wireless Communications: An Emerging Technology. 1st ed. Switzerland: Springer, 2016. ISBN: 978-3-319-30200-3
  10. LUO, P., ZHANG, M., ZHANG, X., et al. An indoor visible light communication positioning system using dual-tone multifrequency technique. In The 2nd International Workshop on Optical Wireless Communications (IWOW). Newcastle upon Tyne (UK), 2013, p. 25–29. DOI: 10.1109/iwow.2013.6777770
  11. KUO, Y. S., PANNUTO, P., HSIAO, K. J., et al. Luxapose: Indoor positioning with mobile phones and visible light. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking (MobiCom). ACM Press (USA), 2014, p. 447–458. DOI: 10.1145/2639108.2639109
  12. DO, T.-H., YOO, M. TDOA-based indoor positioning using visible light. Photonic Network Communication, 2014, vol. 27, no. 2, p. 80–88. DOI: 10.1007/s11107-014-0428-4
  13. YANG, Z., WANG, Z., ZHANG, J., et al. Wearables can afford: Light-weight indoor positioning with visible light. In Proceedings of the 13th Annual International Conference on Mobile Systems. Florence (Italy), 2015, p. 317–330. DOI: 10.1145/2742647.2745924
  14. KIM, H., KIM, D., YANG, S., et al. An indoor visible light communication positioning system using a RF carrier allocation technique. Journal of Lightwave Technology, 2011, vol. 31, no. 1, p. 134–144. DOI: 10.1109/jlt.2012.2225826
  15. KAHN, J. M., BARRY, J. R. Wireless infrared communications. Proceedings of IEEE, 1997, vol. 85, no. 2, p. 265–298. DOI: 10.1109/5.554222
  16. MOHAIMENUR RAHMAN, A. B. M., LI, T., WANG, Y. Recent advances in indoor localization via visible lights: A survey. Sensors, 2020, vol. 20, no. 5, p. 1–26. DOI: 10.3390/s20051382
  17. VITASEK, J., KOUDELKA, P., LATAL, J., et al. Indoor optical free space networks – Reflectivity of light on building materials. Przeglad Elektrotechniczny, 2011, vol. 87, p. 41–44. ISSN: 0033-2097

Keywords: Indoor Positioning Systems (IPS), Visible Light Communications (VLC), Received Signal Strenght (RSS), multilateration

I. Gharbi, R. Barrak, A. Diallo, J. M. Ribero, H. Ragad, M. Menif [references] [full-text] [DOI: 10.13164/re.2020.0452] [Download Citations]
Investigation of Stacked Balanced-Fed Patch Antenna for Millimeter-Wave Application

A stacked patch antenna with balanced feed operating in millimeter-wave band is proposed in this paper. Initially, a single balanced-fed patch antenna is designed in three layers. Simulation results show that the proposed antenna enhances the cross-polarization and the radiation gain of the conventional aperture coupled patch antenna. A maximum gain of 6.8 dBi is achieved with a bandwidth of 2 GHz around 26 GHz. The stacked patch antenna was fabricated using 0.65 mm AR1000 and 0.787mm RO5880 substrates. Measurement results of return loss agreed with the simulations and showed wide bandwidth which is required for future 5G communication terminals. To further increase the gain, we propose an integrated 8-element antenna array based on an 8-way Wilkinson power divider. The proposed design achieves a maximum gain of 14.1 dBi at 26 GHz with greatly reduced grating lobes and cross-polarization. The proposed antenna array represents a potential solution for the emerging 5G wireless applications.

  1. RAPPAPORT, T. S., XING, Y., MACCARTNEY, G. R., et al. Overview of millimeter wave communications for fifth-generation (5G) wireless networks - With a focus on propagation models. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 12. p. 6213–6230. DOI: 10.1109/TAP.2017.2734243
  2. XU, X., LIU, M., XIONG, J., et al. Key technology and application of millimeter wave communications for 5G: A survey. Cluster Computing, 2019, vol. 22, p. S12997–S13009. DOI: 10.1007/s10586-018-1831-x
  3. ZHAO, D., ZHANG, J., YI, Y., et al. 5G millimeter-wave phasedarray transceiver: System considerations and circuit implementations. In Proceeding of the IEEE International Symposium on Circuits and Systems (ISCAS). Sapporo (Japan), 2019, p. 1–4. DOI: 10.1109/ISCAS.2019.8702530
  4. HUANG, M. Y., CHI, T., LI, S., et al. A 24.5–43.5-GHz ultracompact CMOS receiver front end with calibration-free instantaneous full-band image rejection for multiband 5G massive MIMO. IEEE Journal of Solid- State Circuits, 2020, vol. 55, no. 5, p. 1177–1186. DOI: 10.1109/JSSC.2019.2959495
  5. WU, Z., LIU, J., ZHANG, J., et al. Design of a Ka-band high-gain antenna with the quasi-annular SIW corrugated technique. IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 5, p. 1001–1005. DOI: 10.1109/LAWP.2019.2907527
  6. FARHAT, S., ARSHAT, F., AMIN, Y., et al. Wideband patch array antenna using superstrate configuration for future 5G applications. Turkish Journal of Electrical Engineering and Computer Sciences, 2020, vol. 28, p. 1673–1685. DOI: 10.3906/elk-1910-160
  7. CHENG, C., CHEN, J. P., SU, H. L., et al. A wideband square-slot antenna array with superstrate and electromagnetic bandgap reflector for 60-GHz applications. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 9, p. 4618–4625. DOI: 10.1109/TAP.2017.2729160
  8. STANLEY, M., HUANG, Y., WANG, H., et al. A dual-band dualpolarised stacked patch antenna for 28 GHz and 39 GHz 5G millimetre-wave communication. In Proceedings of 13th European Conference on Antennas and Propagation (EuCAP). Krakow (Poland), 2019, p. 1–4.
  9. POZAR, D. M. Microwave Engineering. 2nd ed. New York: Wiley, 1998. ISBN: 0-471-17096-8
  10. BALANIS, C. A. Antenna Theory: Analysis and Design. 3rd ed. Wiley- Interscience, 2005. ISBN: 978-0471667827
  11. ZHANG, Y. P. Design and experiment on differentially driven microstrip antennas. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 10, p. 2701–2708. DOI: 10.1109/TAP.2007.905832
  12. ZHU, S., LIU, H., CHEN, Z., et al. A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mm wave application. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 5, p. 776–779. DOI: 10.1109/LAWP.2018.2816038
  13. LIAN, J. W., BAN, Y. L., YANG, Q. L., et al. Planar millimeterwave 2-D beam-scanning multibeam array antenna fed by compact SIW beam-forming network. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 3, p. 1299–1310. DOI: 10.1109/TAP.2018.2797873
  14. LEE, C., KHATTAK, M. K., KAHNG, S. Wideband 5G beamforming printed array clutched by LTE-A 4 × 4-multipleinput multiple-output antennas with high isolation. IET Microwaves, Antennas and Propagation, 2018, vol. 12, no. 8, p. 1407–1413. DOI: 10.1049/IET-MAP.2017.0946
  15. DI PAOLA, C., ZHAO, K., ZHANG, S., et al. SIW multibeam antenna array at 30 GHz for 5G mobile devices. IEEE Access, 2019, vol. 7, p. 73157–73164. DOI: 10.1109/ACCESS.2019.2919579
  16. JIN, H., CHE, W., CHIN, K. S., et al. Millimeter-wave TE20-mode SIW dual-slot-fed patch antenna array with a compact differential feeding network. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 1, p. 456–461. DOI: 10.1109/TAP.2017.2767644

Keywords: Patch antenna array, 5G, aperture feed, Wilkinson power divider, 26 GHz band, balanced feed

Y. Bakirli, A. Selek, M. Secmen [references] [full-text] [DOI: 10.13164/re.2020.0460] [Download Citations]
Broadband Compact Quasi Yagi Antenna for UHF Wireless Communication Systems with Enhanced Performance at UHF ISM Bands

In this study, a broadband planar quasi Yagi antenna operated at ultra-high frequency (UHF) band is presented. The performance of the antenna is particularly improved for two popular UHF frequencies of 433 and 868 MHz used in several wireless communication applications such as Long Range (LoRa), Internet of Things (IoT), Machine-to-Machine (M2M), Wireless Meter bus (M-bus), and Radio Frequency Identification (RFID). The proposed antenna includes a printed feed dipole with a ground reflector and two parasitic (director) elements on a substrate to keep total dimensions of the antenna within compact size. The parasitic elements are very thick and closely spaced to feed dipole. Significant increase in the bandwidth is obtained with the improved effects due to usage of tapered feed line and tapered reflector. The antenna’s 10-dB return loss bandwidth is measured more than 70% between 428 MHz and 896 MHz. The antenna offers moderate peak gain values of 5.5 dBi and 5 dBi; and front-to-back ratio (F/B) values of 12 dB and 14 dB at lower and higher parts of UHF band around 433 and 868 MHz, respectively. The peak gain and F/B ratio values are found to be minimum 4 dBi and 8.5 dB within the operating bandwidth, respectively.

  1. SECMEN, M. Recent Developments in Mobile Communications – A Multidisciplinary Approach (Multiband and Wideband Antennas for Mobile Communication Systems). Rijeka (Croatia): Intech, 2011. ISBN: 9789533079103
  2. IVSIC, B., BONEFACIC, D., BARTOLIC, J. Reconfigurable pico-cell antenna array for indoor coverage in GSM 900 band. Radioengineering, 2009, vol. 18, no. 4, p. 388–394. ISSN: 1210-2512
  3. INTERNATIONAL TELECOMMUNICATION UNION (ITU), SWITZERLAND. Radio Regulations, edition of 2016: Volume 1: Articles. 442 pages [Online] Cited 2016-11-01 Available at: 43.48.en.101.pdf
  4. KUMBHAR, A. Overview of ISM bands and Software-Defined Radio experimentation. Wireless Personal Communications, 2017, vol. 97, no. 3, p. 3743–3756. DOI: 10.1007/s11277-017-4696-z
  5. JORKE, P., BOCKER, S, LIEDMANN, et al. Urban channel models for smart city IoT-networks based on empirical measurements of LoRa-links at 433 and 868 MHz. In IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Montreal (Canada), 2017, p. 1–6. DOI: 10.1109/PIMRC.2017.8292708
  6. CENTENARO, M., VANGELISTA, L., ZANELLA, A., et al. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wireless Communications, 2016, vol. 23, no. 5, p. 60–67. DOI: 10.1109/MWC.2016.7721743
  7. TUSET-PEIRO, P., ANGLES-VAZQUEZ, A., LOPEZ-VICARIO, J., et al. On the suitability of the 433MHz band for M2M lowpower wireless communications: Propagation aspects. Transactions on Emerging Telecommunications Technologies, vol. 25, no. 12, p. 1154–1168, DOI: 10.1002/ett.2672
  8. DIKOVIC, A., SISUL, G., MODLIC, B. A low cost platform for sensor network applications and educational purposes. Radioengineering, 2011, vol. 20, no. 4, p. 758–765. ISSN: 1210-2512
  9. JANKOWSKI-MIHULOWICZ, P., KAWALEC, D., WEGLARSKI, M. Antenna design for semi-passive UHF RFID transponder with energy harvester. Radioengineering, 2015, vol. 24, no. 3, p. 722–728. DOI: 10.13164/re.2015.0722
  10. KUSCHEL, H. VHF/UHF radar. Part 1. Characteristics. Electronics & Communication Engineering Journal, 2002, vol. 14, no. 2, p. 61–72. DOI: 10.1049/ecej:20020203
  11. KUSCHEL, H. VHF/UHF radar. Part 2. Operational aspect and applications. Electronics & Communication Engineering Journal, 2002, vol. 14, no. 2, p. 101–111. DOI: 10.1049/ecej:20020302
  12. BALANIS, C. A. Antenna Theory: Analysis and Design. 4th ed. New Jersey (USA): John Wiley & Sons Inc., 2016. ISBN: 9781118642061
  13. SUN, Y. S., ZHANG, H., WEN, G., et al. Research progress in Yagi antennas. Procedia Engineering, 2012, vol. 29, p. 2116–2121. DOI: 10.1016/j.proeng.2012.01.272
  14. TA, S. X., KIM, B. C., CHOO, H. S., et al. Wideband quasi-Yagi antenna fed by microstrip-to-slotline transition. Microwave and Technology Letters, 2012, vol. 54, no. 1, p. 150–153. DOI: 10.1002/mop.26504
  15. KIM, S., HAN, J., JANG, Y., et al. Compact VHF/UHF band quasi-Yagi antenna for multifunction radar applications. Microwave and Technology Letters, 2018, vol. 60, no. 10, p. 2525–2530. DOI: 10.1002/mop.31354
  16. DING, K., GAO, C., ZHANG, B., et al. A compact printed unidirectional broadband antenna with parasitic patch. IEEE Antennas and Wireless Letters, 2017, vol. 16, p. 2341–2344. DOI: 10.1109/LAWP.2017.2718000
  17. WANG, H., CHEN, Y., LIU, F. S., et al. Wideband and compact quasi-Yagi antenna with bowtie-shaped drivers. Electronics Letters, 2013, vol. 49, no. 20, p. 1262–1264. DOI: 10.1049/el.2013.2454
  18. WANG, H., LIU, F. S., SHI, X. W. Design of a wideband planar microstrip-fed quasi-Yagi antenna. Progress in Electromagnetics Research Letters, 2014, vol. 46, p. 19–24. DOI: 10.2528/PIERL14031702
  19. ZHANG, S., TANG, Z., YIN, Y. Wideband planar printed quasiYagi antenna with band-notched characteristic. Progress in Electromagnetics Research Letters, 2014, vol. 48, p. 137–143. DOI: 10.2528/PIERL14072507
  20. HAJIZADESH, P., HASSANI, H. R., SEDIGHY, S. H. Planar artificial transmission lines loading for miniaturization of RFID printed quasi-Yagi antenna. IEEE Antennas and Wireless Letters, 2013, vol. 12, p. 464–467. DOI: 10.1109/LAWP.2013.2253540
  21. NIKITIN, P. V., RAO, K. V. S. Compact Yagi antenna for handheld UHF RFID reader. In Proceedings of IEEE Antennas and Propagation Society International Symposium (APS). Toronto (Canada), 2010, p. 1–4. DOI: 10.1109/APS.2010.5562224
  22. BOZDAG, G., KUSTEPELI, A. Subsectional tapered fed printed LPDA antenna with a feeding point patch. IEEE Antennas and Wireless Letters, 2015, vol. 15, p. 437–440. DOI: 10.1109/LAWP.2015.2451395
  23. OZGONUL, M. C., SECMEN, M., OKUYUCU, S. Compact printed log periodic dipole antenna with second order semi-circle iteration. In Proceedings of 25th Telecommunications Forum (TELFOR). Belgrade (Serbia), 2017, p. 1–4. DOI: 10.1109/TELFOR.2017.8249375
  24. STUTZMAN, W. L., THIELE, G. A. Antenna Theory and Design. 3rd ed. New Jersey (USA): John Wiley & Sons Inc., 2013. ISBN: 9780470576649

Keywords: Broadband antenna, UHF, planar, printed antenna, quasi Yagi, wireless communication

M. Rasool, A. Khan, F. Bhatti, B. Ijaz, A. Iftikhar [references] [full-text] [DOI: 10.13164/re.2020.0471] [Download Citations]
A Compact Circular Loop Inspired Frequency and Bandwidth Reconfigurable Antenna for 4G, 5G, and X- Band Applications

This paper presents a printed patch antenna design to achieve frequency and bandwidth reconfigurability. Two RF PIN diodes are simultaneously operated to achieve the multi-reconfigurability operation. The patch is inspired from a circular loop design. The basic structure of loop is altered, and PIN diodes are integrated into the patch. The antenna operates in dual band configuration at 3.42 and 8.02 GHz in the diodes ‘OFF’ state, whereas the antenna switches to triple band operation at 2.21, 4.85, and 10.19 GHz in the diodes ‘ON’ state. Moreover, the antenna also exhibits an increased bandwidth from 7.54 to 12 GHz in the diodes ‘ON’ state, as compared to a narrow bandwidth from 7.71 to 8.48 GHz in the diodes ‘OFF’ state. The proposed antenna structure is implemented and fabricated using FR4 epoxy substrate of relative permittivity 4.4, and thickness 1.6 mm. Implemented design exhibits measured gains of 3.06 dBi, 2.81 dBi, and 2.92 dBi at 2.21, 4.85, and 10.19 GHz in the PIN diodes ‘ON’ state, respectively, while in the PIN diodes ‘OFF’ state, at 3.42 GHz the gain is 3.03 dBi and at 8.02 GHz the gain is 3.37 dBi. Overall, simulation results agree well with the measured results.

  1. EL NABAOUI, D., TAJMOUATI, A., ZBITOU, J., et al. Multiband fractal CPW antenna for GPS, WiMAX and IMT applications. In 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). Fez (Morocco), 2017, p. 1–5. DOI: 10.1109/WITS.2017.7934596
  2. NGUYEN, V., PARK, B., PARK, S., et al. A planar dipole for multiband antenna systems with self-balanced impedance. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 1632–1635. DOI: 10.1109/LAWP.2014.2347952
  3. ARIS, M. A., ALI, M. T., ABD RAHMAN, N. H., et al. Frequency reconfigurable aperture-coupled microstrip patch antenna using defected ground structure. In 2015 IEEE International RF and Microwave Conference (RFM). Kuching (Malaysia), 2015, p. 200–204. DOI: 10.1109/RFM.2015.7587744
  4. JHAMB, K., LI, L., RAMBABU, K. Frequency adjustable microstrip annular ring patch antenna with multi-band characteristics. IET Microwaves, Antennas & Propagation, 2011, vol. 5, no. 12, p. 1471–1478. DOI: 10.1049/iet-map.2010.0571
  5. BALANIS, C. A. Antenna Theory Analysis and Design. 4th ed. New York (USA): John Wiley & Sons, 2016. ISBN 978-1-118- 64206-1
  6. BERNHARD, J. T. Reconfigurable Antennas. San Rafael, (California, USA): Morgan and Claypool Publishers, 2007. DOI: 10.2200/S00067ED1V01Y200707ANT004
  7. GRAU, A., ROMEU, J., LEE, M. J., et al. A dual-linearlypolarized MEMS-reconfigurable antenna for narrowband MIMO communication systems. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 1, p. 4–17. DOI:10.1109/tap.2009.2036197
  8. TAWK, Y., COSTANTINE, J., CHRISTODOULOU, C. G. A varactor based reconfigurable filtenna. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 716–719. DOI: 10.1109/LAWP.2012.2204850
  9. NIKOLAOU, S. BAIRAVASUBRAMANIAN, R., LUGO, C., et al. Pattern and frequency reconfigurable annular slot antenna using PIN diodes. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 2, p. 439–448. DOI: 10.1109/TAP.2005.863398
  10. NITURE, D. V., GOVIND, P. A., MAHAJAN, S. P. Frequency and polarization reconfigurable square ring antenna for wireless application. In 2016 IEEE Region 10 Conference (TENCON). Singapore, 2016, p. 1302–1306. DOI: 10.1109/TENCON.2016.7848223
  11. MINH, P. T., THAO, T. T., DUC, N. T, et al. A novel multiband frequency reconfigurable PIFA antenna. In 2016 International Conference on Advanced Technologies for Communications (ATC). Hanoi (Vietnam), 2016, p. 7–12. DOI: 10.1109/ATC.2016.7764832
  12. KIM, Y., YOON, Y. J. A high gain pattern reconfigurable antenna with simple structure. In 2016 IEEE International Symposium on Antennas and Propagation (APSURSI). Fajardo (Puerto Rico), 2016, p. 653–654. DOI: 10.1109/APS.2016.7696035
  13. CHEN, S., CHU, Q., SHINOHARA, N. A bandwidth reconfigurable planar antenna for WLAN/WiMAX applications. In Proceedings of the Asia-Pacific Microwave Conference (APMC). New Delhi (India), 2016, p. 5–9. DOI: 10.1109/apmc.2016.7931467
  14. HUSSAIN, R., SHARAWI, M. S. A cognitive radio reconfigurable MIMO and sensing antenna system. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 257–260. DOI: 10.1109/LAWP.2014.2361450
  15. NACHOUANE, H., NAJID, A., TRIBAK, A., et al. Reconfigurable and tunable filtenna for cognitive LTE femtocell base stations. International Journal of Microwave Science and Technology, 2016, p. 1–10. DOI: 10.1155/2016/9460823
  16. UNIVERSITY OF NOTRE DAME. 4G Wireless Standard. [Online] Cited 2020-March-10. Available at:
  17. QUALCOMM. What Can We Do with 5G NR Spectrum Sharing that Isn’t Possible Today? [Online] Cited 2020-March-10. Available at:
  18. BHATTACHARYYA, B., BHATTACHARYYA, S. Emerging field in 4G technology, its applications & beyond-an overview. International Journal of Information and Computation Technology, 2013, vol. 3, no. 4, p. 251–260. ISSN: 0974-2239
  19. CHAMBERS, J. Commercial X-Band: The Technical + Operational Advantages. [Online] Cited 2020-March-11. Available at:
  20. PIAO, H., JIN, Y., TAK, J., et al. Compact quad-band slot antenna for GPS L1, WiMAX, and WLAN applications. In 2016 International Symposium on Antennas and Propagation (ISAP). Okinawa (Japan), 2016, p. 808–809. ISBN: 978-4-88552-313-7
  21. ALLABOUCHE, K., BOBROVS, V., FERERRO, F., et al. Multiband rectangular dielectric resonator antenna for 5G applications. In 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). Fez (Morocco), 2017, p. 1–4. DOI: 10.1109/WITS.2017.7934637
  22. FEDERAL COMMUNICATIONS COMMISSION. Advanced Wireless Services (AWS). 32 pages. [Online] Cited 2020-March11. Available at:
  23. ASIA-PACIFIC TELECOMMUNITY. APT Report on Frequency Usage of the Band 3400-3600 MHz. [Online] Cited 2020-March11. Available at: 3600MHz.docx
  24. NIVIUK. NR Frequency Band. [Online] Cited 2020-March-11. Available at:
  25. MEHDIPOUR, A., SEBAK, A., TRUEMAN, C. W., et al. Compact multiband planar antenna for 2.4/3.5/5.2/5.8-GHz wireless applications. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 144–147. DOI: 10.1109/LAWP.2012.2185915
  26. GAO, X., ZHONG, H., ZHANG, Z., et al. Low-profile planar tripolarization antenna for WLAN communications. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 83–86. DOI: 10.1109/LAWP.2010.2043495
  27. LI, R., FUSCO, V. F., NAKANO, H. Circularly polarized openloop antenna. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 9, p. 2475–2477. DOI: 10.1109/TAP.2003.809845
  28. LI, R., PAN, B., LASKAR, J., et al. A novel low-profile broadband dual-frequency planar antenna for wireless handsets. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 4, p. 1155–1162. DOI: 10.1109/TAP.2008.919171
  29. LIU, W. C., WU, C. M., DAI, Y. Design of triple-frequency microstrip- fed monopole antenna using defected ground structure. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 7, p. 2457–2463. DOI: 10.1109/TAP.2011.2152315
  30. KHAN, M. S., CAPOBIANCO, A. D., IFTIKHAR, A., et al. A frequency-reconfigurable series-fed microstrip patch array with interconnecting CRLH transmission lines. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 242–245. DOI: 10.1109/LAWP.2015.2439637
  31. SKYWORKS. SMP 1322 Series. [Online] Cited 2019-July-03. Available at: Diodes/SMP1322-Series
  32. MINI CIRCUITS. ADCH-80A RF Choke/ Surf Mount RoHS5. [Online] Cited 2019-July-03. Available at: DCH-80A

Keywords: Circular loop, PIN diodes, reconfigurable antennas, triple band operation

S. Kamal, A. S. B. Mohammed, M. F. Bin Ain, U. Ullah, R. Hussin, Z. A. Ahmad, M. Othman, M. F. Ab Rahman [references] [full-text] [DOI: 10.13164/re.2020.0479] [Download Citations]
A Novel Negative Meander Line Design of Microstrip Antenna for 28 GHz mmWave Wireless Communications

The increasing applications for nomadic computing have experienced enormous development over the preceding decade. This has eventually caused the lack of bandwidth. Therefore, to accomplish the need of consumers, compact antennas shall be designed for mmWave wireless communications. Consequently, this paper presents a novel negative meander line based microstrip antenna system being composed of inductors (L) and capacitors (C). A detailed impedance analysis of the configuration is reported. The effects of changing the radiating element’s width and length on the resonant frequency have been studied. The finalized arrangement involved 243 sq. mm area and functioned at 28 GHz with a bandwidth of 2.16 GHz. At resonant frequency, the system exhibited gain and efficiency values of 8.40 dBi and 83.51%, respectively. Furthermore, the proposed design demonstrated better bandwidth and gain capabilities in comparison with the conventional microstrip patch antenna and meander line antenna.

  1. OSSEIRAN, A., MONSERRAT, J. F., MARSCH, P. 5G Mobile and Wireless Communications Technology. Cambridge University Press, 2016. DOI: 10.1017/cbo9781316417744 Antenna Configuration Size (0 2 ) Bandwidth (GHz) Gain (dBi) Efficiency (%) Microstrip Patch 1.17 × 1.35 1.16 4.58 85.59 Meander Line 2.52 × 0.84 1.24 6.90 47.99 Negative Meander Line 2.52 × 0.84 2.16 8.40 83.51 Tab. 3. Performance comparison of the conventional microstrip patch antenna, meander line antenna and the proposed negative meander line antenna at 28 GHz. Fig. 10. Simulated magnitude of S11 curves with top views of (a) meander line antenna, (b) negative meander line antenna and (c) microstrip patch antenna.
  2. THOMAS, T., VEERASWAMY, K., CHARISHMA, G. Mm wave MIMO antenna system for UE of 5G mobile communication: Design. In 2015 Annual IEEE India Conference (INDICON). New Delhi (India), 2015, p. 1–5. DOI: 10.1109/indicon.2015.7443471
  3. BALANIS, C. A. Antenna Theory: Analysis and Design. 4th ed. John Wiley & sons, 2016. ISBN: 978-1-118-64206-1
  4. CHAUHAN, B., VIJAY, S., GUPTA, C. S. Millimeter-wave mobile communications microstrip antenna for 5G-A future antenna. International Journal of Computer Applications, 2014, vol. 99, no. 19, p. 15–18. DOI: 10.5120/17481-8303
  5. MATIN, M. A., SHARIF, B. S., TSIMENIDIS, C. C. Dual layer stacked rectangular microstrip patch antenna for ultra wideband applications. IET Microwaves, Antennas & Propagation, 2007, vol. 1, no. 6, p. 1192–1196. DOI: 10.1049/iet-map:20070051
  6. CHATTOPADHYAY, S. (ed.) Trends in Research on Microstrip Antennas. IntechOpen, 2017. DOI: 10.5772/65580
  7. LIU, N.-W., ZHU, L., CHOI, W.-W., et al. A low-profile aperturecoupled microstrip antenna with enhanced bandwidth under dual resonance. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 3, p. 1055–1062. DOI: 10.1109/tap.2017.2657486
  8. SAED, M. A., YADLA, R. Microstrip-fed low profile and compact dielectric resonator antennas. Progress In Electromagnetics Research, 2006, vol. 56, p. 151–162. DOI: 10.2528/pier05041401
  9. KAMAL, S., CHAUDHARI, A. A. Printed meander line MIMO antenna integrated with air gap, DGS and RIS: A low mutual coupling design for LTE applications. Progress In Electromagnetics Research C, 2017, vol. 71, p. 149–159. DOI: 10.2528/pierc16112008
  10. JANDI, Y., GHARNATI, F., SAID, A. O. Design of a compact dual bands patch antenna for 5G applications. In 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). Fez (Morocco), 2017, p. 1–4. DOI: 10.1109/wits.2017.7934628
  11. YOON N., SEO, C. A 28-GHz wideband 2 × 2 U-slot patch array antenna. Journal of Electromagnetic Engineering and Science, 2017, vol. 17, no. 3, p. 133–137. DOI: 10.5515/jkiees.2017.17.3.133
  12. CALLA, O. P. N., SINGH, A., SINGH, A. K., et al. Empirical relation for designing the meander line antenna. In 2008 International Conference on Recent Advances in Microwave Theory and Applications. Jaipur (India), 2008, p. 695–697. DOI: 10.1109/amta.2008.4762995
  13. TAKAHASHI, T., HIRASAWA, K. A broadband rectangularcavity-backed meandering slot antenna. In IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials (IWAT 2005). Singapore, 2005, p. 21–24. DOI: 10.1109/iwat.2005.1460986
  14. GUPTA, A. K., KUMAR, N. Dual band meander slot antenna for mobile applications. In 2015 International Conference on Communications and Signal Processing (ICCSP). Melmaruvathur (India), 2015, p. 0828–0830. DOI: 10.1109/iccsp.2015.7322609
  15. BODDU, V. S., CHILUKURI, S. A multi band planar inverted-F antenna with meandered slots for mobile applications. In 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). Granada (Spain), 2019, p. 431–435. DOI: 10.1109/apwc.2019.8870466
  16. SUKHIJA, S., SARIN, R. K. A U-shaped meandered slot antenna for biomedical applications. Progress In Electromagnetics Research M, 2017, vol. 62, p. 65–77. DOI: 10.2528/pierm17082101
  17. ALLEN, C. M., ELDEK, A. A., ELSHERBENI, A. Z., et al. Dual tapered meander slot antenna for radar applications. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 7, p. 2324–2328. DOI: 10.1109/tap.2005.850757
  18. BALANIS, C. B. Antenna Theory: Analysis and Design. 3rd ed. John Wiley, 2005. (Ch. 14, Microstrip antennas.) ISBN: 978-0471667827
  19. PUSHPAKARAN, S. V., PURUSHOTHAMAN, J. M., CHANDROTH, A., et al. An extraordinary transmission analogue for enhancing microwave antenna performance. AIP Advances, 2015, vol. 5, no. 10, p. 1–5. DOI: 10.1063/1.4935193
  20. RAHMAN, A., YI, N. M., AHMED, A. U., et al. A compact 5G antenna printed on manganese zinc ferrite substrate material. IEICE Electronics Express, 2016, vol. 13, no. 11, p. 1–5. DOI: 10.1587/elex.13.20160377
  21. KHALILY, M., TAFAZOLLI, R., RAHMAN, T., et al. Design of phased arrays of series-fed patch antennas with reduced number of the controllers for 28-GHz mm-wave applications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 1305–1308. DOI: 10.1109/lawp.2015.2505781
  22. KARTHIKEYA, G. S., ABEGAONKAR, M. P., KOUL, S. K. CPW fed conformal folded dipole with pattern diversity for 5G mobile terminals. Progress In Electromagnetics Research C, 2018, vol. 87, p. 199–212. DOI: 10.2528/pierc18082902
  23. KHATTAK, M. I., SOHAIL, A., KHAN, U., et al. Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks. Progress In Electromagnetics Research C, 2019, vol. 89, p. 133–147. DOI: 10.2528/pierc18101401
  24. PARK, J. S., KO, J. B., KWON, H. K., et al. A tilted combined beam antenna for 5G communications using a 28-GHz band. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1685–1688. DOI: 10.1109/LAWP.2016.2523514
  25. ZHANG, Y., DENG, J., LI, M., et al. A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications. IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, p. 747–751. DOI: 10.1109/LAWP.2019.2901961
  26. KHALID, M., NAQVI, S. I., HUSSAIN, N., et al. 4-port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics, 2020, vol. 9, no. 1, p. 1–13. DOI: 10.3390/electronics9010071
  27. KAMAL, S., MOHAMMED, A. S. B., AIN, M. F., et al. A novel lumped LC resonator antenna with air-substrate for 5G mobile terminals. Progress In Electromagnetics Research Letters, 2020, vol. 88, p. 75–81. DOI: 10.2528/PIERL19090509
  28. KAMAL, S., MOHAMMED, A. S. B., AIN, M. F., et al. 28 GHz mm-wave quasi-lumped element resonator antenna on airsubstrate. In 2019 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE). Melacca (Malaysia), 2019, p. 1–4. DOI: 10.1109/APACE47377.2019.9020741
  29. CST MICROWAVE STUDIO, LLC, US: Computer Simulation Technology Studio Suite.
  30. HONG, J.-S. G., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. John Wiley & Sons, 2004. ISBN: 978-0-471-46420-4
  31. MOSALLAEI, H., SARABANDI, K. Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 9, p. 2403–2414. DOI: 10.1109/tap.2004.834135
  32. JAMES, J. R., HALL, P. S. (Eds.) Handbook of Microstrip Antenna, London (UK): IET, 1989. ISBN: 9780863411502
  33. KARA, M. Closed-form expressions for the resonant frequency of rectangular microstrip antenna elements with thick substrates. Microwave and Optical Technology Letters, 1996, vol. 12, no. 3, p. 131–136. DOI: 10.1002/(SICI)1098- 2760(19960620)12:3<131::AID-MOP4>3.0.CO;2-I
  34. DERNERYD, A. G. A theoretical investigation of the rectangular microstrip antenna element. IEEE Transactions on Antennas and Propagation, 1978, vol. 26, no. 4, p. 532–535. DOI: 10.1109/TAP.1978.1141890

Keywords: Microstrip antenna, mmWave, negative meander line antenna, wireless communications

R. K. Parida, R. Swain, D. C. Panda, R. K. Mishra [references] [full-text] [DOI: 10.13164/re.2020.0486] [Download Citations]
A Broadband High Gain Circularly Polarized Antenna System for Cognitive Radio

This paper proposes a broadband high gain LHCP (left hand circular polarized) antenna system using a microstrip line fed slot antenna, reflecting surfaces, and linear polarization (LP) to circular polarization (CP) transformer screen. Gain enhancement principle adopts Fabry-Perot (FP) method using phase compensation in partially reflecting surface (PRS) for increasing bandwidth from 720 MHz to 1.14 GHz. For linear polarization, the system gain is 20.1 dBi at 13.8 GHz with a bandwidth of 1.01 GHz. Using a polarization transformer screen for circular polarization, marginally decreases the gain to 18.8 dBi pulling down the frequency to 13.75 GHz with 3 dB axial ratio. Simulated results agree well with measured results from a fabricated prototype.

  1. VANELLI-CORALLI, A., GUIDOTTI, A., TARCHI, D., et al. Chapter 10 - Cognitive radio scenarios for satellite communications: the CoRaSat project. Cooperative and Cognitive Satellite Systems, 2015, p. 303–336. DOI: 10.1016/B978-0-12- 799948-7.00010-4
  2. HOYHTYA, M., KYROLAINEN, J., HULKKONEN, A., et al. Application of cognitive radio techniques to satellite communication. In IEEE International Symposium on Dynamic Spectrum Access Networks. Bellevue (WA, USA), 2012, p. 540–551. DOI: 10.1109/DYSPAN.2012.6478178
  3. LUO, Q., GAO, S., ZHANG, C., et al. Design and analysis of a reflectarray using slot antenna elements for Ka-band SatCom. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 4, p. 1365–1374. DOI: 10.1109/TAP.2015.2401393
  4. VAIDYA, A. R., GUPTA, R. K., MISHRA, S. K., et al. High-gain low side lobe level Fabry Perot cavity antenna with feed patch array. Progress In Electromagnetics Research, 2012, vol. 28, p. 223–238. DOI: 10.2528/PIERC12031503
  5. MUHAMMAD, S. A., SAULEAU, R., LE COQ, L., et al. Selfgeneration of circular polarization using compact Fabry-Perot cavity antennas. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 907–910. DOI: 10.1109/LAWP.2011.2166989
  6. LIU, Z. Fabry-Perot resonator antenna. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, vol. 31, no. 4, p. 391–403. DOI: 10.1007/s10762-009-9605-4
  7. GE, Y., ESSELLE, K. P., BIRD, T. S. The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 2, p. 743–750. DOI: 10.1109/TAP.2011.2173113
  8. WANG, N., LI, J., WEI, G., et al. Wideband Fabry-Perot resonator antenna with two layers of dielectric superstrates. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 229–232. DOI: 10.1109/LAWP.2014.2360703
  9. LIU, Z., ZHANG, W., FU, D., et al. Broadband Fabry-Perot resonator printed antennas using FSS superstrate with dissimilar size. Microwave and Optical Technology Letters, 2008, vol. 50, no. 6, p. 1623–1627. DOI: 10.1002/mop.23456
  10. GARDELLI, R., ALBANI, M., CAPOLINO, F. Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 7, p. 1979–1990. DOI: 10.1109/TAP.2006.877172
  11. TRENTINI, G. V. Partially reflecting sheet arrays. IRE Transactions on Antennas and Propagation, 1956, vol. 4, no. 4, p. 666–671. DOI: 10.1109/TAP.1956.1144455
  12. WANG, N., LIU, Q., WU, C., et al. Wideband Fabry-Perot resonator antenna with two complementary FSS layers. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 5, p. 2463–2471. DOI: 10.1109/TAP.2014.2308533
  13. FERESIDIS, A. P., VARDAXOGLOU, J. C. High gain planar antenna using optimised partially reflective surfaces. IEE Proceedings - Microwaves, Antennas and Propagation. 2001, vol. 148, no. 6, p. 345–350. DOI: 10.1049/ip-map:20010828
  14. SAULEAU, R., COQUET, P., MATSUI, T. Low-profile directive quasi-planar antennas based on millimetre wave Fabry-Perot cavities. IEE Proceedings - Microwaves, Antennas and Propagation, 2003, vol. 150, no. 4, p. 274–278. DOI: 10.1049/ipmap:20030416
  15. AL-TARIFI, M. A., ANAGNOSTOU, D. E., AMERT, A. K., et al. Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 4, p. 1898–1908. DOI: 10.1109/TAP.2012.2231931
  16. KONSTANTINIDIS, K., FERESIDIS, A. P., HALL, P. S. Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 7, p. 3474–3481. DOI: 10.1109/TAP.2014.2320755
  17. RAZI, Z. M., REZAEI, P., VALIZADE, A. A novel design of Fabry-Perot antenna using metamaterial superstrate for gain and bandwidth enhancement. AEU - International Journal of Electronics and Communications, 2015, vol. 69, no. 10, p. 1525–1532. DOI: 10.1016/j.aeue.2015.05.012
  18. QIN, F., GAO, S., LUO, Q., et al. A triband low-profile high-gain planar antenna using Fabry-Perot cavity. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 5, p. 2683–2688. DOI: 10.1109/TAP.2017.2670564
  19. LI, H., WANG, G., GAO, X., et al. A novel metasurface for dualmode and dual-band flat high-gain antenna application. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 7, p. 3706–3711. DOI: 10.1109/TAP.2018.2835526
  20. LONG, M., JIANG, W., GONG, S. RCS reduction and gain enhancement based on holographic metasurface and PRS. IET Microwaves, Antennas & Propagation, 2017, vol. 12, no. 6, p. 931–936. DOI: 10.1049/iet-map.2017.0698
  21. KATARE, K. K., BISWAS, A., AKHTAR, M. J. Wideband beamsteerable configuration of metasurface loaded slot antenna. International Journal of RF and Microwave Computer-Aided Engineering, 2018, vol. 28, no. 8, p. 1–7. DOI: 10.1002/mmce.21408
  22. GAO, S. S., LUO, Q., ZHU, F. Circularly Polarized Antennas. John Wiley & Sons, 2013. DOI:10.1002/9781118790526
  23. LIU, Z., CAO, Z. Circularly polarized Fabry-Perot resonator antenna. In 2009 International Conference on Microwave Technology and Computational Electromagnetics (ICMTCE 2009). Beijing (China), 2009, p. 18–21. DOI: 10.1049/cp.2009.1250
  24. ORR, R., GOUSSETIS, G., FUSCO, V. Design method for circularly polarized Fabry-Perot cavity antennas. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 1, p. 19–26. DOI: 10.1109/TAP.2013.2286839
  25. ZARBAKHSH, S., AKBARI, M., SAMADI, F., et al. Broadband and high-gain circularly-polarized antenna with low RCS. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 1, p. 16–23. DOI: 10.1109/TAP.2018.2876234
  26. LIU, Z., CAO, Z., WU, L. Compact low-profile circularly polarized Fabry-Perot resonator antenna fed by linearly polarized microstrip patch. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 524–527. DOI: 10.1109/LAWP.2015.2456886
  27. QIN, F., GAO, S., WEI, G., et al. Wideband circularly polarized Fabry-Perot antenna. IEEE Antennas and Propagation Magazine, 2015, vol. 57, no. 5, p. 127–135. DOI: 10.1109/MAP.2015.2470678
  28. LIU, Z., LU, W. Low-profile design of broadband high gain circularly polarized Fabry-Perot resonator antenna and its array with linearly polarized feed. IEEE Access, 2017, vol. 5, p. 7164–7172. DOI: 10.1109/ACCESS.2017.2675378
  29. SWAIN, R., MISHRA, R. K. Metasurface cavity antenna for broadband high-gain circularly polarized radiation. International Journal of RF and Microwave Computer-Aided Engineering, 2019, vol. 29, no. 3, p. 1–8. DOI: 10.1002/mmce.21609
  30. SUN, H., GU, C., CHEN, X., LI, Z., et al. Ultra-wideband and broad-angle linear polarization conversion metasurface. Journal of Applied Physics, 2017, vol. 121, no. 17, p. 1–6. DOI: 10.1063/1.4982916
  31. ZHU, H. L., CHEUNG, S. W., CHUNG, K. L., et al. Linear-tocircular polarization conversion using metasurface. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 9, p. 4615–4623. DOI: 10.1109/TAP.2013.2267712
  32. ABADI, S. M. A. M. H., BEHDAD, N. Wideband linear-tocircular polarization converters based on miniaturized-element frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 2, p. 525–534. DOI: 10.1109/TAP.2015.2504999
  33. LI, K., LIU, Y., JIA, Y., et al. A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 8, p. 4288–4292. DOI: 10.1109/TAP.2017.2710231
  34. REN, J., JIANG, W., ZHANG, K., et al. A high-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 5, p. 853–856. DOI: 10.1109/LAWP.2018.2820015
  35. YU, N., GENEVET, P., KATS, M. A., et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, vol. 334, no. 6054, p. 333–337. DOI: 10.1126/science.1210713
  36. GAO, X., HAN, X., CAO, W., et al. Ultrawideband and highefficiency linear polarization converter based on double v-shaped metasurface. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 8, p. 3522–3530. DOI: 10.1109/TAP.2015.2434392
  37. CHEN, H., WANG, J., MA, H., et al. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. Journal of Applied Physics, 2014, vol. 115, no. 15, p. 1–5. DOI: 10.1063/1.4869917
  38. CHEN, C., LI, Z., LIU, L., et al. A circularly-polarized metasurfaced dipole antenna with wide axial-ratio beamwidth and RCS reduction functions. Progress In Electromagnetics Research, 2015, vol. 154, p. 79–85. DOI: 10.2528/PIER15092401
  39. MUNK, B. A. Frequency Selective Surfaces: Theory and Design. John Wiley & Sons, 2005. ISBN: 9780471723769
  40. SUN, R. Q., XIE, J., ZHANG, Y. W. Simulation research of bandpass frequency selective surfaces (FSS) radome. In 2016 Progress in Electromagnetic Research Symposium (PIERS). Shanghai (China), 2016, p. 1186–1193. DOI: 10.1109/PIERS.2016.7734616
  41. ZHENG, S., YIN, Y., REN, X. Interdigitated hexagon loop unit cells for wideband miniaturized frequency selective surfaces. In Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory. Guangzhou (China), 2010, p. 770–772. DOI: 10.1109/ISAPE.2010.5696582
  42. MA, T., ZHOU, H., YANG, Y., et al. A FSS with stable performance under large incident angles. Progress In Electromagnetics Research Letters, 2013, vol. 41, p. 159–166. DOI: 10.2528/PIERL13061703
  43. FEI, P., HU, W., GUO, W., et al. Design of wideband planar linear-circular polarization converter with centrosymmetric dualloop elements. Progress In Electromagnetics Research M, 2018, vol. 74, p. 83–92. DOI: 10.2528/PIERM18062207
  44. LI, D., SZABO, Z., QING, X., et al. A high gain antenna with an optimized metamaterial inspired superstrate. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 12, p. 6018–6023. DOI: 10.1109/TAP.2012.2213231

Keywords: Cognitive radio, resonant cavity antenna, partially reflecting surface, circular polarization

A. N. Biswas, S. Ballav, A. Chatterjee, S. K. Parui [references] [full-text] [DOI: 10.13164/re.2020.0494] [Download Citations]
Evolution of Low-Profile Ultra-Wideband Frequency Selective Surface with a Stable Response and Sharp Roll-Off at Lower Band for C, X and Ku Band Applications

This paper focuses on two different design flows of how an ultra-wideband FSS can be achieved from a narrow band structure. By amalgamating a capacitive patch with a corrugated square slot structure, as the first approach while the second approach involved designing a dual layer FSS by etching the corrugated square slot at both top and the bottom layer of the substrate. A 98% bandwidth extending from 5.5 GHz to 16 GHz was achieved using the first approach while the modified structure yields about 107% bandwidth covering up the entire range from 5 GHz to 16.5 GHz, hence improving the performance in terms of bandwidth. The final modified FSS structure manifests the polarization insensitive nature as well as angle insensitivity up to 60 degree angle of incidence in terms of the entire range of the wide reflection band, and covering all the three bands (C, X and Ku band). The transmission coefficient manifests a stable response below 20 dB almost throughout the entire band without significant variation. The measured result shows good agreement with the experimented result validating the fabricated prototype and measurement. The bandwidth can be tuned by varying different parameters like corrugation dimension, dielectric permittivity, substrate height which have been explained in this paper.

  1. MUNK, B. A. Frequency Selective Surfaces: Theory and Design. New York (USA): John Wiley, 2005. ISBN: 9780471723776
  2. MUNK, B. A. Finite Antenna Arrays and FSS. John Wiley, 2005. ISBN: 9780471457534
  3. ZHU, H., YU, Y., LI, X., et al. A wideband and high gain dualpolarized antenna design by a frequency selective surface for a WLAN applications. Progress In Electromagnetics Research C, 2014, vol. 54, p. 57–66. DOI: 10.2528/PIERC14072801
  4. SARIKA, TRIPATHY, M. R., RONNOW, D. A wideband frequency selective surface reflector for 4G/X-band/Ku-band. Progress In Electromagnetics Research, 2018, vol. 81, p. 151–159. DOI: 10.2528/PIERC18010908
  5. SKOLNIK, M. I. Introduction to Radar Systems. Radar Handbook 2. Mc Graw Hill, 1962. ISBN: 0-07-057909-1
  6. JINDAL, P., YADAV, A., SHARMA, S. K. Dual stop band frequency selective surface for C and WLAN band applications. AEU-International Journal of Electronics and Communications, 2018, vol. 97, p. 267–272. DOI: 10.1016/J.AEUE.2018.10.016
  7. REED, J. A., BYRNE, D. M. Frequency-selective surfaces with multiple apertures within a periodic cell. Journal of the Optical Society of America A (JOSA A), 1998, vol. 15, no. 3, p. 660–668. DOI: 10.1364/JOSAA.15.000660
  8. SEN, G., MANDAL, T., MAJUMDAR, S., et al. Design of a wide band Frequency Selective Surface (FSS) for multiband operation of reflector antenna. In The 5th International Conference on Computers and Devices for Communication (CODEC). Kolkata (India), 2012, p.1–3. DOI: 10.1109/CODEC.2012.6509202
  9. BISWAS, A. N., BALLAV, S., PARUI, S. K., et al. A polarization insensitive frequency selective surface with bandpass and bandstop response. In IEEE Indian Conference on Antennas and Propagation. Hyderabad (India), 2018, p. 1–4. DOI: 10.1109/INCAP.2018.8770800
  10. PEDDAKRISHNA, S, KHAN, T., KANAUJIA, B. K. Resonant characteristics of aperture type FSS and its application in directivity improvement of microstrip antenna. AEU-International Journal of Electronics and Communications, 2017, vol. 79, p. 199–206. DOI: 10.1016/J.AEUE.2017.06.007
  11. KAZEMZADEH, A., KARLSSON, A. Multilayered wideband absorbers for oblique angle of incidence. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 11, p. 3637–3646. DOI: 10.1109/TAP.2010.2071366
  12. PASIAN, M., MONNI, S., NETO, A., et al. Frequency selective surfaces for extended bandwidth backing reflector functions. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 1, p. 43–50. DOI: 10.1109/TAP.2009.2036185
  13. GURGEL DA SILVA SEGUNDO, F. C., PEREIRA DE SIQUEIRA CAMPOS, A. L., GOMES NETO, A. A design proposal for ultrawide band frequency selective surface. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2013, vol. 12, no. 2, p. 398–409. DOI: 10.1590/S2179- 10742013000200012
  14. CRUZ, R. M. S., D'ASSUNCAO, A. G., DA F. SILVA, P. H. A new FSS design proposal for UWB applications. In 2010 International Workshop on Antenna Technology (iWAT). Lisbon (Portugal), 2010, p.1–4. DOI: 10.1109/IWAT.2010.5464645
  15. SOHAIL, I., RANGA, Y., ESSELLE, K. P., et al. A frequency selective surface with a very wide stop band. In 2013 7th European Conference on Antennas and Propagation (EuCAP). Gothenburg (Sweden), 2013, p. 2146–2148. ISBN: 978-88- 907018-1-8
  16. RANGA, Y., MATEKOVITS, L., WEILY, A. R., et al. A lowprofile dual-layer ultra-wideband frequency selective surface reflector. Microwave and Optical Technology Letters, 2013, vol. 55, no. 6, p. 223–1227. DOI: 10.1002/MOP.27583
  17. RAFIQUE, U., AGARWAL, S. A modified frequency selective surface band-stop filter for ultra-wideband applications. In 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Bangalore (India), 2018, p.1653–1656. DOI: 10.1109/ICACCI.2018.8554690
  18. FENG, D., ZHENG SHENQUAN, DINGFAN, et al. A n-order ultra-wideband frequency selective surface. IN 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE). Guilin (China), 2016, p. 648–651. DOI: 10.1109/ISAPE.2016.7834071
  19. CHATTERJEE, A., PARUI, S. K. A multi-layered broadband frequency selective surface for X and Ku band applications. In Proceedings of the International Conference on Technical and Managerial Innovation in Computing and Communications in Industry and Academia, 2013, p. 284–287.
  20. LUUKKONEN, O., COSTA, F., SIMOVSKI, C. R., et al. A thin electromagnetic absorber for wide incidence angles and both polarizations. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 10, p. 3119–3125. DOI: 10.1109/TAP.2009.2028601
  21. COSTA, F., MONORCHIO, A., MANARA, G. An overview of equivalent circuit modelling techniques of frequency selective surfaces and metasurfaces. Applied Computational Electromagnetics Society (ACES) Journal, 2014, vol. 29, no. 12, p. 960–976.
  22. GHOSH, S., SRIVASTAVA, K. V. An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 511–514. DOI: 10.1109/LAWP.2014.2369732
  23. DEWANI, A. A., O’KEEFE, S. G., THIEL, D. V., et al. Window RF shielding film using printed FSS. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 2, p. 790–796. DOI: 10.1109/TAP.2017.2780893
  24. LIU, C., XIANG, AN. A SIW‐DGS wideband bandpass filter with a sharp roll‐off at upper stopband. Microwave and Optical Technology Letters, 2017, vol. 59, no. 4, p. 789–792. DOI: 10.1002/MOP.30398
  25. SALMAN, J. W., MUDHAFFER, M. A., HASSAN, S. O. Effects of the loss tangent, dielectric substrate permittivity and thickness on the performance of circular microstrip antennas. Journal of Engineering and Sustainable Development, 2006, vol. 10, no. 1, p. 1–13. ISSN: 1813-7822
  26. ZHAI, H., ZHAN, C., LI, Z., et al. A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 241–244. DOI: 10.1109/LAWP.2014.2361011
  27. ABBASI, S., NOURINIA, J., GHOBADI, C., et al. A subwavelength polarization sensitive band-stop FSS with wide angular response for X-and Ku-bands. AEU-International Journal of Electronics and Communications, 2018, vol. 89, p. 85–91. DOI: 10.1016/J.AEUE.2018.03.018

Keywords: Frequency Selective Surface (FSS), ultra-wideband, corrugation, polarization insensitive, roll-off factor, quality-factor

H. Bouazza, A. Lazaro, M. Bouya, A. Hadjoudja [references] [full-text] [DOI: 10.13164/re.2020.0504] [Download Citations]
A Planar Dual-Band UHF RFID Tag for Metallic Items

In this paper, a comparison of three tags based on modified patches for UHF RFID in term of size and read range performance is proposed. The antenna structure consists of a patch with an open stub and meander line for feed. The tags are dedicated to being mounted on metallic items and to operate on dual-band frequencies (European and American UHF RFID frequency bands). Moreover, the structure of the antennas is planar without any via holes or multilayers for a low cost and easy fabrication. Good agreement between simulation and experimental results has been obtained at 866 MHz and 915 MHz.

  1. FINKENZELLER K. RFID Handbook. 2nd ed., John Wiley & Sons, 2003. ISBN: 0470844027
  2. RAO, K. V. S., NIKITIN, P. V., LAM, S. F. Antenna design for UHF RFID tags: A review and a practical application. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 12, p. 3870–3876. DOI: 10.1109/TAP.2005.859919
  3. MARROCCO, G. The art of UHF RFID antenna design: Impedance-matching and size-reduction techniques. IEEE Antennas and Propagation Magazine, 2008, vol. 50, no. 1, p. 66–79. DOI: 10.1109/MAP.2008.4494504
  4. Regulatory Status for Using RFID in the EPC Gen2 (860 to 960 MHz) Band of the UHF Spectrum. 20 pages. [Online] Cited 2020-06-04. Available at:
  5. DOBKIN, D. M., WEIGAND, S. M. Environmental effects on RFID tag antennas. In IEEE MTT-S International Microwave Symposium Digest. Long Beach (CA, USA), 2005, p. 135–138. DOI: 10.1109/MWSYM.2005.1516541
  6. PENTTILA, K. KESKILAMMI, M., SYDANHEIMO, L., et al. Radio frequency technology for automated manufacturing and logistics control. Part 2: RFID antenna utilization in industrial applications. The International Journal of Advanced Manufacturing Technology, 2006, vol. 31, no. 1–2, p. 116–124. DOI: 10.1007/s00170-005-0174-y
  7. MO, L., QIN, C. Planar UHF RFID tag antenna with open stub feed for metallic objects. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 9, p. 3037–3043. DOI: 10.1109/TAP.2010.2052570
  8. MO, L., ZHANG, H., ZHOU, H. Broadband UHF RFID tag antenna with a pair of U slots mountable on metallic objects. Electronics Letters, 2008, vol. 44, no. 20, p. 1173–1174. DOI: 10.1049/el:20089813
  9. HUANG, J. Z., YANG, P. H., CHEW, W. C., et al. A compact broadband patch antenna for UHF RFID tags. In Proceedings of the 2009 Asia Pacific Microwave Conference. Singapore, 2009, p. 1044–1047. DOI: 10.1109/APMC.2009.5384364
  10. XU, L., HU, B. J., WANG, J. UHF RFID tag antenna with broadband characteristic. Electronics Letters, 2008, vol. 44, no. 2, p. 79–80. DOI: 10.1049/el: 20083009
  11. CHEN, H. D., SIM, C. Y. D., KUO, S. H. Compact broadband dual coupling-feed circularly polarized RFID microstrip tag antenna mountable on metallic surface. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 12, p. 5571–5577. DOI: 10.1109/TAP.2012.2210273
  12. TIANG, J.-J., ISLAM, M. T., MISRAN, N., et al. Circular microstrip slot antenna for dual-frequency RFID application. Progress In Electromagnetics Research, 2011, vol. 120, p. 499–512. DOI: 10.2528/PIER11090202
  13. JAMES, J. R., HALL, P. S. (eds.) Handbook of Microstrip Antennas. London (UK): IET, 1989. DOI: 10.1049/PBEW028F
  14. KOSKINEN, T., RAJAGOPALAN, H., RAHMAT-SAMII, Y. A thin multi-slotted dual patch UHF-band metal-mountable RFID tag antenna. Microwave and Optical Technology Letters, 2011, vol. 53, no. 1, p. 40–47. DOI: 10.1002/mop.25622
  15. POLIVKA, M., SVANDA, M. Stepped impedance coupledpatches tag antenna for platform-tolerant UHF RFID applications. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 9, p. 3791–3797. DOI: 10.1109/TAP.2015.2447034
  16. CHEN, S. L. A miniature RFID tag antenna design for metallic objects application. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 1043–1045. DOI: 10.1109/LAWP.2009.2032252
  17. LEE, B., YU, B. Compact structure of UHF band RFID tag antenna mountable on metallic objects. Microwave and Optical Technology Letters, 2008, vol. 50, no. 1, p. 232–234. DOI: 10.1002/mop.23031
  18. HIRVONEN, M., PURSULA, P., JAAKKOLA, K., et al. Planar inverted-F antenna for radio frequency identification. Electronics Letters, 2004, vol. 40, no. 14, p. 848–850. DOI: 10.1049/el:20045156
  19. CHEN, H. D., TSAO, Y. H. Low-profile PIFA array antennas for UHF band RFID tags mountable on metallic objects. IEEE Transactions on Antennas and Propagation, 2004, vol. 58, no. 4, p. 1087–1092. DOI: 10.1109/TAP.2010.2041158
  20. ZHANG, J., LONG, Y. A novel metal-mountable electrically small antenna for RFID tag applications with practical guidelines for the antenna design. IEEE Transactions on Antennas and Propagation, vol. 62, no. 11, p. 5820–5829. DOI: 10.1109/TAP.2014.2354412
  21. KIM, J. S., CHOI, W., CHOI, G. Y. UHF RFID tag antenna using two PIFAs embedded in metallic objects. Electronics Letters, 2008, vol. 44, no. 20, p. 1181–1182. DOI: 10.1049/el:20080952
  22. KIM, K., SONG, J., KIM, D., et al. Fork-shaped RFID tag antenna mountable on metallic surfaces. Electronics Letters, 2007, vol. 43, no. 25, p. 1400–1402. DOI: 10.1049/el:20072891
  23. KWON, H., LEE, B. Compact slotted planar inverted-F RFID tag mountable on metallic objects. Electronics Letters, 2005, vol. 41, no. 24, p. 1308–1310. DOI: 10.1049/el:20052940
  24. YU, B., KIM, S., JUNG, B., et al. RFID tag antenna using twoshorted microstrip patches mountable on metallic objects. Microwave and Optical Technology Letters, 2007, vol. 49, no. 2, p. 414–416. DOI: 10.1002/mop.22159
  25. CHEN, S. L., LIN, K. H. A slim RFID tag antenna design for metallic object applications. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 729–732. DOI: 10.1109/LAWP.2008.2009473
  26. BJORNINEN, T., SYDANHEIMO, L., UKKONEN, L., et al. Advances in antenna designs for UHF RFID tags mountable on conductive items. IEEE Antennas and Propagation Magazine, 2014, vol. 56, no. 1, p. 79–103. DOI: 10.1109/MAP.2014.6821761
  27. RAUMONEN, P., SYDANHEIMO, L., UKKONEN, L., et al. Folded dipole antenna near metal plate. In IEEE Antennas and Propagation Society International Symposium Digest. Columbus (OH, USA), 2003, vol. 1, p. 848–851. DOI: 10.1109/APS.2003.1217593
  28. JEON, S., YU, Y., CHOI, J. Dual-band slot-coupled dipole antenna for 900 MHz and 2.45 GHz RFID tag application. Electronics Letters, 2006, vol. 42, no. 22, p. 1259–1260. DOI: 10.1049/el: 20061818
  29. FANG, Z., JIN, R., GENG, J. Asymmetric dipole antenna suitable for active RFID tags. Electronics Letters, 2008, vol. 44, no. 2, p. 44–46. DOI: 10.1049/el: 20082935
  30. MO, L. F., ZHANG, H. J., ZHOU, H. L. Analysis of dipole-like ultra-high frequency RFID tags close to metallic surfaces. Journal of Zhejiang University - Science A: Applied Physics & Engineering, 2009, vol. 10, no. 8, p. 1217–1222. DOI: 10.1631/jzus.A0820495
  31. HEINOLA, J., TOLSA, K. Dielectric characterization of printed wiring board materials using ring resonator techniques: A comparison of calculation models. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, vol. 13, no. 4, p. 717–726. DOI: 10.1109/TDEI.2006.1667729
  32. COSTA, F., PERRET, E., GENOVESI, S., et al. Progress in green chipless RFID sensors. In 11th European Conference on Antennas and Propagation (EUCAP). Paris (France). 2017, p. 3917–3921. DOI: 10.23919/EuCAP.2017.7928460
  33. LOO, C. H., ELMAHGOUB, K., YANG, F., et al. Chip impedance matching for UHF RFID tag antenna design. Progress In Electromagnetics Research, 2008, vol. 81, p. 359–370. DOI: 10.2528/PIER08011804
  34. NIKITIN, P. V., RAO, K. V. S., MARTINEZ, R., et al. Sensitivity and impedance measurements of UHF RFID chips. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 1, p. 1297–1302. DOI: 10.1109/TMTT.2009.2017297
  35. PILLAI, V. Impedance matching in RFID tags: To which impedance to match? In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Albuquerque (NM, USA), 2006, p. 3505–3508. DOI: 10.1109/APS.2006.1711373
  36. KRONBERGER, R., GEISSLER, A., FRIEDMANN, B. New methods to determine the impedance of UHF RFID chips. In IEEE International Conference on RFID (IEEE RFID 2010). Orlando (FL, USA), p. 260–265. DOI: 10.1109/RFID.2010.5467251
  37. COLELLA, R., CHIETERA, F. P., CATARINUCCI, L. Electromagnetic performance evaluation of UHF RFID tags with power discretization error cancellation. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 5, p. 3545–3549. DOI: 10.1109/TAP.2019.2902708
  38. MURATA. UHF MAGISTRAP Data Sheet LXMS21ACMF-183, 2015. [Online] Cited 2020-05-29. Available at : MS21ACMF-183.pdf
  39. QING, X., GOH, C. K., CHEN, Z. N. Impedance characterization of RFID tag antennas and application in tag co-design. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 5, p. 1268–1274. DOI: 10.1109/TMTT.2009.2017288

Keywords: RFID, tags, read range, metal, impedance matching

C. Tepecik, I. Navruz, O. T. Altinoz [references] [full-text] [DOI: 10.13164/re.2020.0512] [Download Citations]
Atmospheric Refractivity Estimation from Radar Sea Clutter Using Novel Hybrid Model of Genetic Algorithm and Artificial Neural Networks

This paper is focused on solving the inversion problem of refractivity from clutter (RFC) technique. A novel hybrid model is developed that can estimate the atmospheric refractivity (M profile) with a high accuracy, for surface based duct case, which is most effective non¬standard propagation condition on radar observation. The model uses propagation factor curve in horizontal axis, whose characteristics is determined by M profile for esti¬mation. The model is based on artificial neural network, which includes a dynamic training data approach, and a problem adapted genetic algorithm. Dynamic training data set application is a nonstandard approach in neural network applications, in which every obtained result are dynamically added to data set during the estimation pro¬cess, for a better estimation. Firstly, neural network and genetic algorithm have been adapted to the characteristics of inversion problem separately. Then, the mentioned two methods have been harmonized and run together. Ulti-mately, the final algorithm has evolved into a complex adapted hybrid model, which is easily applicable to clutter data obtained by any real radar from the real environment. The results show that the proposed model presents consid¬erably effective solution to refractivity estimation problem.

  1. YARDIM, C. Statistical estimation and tracking of refractivity from radar clutter. Ph.D. Dissertation. University of California, San Diego (CA, USA), Electrical Engineering, 2007.
  2. YARDIM, C., GERSTOFT, P., HODGKISS, W. S. Tracking refractivity from clutter using Kalman and particle filters. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 4, p. 1058–1070. DOI: 10.1109/TAP.2008.919205
  3. GERSTOFT, P., ROGERS, L. T., HODGKISS, W. S., et al. Refractivity estimation using multiple elevation angles. IEEE Journal of Oceanic Engineering, 2003, vol. 28, no. 3, p. 513–525. DOI: 10.1109/JOE.2003.816680
  4. GERSTOFT, P., ROGERS, L. T., KROLIK, J. L., et al. Inversion for refractivity parameters from radar sea clutter. Radio Science, 2003, vol. 38, no. 3, p. 1–22. DOI: 10.1029/2002RS002640
  5. GERSTOFT, P. An Inversion Software Package. Undersea Research Centre, La Spezia (Italy), Tech. Rep., SM-333, 1997.
  6. GERSTOFT, P., GINGRAS, D. F., ROGERS, L. T., et al. Estimation of radio refractivity structure using matched-field array processing. IEEE Transactions on Antennas and Propagation, 2000, vol. 48, no. 3, p. 345–356. DOI: 10.1109/8.841895
  7. YARDIM, C. GERSTOFT, P., HODGKISS, W. S. Statistical maritime radar duct estimation using hybrid genetic algorithmMarkov chain Monte Carlo method. Radio Science, 2007, vol. 42, no. 3, p. 1–15. DOI: 10.1029/2006RS003561
  8. ZHAO, X. Evaporation duct height estimation and source localization from field measurements at an array of radio receivers. IEEE Transactions on Antennas and Propagation, 2012 vol. 60, no. 2, p. 1020–1025. DOI: 10.1109/TAP.2011.2173115
  9. GRIMES, N. G., HACKETT, E. E. Examining constants in the Paulus-Jeske evaporation duct model. In United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). Boulder (CO, USA), 2014, p. 1–1. DOI: 10.1109/USNCURSI-NRSM.2014.6928020
  10. HOSSEINZADEH, S., SAMSUNCHI, N. The troposphere refractivity slop determination from propagation loss by the artificial neural networks. In International Symposium on Telecommunications. Tehran (Iran), 2008, p. 88–91. DOI: 10.1109/ISTEL.2008.4651277
  11. MUDROCH, M., PECHAC, P, GRABNER, M., et al. Classification and prediction of lower troposphere layers influence on RF propagation using artificial neural networks. In Proceedings of International Conference on Neural Information Processing (ICONIP08). Auckland (New Zealand), 2008, p. 893–900. DOI: 10.1007/978-3-642-02490-0_109
  12. DA SILVEIRA, R. B., HOLT, A. R. An automatic identification of clutter and anomalous propagation in polarization-diversity weather radar data using neural networks. IEEE Transactions on Geoscience and Remote Sensing, 2001, vol. 39, no. 8, p. 1177–1188. DOI: 10.1109/36.942556
  13. GRECU, M., KRAJEWSKI, W. F. Detection of anomalous propagation echoes in weather radar data using neural networks. IEEE Transactions on Geoscience and Remote Sensing, 1999, vol. 37, no. 1, p. 287–296. DOI: 10.1109/36.739163
  14. PELLICCIA, F., PACIFICI, F., BONAFONI, F., et al. Neural networks for arctic atmosphere sounding from radio occultation data. IEEE Transactions on Geoscience and Remote Sensing, 2011, vol. 49, no. 12, p. 4846–4855. DOI: 10.1109/tgrs.2011.2153859
  15. TEPECIK, C., NAVRUZ, I. A novel hybrid model for inversion problem of atmospheric refractivity estimation. AEU – International Journal of Electronics and Communication, 2018, vol. 84, p. 258–264. DOI: 10.1016/ j.aeue.2017.12.009
  16. TEPECIK, C., NAVRUZ, I. Solving inversion problem for refractivity estimation using artificial neural networks. In International Conference on Electrical and Electronics Engineering. Bursa (Turkey), 2015, p. 298–302. DOI: 10.1109/ELECO.2015.7394523
  17. SKOLNIK, M. Radar Handbook. 3rd ed. New York (USA): McGraw Hill. 2008. Chap. 26. ISBN: 9780071589420
  18. ANGUEIRA, P., ROMO, J. A. Microwave Line of Sight Link Engineering. Hoboken (New Jersey, USA): Wiley, 2012. P. 46. ISBN: 978-1118072738
  19. CAIRNS-MCFEETERS, E. L. Effects of surface-based ducts on electromagnetic systems. M.S. Thesis. Naval Postgraduate School, Monterey (CA, USA), 1992, p. 1–147.
  20. DOUVENOT, R., FABBRO, V., ELIS, K. Parameter-based rules for the definition of detectable ducts for an RFC system. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 11, p. 5696–5705. DOI: 10.1109/tap.2014.2354680
  21. FABBRO, V., FORSTER, J., BIEGEL, G., et al. MARLENE: Mediterranean RFC and sea clutter environmental experiment. In Proceedings of the 9th European Conference of Antennas and Propagation (EuCAP). Lisbon (Portugal), 2015, p. 1–3.
  22. KARIMIAN, A., YARDIM, C., GERSTOFT, P., et al. Multiple grazing angle sea clutter modelling. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 9, p. 4408–4417. DOI: 10.1109/tap.2012.2207033
  23. OZGUN, O., APAYDIN, G., KUZUOGLU, M., et al. PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain. Computer Physics Communications, 2011, vol. 182, no. 12, p. 2638–2654. DOI: 10.1016/j.cpc.2011.07.017
  24. DOUVENOT, R., FABBRO, V., GERSTOFT, P., et al. A duct mapping method using least squares support vector machines. Radio Science, 2008, vol. 43, no. 6, p. 1–12. DOI: 10.1029/2008RS003842
  25. WANG, B., WU, Z. S., ZHAO, Z., et al. Retrieving evaporation duct heights from radar sea clutter using particle swarm optimization. Progress In Electromagnetics Research M., 2009, vol. 9, p. 79–91. DOI: 10.2528/PIERM09090403
  26. DOUVENOT, R., FABBRO, V., GERSTOFT, P., et al. Real time refractivity from clutter using a Best Fit approach improved with physical information. Radio Science, 2010, vol. 45, no. 1, p. 1–13. DOI: 10.1029/2009RS004137
  27. ZHANG, J. P., WU, Z. S., WANG, B. An adaptive objective function for evaporation duct estimations from radar sea echo. Chinese Physics Letters, 2011, vol. 28, no. 3, p. 1–4. DOI: 10.1088/0256-307X/28/3/034301
  28. IBEH, G. F., AGBO, G. A. Estimation of tropospheric refractivity with the artificial neural network at Minna, Nigeria. Global Journal of Science Frontier Research Interdisciplinary, 2012, vol. 12, no. 1, p. 8–14. ISSN: 2249-4626
  29. SIMON, D. Evolutionary Optimization Algorithms. New Jersey, (USA): Wiley, 2013, Appendix B. ISBN: 978-0-470-93741-9

Keywords: Hybrid intelligent systems, radio wave propagation, surface based duct, parameter estimation

A. M. Faiz, M. F. Shafique, N. Gogosh, S. A. Khan, M. A. Khan [references] [full-text] [DOI: 10.13164/re.2020.0521] [Download Citations]
Dual HE11δ Mode CDRA for Polarization Diversity Applications in K Band Point-to-Point Communications

A dual port Cylindrical Dielectric Resonator Antenna (CDRA) has been demonstrated for K band (22 GHz) applications in this work. The antenna offers polarization diversity which is introduced by degenerating HE11δ modes in a single CDRA. Orthogonal feed lines produce two modes which are perpendicular so they don’t interfere with each other and offer excellent linear polarization diversity in orthogonal planes. Since the CDRA size is compact, the feed lines have been modified to assure the generation of desired modes. A detailed investigation into the generation of resonant modes along with parametric analysis is presented. Measured results show fractional bandwidth of 9.5% and 18.18% for both port 1 and port 2 respectively. Isolation of better than 32 dB has been measured between the two ports through transmission coefficient. Difference of about 20 dB between co-polarization and cross polarization in both planes for broadside direction has been measured which endorses the polarization diversity performance of the antenna. Different MIMO performance parameters including envelope correlation coefficient, total active reflection coefficient, channel capacity loss and mean effective gain have been measured to assess the performance of the design.

  1. NADEEM, I., CHOI, D. Y. Study on mutual coupling reduction technique for MIMO antennas. IEEE Access, 2019, vol. 7, p. 563–586. DOI: 10.1109/ACCESS.2018.2885558
  2. SHAIKH A., SALEEM, R., SHAFIQUE, M. F., et al. Reconfigurable dual-port UWB diversity antenna with high port isolation. IET Electronics Letters, 2014, vol. 50, no. 11, p. 786–788. DOI: 10.1049/el.2014.0582
  3. TANG, M. C., WU, Z., SHI, T., et al. Electrically small, lowprofile, planar, Huygens dipole antenna with quad-polarization diversity. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 12, p. 6722–6780. DOI: 10.1109/TAP.2018.2869645
  4. GOGOSH, N., SHAFIQUE, M. F., SALEEM, R., et al. An UWB diversity antenna array with a novel H‐type decoupling structure. Microwave and Optical Technology Letters, 2013, vol. 55, no. 11, p. 2715–2720. DOI: 10.1002/mop.27941
  5. CHOUHAN, S., PANDA, D. K., GUPTA, M., et al. Multiport MIMO antennas with mutual coupling reduction techniques for modern wireless transceiver operations: A review. International Journal of RF and Microwave Computer Aided Engineering, 2018, vol. 28, no. 2, p. 1–13. DOI: 10.1002/mmce.21189
  6. FAIZ, A. M., GOGOSH, N., KHAN, S. A., et al. Effects of ordinary adhesive material on radiation characteristics of a dielectric resonator antenna. Microwave and Optical Technology Letters, 2014, vol. 56, no. 6, p. 1502–1506. DOI: 10.1002/mop.28349
  7. LONG, S. A., MCALLISTER, M. W., SHEN, L. C. The resonant cylindrical cavity antenna. IEEE Transactions on Antennas and Propagation, 1983, vol. AP-31, no. 3, p. 406–412. DOI: 10.1109/TAP.1983.1143080
  8. ZOU, L., ABBOTT, D., FUMEAUX, C. Omnidirectional cylindrical dielectric resonator antenna with dual polarization. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 515–518. DOI: 10.1109/LAWP.2012.2199277
  9. SUN, Y. X., LEUNG, K. W. Dual-band and wideband dualpolarized cylindrical dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 384–387. DOI: 10.1109/LAWP.2013.2251993
  10. LI, W., LEUNG, K. W., YANG, N. Omnidirectional dielectric resonator antenna with a planar feed for circular polarization diversity design. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 3, p. 1189–1197. DOI: 10.1109/TAP.2018.2794323
  11. DAS, G., SHARMA, A., GANGWAR, R. K. A single cylindrical resonator based MIMO antenna system for WiMax applications. In Progress in Electromagnetic Research Symposium. St. Petersburg (Russia), 2017, p. 3707–3712. DOI: 10.1109/PIERS.2017.8262402
  12. YANG, N., LEUNG, K. W. Compact cylindrical pattern diversity dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters, 2020, vol. 19, no. 1, p. 19–23. DOI: 10.1109/LAWP.2019.2951633
  13. FANG, X. S., KEUNG, K. W., LUK, K. M. Theory and experiment of three-port polarization-diversity cylindrical dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 10, p. 4945–4951. DOI: 10.1109/TAP.2014.2341698
  14. LI, W. W., LEUNG, W. K. Omnidirectional circularly polarized dielectric resonator antenna with top loaded Alford loop for pattern diversity design. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 8, p. 4246–4256. DOI: 10.1109/TAP.2013.2262072
  15. FAIZ, A. F., GOGOSH, N., KHAN, S. A., et al. Even and odd mode CPW fed pattern diversity antenna for on-body communication systems. Microwave and Optical Technology Letters, 2018, vol. 60, no. 11, p. 2625–2629. DOI: 10.1002/mop.31481
  16. PANIGRAHI, A., BEHERA, S. K. H-shaped slot coupled dualpolarized dielectric resonator antenna for C band applications. In Proceedings of Global Conference on Communication Technology (GCCT 2015). Thuckalay (India), 2015, p. 719–722. DOI: 10.1109/GCCT.2015.7342758
  17. KEYROUZ, S., CARATELLI, D. Dielectric resonator antennas: Basic concepts, design guidelines, and recent developments at millimeter wave frequencies. International Journal of Antennas and Propagation, 2016, Article ID 6075680, p. 1–20. DOI: 10.1155/2016/6075680
  18. MONGIA, R. K., BHARTIA, P. Dielectric resonator antennas – A review and general design relations for resonant frequency and bandwidth. International Journal of RF and Microwave Computer Aided Engineering, 1994, vol. 4, no. 3, p. 230–247. DOI: 10.1002/mmce.4570040304
  19. BLANCH, S., ROMEU, J., CORBELLA, I. Exact representation of antenna system diversity performance from input parameter description. IET Electronics Letters, 2003, vol. 39, no. 9, p. 705–707. DOI: 10.1049/el:20030495

Keywords: Cylindrical Dielectric Resonator Antenna (CDRA), degenerated modes, hybrid modes, polarization diversity

P. Li, C. Xu, W. Wang, S. Su [references] [full-text] [DOI: 10.13164/re.2020.0529] [Download Citations]
Robust Student’s T Distribution Based PHD/CPHD Filter for Multiple Targets Tracking Using Variational Bayesian Approach

Measurement-outliers caused by non-linear observation model or random disturbance will lead to the accuracy decline of a target tracking filter. This paper proposes a robust probability hypothesis density (PHD) filter to handle the measurement-outlier problem based on Student’s T Kalman (TK) filtering technique and Variational Bayesian (VB) method. First, the non-standard measurement noise is considered to follow the Student’s T distribution. Second, the TK filtering technique is employed to update the target states. Third, the posterior likelihood is updated by the VB approach. Simulation results show that the proposed method can reduce the optimal subpattern assignment (OSPA) error in the non-standard observation scenarios with measurement-outliers, compared with other typical multiple target tracking filters.

  1. MAHLER, R. Multi-target Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, vol. 39, no. 4, p. 1152–1178. DOI: 10.1109/TAES.2003.1261119
  2. VO, B. T., VO, B. N. Labeled random finite sets and multi-object conjugate priors. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 13, p. 3460–3475. DOI: 10.1109/tsp.2013.2259822
  3. VO, B. N., VO, B. T., PHUNG, D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 24, p. 6554–6567. DOI: 10.1109/tsp.2014.2364014
  4. REUTER, S., VO, B. T., VO, B. N., et al. The labeled multiBernoulli filter. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 12, p. 3246–3260. DOI: 10.1109/tsp.2014.2323064
  5. VO, B. N., MA, W. K. The Gaussian mixture probability hypothesis density filter. IEEE Transactions on Signal Processing, 2010, vol. 54, no. 11, p. 4091–4104. DOI: 10.1109/TSP.2006.881190
  6. MAHLER, R. A theory of PHD filters of higher order in target number. In Proceedings of the International Society for Optical Engineering. Lockheed Martin Corp, USA, May 2006, p. 1–12. DOI: 10.1117/12.667083
  7. MAHLER, R. PHD filters of higher order in target number. IEEE Transactions on Aerospace and Electronic Systems, 2007, vol. 43, no. 4, p. 1523–1543. DOI: 10.1109/taes.2007.4441756
  8. VO, B. T., VO, B. N., CANTONI, A. Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 7, p. 3553–3567. DOI: 10.1109/tsp.2007.894241
  9. MAHLER, R., VO, B. T., VO, B. N. CPHD filtering with unknown clutter rate and detection profile. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 8, p. 3497–3513. DOI: 10.1109/tsp.2011.2128316
  10. BRYANT, D. S., DELANDE, E. D., GEHLY, S., et al. The CPHD filter with target spawning. IEEE Transactions on Signal Processing, 2017, vol. 65, no. 5, p. 13124–13138. DOI: 10.1109/tsp.2016.2597126
  11. CLARK, D. E., PANTA, K., VO, B. N. The GM-PHD filter multiple target tracker. In Proceedings of the International Conference on Information Fusion. Florence (Italy), 2006, p. 1–8. DOI: 10.1109/ICIF.2006.301809
  12. PANTA, K., CLARK, D. E., VO, B. N. Data association and track management for the Gaussian mixture probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2009, vol. 45, no. 3, p. 1003–1016. DOI: 10.1109/TAES.2009.5259179
  13. VO, B. N., VO, B. T., HOANG, H. G. An efficient implementation of the generalized labeled multi-Bernoulli filter. IEEE Transactions on Signal Processing, 2017, vol. 65, no. 8, p. 1975–1987. DOI: 10.1109/TSP.2016.2641392
  14. YANG, B., WANG, J., WANG, W. An efficient approximate implementation for labeled random finite set filtering. Signal Processing, 2018, vol. 150, p. 215–227. DOI: 10.1016/j.sigpro.2018.04.015
  15. PAPI, F., VO, B. N., VO, B. T., et al. Generalized labeled multiBernoulli approximation of multi-object densities. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 20, p. 5487–5497. DOI: 10.1109/TSP.2015.2454478
  16. JAZWINSKI, A. H. Stochastic Processes and Filtering Theory. New York: Academic Press, 1970. ISBN: 9780123815507
  17. JULIER, S., UHLMANN, J. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, vol. 92, no. 3, p. 401 to 422. DOI: 10.1109/JPROC.2003.823141
  18. VO, B. N., SINGH, S., DOUCET, A. Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems, 2005, vol. 41, no. 4, p. 1224–1245. DOI: 10.1109/taes.2005.1561884
  19. WHITELEY, N., SINGH, S., GODSILL, S. Auxiliary particle implementation of probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2010, vol. 46, no. 3, p. 1437–1454. DOI: 10.1109/taes.2010.5545199
  20. XIE, Y., SONG, T. L. Bearings-only multi-target tracking using an improved labeled multi-Bernoulli filter. Signal Processing, 2018, vol. 151, p. 32–44. DOI: 10.1016/j.sigpro.2018.04.027
  21. SU, Z., JI, H., ZHANG, Y. An improved measurement-oriented marginal multi-Bernoulli/Poisson filter. Radioengineering, 2019, vol. 28, no.1, p. 191–198. DOI: 10.13164/re.2019.0191
  22. UCAR, M. B., YILMAZ, D. A new motion model selection approach for multi-model particle filters. Radioengineering, 2019, vol. 28, no. 4, p. 793–800. DOI: 10.13164/re.2019.0793
  23. HUANG, Y., ZHANG, Y., LI, N., et al. A novel robust Student’s T-based Kalman filter. IEEE Transactions on Aerospace and Electronic Systems, 2017, vol. 53, no. 3, p. 1545–1554. DOI: 10.1109/TAES.2017.2651684
  24. HUANG, Y., ZHANG, Y., ZHAO, Y., et al. A novel robust Gaussian–Student's T mixture distribution based Kalman filter. IEEE Transactions on Signal Processing, 2019, vol. 67, no. 13, p. 3606–3620. DOI: 10.1109/TSP.2019.2916755
  25. LIU, Z., CHEN, S., WU, H., et al. A Student’s T mixture probability hypothesis density filter for multi-target tracking with outliers. Sensors, 2018, vol. 18, no. 4, p. 1–23. DOI: 10.3390/s18041095
  26. PICHE, R., SARKKA, S., HARTIKAINEN, J. Recursive outlierrobust filtering and smoothing for nonlinear systems using the multivariate Student-T distribution. In Proceedings of the 2012 IEEE International Workshop on Machine Learning for Signal Processing. Santander (Spain), 2012, p. 1–8. DOI: 10.1109/MLSP.2012.6349794
  27. WATANABE, S., MINAMI, Y., NAKAMURA, A., et al. Variational Bayesian estimation and clustering for speech recognition. IEEE Transactions on Speech and Audio Processing, 2004, vol. 12, no. 4, p. 365–381. DOI: 10.1109/TSA.2004.828640
  28. KULLBACK, S., LEIBLER, R. On information and sufficiency. The Annals of Mathematical Statistics, 1951, vol. 22, no. 1, p. 79 to 86. DOI: 10.1214/aoms/1177729694
  29. SCHUHMACHER, D., VO, B. T., VO, B. N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 8, p. 3447 to 3457. DOI: 10.1109/tsp.2008.920469
  30. PENG LI, HONGWEI GE, JINLONG, YANG. Adaptive measurement partitioning algorithm for a Gaussian inverse Wishart PHD filter that tracks closely spaced extended targets. Radioengineering, 2017, vol. 26, no. 2, p. 573–580. DOI: 10.13164/re.2017.0573
  31. PENG LI. Code of TK-PHD/CPHD filter. Available at:
  32. BISHOP, C. M. Pattern Recognition and Machine Learning. New York (USA): Springer Verlag, 2006. ISBN 978-0-387-31073-2

Keywords: Multiple target tracking, PHD filter, Student’s T Kalman, Variational Bayesian, non-linear filter.

A. Lomayev, C. R. C. M. da Silva, A. Maltsev, C. Cordeiro, A. S. Sadri [references] [full-text] [DOI: 10.13164/re.2020.0540] [Download Citations]
Passive Presence Detection Algorithm for Wi-Fi Sensing

In this paper, we derive a signal processing algorithm that enables a Wi-Fi station to passively detect the presence of a potential user in its vicinity. It is assumed that the potential user either doesn’t carry a Wi-Fi device or, if it does, that its device does not participate in the detection procedure. Passive presence detection is performed by the station by means of tracking over time channel estimates obtained with packets transmitted by one or more stations in the Wi-Fi network, and determining when the user presence impacts the received signals. The proposed algorithm performs binary hypothesis testing and decides if a potential user is in the vicinity of the Wi-Fi station. It uses an estimate of the dynamic channel component power as the test statistic and compares it to a predefined threshold. As formulated in the paper, to increase the detection reliability, the power of the dynamic channel component is maximized by using an optimization procedure. Experimental results obtained with off-the-shelf Wi-Fi devices and with the proposed algorithm are presented which demonstrate the validity of the analytical formulation, as well as the feasibility of performing passive presence detection using a Wi-Fi network. In controlled residential and enterprise settings, the proposed algorithm provided a detection rate of 99.7% for a false alarm rate of less than 1%.

  1. MA, Y., ZHOU, G., WANG, S. WiFi sensing with channel state information: A survey. ACM Computing Surveys, 2019, vol. 52, no. 3, p. 1–36. DOI: 10.1145/3310194
  2. MA, J., WANG, H., ZHANG, D., et al. A survey on Wi-Fi based contactless activity recognition. In Proceedings of the 2016 International IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress. Toulouse (France), 2016, p. 1086–1091. DOI: 10.1109/UIC-ATC-ScalCom-CBDCom-IoPSmartWorld.2016.0170
  3. JIANG, H., CAI, C., MA, X., et al. Smart home based on WiFi sensing: A survey. IEEE Access, 2018, vol. 6, p. 13317–13325. DOI: 10.1109/ACCESS.2018.2812887
  4. WANG, Z., JIANG, K., HOU, Y., et al. A survey on CSI-based human behavior recognition in through-the-wall scenario. IEEE Access, 2019, vol. 7, p. 78772–78793. DOI: 10.1109/ACCESS.2019.2922244
  5. LIU, J., LIU, H., CHEN, Y., et al. Wireless sensing for human activity: A survey. IEEE Communication Surveys and Tutorials, early access article, 2019, p. 1–17. DOI: 10.1109/COMST.2019.2934489
  6. HAN, T. X., DU, R., LIU, C., et al. Wi-Fi sensing. IEEE Document 802.11-19/1164r0, Jul. 2019. [Online] Available at: =0wng
  7. DA SILVA, C., CORDEIRO, C., SADEGHI, B., et al. Wi-Fi sensing: Usages, requirements, technical feasibility and standards gaps. IEEE Document 802.11-19/1293r0, Jul. 2019. [Online] Available at: =0wng
  8. DA SILVA, C., CORDEIRO, C., SADEGHI, B., et al. Wi-Fi sensing: Cooperation and standard support. IEEE Document 802.11-19/1416r0, Sept. 2019. [Online] Available at: =0wng
  9. HAN, T. X., DU, R., ZHOU, B., et al. Wi-Fi sensing–Follow-up. IEEE Document 802.11-19/1500r0, Sept. 2019. [Online] Available at: =0wng
  10. EITAN, A., KASHER, A., TRAININ, S. Wi-Fi sensing in 60GHz band. IEEE Document 802.11-19/1551r1, Sept. 2019. [Online] Available at: =0wng
  11. AU, O., WANG, B., LIU, K. J. R., et al. 802.11 sensing: Applications, feasibility, standardization. IEEE Document 802.11- 19/1626r1, Sept. 2019. [Online] Available at: =0wng
  12. UNTERHUBER, P., SCHMIDHAMMER, M., SAND, S. Wi-Fi sensing application: Multipath enhanced device free localization. IEEE Document 802.11- 19/1580r0, Sept. 2019. [Online] Available at: =0wng
  13. GONG, L., YANG, W., MAN, D., et al. WiFi-based real-time calibration-free passive human motion detection. Sensors, 2015, vol. 15, no. 12, p. 32213–32229. DOI: 10.3390/s151229896
  14. QIAN, K., WU, C., YANG, Z., et al. Enabling contactless detection of moving humans with dynamic speeds using CSI. ACM Transactions on Embedded Computing Systems, Jan. 2018, vol. 17, no. 2, p. 1–18. DOI: 10.1145/3157677
  15. DING, E., LI, X., ZHAO, T., et al. A robust passive intrusion detection system with commodity WiFi devices. Journal of Sensors, 2018, p. 1–12. DOI: 10.1155/2018/8243905
  16. IEEE SA. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std. 802.11-2016, Dec. 2016.
  17. KAY, S. M. Fundamentals of Statistical Signal Processing – Detection Theory, vol. 2. Englewood Cliffs (NJ): Prentice-Hall, 1998. ISBN: 0-13-345711-7
  18. BOYD, S., VANDENBERGHE, L. Convex Optimization. Cambridge University Press, 2004. ISBN: 978-0-521-83378-3
  19. STRANG, G. Introduction to Linear Algebra. Wellesley (MA): Cambridge Press, 2009. ISBN: 978-0-9802327-1-4

Keywords: Passive presence detection, motion detection, Wi-Fi sensing, binary hypothesis testing, channel state information

T. A. Sheikh, J. Bora, M. A. Hussain [references] [full-text] [DOI: 10.13164/re.2020.0548] [Download Citations]
A Novel User and Antenna Selection Techniques in Massive MIMO 5G Wireless Communication System

In this paper, we have proposed a new paradigm for user scheduling in large-scale multiple-input multiple-output (MIMO) time division duplexing (TDD) system. In this paper, we have selected the users from different groups with semi-orthogonal (SO) and random criterion. We separate the users in different groups with the K-means clustering algorithm which assigns the users into different groups. After user groups are so determined, we use two new user selection paradigms where users are selected in two methods- firstly we select the users in intra-group those are SO with each other along with it also SO with other groups’ users. Secondly, users are selected from inter-group those are SO with each other also SO with other group users. In both the selection schemes antennas are scheduled based on the maximum gain of the channel. In the results, it is noticed that in intra-group with semi-orthogonal user selection (SUS) and antenna selection (AS) using the zero-forcing (ZF) precoding shown the highest systems rate. We also evaluated the computation cost of our modified proposed algorithm which is exposed in table-1. We explored the efficiency of the proposed schemes through MATLAB simulations.

  1. LARSSON, E. G., EDFORS, O., TUFVESSON, F., et al. Massive MIMO for a next-generation wireless system. IEEE Communications Magazine, 2014, vol. 52, no. 2, p. 186–195. DOI: 10.1109/MCOM.2014.6736761
  2. SHEIKH, T. A., BORA, J., HUSSAIN, M. A. Combined user and antenna selection in massive MIMO using precoding technique. International Journal of Sensors, Wireless Communications, and Control, 2019, vol. 9, no. 2, p. 214–223. DOI: 10.2174/2210327908666181112144939
  3. SHEIKH, T. A., BORA, J., HUSSAIN, M. A. A survey of antenna and user scheduling techniques for massive MIMO-5G wireless system. In 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC). Mysore (India), 2017, p. 578–583. DOI: 10.1109/CTCEEC.2017.8455177
  4. RUSEK, F., PERSSON, D., LAU, B. K., et al. Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 2013, vol. 30, no. 1, p. 40–60. DOI: 10.1109/MSP.2011.2178495
  5. SHEPARD, C., YU, H., ANAND, N., et al. Argos: Practical many-antenna base stations. In Proceedings of the 18th Annual International Conference on Mobile Computing and Networking (MOBICOM). Istanbul (Turkey), 2012, p. 53–64. DOI: 10.1145/2348543.2348553
  6. SHEPARD, C., YU, H., ZHONG, L. ArgosV2: A flexible manyantenna research platform. In Proceedings of the 19th Annual International Conference on Mobile Computing and Networking (MOBICOM). Miami (FL, USA), 2013, p. 163–165. DOI: 10.1145/2500423.2505302
  7. SHEIKH, T. A., BORA, J., HUSSAIN, M. A. Capacity maximizing in massive MIMO with linear precoding for SSF and LSF channel with perfect CSI. Digital Communications and Networks, 2019, p. 1–8 (Article in press). DOI: 10.1016/j.dcan.2019.08.002
  8. SHEIKH, T. A., BORA J., HUSSAIN, M. A. Sum-rate performance of massive MIMO systems in highly scattering channel with semi-orthogonal and random user selections. Radioelectronics and Communications Systems, 2018, vol. 61, no. 12, p. 547–555. DOI: 10.3103/S0735272718120026
  9. HOYDIS, J., HOSSEINI, K., TEN BRINK, S., et al. Making smart use of excess antennas: Massive MIMO, small cells, and TDD. Bell Labs Technical Journal, 2013, vol. 18, no. 2, p. 5–21. DOI: 10.1002/bltj.21602
  10. SHEIKH, T. A., BORA, J., HUSSAIN, M. A. Performance analysis of massive multi-input and multi-output with imperfect channel state information. Traitement du Signal, 2019, vol. 36, no. 4, p. 361–368. DOI: 10.18280/ts.360409
  11. ADHIKARY, A., NAM, J., AHN, J. Y., et al. Joint spatial division and multiplexing: The large-scale array regime. IEEE Transactions on Information Theory, 2013, vol. 59, no. 10, p. 6441–6463. DOI: 10.1109/TIT.2013.2269476
  12. XU, Y., YUE, G., PRASAD, N., et al. User grouping and scheduling for large scale MIMO systems with two-stage precoding. In Proceedings of the IEEE International Conference on Communications (ICC). Sydney (Australia), 2014, p. 5208–5213. DOI: 10.1109/ICC.2014.6884146
  13. SUN, X., GAO, X., LI, G. Y., et al. Agglomerative user clustering and cluster scheduling for FDD massive MIMO systems. IEEE Access, 2019, vol. 7, p. 86522–86533. DOI: 10.1109/ACCESS.2019.2923246
  14. XU, Y., YUE, G., MAO, S. User grouping for massive MIMO in FDD systems: New design methods and analysis. IEEE Access, 2014, vol. 2, p. 947–959. DOI: 10.1109/ACCESS.2014.2353297
  15. HAJRI, S. E., ASSAAD, M., CAIRE, G. Scheduling in massive MIMO: User clustering and pilot assignment. In 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton). Monticello (IL, USA), 2016, p. 107–114. DOI: 10.1109/ALLERTON.2016.7852217
  16. WU, X., MA, Z., WANG, Y. Joint user grouping and resource allocation for multi-user dual-layer beamforming in LTE-A. IEEE Communications Letters, 2015, vol. 19, no. 10, p. 1822–1825. DOI: 10.1109/LCOMM.2015.2458861
  17. NAM, J., ADHIKARY, A., AHN, J. Y., et al. Joint spatial division and multiplexing: Opportunistic beamforming, user grouping, and simplified downlink scheduling. IEEE Journal of Selected Topics in Signal Processing, 2014, vol. 8, no. 5, p. 876–890. DOI: 10.1109/JSTSP.2014.2313808
  18. SONG, A., YANG, Q., CHEN, W. N., et al. A random-based dynamic grouping strategy for large scale multi-objective optimization. In 2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver (BC, Canada), 2016, p. 468–475. DOI: 10.1109/CEC.2016.7743831
  19. KUERBIS, M., BALASUBRAMANYA, N. M., LAMPE, L., et al. User scheduling in massive MIMO systems with a large number of devices. In 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Montreal (QC, Canada), 2017, p. 1–6. DOI: 10.1109/PIMRC.2017.8292733
  20. WU, H., LIU, D., WU, W., et al. A low complexity two-stage user scheduling scheme for mm-wave massive MIMO hybrid beamforming systems. In The 3rd IEEE International Conference on Computer and Communications (ICCC). Chengdu (China), 2017, p. 945–951. DOI: 10.1109/CompComm.2017.8322683
  21. CHEN, X., GONG, F., ZHANG, H., et al. Cooperative user scheduling in massive MIMO systems. IEEE Access, 2018, vol. 6, p. 21910–21923. DOI: 10.1109/ACCESS.2018.2828403
  22. NOVIANA SULISTYAWAN, V., PUDJI ASTUTI, R., FAHMI, A. Location-dependent user selection based on sum rate approximation in large system regime for massive MIMO. In The 1st International Conference on Industrial, Electrical and Electronics (ICIEE). 2018, vol. 218, p. 1–7. DOI: 10.1051/matecconf/201821803010
  23. BENMIMOUNE, M., DRIOUCH, E., AJIB, W., et al. Joint transmit antenna selection and user scheduling for massive MIMO system. In IEEE Wireless Communication and Networking Conference (WCNC). New Orleans (LA, USA), 2015, p. 381–386. DOI: 10.1109/WCNC.2015.7127500
  24. JIN, L., GU, X., HU, Z. Low-complexity scheduling strategy for wireless multiuser multiple-input multiple-output downlink system. IET Communications, 2011, vol. 5, no. 7, p. 990–995. DOI: 10.1049/iet-com.2010.0358

Keywords: Intra-group, inter-group, massive MIMO, user selection, antenna scheduling, complexity

S. Amalorpava Mary Rajee, A. Merline [references] [full-text] [DOI: 10.13164/re.2020.0555] [Download Citations]
Machine Intelligence Technique for Blockage Effects in Next-Generation Heterogeneous Networks

Millimeter wave (mmWave) links such as 28 GHz and 60 GHz propose high data rates and capacity needed in 5G Heterogeneous network (Hetnet) real-time system. The key factors in network planning of Hetnet are the locations and links of base stations, and their coverage, transmitted power, antenna angle, orientation etc. How-ever, large-scale blockages like static buildings, human etc. affect the performance of urban Hetnets especially at mmWave frequencies. A mathematical framework to model dynamic blockages is adapted and their impact on cellular network performance is analyzed. A machine learning approach based on Q-learning with Epsilon-Greedy algo¬rithm is proposed to solve the blockage problem in such complex networks. The proposed results are evident and show the positive effect of increasing the base station den¬sity linearly with the blockage density to maintain the net¬work connectivity. The performance of the proposed Epsi¬lon-Greedy algorithm is compared with Epsilon-Soft algo-rithm. The performances of above said mmWave links are compared in terms of their coverage probability and throughput. The results show that an Epsilon-Greedy algo¬rithm outperforms an Epsilon-Soft algorithm.

  1. KARJALAINEN, J., NEKOVEE, M., BENN, H., et al. Challenges and opportunities of mm-wave communication in 5G networks. In The Proceedings of 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM). Oulu (Finland), 2014, p. 372–376. DOI: 10.4108/icst.crowncom.2014.255604
  2. BAI, T., HEATH, R. W. Coverage analysis for millimeter wave cellular networks with blockage effects. In The Proceedings of IEEE Global Conference on Signal and Information Processing (GlobalSIP). Austin (TX, USA), 2013, p. 727–730. DOI: 10.1109/GlobalSIP.2013.6736994
  3. LU, W., DI RENZO, M. Stochastic geometry modeling of mmWave cellular networks: Analysis and experimental validation. In The Proceedings of IEEE International Workshop on Measurements & Networking. Coimbra (Portugal), 2015, p. 1–4. DOI: 10.1109/IWMN.2015.7322991
  4. FEREYDOONI, M., SABAEI, M., DEHGHAN, M., et al. A mathematical framework to evaluate flexible outdoor user association in urban two-tier cellular networks. IEEE Transactions on Wireless Communications, 2017, vol. 17, no. 3, p. 1559–1573. DOI: 10.1109/TWC.2017.2780824
  5. ABOUELSEOUD, M., CHARLTON, G. The effect of human blockage on the performance of millimeter-wave access link for outdoor coverage. In Proceedings of the IEEE 77th Vehicular Technology Conference (VTC Spring). Dresden (Germany), 2013, p. 1–5. DOI: 10.1109/VTCSpring.2013.6692780
  6. JAIN, I. K., KUMAR, R., PANWAR, S. Limited by capacity or blockage? A millimeter wave blockage analysis. In Proceedings of the 30th International Teletraffic Congress (ITC 30). Vienna (Austria), 2018, p. 153–159. DOI: 10.1109/ITC30.2018.00032
  7. AMIRI, R., ALMASI, M. A., ANDREWS, J. G., et al. Reinforcement learning for self organization and power control of two-tier heterogeneous networks. IEEE Transactions on Wireless Communication, 2019, vol. 18, no. 8, p. 3933–3947. DOI: 10.1109/TWC.2019.2919611
  8. SASIKUMAR, S. N. Exploration in feature space for reinforcement learning. Master Thesis. Australian National University, May 2017, p. 1–65. [Online] Available at:
  9. ALQERM, I., SHIHADA, B. Cognitive aware interference mitigation scheme for LTE femtocells. In International Conference on Cognitive Radio Oriented Wireless Networks. Doha (Qatar), 2015, p. 607–619. DOI: 10.1007/978-3-319-24540-9_50
  10. VAN OTTERLO, M., WIERING, M. Reinforcement learning and Markov decision processes. In Wiering, M., van Otterlo, M. (eds) Reinforcement Learning. Adaptation, Learning, and Optimization. Berlin, Heidelberg (Germany): Springer, 2012, vol. 12. ISBN: 978- 3-642-27644-6
  11. GALINDO-SERRANO, A., GIUPPONI, L. Self-organized femtocells: A fuzzy Q-learning approach. Wireless Network, 2014, vol. 20, no. 3, p. 441–455. DOI: 10.1007/s11276-013-0609-6
  12. WHITEHEAD, S. D. A complexity analysis of cooperative mechanisms in reinforcement learning. In AAAI Proceedings. 1991, p. 607–613. [Online] Available at
  13. AMIRI, R., MEHRPOUYAN, H., FRIDMAN, L., et al. A machine learning approach for power allocation in HetNets considering QoS. In The Proceedings of 2018 IEEE International Conference on Communications (ICC). Kansas City (MO, USA), 2018, p. 1–7. DOI: 10.1109/ICC.2018.8422864
  14. PENG, M., LIANG, D., WEI, Y., et al. Self-configuration and selfoptimization in LTE-advanced heterogeneous networks. IEEE Communications Magazine, 2013, vol. 51, no. 5, p. 36–45. DOI: 10.1109/MCOM.2013.6515045
  15. BAHADORI, N., NAMVAR, N., KELLEY, B., et al. Device-todevice communications in the millimeter wave band: A novel distributed mechanism. In 2018 Wireless Telecommunications Symposium (WTS). Phoenix (AZ, USA), 2018, p. 1–6. DOI: 10.1109/WTS.2018.8363940
  16. BHATTI, O. W., SUHAIL, H., AKBAR, U., et al. Performance analysis of decoupled cell association in multi-tier hybrid networks using real blockage environments. In The proceedings of the 13th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC). Valencia (Spain), 2017, p. 62–67. DOI: 10.1109/IWCMC.2017.7986263

Keywords: Heterogeneous network, millimeter wave, dynamic blockage, Q-Learning, epsilon-greedy algorithm

C. Zhu, M. Song, X. Dang [references] [full-text] [DOI: 10.13164/re.2020.0563] [Download Citations]
Design of OAM Beam Directional Modulation Signal in Communication and Guidance Integration

An orbital angular momentum directional modulation (OAM-DM) signal is proposed for communication and guidance integration. This signal is transmitted by a uniform circular antenna array (UCA). We divide the array into odd and even antenna groups. Each group is excited by differential coded digital modulation waveform to send different signal constellations in different directions. In order to improve the performance of angle estimation, we have designed specific phase shift sequences to obtain the different OAM modes. Mode detection can eliminate multiple value ambiguity of elevation and azimuth angles. The single antenna receiver can demodulate the OAM-DM signal to communicate, detect OAM modes and estimate angles in different directions. Finally, we assess the effectiveness of the proposed approach via numerical simulation.

  1. VERBEECK, J., TIAN, H., SCHATTSCHNEIDER, P. Production and application of electron vortex beams. Nature, 2010, vol. 467, no. 7313, p. 301–304. DOI: 10.1038/nature09366
  2. URIBE-PATARROYO, N., FRAINE, A., SIMON, D. S., et al. Object identification using correlated orbital angular momentum states. Physical Review Letters, 2012, vol. 110, no. 4, p. 1–5. DOI: 10.1103/PhysRevLett.110.043601
  3. WANG, Z., ZHANG, N., YUAN, X. C., High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication. Optics Express, 2011, vol. 19, no. 2, p. 482–492. DOI: 10.1364/OE.19.000482
  4. GAO, X., HUANG, S., ZHOU, J., et al. Generating, multiplexing/ demultiplexing and receiving the orbital angular momentum of radio frequency signals using an optical true time delay unit. Journal of Optics, 2013, vol. 15, no. 10, p. 1–6. DOI: 10.1088/2040-8978/15/10/105401
  5. HUANG, H., XIE, G., YAN, Y., et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Optics Letters, 2014, vol. 39, no. 2, p. 197–200. DOI: 10.1364/OL.39.000197
  6. GAO, X., HUANG, S., WEI, Y., et al. An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification. Applied Physics Letters, 2014, vol. 105, no. 24, p. 1–5. DOI: 10.1063/1.4904090
  7. REN, Y., WANG, Z., XIE, G., et al. Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing. Optics Letters, 2015, vol. 40, no. 18, p. 4210–4213. DOI: 10.1364/OL.40.004210
  8. CAI, B. G., LI, Y. B., JIANG, W. X., et al. Generation of spatial Bessel beams using holographic metasurface. Optics Express, 2015, vol. 23, no. 6, p. 7593–7601. DOI: 10.1364/OE.23.007593
  9. ZHANG, C., MA, L. Millimetre wave with rotational orbital angular momentum. Scientific Reports, 2016, vol. 6, no. 3192, p. 1–8. DOI: 10.1038/srep31921
  10. TAMBURINI, F., MARI, E., SPONSELLI, A., et al. Encoding many channels in the same frequency through radio vorticity: First experimental test. New Journal of Physics, 2012, vol. 14, p. 1–17. DOI: 10.1088/1367-2630/14/3/033001
  11. CHENG, L., HONG, W., HAO, Z. C. Generation of electromagnetic waves with arbitrary orbital angular momentum modes. Scientific Reports, 2014, vol. 4, no. 4817, p. 1–5. DOI: 10.1038/srep04814
  12. MOHAMMADI, S. M., DALDORFF, L. K. S., BERGMAN, J. E. S., et al. Orbital angular momentum in radio–A system study. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 2, p. 565–572. DOI: 10.1109/TAP.2009.2037701
  13. MOHAMMADI, S. M., DALDORFF, L. K. S., FOROZESH, K., et al. Orbital angular momentum in radio: Measurement methods. Radio Science, 2010, vol. 45, no. 4, p. 1–14. DOI: 10.1029/2009RS004299
  14. CANO, E., ALLEN, B. Multiple-antenna phase-gradient detection for OAM radio communications. Electronics Letters, 2015, vol. 51, no. 9, p. 724–725. DOI: 10.1049/el.2015.0435
  15. CHEN, J., LIANG, X., HE, C., et al. High-sensitivity OAM phase gradient detection based on time-modulated harmonic characteristic analysis. Electronics Letters, 2017, vol. 53, no. 12, p. 812–814. DOI: 10.1049/el.2016.4689
  16. XIE, M., GAO, X., ZHAO, M., et al. Mode measurement of a dual-mode radio frequency orbital angular momentum beam by circular phase gradient method. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 16, p. 1143–1146. DOI: 10.1109/lawp.2016.2624737
  17. GUO, G. R., HU, W. D., DU, X. Y. Electromagnetic vortex based radar target imaging. Journal of National University of Defense Technology, 2013, vol. 35, no. 6, p. 71–76. (in Chinese) DOI: 10.3969/j.issn.1001-2486.2013.06.013
  18. LIU, K., CHENG, Y., YANG, Z., et al. Orbital-angularmomentum-based electromagnetic vortex imaging. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 711–714. DOI: 10.1109/lawp.2014.2376970
  19. YUAN, T., WANG, H., QIN, Y., et al. Electromagnetic vortex imaging using uniform concentric circular arrays. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1024–1027. DOI: 10.1109/LAWP.2015.2490169
  20. GE, X., ZI, R., XIONG, X., et al. Millimeter wave communications with OAM-SM scheme for future mobile networks. IEEE Journal on Selected Areas in Communications, 2016, vol. 35, no. 9, p. 2163–2177. DOI: 10.1109/JSAC.2017.2720238
  21. HU, T., WANG, Y., LIAO, X., et al. OFDM-OAM modulation for future wireless communications. IEEE Access, 2019, vol. 7, p. 59114–59125. DOI: 10.1109/ACCESS.2019.2915035
  22. TAVIK, G. C., HILTERBRICK, C. L., EVINS, J. B., et al. The advanced multifunction RF concept. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 3, p. 1009–1020. DOI: 10.1109/tmtt.2005.843485
  23. BLUNT, S. D., MOKOLE, E. L. Overview of radar waveform diversity. IEEE Aerospace and Electronic Systems Magazine, 2016, vol. 31, no. 11, p. 2–40. DOI: 10.1109/MAES.2016.160071
  24. LIU, F., ZHOU, L., MASOUROS, C., et al. Towards dualfunctional radar-communication systems: Optimal waveform design. IEEE Transactions on Signal Processing, 2018, vol. 66, no. 16, p. 4264–4279. DOI: 10.1109/TSP.2018.2847648
  25. WANG, Z., LIAO, G., YANG, Z. Space-frequency modulation radar-communication and mismatched filtering. IEEE Access, 2018, vol. 6, p. 24837–24845. DOI: 10.1109/ACCESS.2018.2829731
  26. LUO, Y., ZHANG, J. A., HUANG, X., et al. Optimization and quantization of multibeam beamforming vector for joint communication and radio sensing. IEEE Transactions on Communications, 2019, vol. 67, no. 9, p. 6468–6482. DOI: 10.1109/TCOMM.2019.2923627
  27. ZHANG, J. A., HUANG, X., GUO, Y. J., et al. Multibeam for joint communication and sensing using steerable analog antenna arrays. IEEE Transactions on Vehicular Technology, 2018, vol. 68, no. 1, p. 671–685. DOI: 10.1109/TVT.2018.2883796
  28. DALY, M. P., BERNHARD, J. T. Directional modulation technique for phased arrays. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 9, p. 2633–2640. DOI: 10.1109/TAP.2009.2027047
  29. HONG, T., SONG, M. Z., LIU, Y. Dual-beam directional modulation technique for physical-layer secure communication. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1417–1420. DOI: 10.1109/LAWP.2011.2178384
  30. DING, Y., FUSCO, V. F. A vector approach for the analysis and synthesis of directional modulation transmitters. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 1, p. 361–370. DOI: 10.1109/tap.2013.2287001
  31. DING, Y., FUSCO, V. Orthogonal vector approach for synthesis of multi-beam directional modulation transmitters. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1330–1333. DOI: 10.1109/LAWP.2015.2404818
  32. FOUDA, R. M., BAUM, T. C., GHORBANI, K. Quasi-orbital angular momentum (Q-OAM) generated by quasi-circular array antenna (QCA). Scientific Reports, 2018, vol. 8, no. 1, p. 1–11. DOI: 10.1038/s41598-018-26733-6
  33. THIDE, B., THEN, H., SJOHOLM, J., et al. Utilization of photon orbital angular momentum in the low-frequency radio domain. Physical Review Letters, 2007, vol. 99, no. 8, p. 1–4. DOI: 10.1103/ PhysRevLett.99.087701
  34. GONG, Y., WANG, R., DENG, Y., et al. Generation and transmission of OAM-carrying vortex beams using circular antenna array. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 6, p. 2940–2949. DOI: 10.1109/TAP.2017.2695526
  35. TRICHILI, A., PARK, K., ZGHAL M., et al. Communicating using spatial mode multiplexing: Potentials, challenges and perspectives. IEEE Communications Surveys & Tutorials, 2019, vol. 21, no. 4, p. 3175–3203. DOI: 10.1109/COMST.2019.2915981

Keywords: Directional modulation, signal design, orbital angular momentum

P. Hron, J. Lukac, J. Sykora [references] [full-text] [DOI: 10.13164/re.2020.0573] [Download Citations]
SDR Verification of Hierarchical Decision Aided 2-Source BPSK H-MAC CSE with Feed-Back Gradient Solver for WPNC Networks

This paper considers a channel state estimation (CSE) problem in a parametrized Hierarchical MAC (H-MAC) stage in Wireless Physical Layer Network Coding (WPNC) networks with Hierarchical Decode and Forward (HDF) relay strategy. The primary purpose is to present the results of a non-pilot based phase estimator performance evaluation. In particular, the performance comparison of a Matlab simulation and an over the air transmission using USRP N210 transceivers in terms of mean square error (MSE) and bit error rate (BER). Also, we analyze the properties of the Cramer Rao Lower Bound (CRLB) w.r.t. different channel parametrizations.

  1. SYKORA, J., BURR, A. Wireless Physical Layer Network Coding. Cambridge University Press, 2018. ISBN: 9781107096110
  2. ZHANG, S., LIEW, S. C., LAM, P. P. Hot topic: Physical-layer network coding. In Proceedings of the 12th Annual International Conference on Mobile Computing and Networking (MobiCom). New York (USA), 2006, p. 358–365. DOI: 10.1145/1161089.1161129
  3. KOIKE-AKINO, T., POPOVSKI, P., TAROKH, V. Optimized constellations for two-way wireless relaying with physical network coding. IEEE Journal on Selected Areas in Communications, 2009, vol. 27, no. 5, p. 773–787. DOI: 10.1109/JSAC.2009.090617
  4. NAZER, B., GASTPAR, M. Compute-and-forward: Harnessing interference through structured codes. IEEE Transactions on Information Theory, 2011, vol. 57, no. 10, p. 6463–6486. DOI: 10.1109/TIT.2011.2165816
  5. SYKORA, J., BURR, A. Layered design of hierarchical exclusive codebook and its capacity regions for HDF strategy in parametric wireless 2-WRC. IEEE Transactions on Vehicular Technology, 2011, vol. 60, no. 7, p. 3241–3252. DOI: 10.1109/TVT.2011.2160105
  6. SYKORA, J. Hierarchical data decision aided 2-source BPSK H-MAC channel phase estimator with feed-back gradient solver for WPNC networks. In Proceedings of the 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). Limassol (Cyprus), 2018, p. 89–96. DOI: 10.1109/WiMOB.2018.8589117
  7. HRON, P., SYKORA, J. Performance analysis of hierarchical decision aided 2-source BPSK H-MAC CSE with feed-back gradient solver for WPNC networks. In Proceedings of the IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). Riga (Latvia), 2019, p. 72–75. DOI: 10.1109/MTTW.2019.8897247
  8. YANG, Q., LIEW, S. C., LU, L., et al. Symbol misalignment estimation in asynchronous physical-layer network coding. IEEE Transactions on Vehicular Technology, 2017, vol. 66, no. 3, p. 2844–2852. DOI: 10.1109/TVT.2016.2578310
  9. DANG, X., LI, Q., YU, X. Symbol timing estimation for physicallayer network coding. IEEE Communications Letters, 2015, vol. 19, no. 5, p. 755–758. DOI: 10.1109/LCOMM.2015.2412931

Keywords: Software Defined Radio (SDR), H-MAC CSE, WPNC, phase, estimator

Z. J. Xu, W. D. Lu, Y. Gong, J. Y. Hua, W. B. Jin [references] [full-text] [DOI: 10.13164/re.2020.0580] [Download Citations]
A Covert Communication System Using Non-Zero Mean Normal Distributions

A covert communication system is proposed in this study, in which a~ non-zero mean Gaussian sequence is used as a~ random carrier and its mean is modulated by a~ covert binary bit. The aperiodic transmitted signal exhibits the same statistical characteristics as the ambient noise to confuse an~ eavesdropper. The received signal is multiplied with the pseudo-random sequence synchronized with the transmitter to recover these positive and negative mean Gaussian sequence. The sample mean estimator and hard decision are used to determine the covert message, and accordingly, theoretical bit error rate in additive white Gaussian noise channel is also derived. Simulation results are very consistent with the theoretical derivation. The proposed system works in the physical layer with the advantages of simple structure, strong concealment, good BER performance and very suitable for low-cost, resource-limited and low-rate transmission devices.

  1. BANGERTER, B., TALWAR, S., AREFI, K., et al. Networks and devices for the 5G area. IEEE Communications Magazine, 2014, vol. 52, no. 2, p. 90–96. DOI: 10.1109/MCOM.2014.6736748
  2. ZHAO, J., NI, S., YANG, L., et al. Multiband cooperation for 5G HetNets: A promising network paradigm. IEEE Vehicular Technology Magazine, 2019, vol. 14, no. 4, p. 85–93. DOI: 10.1109/MVT.2019.2935793
  3. NI, S., ZHAO, J., GONG, Y. Optimal pilot design in massive MIMO systems based on channel estimation. IET Communications, 2017, vol. 11, no. 7, p. 975–984. DOI: 10.1049/iet-com.2016.0889
  4. LIU, X., JIA, M., NA, Z., et al. Multi-modal cooperative spectrum sensing based on Dempster-Shafer fusion in 5G-based cognitive radio. IEEE Access, 2018, vol. 6, p. 199–208. DOI: 10.1109/ACCESS.2017.2761910
  5. ZHAO, J., LI, Q., GONG, Y., et al. Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks. IEEE Transactions on Vehicular Technology, 2019, vol. 68, no. 8, p. 7944–7956. DOI: 10.1109/TVT.2019.2917890
  6. ZANDER, S., ARMITAGE, G., BRANCH, P. A survey of covert channels and countermeasures in computer network protocols. IEEE Communications Surveys & Tutorials, 2007, vol. 9, no. 3, p. 44–57. DOI: 10.1109/COMST.2007.4317620
  7. SALBERG, A., HANSSEN, A. Secure digital communications by means of stochastic process shift keying. In Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers. Pacific Grove (USA), 1999, vol. 2, p. 1523–1527. DOI: 10.1109/ACSSC.1999.832004
  8. SALBERG, A., HANSSEN, A. A novel modulation method for secure digital communications. In Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing. Pocono Manor (USA), 2000, p. 650–654. DOI: 10.1109/SSAP.2000.870206
  9. CHOPRA, A., EVANS, B. Joint statistics of radio frequency interference in multiantenna receivers. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 7, p. 3588–3603. DOI: 10.1109/TSP.2012.2192431
  10. YANG, X., PETROPULU, A. Co-channel interference modeling and analysis in a Poisson field of interferers in wireless communications. IEEE Transactions on Signal Processing, 2003, vol. 51, no. 1, p. 64–76. DOI: 10.1109/TSP.2002.806591
  11. WIN, M., PINTO, P., SHEPP, L. A mathematical theory of network interference and its applications. Proceedings of the IEEE, 2009, vol. 97, no. 2, p. 205–230. DOI: 10.1109/JPROC.2008.2008764
  12. GULATI, K., EVANS, B., ANDREWS, J., et al. Statistics of cochannel interference in a field of Poisson and Poisson-Poisson clustered interferers. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 12, p. 6207–6222. DOI: 10.1109/TSP.2010.2072922
  13. NASSAR, M., GULATI, K., SUJEETH, A., et. al. Mitigating near-field interference in laptop embedded wireless transceivers. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas (USA), 2008, p. 1405–1408. DOI: 10.1109/ICASSP.2008.4517882
  14. ABDULLAH, W., CHUAH, T., ABIDIN, A., et al. Measurement and verification of the impact of electromagnetic interference from household appliances on digital subscriber loop systems. IET Science, Measurement & Technology, 2009, vol. 3, no. 6, p. 384–394. DOI: 10.1049/iet-smt.2009.0002
  15. CEK, M., SAVACI, F. Stable non-Gaussian noise parameter modulation in digital communication. Electronics Letters, 2009, vol. 45, no. 24, p. 1256–1257. DOI: 10.1049/el.2009.2280
  16. XU, Z., WANG, K., GONG, Y., et al. Structure and performance analysis of an SαS-based digital modulation system. IET Communications, 2016, vol. 10, no. 11, p. 1329–1339. DOI: 10.1049/iet-com.2015.0761
  17. CEK, M. Covert communication using skewed α-stable distributions. Electronics Letters, 2015, vol. 51, no. 1, p. 116–116. DOI: 10.1049/el.2014.3323
  18. XU, Z., GONG, Y., WANG, K., et al. Covert digital communication systems based on joint normal distribution. IET Communications, 2017, vol. 11, no. 8, p. 1282–1290. DOI: 10.1049/iet-com.2016.1333
  19. SHLENS, J. Notes on Kullback-Leibler Divergence and Likelihood Theory. Google Research. 2014, 4 pages. [Online]. Available at:
  20. BOX, G., JENKINS, G., REINSEL, G. Time Series Analysis: Forecasting and Control. 3rd ed. NJ (USA): Prentice Hall, 1994. ISBN: 9781118745113

Keywords: Normal distribution, Kullback-Leibler divergence, covert communication