ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)



Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile

April 2022, Volume 31, Number 1 [DOI: 10.13164/re.2022-1]

Show all Hide all

D. T. Le, N. M. Nguyen, T. T. Le [references] [full-text] [DOI: 10.13164/re.2022.0001] [Download Citations]
Zero-Chirp and Low Power PAM-4 Modulation Based on SOI Cascaded Multimode Interference Structures

We present a new architecture for generation of multilevel pulse amplitude modulation (PAM-4) signal generation based on cascaded 4x4 multimode interference (MMI) structure used for optical interconnects and data centre network. The proposed device can generate two ring resonator structures with capability of critical coupling control. The push-pull configuration then is used at two ring resonators for PAM-4 level generation, so a zero chirp can be achieved. In this structure an M-shape transmission can be created for the first time. We use this property for an extreme reduction of power consumption with a lower level than 4-28 times compared with the PAM-4 generation based on the Mach Zehnder Modulator (MZM), respectively. Based on this structure, an extreme high bandwidth and compact footprint are also achieved. The whole device is designed and analyzed using the existing VLSI silicon photonics.

  1. XIE, C., SPIGA, S, DONG, P., et al. 400-Gb/s PDM-4PAM WDM system using a monolithic 2×4 VCSEL array and coherent detection. Journal of Lightwave Technology, 2015, vol. 33, no. 3, p. 670–677. DOI: 10.1109/JLT.2014.2363017
  2. WANG, K., KONG, M., ZHOU, W., et al. 200-Gbit/s PAM4 generation by a dual-polarization Mach-Zehnder modulator without DAC. IEEE Photonics Technology Letters, 2020, vol. 32, no. 18, p. 1223–1226. DOI: 10.1109/LPT.2020.3017535
  3. BINH, L. N. Optical Modulation: Advanced Techniques and Applications in Transmission Systems and Networks. CRC Press, 2019. ISBN: 9780367875046
  4. SHI, W., XU, Y., SEPEHRIAN, H., et al. Silicon photonic modulators for PAM transmissions. Journal of Optics, 2018, vol. 20, no. 8, p. 1–18. DOI: 10.1088/2040-8986/aacd65
  5. KIM, M., KWON, D. H., RHO, D. W., et al. A low-power 28-Gb/s PAM-4MZM driver with level pre-distortion. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, vol. 68, no. 3, p. 908–912. DOI: 10.1109/TCSII.2020.3020128
  6. TZINTZAROV, G. N., RAO, S. G., CRESSLER, J. D. Integrated silicon photonics for enabling next-generation space systems. Photonics, 2021, vol. 8, no. 4, p. 1–20. DOI: 10.3390/photonics8040131
  7. LI, R., PATEL, D., EL-FIKY, E., et al. High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators. Optics Express, 2017, vol. 25, no. 12, p. 13222–13229. DOI: 10.1364/oe.25.013222
  8. SAMANI, A., VEERASUBRAMANIAN, V., EL-FIKY, E., et al. A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers. IEEE Photonics Journal, 2016, vol. 8, no. 1, p. 1–10. DOI: 10.1109/jphot.2015.2512105
  9. EMELETT, S. J., R. SOREF, R. Design and simulation of silicon microring optical routing switches. IEEE Journal of Lightwave Technology, 2005, vol. 23, no. 4, p. 1800–1808. DOI: 10.1109/JLT.2005.844494
  10. LE, T. T. Two-channel highly sensitive sensors based on 4 × 4 multimode interference couplers. Photonic Sensors, 2017, vol. 7, no. 4, p. 357–364. DOI: 10.1007/s13320-017-0441-1
  11. LE, T. T. Multimode Interference Structures for Photonic Signal Processing: Modeling and Design. Germany: Lambert Academic Publishing, May 2010. ISBN: 978-3838361192
  12. LE, T. T., CAHILL, L. Generation of two Fano resonances using 44 multimode interference structures on silicon waveguides. Optics Communications, 2013, vol. 301–302, p. 100–105. DOI: 10.1016/j.optcom.2013.03.051
  13. LE, T. T., CAHILL, L. The design of 4×4 multimode interference coupler based microring resonators on an SOI platform. Journal of Telecommunications and Information Technology, 2009, no. 2, p. 58–62. ISSN: 1509-4553
  14. LE, T. T., LE, D.-T. High FSR and critical coupling control of microring resonator based on graphene-silicon multimode waveguides. In Steglich, P. (Ed.) Electromagnetic Propagation and Waveguides in Photonics and Microwave Engineering. IntechOpen, 2020. DOI: 10.5772/intechopen.92210
  15. YARIV, A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electronics Letters, 2000, vol. 36, no. 4, p. 321–322. DOI: 10.1049/el:20000340
  16. LE, D.-T., NGUYEN, M.-C., LE, T. T. Fast and slow light enhancement using cascaded microring resonators with the Sagnac reflector. Optik - International Journal for Light and Electron Optics, 2017, vol. 131, p. 292–301. DOI: 10.1016/j.ijleo.2016.11.038
  17. KOYAMA, F., IGA, K. Frequency chirping in external modulators. Journal of Lightwave Technology, 1988, vol. 6, no. 1, p. 87–93. DOI: 10.1109/50.3969

Keywords: Data center networks, high performance computing, Multimode interference (MMI), microring resonator, integrated optics, higher order modulation, optical computing systems

I. Herrero-Sebastian, C. Benavente-Peces [references] [full-text] [DOI: 10.13164/re.2022.0007] [Download Citations]
Two-Propagation-Modes and Dual-Band Antenna for Circular Polarized TX/RX Systems at C-Band

This paper presents a novel slotted array for dual-band and circular-polarized applications. Two different propagation modes within a Substrate Integrated Waveguide (SIW), TE10 and TE20, feed at the same time two pairs of slots, aimed at different frequency bands. The pairs are properly placed to be illuminated by an only propagation mode, whereas the magnetic field of the other propagation mode presents a null. Unlike many dual-band slot arrays, this novel antenna holds the same beam tilt for both frequency bands by a new method, which is only feasible through the use of two propagation modes. A dual-mode transition, based on a double microstrip input, allows to excite both propagation modes within the SIW, and it can be fed by a novel single layer dual-band phase shifter with a different shift at each frequency. A square patch is placed over each pair of slots to increase the coupled energy per element, resulting in a low polarization loss and high performance compact antenna at 3.5GHz and 6GHz for dual-band TX/RX systems at C-Band.

  1. MANABE, T., MIURA, Y., IHARA, T. Effects of antenna directivity and polarization on indoor multipath propagation characteristics at 60 GHz. IEEE Journal on Selected Areas in Communications, 1996, vol. 14, no. 3, p. 441–448. DOI: 10.1109/49.490229
  2. SYRYTSIN, I., ZHANG, S., PEDERSEN, G. F., et al. User effects on the circular polarization of 5G mobile terminal antennas. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 9, p. 4906–4911. DOI: 10.1109/TAP.2018.2851383
  3. RAJO IGLESIAS, E., EBRAHIMPOURI, M., QUEVEDO TERUEL, O. Wideband phase shifter in groove gap waveguide technology implemented with glide-symmetric holey EBG. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 6, p. 476–478. DOI: 10.1109/LMWC.2018.2832013
  4. WANG, J., LIU, Y., HOU, Y., et al. Design of gap waveguide PMC packaging for a SIW power combiner. In IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS). Haining (China), 2017, p. 1–3. DOI: 10.1109/EDAPS.2017.8276972
  5. BARIK, R. K., CHENG, Q. S., PRADHAN, N. C., et al. A compact SIW power divider for dual-band applications. Radioengineering, 2020, vol. 29, no. 1, p. 94–100. DOI: 10.13164/re.2020.0094
  6. TAYEBPOUR, J., AHMADI, B., FALLAHZADEH, M., et al. A waveguide switch based on contactless gap waveguide technology. IEEE Microwave and Wireless Components Letters, 2019, vol. 29, no. 12, p. 771–774. DOI: 10.1109/LMWC.2019.2950164
  7. PECH, P., KIM, P., JEONG, Y. Microwave amplifier with substrate integrated waveguide bandpass filter matching network. IEEE Microwave and Wireless Components Letters, 2021, vol. 31, no. 4, p. 401–404. DOI: 10.1109/LMWC.2021.3059859
  8. DER SPUY, T. V., STANDER, T. An X-band crosscoupled SIW cavity VCO. In European Microwave Conference (EuMC). Utrecht (Netherlands), 2021, p. 100–103. DOI: 10.23919/EuMC48046.2021.9338009
  9. SU, W., LI, J., LIU, R.-H. A compact double-layer wideband circularly polarized microstrip antenna with parasitic elements. International Journal of RF and Microwave Computer-Aided Engineering, 2021, vol. 31, no. 1, p. e22471. DOI: 10.1002/mmce.22471
  10. ZHU, X. W., GAO, J., CAO, X. Y., et al. A novel low-RCS and wideband circularly polarized patch array based on metasurface. Radioengineering, 2019, vol. 28, no. 1, p. 99–107. DOI: 10.13164/re.2019.0099
  11. HO, A. T., PISTONO, E., CORRAO, N., et al. Circular polarized square slot antenna based on slow-wave substrate integrated waveguide. IEEE Transactions on Antennas and Propagation, 2021, vol. 69, no. 3, p. 1273–1282. DOI: 10.1109/TAP.2020.3030933
  12. CHEN, H., SHAO, Y., ZHANG, Y., et al. A millimeter-wave triple-band SIW antenna with dual-sense circular polarization. IEEE Transactions on Antennas and Propagation, 2020, vol. 68, no. 12, p. 8162–8167. DOI: 10.1109/TAP.2020.2996806
  13. BUI, C. D., NGUYEN TRONG, N., NGUYEN, T. K. A planar dualband and dual-sense circularly polarized microstrip patch leaky-wave antenna. IEEE Antennas and Wireless Propagation Letters, 2020, vol. 19, no. 12, p. 2162–2166. DOI: 10.1109/LAWP.2020.3026067
  14. AGARWAL, R., YADAVA, R. L., DAS, S.Amulti-layered SIW based circularly polarized CRLH leaky wave antenna. IEEE Transactions on Antennas and Propagation, 2021, vol. 69, no. 10, p. 6312–6321. DOI: 10.1109/TAP.2021.3082618
  15. PAN, Y., DONG, Y. Circularly polarised microstrip line leakywave antenna terminated with patch. IET Microwaves, Antennas Propagation, 2020, vol. 14, no. 12, p. 1331–1336. DOI: 10.1049/iet-map.2020.0330
  16. KAZEMI, R., YANG, S., SULEIMAN, S. H., et al. Design procedure for compact dual-circularly polarized slotted substrate integrated waveguide antenna arrays. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 6, p. 3839–3852. DOI: 10.1109/TAP.2019.2905682
  17. LI, C., LIU, P., ZHU, X.-W., et al. A SIW-based wideband circularly polarized 4x4 patch array antenna in 45 GHz band. In 12th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT). London (UK), 2019, p. 1–4. DOI: 10.1109/UCMMT47867.2019.9008312
  18. MONTISCI, G. Design of circularly polarized waveguide slot linear arrays. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 10, p. 3025–3029. DOI: 10.1109/TAP.2006.882201
  19. CHEN, P., HONG,W., KUAI, Z., et al. A substrate integrated waveguide circular polarized slot radiator and its linear array. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 120–123. DOI: 10.1109/LAWP.2008.2011062
  20. PAVONE, S. C., CASALETTI, M., ALBANI, M. Automatic design of a RHCP linear slot array in substrate integrated waveguide. In 12th European Conference on Antennas and Propagation (EuCAP). London (UK), 2018, p. 1–3. DOI: 10.1049/cp.2018.1115
  21. RUDRAMUNI, K., MAJUMDER, B., KANDASAMY, K. Dualband dual-polarized leaky-wave structure with forward and backward beam scanning for circular polarization-flexible antenna application. Microwave and Optical Technology Letters, 2020, vol. 62, no. 5, p. 2075–2084. DOI: 10.1002/mop.32285
  22. HERRERO-SEBASTIAN, I., BENAVENTE-PECES, C. Dual-band circular polarized slot array antenna in substrate integrated waveguide using two propagation modes for communication satellites transceivers. Progress In Electromagnetics Research Letters, 2019, vol. 86, p. 137–143. DOI: 10.2528/PIERL19070104
  23. HERRERO-SEBASTIAN, I., BENAVENTE-PECES, C. A novel two-propagation-modes dual-polarized slotted-SIW antenna for 5G and sub-6GHz services. International Journal on Communications Antenna and Propagation (IRECAP), 2021, vol. 11, no. 3, p. 147–155. DOI: 10.15866/irecap.v11i3.20810
  24. KALIALAKIS, C., GEORGIADIS, A. A dual band circularly polarized SIW interleaved antenna array. In 10th European Conference on Antennas and Propagation (EuCAP). Davos (Switzerland), 2016, p. 1–4. DOI: 10.1109/EuCAP.2016.7481864
  25. MADDIO, S. A compact two-level sequentially rotated circularly polarized antenna array for C-band applications. International Journal of Antennas and Propagation, 2015, vol. 2015, p. 1–10. DOI: 10.1155/2015/830920
  26. FARASAT, M., THALAKOTUNA, D. N., HU, Z., et al. A review on 5G sub-6 GHz base station antenna design challenges. Electronics, 2021, vol. 10, no. 16, p. 1-20. DOI: 10.3390/electronics10162000
  27. ARNAUD, E., HUITEMA, L., CHANTALAT, R., et al. Circularly polarized ferrite patch antenna for LEO satellite applications. International Journal of Microwave and Wireless Technologies, 2020, vol. 12, no. 4, p. 332–338. DOI: 10.1017/S1759078719001429
  28. CHEN, S., KARMOKAR, D. K., QIN, P., et al. Polarizationreconfigurable leaky-wave antenna with continuous beam scanning through broadside. IEEE Transactions on Antennas and Propagation, 2020, vol. 68, no. 1, p. 121–133. DOI: 10.1109/TAP.2019.2935122
  29. CHANDRA, A., DAS, S. Polarizer superstrate and SRR-loaded highgain dual band dual polarized waveguide slot array antenna. International Journal of RF and Microwave Computer-Aided Engineering, 2018, vol. 28, no. 4, p. e21225. DOI: 10.1002/mmce.21225
  30. ZHANG, Q., ZHANG, Q., LIU, H., et al. Dual-band and dualpolarized leaky-wave antenna based on slotted SIW. IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 3, p. 507–511. DOI: 10.1109/LAWP.2019.2895339

Keywords: SIW, Phase-Shifter, Dual-band, Circular-Polarization, Array, Slot, C-band, 5G

J. Ashish, A. Prakasa Rao [references] [full-text] [DOI: 10.13164/re.2022.0015] [Download Citations]
A Dual Band CRLH Metamaterial-Inspired Planar Antenna for Wireless Applications

This paper presents the design of a metamaterial based dual band dual-polarized monopole antenna applicable for wireless applications. A monopole antenna is designed and loaded with a CRLH MTM inspired unit cell on either side of the substrate to operate as a dual band antenna with an improved impedance matching and circular polarization in one of the bands. The overall size of the antenna is 24 mm x 17 mm x 1.6 mm, operating at centre frequencies of 3.5 GHz and 5.5 GHz. Measurements were carried out and the impedance bandwidths obtained in the two bands are 940 MHz (26.8%) and 490 MHz (8.9%) with linear polarization in the first band and circular polarization with an axial ratio bandwidth of 150 MHz in the second band of operation. The obtained peak gains of the antenna in the two bands are 4 dBi and 5.1 dBi respectively, with a considerable agreement between the simulated and measured results.

  1. ZHU, J., ELEFTHERIADES, G. V. Dual-band metamaterialinspired small monopole antenna for WiFi applications. Electronics Letters, 2009, vol. 45, no. 22, p. 1104–1106. DOI: 10.1049/el.2009.2107
  2. GHAFFAR, A., AWAN, W. A., HUSSAIN, N., et al. A compact dual-band flexible antenna for applications at 900 and 2450 MHz. Progress In Electromagnetics Research Letters, 2021, vol. 99, p. 83–92. DOI: 10.2528/PIERL21060601
  3. HERRAIZ-MARTINEZ, F. J., ZAMORA, G., PAREDES, F., et al. Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1528–1531. DOI: 10.1109/LAWP.2011.2181309
  4. AWAN, W. A., GHAFFAR, A., HUSSAIN, N., et al. CPW-fed dual-band antenna for 2.45/5.8 GHz applications. In 8th IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP). Incheon (South Korea), 2019, p. 246–247. DOI: 10.1109/APCAP47827.2019.9471961
  5. ZAIDI, A., AWAN, W. A., HUSSAIN, N., et al. A wide and triband flexible antennas with independently controllable notch bands for Sub-6-GHz communication system. Radioengineering, 2020, vol. 29, no. 1, p. 44–51. DOI: 10.13164/re.2020.0044
  6. LI, H., ZHENG, Q., DING, J., et al. Dual‐band planar antenna loaded with CRLH unit cell for WLAN/WiMAX application. IET Microwaves, Antennas & Propagation, 2018, vol. 12, no. 1, p. 132–136. DOI: 10.1049/iet-map.2016.1133
  7. GHAFFAR, A., LI, X. J., AWAN, W. A., et al. Design and realization of a frequency reconfigurable multimode antenna for ISM, 5G-Sub-6-GHz, and S-band applications. Applied Sciences, 2021, vol. 11, no. 4, p. 1–14. DOI: 10.3390/app11041635
  8. BORHANI, M., REZAEI, P., VALIZADE, A. Design of a reconfigurable miniaturized microstrip antenna for switchable multiband systems. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 822–825. DOI: 10.1109/LAWP.2015.2476363
  9. GHAFFAR, A., LI, X. J., AWAN, W. A., et al. Capacitor loaded dual-band flexible antenna for ISM band applications. In 9th IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP). Xiamen (China), 2020, p. 1–2. DOI: 10.1109/APCAP50217.2020.9246091
  10. CHIEN, H. Y., SIM, C. Y. D., LEE, C. H. Dual-band meander monopole antenna for WLAN operation in laptop computer. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 694–697. DOI: 10.1109/LAWP.2013.2263373
  11. SONAK, R., AMEEN, M., CHAUDHARY, R. K. CPW-fed electrically small open-ended zeroth order resonating metamaterial antenna with dual-band features for GPS/WiMAX/WLAN applications. AEU-International Journal of Electronics and Communications, 2019, vol. 104, p. 99–107. DOI: 10.1016/j.aeue.2019.03.017
  12. ZARRABI, F. B., AHMADIAN, R., RAHIMI, M., et al. Dual band antenna designing with composite right/left-handed. Microwave and Optical Technology Letters, 2015, vol. 57, no. 4, p. 774–779. DOI: 10.1002/mop.28960
  13. TAMRAKAR, M., KOMMURI, U. K. Dual band CRLH metal antenna for WLAN applications. Wireless Personal Communications, 2021, vol. 116, no. 4, p. 3235–3246. DOI: 10.1007/s11277-020-07846-6
  14. AMEEN, M., MISHRA, A., CHAUDHARY, R. K. Dual‐band CRLH‐TL inspired antenna loaded with metasurface for airborne applications. Microwave and Optical Technology Letters, 2021, vol. 63, no. 4, p. 1249–1256. DOI: 10.1002/mop.32725
  15. ZONG, B., WANG, G., ZHO, C., et al. Compact low-profile dualband patch antenna using novel TL-MTM structures. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 14, p. 567–570. DOI: 10.1109/LAWP.2014.2372093
  16. MAJEDI, M. S., ATTARI, A. R. Dual‐band resonance antennas using epsilon negative transmission line. IET Microwaves, Antennas & Propagation, 2013, vol. 7, no. 4, p. 259–267. DOI: 10.1049/iet-map.2012.0542
  17. SI, L. M., ZHU, W., SUN, H. J. A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 305–308. DOI: 10.1109/LAWP.2013.2249037
  18. PIROOJ, A., NASER‐MOGHADASI, M., ZARRABI, F. B. Design of compact slot antenna based on split ring resonator for 2.45/5 GHz WLAN applications with circular polarization. Microwave and Optical Technology Letters, 2016, vol. 58, no. 1, p. 12–16. DOI: 10.1002/mop.29484
  19. ZHOU, C., WANG, G., WANG, Y., et al. CPW-fed dual-band linearly and circularly polarized antenna employing novel composite right/left-handed transmission-line. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 1073–1076. DOI: 10.1109/LAWP.2013.2279689
  20. HUSSAIN, N., NAQVI, S. I., AWAN, W. A., et al. A metasurface‐based wideband bidirectional same‐sense circularly polarized antenna. International Journal of RF and Microwave Computer-Aided Engineering, 2020, vol. 30, no. 8, p. 1–10. DOI: 10.1002/mmce.22262
  21. HUSSAIN, N., JEONG, M. J., PARK, I., et al. A broadband circularly polarized Fabry-Perot resonant antenna using a singlelayered PRS for 5G MIMO applications. IEEE Access, 2019, vol. 7, p. 42897–42907. DOI: 10.1109/ACCESS.2019.2908441
  22. HUSSAIN, N., PARK, I. Design of a wide-gain-bandwidth metasurface antenna at terahertz frequency. AIP Advances, 2017, vol. 7, no. 5, p. 1–11. DOI: 10.1063/1.4984274
  23. AMANI, N., KAMYAB, M., JAFARGHOLI, A., et al. Compact tri‐band metamaterial‐inspired antenna based on CRLH resonant structures. Electronics Letters, 2014, vol. 50, no. 12, p. 847–848. DOI: 10.1049/el.2014.0875
  24. SAURAV, K., SARKAR, D., SRIVASTAVA, K. V. CRLH unitcell loaded multiband printed dipole antenna. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 852–855. DOI: 10.1109/LAWP.2014.2320918
  25. HUANG, H., LIU, Y., ZHANG, S., et al. Multiband metamaterialloaded monopole antenna for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 14, p. 662–665. DOI: 10.1109/LAWP.2014.2376969
  26. ABDALLA, M. A., HU, Z., MUVIANTO, C. Analysis and design of a triple band metamaterial simplified CRLH cells loaded monopole antenna. International Journal of Microwave and Wireless Technologies, 2017, vol. 9, no. 4, p. 903–913. DOI: 10.1017/S1759078716000738

Keywords: CRLH, dual band, linear polarization, circular polarization

S. Bala, P. S. Reddy, S. Sarkar, P. P. Sarkar [references] [full-text] [DOI: 10.13164/re.2022.0023] [Download Citations]
Small Size Wideband Monopole Antenna with Five Notch Bands for Different Wireless Applications

A broadband planar monopole antenna with five notch bands is proposed here. The antenna provides broadband from 1.94 GHz to 15.4 GHz with five notch bands covering 3.1-4.1 GHz, 6-6.4 GHz, 8.2-9.2 GHz, 10-11.6 GHz, and 12.38-12.89 GHz. These notch bands are effectively used to remove undesired interferences from the WiMAX (3.2-3.8 GHz), partial standard C band (5.850-6.415 GHz), partial ITU band (8.025-8.4 GHz), partial X band (8-12 GHz), and partial Ku downlink frequency band (12.2-12.7 GHz). The notch bands have been realized by etching three notch elements on the patch, feed line, and two small narrow open-ended slots on the ground plane. The design of the proposed antenna is very simple and it utilizes only the volume of 20×40×1.6 mm3. The antenna is useful for wideband fast data communication systems.

  1. BARBARINO, S., CONSOLI, F. UWB circular slot antenna provided with an inverted-L notch filter for the 5 GHz WLAN band. Progress In Electromagnetics Research. 2010, vol. 104, p. 1–13. DOI: 10.2528/pier10040507
  2. PURI, S.C., DAS, S., TIARY, M. G. UWB monopole antenna with dual-band-notched characteristics. Microwave and Optical Technology Letters, 2020, vol. 62, no. 3, p. 1222–1229. DOI: 10.1002/mop.32112
  3. ALDHAHERI, R. W., BABU, K. J., SYED, A., et al. A novel UWB rectangular slot disk monopole antenna with band-notch characteristics. Microwave and Optical Technology Letters, 2015, vol. 57, no. 10, p. 2405–2410. DOI: 10.1002/mop.29339
  4. BOOPATHI RANI, R., PANDEY, S. K. A CPW-fed circular patch antenna inspired by reduced ground plane and CSRR slot for UWB applications with notch band. Microwave and Optical Technology Letters, 2017, vol. 59, no. 4, p. 745–749. DOI: 10.1002/mop.30386
  5. CAI, L. Y., LI, Y., ZENG, G., et al. Compact wideband antenna with double-fed structure having band-notched characteristics. Electronics Letters, 2010, vol. 46, no. 23, p. 1534–1536. DOI: 10.1049/el.2010.2574
  6. GAO, G., HE, L., HU, B., et al. Novel dual band-notched UWB antenna with T-shaped slot and CSRR structure. Microwave and Optical Technology Letters, 2015, vol. 57, no. 7, p. 1584–1590. DOI: 10.1002/mop.29175
  7. GAO, G., HU, B., YANG, C., et al. Investigation of a notched UWB antenna with opening and shorting resonators. Microwave and Optical Technology Letters, 2017, vol. 59, no. 7, p. 1733–1739. DOI: 10.1002/mop.30614
  8. KAZIM, J., BIBI, A., RAUF, M., et al. A compact planar dual band-notched monopole antenna for UWB application. Microwave and Optical Technology Letters, 2014, vol. 56, no. 5, p. 1095–1097. DOI: 10.1002/mop.28270
  9. KELLY, J. R., HALL, P. S., GARDNER, P. Band-notched UWB antenna incorporating a microstrip open-loop resonator. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 8, p. 3045–3048. DOI: 10.1109/tap.2011.2152326
  10. KOOHESTANI, M., PIRES, N., SKRIVERVIK, A. K., et al. Band-reject ultra-wideband monopole antenna using patch loading. Electronics Letters, 2012, vol. 48, no. 16, p. 974–975. DOI: 10.1049/el.2012.1771
  11. SRIVASTAVA, K., KUMAR, A., KANAUJIA, B. K., et al. Integrated GSM-UWB Fibonacci-type antennas with single, dual, and triple notched bands. IET Microwaves, Antennas and Propagation, 2018, vol. 12, no. 6, p. 1004–1012. DOI: 10.1049/iet-map.2017.0074
  12. LI, L., ZHOU, Z.-L., HONG, J.-S. Compact UWB antenna with four band-notches for UWB applications. Electronics Letters, 2011, vol. 47, no. 22, p. 1211–1212. DOI: 10.1049/el.2011.2334
  13. MISHRA, G., SAHU, S. Nature inspired tree shaped antenna with dual band notch for UWB applications. Microwave and Optical Technology Letters, 2016, vol. 58, no. 7, p. 1658–1661. DOI: 10.1002/mop.29874
  14. MISHRA, G., SAHU, S. Compact circular patch UWB antenna with WLAN band notch characteristics. Microwave and Optical Technology Letters, 2016, vol. 58, no. 5, p. 1068–1073. DOI: 10.1002/mop.29727
  15. RAHIMI, M., HEYDARI, S., MANSOURI, Z., et al. Investigation and design of an ultra-wideband fractal ring antenna for notch applications. Microwave and Optical Technology Letters, 2016, vol. 58, no. 7, p. 1629–1634. DOI: 10.1002/mop.29872
  16. SRIVASTAVA, G., DWARI, S., KANAUJIA, B. K. A compact triple band notch circular ring antenna for UWB applications. Microwave and Optical Technology Letters, 2015, vol. 57, no. 3, p. 668–672. DOI: 10.1002/mop.28922
  17. SARKAR, D., SRIVASTAVA, K. V., SAURAV, K. A compact microstrip-fed triple band-notched UWB monopole antenna. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 396–399. DOI: 10.1109/lawp.2014.2306812
  18. SRIVASTAVA, K., KUMAR, A., VERMA, A. K., et al. Integrated GSM and UWB fractal monopole antenna with triple notches. Microwave and Optical Technology Letters, 2016, vol. 58, no. 10, p. 2364–2366. DOI: 10.1002/mop.30049
  19. TSENG, C.-F., LU, S.-C. Notch frequency of dielectric resonatorloaded monopole antenna for UWB application. Microwave and Optical Technology Letters, 2014, vol. 56, p. 1189–1193. DOI: 10.1002/MOP.28292
  20. ZHANG, K., LI, Y., LONG, Y. Band-notched UWB printed monopole antenna with a novel segmented circular patch. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 1209–1212. DOI: 10.1109/lawp.2010.2099095
  21. LI, W. T., HEI, Y. Q., FENG, W., et al. Planar antenna for 3G/Bluetooth/WiMAX and UWB applications with dual bandnotched characteristics. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 61–64. DOI: 10.1109/lawp.2012.2183671
  22. TRIPATHI, S., MOHAN, A., YADAV, S. A compact UWB antenna with dual 3.5/5.5 GHz band-notched characteristics. Microwave and Optical Technology Letters, 2015, vol. 57, no. 3, p. 551–556. DOI: 10.1002/mop.28893
  23. SHARMA, N., BHATIA, S. S. Design of printed monopole antenna with band notch characteristics for ultra-wideband applications. International Journal of RF and Microwave Computer-Aided Engineering, 2019, vol. 29, no. 10, p. 1–18. DOI: 10.1002/mmce.21894
  24. SUNG, Y. Triple band-notched UWB planar monopole antenna using a modified H-shaped resonator. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 2, p. 953–957. DOI: 10.1109/tap.2012.2223434
  25. TANG, Z., ZHAN, J., WU, X. Compact triple band-notched printed antenna with multislots for UWB applications. Microwave and Optical Technology Letters, 2015, vol. 57, no. 9, p. 2056–2060. DOI: 10.1002/mop.29268
  26. ZHANG, Y., HONG, W., YU, C., et al. Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, p. 3063–3068. DOI: 10.1109/tap.2008.928815
  27. YOON, J. H., RHEE, Y. C. A modified three-circular-ring monopole antenna for WLAN/WiMAX triple-band operations. Microwave and Optical Technology Letters, 2014, vol. 56, no. 3, p. 625–631. DOI: 10.1002/mop.28135
  28. KUNDU, S., CHATTERJEE, A. Sharp triple-notched ultrawideband antenna with gain augmentation using FSS for ground penetrating radar. Wireless Personal Communications, 2021, vol. 17, no. 2, p. 1399–1418. DOI: 10.1007/s11277-020-07928-5
  29. KUNDU, S. A compact printed ultra-wideband filtenna with low dispersion for WiMAX and WLAN interference cancellation. Sadhana, 2020, vol. 45, article no. 261, p. 1–7. DOI: 10.1007/s12046-020-01495-y
  30. KUNDU, S., CHATTERJEE, A., IQBAL, A. Printed circular ultrawideband antenna with triple sharp frequency notches for surface penetrating radar application. Sadhana, 2020, vol. 45, article no. 97, p. 1–7. DOI: 10.1007/s12046-020-01341-1
  31. KUNDU, S. Balloon-shaped CPW fed printed UWB antenna with dual frequency notch to eliminate WiMAX and WLAN interferences. Microwave and Optical Technology Letters, 2018, vol. 60, no. 7, p. 1744–1750. DOI: 10.1002/mop.31230
  32. GHAFFAR, A., AWAN, W. A., ZAIDI, A. et al. Compact ultrawide- band and tri-band antenna for portable device. Radioengineering, 2020, vol. 29, no. 4, p. 601–608. DOI: 10.13164/re.2020.0601
  33. AWAN, A. W., ZAIDI, A., HUSSAIN, N., et al. Stub loaded, low profile UWB antenna with independently controllable notchbands. Microwave and Optical Technology Letters. 2019, vol. 61, no. 11, p. 2447–2454. DOI: 10.1002/mop.31915
  34. HUSSAIN, N., AWAN, W. A., NAQVI, S. I., et al. A compact flexible frequency reconfigurable antenna for heterogeneous applications. IEEE Access, 2020, vol. 8, p. 173298–173307. DOI: 10.1109/ACCESS.2020.3024859
  35. RIZVI, S. N. R., AWAN, W. A., HUSSAIN, N. Design and characterization of miniaturized printed antenna for UWB communication systems. Journal of Electrical Engineering and Technology, 2021, vol. 16, no. 2, p. 1003–1010. DOI: 10.1007/s42835-020-00630-3
  36. AWAN, W. A., HUSSAIN, N., GHAFFAR, A., et al. Compact flexible frequency reconfigurable antenna for heterogeneous applications. In 2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP). Xiamen (China), 2020, p. 1–2. DOI: 10.1109/apcap50217.2020.9246059
  37. KUNDU, S. Experimental study of a printed ultra-wideband modified circular monopole antenna. Microwave and Optical Technology Letters, 2019, vol. 61, no. 5, p. 1388–1393. DOI: 10.1002/mop.31736
  38. GHAFFAR, A., LI, X. J., AWAN, W. A., et al. Design and realization of a frequency reconfigurable multimode antenna for ISM, 5G-Sub-6-GHz, and S-band applications. Applied Sciences, 2021, vol. 11, no. 4, p. 1–14. DOI: 10.3390/app11041635
  39. NAQVI, S. A. Miniaturized triple-band and ultra-wideband (UWB) fractal antennas for UWB applications. Microwave and Optical Technology Letters, 2017, vol. 59, no. 7, p. 1542–1546. DOI: 10.1002/mop.30582
  40. HUSSAIN, N., JEONG, M., PARK, J., et al. A compact size 2.9–23.5 GHz microstrip patch antenna with WLAN bandrejection. Microwave and Optical Technology Letters, 2019, vol. 61, no. 5, p. 1307–1313. DOI: 10.1002/mop.31708

Keywords: Wideband, monopole, notch band, S11 parameter, gain, radiation pattern

A. M. Ameen, M. I. Ahmed, H. Elsadek, W. R. Anis [references] [full-text] [DOI: 10.13164/re.2022.0032] [Download Citations]
28 GHz Switched Beam Vivaldi Antenna System for V2V Communication in 5G Applications

A 28GHz switched beam Vivaldi antenna system consisting of 4 Vivaldi antennas for V2V communication is presented. The proposed design is realized on a substrate material of “Rogers 5880” with ε_r=2.2,tanδ=0.002 and 0.508 mm substrate thickness. The antenna is designed to operate at a center frequency of 28 GHz with operating bandwidth of 1.463 GHz (5.23%). An overall realized gain of 9.78 dBi is achieved at the intended center frequency. The proposed antenna is designed and simulated. It is also fabricated using photolithography techniques and measured using R&S vector network analyzer. Good agreement is obtained between both simulated, and measured results.

  1. CHOWDHURY, M., DEY, K. C. Intelligent transportation systems-a frontier for breaking boundaries of traditional academic engineering disciplines. IEEE Intelligent Transportation Systems Magazine, 2016, vol. 8, no. 1, p. 4–8. DOI: 10.1109/MITS.2015.2503199
  2. ZHONG, Z. P., ZHANG, X., LIANG, J. J., et al. A compact dualband circularly polarized antenna with wide axial-ratio beamwidth for vehicle GPS satellite navigation application. IEEE Transactions on Vehicular Technology, 2019, vol. 68, no. 9, p. 8683–8692. DOI: 10.1109/TVT.2019.2920520
  3. VIRIYASITAVAT, W., BOBAN, M., TSAI, H. M., et al. Vehicular communications: Survey and challenges of channel and propagation models. IEEE Vehicular Technology Magazine, 2015, vol. 10, no. 2, p. 55–66. DOI: 10.1109/MVT.2015.2410341
  4. WEN, L., GAO, S., LUO, Q., et al. Wideband dual circularly polarized antenna for intelligent transport systems. IEEE Transactions on Vehicular Technology, 2020, vol. 69, no. 5, p. 5193–5202. DOI: 10.1109/TVT.2020.2980382
  5. JILANI, S. F., ALOMAINY, A. A multiband millimeter-wave 2-D array based on enhanced Franklin antenna for 5G wireless systems. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, no. 9, p. 2983–2986. DOI: 10.1109/LAWP.2017.2756560
  6. LI, C., CHEN, W., YU, J., et al. V2V radio channel properties at urban intersection and ramp on urban viaduct at 5.9 GHz. IET Communications, 2018, vol. 12, no. 17, p. 2198–2205. DOI: 10.1049/iet-com.2018.5247
  7. WEVERS, K., LU, M. V2X communication for ITS-from IEEE 802.11p towards 5G. IEEE 5G Tech Focus, June 2017, vol. 1, no. 2.
  8. LIU, A., LU, Y., HUANG, L. Low-profile patch antennas with enhanced horizontal omnidirectional gain for DSRC applications. IET Microwaves, Antennas and Propagation, 2018, vol. 12, no. 2, p. 246–253. DOI: 10.1049/iet-map.2017.0845
  9. NGUYEN-TRONG, N., PINAPATI, S. P., HALL, D., et al. Ultralow-profile and flush-mounted monopolar antennas integrated into a metallic cavity. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 1, p. 86–89. DOI: 10.1109/LAWP.2017.2776290
  10. LEE, M. W., JEONG, N. S. Low-profile vehicle roof-top mounted broadband antenna for V2X. In IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. Atlanta (GA, USA), 2019, p. 925–926. DOI: 10.1109/APUSNCURSINRSM.2019.8889343
  11. ARTNER, G., LANGWIESER, R., MECKLENBRAUKER, C. F. Concealed CFRP vehicle chassis antenna cavity. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 1415–1418. DOI: 10.1109/LAWP.2016.2637560
  12. NGUYEN-TRONG, N., PIOTROWSKI, A., KAUFMANN, T., et al. Low-profile wideband monopolar UHF antennas for integration onto vehicles and helmets. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 6, p. 2562–2568. DOI: 10.1109/TAP.2016.2551291
  13. SEMKIN, V., FERRERO, F., BISOGNIN, A., et al. Beam switching conformal antenna array for mm-wave communications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 28 –31. DOI: 10.1109/LAWP.2015.2426510
  14. DARVAZEHBAN, A., REZAEIEH, S. A., ABBOSH, A. Wideband beam-switched bow-tie antenna with inductive reflector. IEEE Antennas and Wireless Propagation Letters, 2020, vol. 19, no. 10, p. 1724–1728. DOI: 10.1109/LAWP.2020.3015512
  15. TRZEBIATOWSKI, K., RZYMOWSKI, M., KULAS, L., et al. Simple 60 GHz switched beam antenna for 5G millimeter-wave applications. IEEE Antennas and Wireless Propagation Letters, 2021, vol. 20, no. 1, p. 38–42. DOI: 10.1109/LAWP.2020.3038260
  16. VENKATESWARAN, V., PIVIT, F., GUAN, L. Hybrid RF and digital beamformer for cellular networks: Algorithms, microwave architectures, and measurements. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 7, p. 2226–2243. DOI: 10.1109/TMTT.2016.2569583
  17. BANTAVIS, P. I., KOLITSIDAS, C. I., EMPLIOUK, T., et al. A cost-effective wideband switched beam antenna system for a small cell base station. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 12, p. 6851–6861. DOI: 10.1109/TAP.2018.2874494
  18. SARKIS, R., CRAEYE, C. Circular array of wideband 3D Vivaldi antennas. In URSI International Symposium on Electromagnetic Theory. Berlin (Germany), 2010, p. 792–794. DOI: 10.1109/URSIEMTS. 2010.5637231
  19. RMILI, H., ALKHALIFEH, K., ZAROUAN, M., et al. Numerical analysis of the microwave treatment of palm trees infested with the red palm weevil pest by using a circular array of Vivaldi antennas. IEEE Access, 2020, vol. 8, p. 152342–152350. DOI: 10.1109/ACCESS.2020.3017517
  20. LIU, H., YANG, W., ZHANG, A., et al. A miniaturized gain-enhanced antipodal Vivaldi antenna and its array for 5G communication applications. IEEE Access, 2018, vol. 6, p. 76282–76288. DOI: 10.1109/ACCESS.2018.2882914
  21. DENG, C., CHEN, W., ZHANG, Z., et al. Generation of OAM radio waves using circular Vivaldi antenna array. International Journal of Antennas and Propagation, 2013, p. 1–7. DOI: 10.1155/2013/847859
  22. ELABD, R. H., ABDULLAH, H. H., ABDELAZIM, M. Compact highly directive MIMO Vivaldi antenna for 5G millimeter-wave base station. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, vol. 42, no. 2, p. 173–194. DOI: 10.1007/s10762-020- 00765-4
  23. DU, Y. X., LIU, H., QIN, L., et al. Integrated multimode orbital angular momentum antenna based on RF switch. IEEE Access, 2020, vol. 8, p. 48599–48606. DOI: 10.1109/ACCESS.2020.2979945
  24. DARVAZEHBAN, A., REZAEIEH, S. A., MANOOCHEHRI, O., et al. Two-dimensional pattern-reconfigurable cross-slot antenna with inductive reflector for electromagnetic torso imaging. IEEE Transactions on Antennas and Propagation, 2020, vol. 68, no. 2, p. 703–711. DOI: 10.1109/TAP.2019.2940617
  25. REZAEIEH, S. A., ZAMANI, A., ABBOSH, A. M. Pattern reconfigurable wideband loop antenna for thorax imaging. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 8, p. 5104–5114. DOI: 10.1109/TAP.2018.2889164
  26. CHOU, H. T., CHANG, Y. S., HUANG, H. J., et al. Twodimensional multi-ring dielectric lens antenna to radiate fanshaped multi-beams with optimum adjacent-beam overlapping crossover by genetic algorithm. IEEE Access, 2020, vol. 8, p. 79124–79133. DOI: 10.1109/ACCESS.2020.2990223

Keywords: Vivaldi antenna, ITS, Vehicle to Vehicle communication, switched beam antenna, 5G applicationsز

K. Quzwain, Y. Yamada, K. Kamardin, N. H. Abd Rahman, A. Ismail [references] [full-text] [DOI: 10.13164/re.2022.0039] [Download Citations]
New Reflector Shaping Methods for Dual-Reflector Antenna

In the fifth-generation (5G) mobile system, new millimeter-wave technologies such as small cell size and multibeam operation are introduced at the base station. Currently, linear array antennas are used at base stations, however higher design complexity and increased losses in feeding network are expected when the same technology is used to produce multibeams in 5G operation. Through a suitable configuration, a dual-reflector antenna system seems to be a promising candidate to replace the currently used array antennas due to the feasibility of achieving high gain and good multibeam characteristics. In the previous authors’ work, in order to increase the antenna gain at on-focus beams, a reflector shaping method was applied to the dual-reflector antenna, and constant phase and adequate amplitude distribution were achieved on the aperture plane. Furthermore, a good multibeam performance was validated through the consistency of multiple off-focus beam patterns, where a shaped spherical reflector antenna has been used. However, during off-focus conditions, spherical aberration has degraded the phase distribution on the aperture plane and caused reduction in the antenna gain. In this paper, modification to the reflector shaping method using equivalent parabola and equivalent circle method is performed to achieve a reflector antenna system having a constant phase distribution on the aperture plane. The idea of modifying the reflector shaping method comes from the equivalent parabola concept in the Cassegrain dual reflector antenna. During modification, first, the equivalent parabola and circle equation is implemented in the reflector shaping algorithms. Second, a Matrix Laboratory (MATLAB) program is developed in order to solve the reflector design equations and to obtain the main and sub reflector shapes. The MATLAB program is able to generate ray path, aperture illumination distribution and radiation pattern to estimate the adequacy of the reflector shaping results. In the final step, multibeam performance is validated using an electromagnetic simulator, FEKO. Through comparison of the equivalent parabola with the equivalent circle reflectors, an antenna efficiency of 67.6% is obtained and better multibeam radiation patterns are demonstrated using the equivalent circle reflector. Therefore, the usefulness of the newly developed shaping method employing equivalent circle reflector is ensured.

  1. SHHAB, L., RIZANER, A., ULUSOY, A. H., et al. Suppressing the effect of impulsive noise on millimeter-wave communications systems. Radioengineering, 2020, vol. 29, no. 2, p. 376–385. DOI: 10.13164/re.2020.0376
  2. XIE, Y., LI, B., YAN, Z., et al. A general hybrid precoding method for mmwave massive MIMO systems. Radioengineering, 2019, vol. 28, no. 2, p. 439–446. DOI: 10.13164/re.2019.0439
  3. ZHONG, L. H., BAN, Y. L., LIAN, J. W., et al. Miniaturized SIW multibeam antenna array fed by dual-layer 8x8 Butler matrix. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 3018–3021. DOI: 10.1109/LAWP.2017.2758373
  4. IDRUS, I. I., ABDUL LATEF, T., ARIDAS, N. K., et al. Design and characterization of a compact single-layer multibeam array antenna using an 88 Butler matrix for 5G base station applications. Turkish Journal of Electrical Engineering and Computer Sciences, 2020, vol. 28, p. 1121–1134. DOI: 10.3906/elk-1907-119
  5. ISHFAQ, M. K., ABD RAHMAN, T., YOSHIHDE, Y., et al. 88 phased series fed patch antenna array at 28 GHz for 5G mobile base station antennas. In Proceedings of 2017 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). Verona (Italy), 2017, p. 160–162. DOI: 10.1109/APWC.2017.8062268
  6. AHSAN, M. R., ISLAM, M. T., YAMADA, Y., et al. Ray tracing technique for shaping a dual reflector antenna system. Turkish Journal of Electrical Engineering and Computer Sciences, 2016, vol. 24, no. 3, p. 1223–1234. DOI: 10.3906/elk-1311-214
  7. ISHIMARU, A., SREENIVASIAH, I., WONG, V. Double spherical Cassegrain reflector antennas. IEEE Transactions on Antennas and Propagation, 1973, vol. 21, no. 6, p. 774–780. DOI: 10.1109/TAP.1973.1140607
  8. QUZWAIN, K., YAMADA, Y., KAMARDIN, K., et al. Reflector surface shaping method for a Cassegrain antenna. In Proceedings of the 6th International Conference on Space Science and Communication (IconSpace). Johor Bahru (Malaysia), 2019, p. 207–211. DOI: 10.1109/IconSpace.2019.8905935
  9. STUTZMAN, W. L., THIELE, G. A. Antenna Theory and Design. 3rd ed. New York (USA): John Wiley, 2012. ISBN: 1118213475
  10. BALANIS, C. A. Antenna Theory: Analysis and Design. 2nd ed. New York (USA): John Wiley, 1996. ISBN: 978-0471592686
  11. ZAMAN, M. A, ABD MATIN, MD. A new method of designing circularly symmetric shaped dual reflector antennas using distorted conics. International Journal of Microwave Science and Technology, 2014, vol. 2014, p. 1–8. DOI: 10.1155/2014/849194
  12. SPANCER, R. C., HYDE, G. Studies of the focal region of a spherical reflector: Geometric optics. IEEE Transactions on Antennas and Propagation, 1968, vol. 16, no. 3, p. 317–324. DOI: 10.1109/TAP.1968.1139187

Keywords: Dual reflector antenna, reflector shaping method, equivalent parabola, ray tracing

S. Pradhan, B. Gupta [references] [full-text] [DOI: 10.13164/re.2022.0054] [Download Citations]
Radome Enclosed Circularly Polarized Antenna System with Enhanced Beamwidth

This paper presents a circularly polarized (CP) patch antenna system enclosed by a nosecone radome which has a wide beam response. A U-slot loaded corner truncated patch antenna is mounted upon a conical ground structure for achieving the wide beam response. When two such antennas, one Right Handed CP (RHCP) and another Left Handed CP (LHCP) are placed inside a nosecone radome, a drastic reduction in the antenna beamwidth is observed. Finally a metallic conical ring is added to the structure which improves the beamwidth of the antenna and we achieve a beamwidth of 74° and 120° in the ϕ=0° and ϕ=90° planes respectively. The antenna system also provides a good axial ratio bandwidth performance.

  1. BAHL, I. J., BHARTIA, P., STUCHLY, S. Design of microstrip antennas covered with a dielectric layer. IEEE Transactions on Antennas and Propagation, 1982, vol. 30, no. 2, p. 314–318. DOI: 10.1109/TAP.1982.1142766
  2. ROUDOT, B., MOSIG, J. R., GARDIOL, F. E. Radome effects on microstrip antenna parameters. In Proceedings of the 17th European Microwave Conference. Rome (Italy), September 1987, p. 771–777. DOI: 10.1109/EUMA.1987.333712
  3. LUK, K. M., TAM, W. Y. Microstrip antennas covered with dielectric materials. In Digest on Antennas and Propagation Society International Symposium. San Jose (CA, USA), June 1989, p. 616–619. DOI: 10.1109/APS.1989.134762
  4. MEAGHER, C. J., SHARMA, S. K. Investigations on an aperturecoupled microstrip patch antenna with a spaced dielectric cover for enhanced gain performance. In Proceedings of the 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting. Alberta (Canada), February 2009, p. 1–4. DOI: 10.1109/ANTEMURSI.2009.4805088
  5. YANFEI, L., MITTRA, R., GUIZHEN, L., et al. Realization of high directivity enhancement by using an array of microstrip patch antennas (MPAs) covered by a dielectric superstrate. In Proceedings of the Loughborough Antennas and Propagation Conference. Loughborough (UK), November 2009, p. 493–495. DOI: 10.1109/LAPC.2009.5352503
  6. CHEN, K. S., LIN, K. H., SU, H. L. Microstrip antenna gain enhancement by metamaterial radome with more subwavelength holes. In Proceedings of the Asia Pacific Microwave Conference. Singapore, December 2009, p. 790–792. DOI: 10.1109/APMC.2009.5384268
  7. SANTOSO, S. A., HAMID, S., CHALERMWISUTKUL, S., et al. High gain resonant cavity antenna integrated with frequency selective surface radome absorber. In Proceedings of the 13th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). Rome (Italy), September 2019, p. 366–368. DOI: 10.1109/MetaMaterials.2019.8900919
  8. LI, Z. Y., LI, S. J., HAN, B. W., et al. Quad-band transmissive metasurface with linear to dual-circular polarization conversion simultaneously. Advanced Theory and Simulations, August 2021, vol. 4, no. 8. DOI: 10.1002/adts.202100117
  9. SU, H. L., HUANG, H. C., LIN, K. H., et al. Gain-enhanced metamaterial radome for circularly-polarized antenna. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Toronto (Canada), July 2010, p. 1–4. DOI: 10.1109/APS.2010.5560916
  10. RASHEED, O., JAMLOS, M. F., SOH, P. J., et al. Improvement of a circular polarized patch antenna using a split ring resonatorsbased radome. In Proceedings of the International Symposium on Antennas and Propagation. Xian (China), October 2019, p. 1–3.
  11. KOZAKOFF, D. J. Analysis of Radome-enclosed Antennas. 2nd ed. London (UK): Artech House, 2010. ISBN: 978-1-59693-441-2
  12. MENG, H., DOU, W. Multi-objective optimization of radome performance with the structure of local uniform thickness. IEICE Electronics Express, October 2008, vol. 5, no. 20, p. 882–887. DOI: 10.1587/elex.5.882
  13. HSU, F., CHANG, P. R., CHAN, K. K. Optimization of two dimensional radome boresight error performance using simulated annealing technique. IEEE Transactions on Antennas and Propagation, September 1993, vol. 41, no. 9, p. 1195–1203. DOI: 10.1109/8.247745
  14. XU, W., DUAN, B. Y., LI, P., et al. Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 11, p. 5880–5885. DOI: 10.1109/TAP.2014.2352361
  15. XU, W., DUAN, B. Y., LI, P., et al. A new efficient thickness profile design method for streamlined airborne radomes. IEEE Transactions on Antennas and Propagation, November 2017, vol. 65, no. 11, p. 6190–6195. DOI: 10.1109/TAP.2017.2754460
  16. NAIR, R. U., SHASHIDHARA, S., JHA, R. M. Novel inhomogeneous planar layer radome design for airborne applications. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 854–856. DOI: 10.1109/LAWP.2012.2210531
  17. ZHOU, L., PEI, Y., FANG, D. Dual-band A-sandwich radome design for airborne applications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 218–221. DOI: 10.1109/LAWP.2015.2438552
  18. WANG, D. Broadband modified B sandwich as radome’s layer structure. Journal of Electronics, October 1994, vol. 11, no. 4, p. 332–338. DOI: 10.1007/BF02778387
  19. ILAVARASU, S., NIRANJANAPPA, A. C., SINGH, M., et al. An approach to the design of composite radome for airborne surveillance application. International Journal of Mechanical Engineering and Technology, 2018, vol. 9, no. 2, p. 36–48. ISSN: 0976-6340
  20. NAIR, R. U., SUPRAVA, M., JHA, R. M. Graded dielectric inhomogeneous streamlined radome for airborne applications. Electronics Letters, May 2015, vol. 51, no. 11, p. 862–863. DOI: 10.1049/el.2015.0462
  21. LIU, J., LI, L., ZUO, Y., et al. Analysis of performance degradation introduced by radome for high-precision GNSS antenna. International Journal of Antennas and Propagation, 2019, vol. 2019, p. 1–13. DOI: 10.1155/2019/1529656
  22. TANG, C. L., CHIOU, J. Y., WONG, K. L. Beamwidth enhancement of a circularly polarized microstrip antenna mounted on a three-dimensional ground structure. Microwave and Optical Technology Letters, January 2002, vol. 32, no. 2, p. 149–153. DOI: 10.1002/mop.10116
  23. SU, C. W., HUANG, S. K., LEE, C. H. CP microstrip antenna with wide beamwidth for GPS band application. Electronics Letters, September 2007, vol. 43, no. 20, p. 1062–1063. DOI: 10.1049/el:20071691
  24. PRADHAN, S., GUPTA, B. Wideband circularly polarized microstrip antenna with enhanced beamwidth. In Proceedings of the URSI Asia–Pacific Radio Science Conference (AP-RASC). New Delhi (India), March 2019, p. 1–4. DOI: 10.23919/URSIAPRASC. 2019.8738230

Keywords: Beamwidth enhancement, circular polarization, conical ground, nosecone radome, U-slot loaded corner truncated microstrip patch antenna

A. D. Magdum, M. Erramshetty, R. P. K. Jagannath [references] [full-text] [DOI: 10.13164/re.2022.0062] [Download Citations]
Fractional Regularized Distorted Born Iterative Method for Permittivity Reconstruction

In this paper, we propose a fractional regularized distorted Born iterative method (DBIM) to solve non-linear ill-posed problems of microwave imaging. Fractional regularization is a modification to Tikhonov regularization, where singular values are weighed with fractional power. As a result, the well-known effect of oversmoothing present in Tikhonov regularization is reduced, thereby the output image quality is improved. The results of this method are compared with standard DBIM using Tikhonov regularization. Various numerical examples of simulated and experimental datasets containing homogeneous as well as heterogeneous scatterers are considered to validate the effectiveness of the proposed approach. It is found that the proposed method improves the accuracy of estimated images over conventional DBIM.

  1. PASTORINO, M. Microwave Imaging. Hoboken (USA): JohnWiley & Sons, 2010. ISBN: 9780470278000
  2. NIKOLOVA, N. Introduction to Microwave Imaging. Cambridge (UK): Cambridge University Press, 2017. ISBN: 9781316084267
  3. CHEN, X. Computational Methods for Electromagnetic Inverse Scattering. Singapore: JohnWiley & Sons, 2018. ISBN: 9781119311980
  4. CHEW, W., WANG Y. Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. IEEE Transactions on Medical Imaging, 1990, vol. 9, p. 218–225. DOI: 10.1109/42.56334
  5. JUN, S., CHOI, U. Convergence analyses of the born iterative method and the distorted born iterative method. Numerical Functional Analysis and Optimization, 1999, vol. 20, no. 3-4, p. 301–316. DOI: 10.1080/01630569908816893
  6. BERG, P., KLEINMAN R. A contrast source inversion method. Inverse Problems, 1997, vol. 13, no. 6, p. 1607–1620. DOI: 10.1088/0266-5611/13/6/013
  7. LIU, H., YE, X. Reconstruction of dielectric parameters of human tissues using distorted Born iterative method. In IEEE International Conference on Computational Electromagnetics (ICCEM). Shanghai (China), 2019, p. 1–2. DOI: 10.1109/COMPEM.2019.8778947
  8. YE, X., CHEN, X. Subspace-based distorted-Born iterative method for solving inverse scattering problems. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 12, p. 7224–7232. DOI: 10.1109/TAP.2017.2766658
  9. FANJUN, L., XIAOHONG, W., YING, L., et al. Regularized ESN based on TSVD. In Chinese Automation Congress (CAC). Xi’an (China), 2018, p. 3312–3316. DOI: 10.1109/CAC.2018.8623332
  10. MUELLER, J., SILTANEN S. Linear and Nonlinear Inverse Problems with Practical Applications. Philadelphia (USA): Society for Industrial and Applied Mathematics, 2020. ISBN: 9781611972337
  11. MAGDUM, A., ERRAMSHETTY, M., JAGANNATH, R. Regularized minimal residual method for permittivity reconstruction in microwave imaging. Microwave and Optical Technology Letters, 2020, vol. 62, no. 8, p. 1–13. DOI: 10.1002/mop.32487
  12. ZHDANOV, M. Geophysical Inverse Theory and Regularization Problems. Amsterdam (Netherlands): Elsevier Science, 2002. ISBN: 0444510893
  13. ASTER, R., THURBER, C., BORCHERS, B. Parameter Estimation and Inverse Problems. Boston (USA): ElsevierAcademic Press, 2005. DOI: 10.1016/C2009-0-61134-X
  14. HOCHSTENBACH, M., REICHEL, L. Fractional Tikhonov regularization for linear discrete ill-posed problems. BIT Numerical Mathematics, 2011, vol. 51, no. 1, p. 197–215. DOI: 10.1007/s10543-011-0313-9
  15. PRAKASH, J., SANNY, D., KALVA, S., et al. Fractional regularization to improve photoacoustic tomographic image reconstruction. IEEE Transactions on Medical Imaging, 2019, vol. 38, p. 1935–1947. DOI: 10.1109/TMI.2018.2889314
  16. KLANN, E., RAMLAU, R. Regularization by fractional filter methods and data smoothing. Inverse Problems, 2008, vol. 24, no. 2. DOI: 10.1088/0266-5611/24/2/025018
  17. BELKEBIR, K., SAILLARD, M. Special section: Testing inversion algorithms against experimental data. Inverse Problems, 2001, vol. 17, no. 6, p. 1565–1571. DOI: 10.1088/0266-5611/17/6/301
  18. GEFFRIN, J., SABOUROUX, P., EYRAUD, C. Free space experimental scattering database continuation: Experimental set-up and measurement precision. Inverse Problems, 2005, vol. 21, no. 6. DOI: 10.1088/0266-5611/21/6/S09
  19. PETERSON, A., RAY, S., MITRA, R. Computational Methods for Electromagnetics. Wiley-IEEE Press, 1998. ISBN: 9780780311220
  20. MAGDUM, A., ERRAMSHETTY, M., JAGANNATH, R. An exponential filtering based inversion method for microwave imaging. Radioengineering, 2021, vol. 30, no. 3, p. 496–503. DOI: 10.13164/re.2021.0496
  21. ALTUNCU, Y., DURUKAN, T., AKDOGAN, R. Reconstruction of two-dimensional objects buried into three-part space with locally rough interfaces via distorted Born iterative method. Progress In Electromagnetics Research, 2019, vol. 166, p. 23–41. DOI: 10.2528/PIER19072203
  22. ISERNIA, T., CROCCO, L., D’URSO, M. New tools and series for forward and inverse scattering problems in lossy media. IEEE Geoscience and Remote Sensing Letters, 2004, vol. 1, no. 4, p. 327–331. DOI: 10.1109/LGRS.2004.837008
  23. XU, K., ZHONG, Y., SONG, R., et al. Multiplicative-regularized FFT twofold subspace-based optimization method for inverse scattering problems. IEEE Transactions on Geoscience and Remote Sensing, 2015, vol. 53, no. 2, p. 841–850. DOI: 10.1109/TGRS.2014.2329032

Keywords: Distorted Born iterative method, fractional regularization, ill-posed problem, microwave imaging, Tikhonov regularization

J. Vesely, J. Olivova, J. Gotthans, T. Gotthans, Z. Raida [references] [full-text] [DOI: 10.13164/re.2022.0069] [Download Citations]
Classification of Microwave Planar Filters by Deep Learning

Over the last few decades, deep learning has been considered to be powerful tool in the classification tasks, and has become popular in many applications due to its capability of processing huge amount of data. This paper presents approaches for image recognition. We have applied convolutional neural networks on microwave planar filters. The first task was filter topology classification, the second task was filter order estimation. For the task a dataset was generated. As presented in the results, the created and trained neural networks are very capable of solving the selected tasks.

  1. HAYKIN, S. Neural Networks and Learning Machines: A Comprehensive Foundation. Third Edition. Upper Saddle River (New Jersey): Pearson Education, 2009. ISBN: 0131471392
  2. RAIDA, Z. Modeling EM structures in the neural network toolbox of MATLAB. IEEE Antennas and Propagation Magazine, 2002, vol. 44, no. 6, p. 46–67. DOI: 10.1109/MAP.2002.1167264
  3. GOODFELLOW, I., BENGIO, Y., COURVILLE, A. Deep Learning. Cambridge (Massachusetts): The MIT Press, 2016. ISBN: 0262035618
  4. SEKHRI, E., KAPOOR, R., TAMRE, M. Double deep Q-learning approach for tuning microwave cavity filters using locally linear embedding technique. In IEEE International Conference Mechatronic Systems and Materials (MSM). Bialystok (Poland), 2020, p. 1–6. DOI: 10.1109/MSM49833.2020.9202393
  5. WANG, Z., YANG, J., HU, J., et al. Reinforcement learning approach to learning human experience in tuning cavity filters. In IEEE International Conference on Robotics and Biomimetics (ROBIO). Zhuhai (China), 2015, p. 1–6. DOI: 10.1109/ROBIO.2015.7419091
  6. WANG, Z., OU, Y., WU, X., et al. Continuous reinforcement learning with knowledge-inspired reward shaping for autonomous cavity filter tuning. In International Conference on Cyborg and Bionic Systems (CBS). Shenzhen (China), 2018, p. 53–58. DOI: 10.1109/CBS.2018.8612197
  7. JIN, J., FENG, F., ZHANG, W., et al. Recent advances in deep neural network technique for high-dimensional microwave modeling. In IEEE International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). Hangzhou (China), 2020, p. 1–3. DOI: 10.1109/NEMO49486.2020.9343496
  8. JIN, J., ZHANG, C., FENG, F., et al. Deep neural network technique for high-dimensional microwave modeling and applications to parameter extraction of microwave filters. IEEE Transactions on Microwave Theory and Techniques, 2019, vol. 67, no. 10, p. 4140–4155. DOI: 10.1109/TMTT.2019.2932738
  9. ZHANG, S., HU, X., LIU, Z., et al. Deep neural network behavioral modeling based on transfer learning for broadband wireless power amplifier. IEEE Microwave and Wireless Components Letters, 2021, vol. 31, no. 7, p. 917–920. DOI: 10.1109/LMWC.2021.3078459
  10. PAN, G., WU, Y., YU, M., et al. Inverse modeling for filters using a regularized deep neural network approach. IEEE Microwave and Wireless Components Letters, 2020, vol. 30, no. 5, p. 457–460. DOI: 10.1109/LMWC.2020.2986156
  11. OHIRA, M., TAKANO, K., MA, Z. A novel deep-Q-network-based fine-tuning approach for planar bandpass filter design. IEEE Microwave and Wireless Components Letters, 2021, vol. 31, no. 6, p. 638–641. DOI: 10.1109/LMWC.2021.3062874
  12. SARRIS, C., ZHANG, Q. J. (Eds.) Machine learning in microwaves. IEEE Microwave Magazine, 2021, vol. 22, no. 10 (special issue). ISSN: 1527-334
  13. HAUPT, R., ROCCA, P. (Eds.) Artificial intelligence in electromagnetics. IEEE Antennas & Propagation Magazine, 2021, vol. 63, no. 3 (special issue). ISSN: 1045-9243
  14. HONG, J. S., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. New York: J. Wiley and Sons, 2001. ISBN: 0471388777
  15. SURYANI, D., DOETSCH, P., NEY, H. On the benefits of convolutional neural network combinations in offline handwriting recognition. In 15th International Conference on Frontiers in Handwriting Recognition (ICFHR). The Shenzhen (China), 2016, p. 193–198. DOI: 10.1109/ICFHR.2016.0046
  16. MANOHARAN, K. G., NEHRU, J. A., BALASUBRAMANIAN, S. Artificial Intelligence and IoT: Smart Convergence for Eco-Friendly Topography. 1st ed., Springer, 2021. ISBN: 9789813364004
  17. GOTTHANS, J., GOTTHANS, T., MARSALEK, R. Deep convolutional neural network for fire detection. In Proceedings of the 30th International Conference Radioelektronika. Bratislava (Slovakia), 2020, p. 1–6. DOI: 10.1109/RADIOELEKTRONIKA49387.2020.9092344
  18. GOTTHANS, T. BUT Dataset: Classification of Microwave Planar Filters by Deep Learning. [Online]. Available at: deep-learning
  19. IANDOLA, F. N., HAN, S., MOSKEWICZ, M. W., et. al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. arXiv, 2016, p. 1–13. DOI: 10.48550/arXiv.1602.07360

Keywords: Convolutional neural network, deep learning, band pass filter, low pass shunt filter, low pass stepped filter, order of filter

P. Kant, J.J. Michalski [references] [full-text] [DOI: 10.13164/re.2022.0077] [Download Citations]
Highly Integrated, Very High Gain 20Watt X-Band SSPA in GaN Technology

This paper shows design and development of a highly integrated solid state power amplifier (SSPA) operating in X-Band. The last amplifying stage is realized in GaN technology. For the first time in the high power amplifier, the vertical orientation of the last amplification stage was used, which allowed to significantly minimize the footprint of the device while maintaining high output power and PAE. The device includes full digital control over the entire RF chain using a custom BIAS ASIC controlled via SPI interface, assuring high flexibility and stability of the SSPA. The SSPA operates in a wide frequency range of 8.025 - 8.4 GHz with 20 Watt output power at input power range of -20 dBm to 0 dBm and power added efficiency (PAE) reaching up to 35 %. Although the main application of presented SSPA is earth observation (EO) it can be used in ground segment, e.g. for radar application as well.

  1. LOHMEYER,W. Q., ANCIENTO, R. J., CAHOY, K. L., Communication satellite power amplifiers: current and future SSPA and TWTA technologies. International Journal of Satellite Communications and Networking, 2016, vol. 34, no. 1, p. 95–113. DOI: 10.1002/sat.1098
  2. COLANTONIO, P., GIANNINI, F., LIMITI E. High Efficiency RF and Microwave Solid State Power Amplifiers. West Sussex (United Kingdom): John Wiley & Sons, Ltd., 2009. ISBN: 9780470746547
  3. KOBAYASHI, Y., KAWASAKI, S. X-band, 15-W-class, highly efficient deep-space GaN SSPA for PROCYON mission. IEEE Transactions on Aerospace and Electronic Systems, 2016, vol. 52, no. 3, p. 1340–1351. DOI: 10.1109/TAES.2016.150207
  4. SHARMA, A., CHENG, S., LEHTONEN, et al. High efficiency 25 watt GaN X-band SSPA for deep space missions. In IEEE Aerospace Conference. Big Sky (MT, USA), 2017, p. 1–8. DOI: 10.1109/AERO.2017.7943723
  5. XIANFENG L., HAO G., YAXIANG J., et al. An X-band transmitter for small satellites. In International Conference on Microwave and Millimeter Wave Technology (ICMMT). Guilin (China), 2007, p. 1–3. DOI: 10.1109/ICMMT.2007.381506
  6. BOGER, W., BURGESS, D., HONDA, R., et al. X-band, 17 watt, solid-state power amplifier for space applications. In IEEE MTT-S International Microwave Symposium Digest. Long Beach (CA, USA), 2005, p. 1379–1382. DOI: 10.1109/MWSYM.2005.1516940
  7. KIM, H. J., CHO, W. J., KWON J. H., et al. An X-band 100 W GaN HEMTpower amplifier using a hybrid switching method for fast pulse switching. Progress In Electromagnetics Research B, 2017, vol. 78, p. 1–14. DOI: 10.2528/PIERB17030603
  8. CHEN H., JI X. F., JIANG L. J., et al. Design and implementation of an X-band pulsed solid-state power amplifier with high power and high efficiency using radial waveguide combiner. Progress In Electromagnetics Research C, 2011, vol. 21, p. 113–127. DOI: 10.2528/PIERC11030501
  9. KANT, P., MICHALSKI, J. J. Highly integrated X-band SSPA for new space market. In International Microwave and Radar Conference (MIKON). Warsaw (Poland), 2020, p. 200–203. DOI: 10.23919/MIKON48703.2020.9253817
  10. ALIPARAST, P., NOGHANI, M. T., FARHADI, A., et al. Design of X-band SSPA based on GaN HEMT for telemetry subsystem of near-earth space missions. AEU - International Journal of Electronics and Communications, 2021, vol. 137, p. 1–11. DOI: 10.1016/j.aeue.2021.153781

Keywords: Microwave amplifier, Solid State Power Amplifier, SSPA, GaN Technology

D.R. Du, J. Li, Z.Y. Ding, L.Q. Wu, L. Li, S.J. Huang [references] [full-text] [DOI: 10.13164/re.2022.0085] [Download Citations]
A Novel ICIC Scheme Combining 3D ML-SFR and CoMP

With the development of the fifth generation (5G) wireless networks, the dense, heterogeneous and irregular network architecture puts forward higher requirements for inter-cell interference coordination (ICIC) technology. How to combine the existing technology to suppress inter-cell interference has become a focus worthy of research. This paper proposes a novel ICIC scheme that combines three-dimensional (3D) multi-level soft frequency reuse (ML-SFR) and coordinated multi-point (CoMP) transmission technology. Based on the scheme, a model of ML-SFR and CoMP is built for different scenarios. Finally, the information rates of users at the cell edge and the entire cell are analyzed through simulation, respectively. The results show that the proposed scheme is superior to the traditional anti-interference technology in suppressing inter-cell interference. The proposed scheme can effectively improve the transmission performance of the 5G wireless networks.

  1. 3GPP TR 25.814 V7.1.0. Technical Specification Group Radio Access Network; Physical Layer Aspects for Evolved Universal Terrestrial Radio Access (UTRA). [Online] Cited Sept, 2006. Available at:
  2. LI, Q., WANG, Z., MA, F. Inter-cell interference coordination research for LTE. In Proceedings of 2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. Beijing (China), 2011, p. 695–700. DOI: 10.1109/MAPE.2011.6156202
  3. YANG, S., KIM, K., AHN, H., et al. A novel method for inter-cell interference cancelation in cellular networks. In Proceedings of 2016 International Symposium on Antennas and Propagation (ISAP). Okinawa (Japan), 2016, p. 598–599. ISBN: 978-1-4673- 7960-1
  4. LING, B., DONG, C., DAI, J., et al. Multiple decision aided successive interference cancellation receiver for NOMA systems. IEEE Wireless Communications Letters, 2017, vol. 6, no. 4, p. 498–501. DOI: 10.1109/LWC.2017.2708117
  5. WANG, G., ZHAO, Z., XU T. A joint interference cancellation method for non-orthogonal multiple access uplink signals. In Proceedings of 2018 14th IEEE International Conference on Signal Processing (ICSP). Beijing (China), 2018, p. 694–697. DOI: 10.1109/ICSP.2018.8652500
  6. HE, J., TANG, Z., DING, Z. Successive interference cancellation and fractional frequency reuse for LTE uplink communications. IEEE Transactions on Vehicular Technology, 2018, vol. 67, no. 11, p. 10528–10542. DOI: 10.1109/TVT.2018.2865814
  7. KILZI, A., FARAH, J., ABDEL NOUR, C., et al. Mutual successive interference cancellation strategies in NOMA for enhancing the spectral efficiency of CoMP systems. IEEE Transactions on Communications, 2020, vol. 68, no. 2, p. 1213–1226. DOI: 10.1109/TCOMM.2019.2945781
  8. PENG, M., WANG, C., LI, J., et al. Recent advances in underlay heterogeneous networks: Interference control, resource allocation, and self-organization. IEEE Communications Surveys and Tutorials, 2015, vol. 17, no. 2, p. 700–729. DOI: 10.1109/COMST.2015.2416772
  9. EGUIZABAL, M., HERNANDEZ, A. SFR-based vs. FFR-based inter-cell interference coordination for in band relay LTE-A networks. In Proceedings of 2014 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). St. Peterburg (Russia), 2014, p. 41–47. DOI: 10.1109/ICUMT.2014.7002076
  10. WEI, H., DENG, N., HAENGGI, M. Inter-cell interference coordination in millimeter-wave cellular networks. In Proceedings of 2019 IEEE Global Communications Conference (GLOBECOM). Waikoloa (HI, USA), 2019, p. 1–6. DOI: 10.1109/GLOBECOM38437.2019.9013992
  11. ISKANDAR, NURAINI, H. Inter-cell interference coordination with soft frequency reuse method for LTE network. In Proceedings of 2016 2nd International Conference on Wireless and Telematics (ICWT). Yogyakarta (Indonesia), 2016, p. 57–61. DOI: 10.1109/ICWT.2016.7870852
  12. KOSTA, C., HUNT, B., QUDDUS, A. U., et al. On interference avoidance through inter-cell interference coordination (ICIC) based on OFDMA mobile systems. IEEE Communications Surveys and Tutorials, 2013, vol. 15, no. 3, p. 973–995. DOI: 10.1109/SURV.2012.121112.00037
  13. HAMZA, A. S., KHALIFA, S. S., HAMZA, H. S., et al. A survey on inter-cell interference coordination techniques in OFDMAbased cellular networks. IEEE Communications Surveys and Tutorials, 2013, vol. 15, no. 4, p. 1642–1670. DOI: 10.1109/SURV.2013.013013.00028
  14. GHAFFAR, R., KNOPP, R. Fractional frequency reuse and interference suppression for OFDMA networks. In Proceedings of 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt). Avignon (France), 2010, p. 273–277. ISBN: 9781424475230
  15. GAJEWSKI, S. Soft-partial frequency reuse method for LTE-A. Radioengineering, 2017, vol. 26, no. 1, p. 359–368. DOI: 10.13164/re.2017.0359
  16. YANG, X. A multilevel soft frequency reuse technique for wireless communication systems. IEEE Communications Letters, 2014, vol. 18, no. 11, p. 1983–1986. DOI: 10.1109/LCOMM.2014.2361533
  17. GIAMBENE, G., LE, V. A., BOURGEAU, T., et al. Iterative multi-level soft frequency reuse with load balancing for heterogeneous LTE-A systems. IEEE Transactions on Wireless Communications, 2017, vol. 16, no. 2, p. 924–938. DOI: 10.1109/TWC.2016.2634536
  18. HOSSAIN, M. S., TARIQ, F., SAFDAR, G. A., et al. Multi-layer soft frequency reuse scheme for 5G heterogeneous cellular networks. In Proceedings of 2017 IEEE Globecom Workshops (GC Wkshps). Singapore, 2017, p. 1–6. DOI: 10.1109/GLOCOMW.2017.8269182
  19. ALMUSAWWIR, M. N., USMAN, U. K., WIGATI, S. P. Analysis of LTE network planning with multi-level soft frequency reuse: Cimahi City case study. In Proceedings of 2017 7th International Annual Engineering Seminar (InAES). Yogyakarta (Indonesia), 2017, p. 1–5. DOI: 10.1109/INAES.2017.8068542
  20. 3GPP TR 36.819 R11 V11.2.0. Technical Specification Group Radio Access Network; Coordinated Multi-Point Operation for LTE Physical Layer Aspects. [Online] Cited Sept. 2013. Available at:
  21. NGUYEN, D. H. N., LE, L. B., LE-NGOC, T. Optimal dynamic point selection for power minimization in multiuser downlink CoMP. IEEE Transactions on Wireless Communications, 2017, vol. 16, no. 1, p. 619–633. DOI: 10.1109/TWC.2016.2626444
  22. PASTOR-PEREZ, J., RIERA-PALOU F., FEMENIAS, G. Analytical optimization of irregular CoMP-based MIMO-OFDMA networks with frequency reuse. In Proceedings of 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). Rome (Italy), 2017, p. 110–117. DOI: 10.1109/WiMOB.2017.8115852
  23. PASTOR-PEREZ, J. A., RIERA-PALOU, F., FEMENIAS, G. Analytical network-wide optimization of CoMP-aided MIMOOFDMA irregular networks with frequency reuse: A multiobjective approach. IEEE Transactions on Communications, 2019, vol. 67, no. 3, p. 2552–2568. DOI: 10.1109/TCOMM.2018.2884473
  24. LI, J., ZHANG, H., XU, X., et al. A novel frequency reuse scheme for coordinated multi-point transmission. In Proceedings of 2010 IEEE 71st Vehicular Technology Conference. Taipei (Taiwan), 2010, p. 1–5. DOI: 10.1109/VETECS.2010.5493743
  25. AHIR, J. P., DASTOOR, S. K. Energy efficient co-ordinated multi-point joint transmission (CoMP-JT) for LTE-A. In Proceedings of 2018 International Conference on Communication and Signal Processing (ICCSP). Chennai (India), 2018, p. 863–867. DOI: 10.1109/ICCSP.2018.8524514
  26. CHEN, C., HAAS, H. Performance evaluation of downlink cooperative multipoint joint transmission in LiFi systems. In Proceedings of 2017 IEEE Globecom Workshops (GC Wkshps). Singapore, 2017, p. 1–6. DOI: 10.1109/GLOCOMW.2017.8269151
  27. PASTOR-PEREZ, J., RIERA-PALOU, F., FEMENIAS, G. Optimization of irregular CoMP-aided OFDMA networks with SFR: A multi-objective approach, In Proceedings of 2018 IEEE 87th Vehicular Technology Conference (VTC Spring). Porto (Portugal), 2018, p. 1–7. DOI: 10.1109/VTCSpring.2018.8417717
  28. JANG, H. C., WEND, W. D. Interference management using frequency reuse and CoMP for LTE-advanced networks. In Proceedings of 2015 Seventh International Conference on Ubiquitous and Future Networks. Sapporo (Japan), 2015, p. 740–745. DOI: 10.1109/ICUFN.2015.7182641
  29. 3GPP R1-050507, TSG-RAN #41. Soft Frequency Reuse for UTRAN LTE. Huawei, Athens (Greece). [Online] Cited May, 2005. Available at:
  30. BAIER, P. W., MEURER, M., WEBER, T., et al. Joint transmission (JT), an alternative rationale for the downlink of time division CDMA using multi-element transmit antennas. In Proceedings of 2000 IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications. Parsippany (NJ, USA), 2000, p. 1–5. DOI: 10.1109/ISSSTA.2000.878069

Keywords: Inter-cell interference, inter-cell interference coordination, multi-level soft frequency multiplexing, coordinated multipoint

Q. Wang, X. Shen [references] [full-text] [DOI: 10.13164/re.2022.0094] [Download Citations]
Power Optimization in Device to Device Communications Underlying 5G Cellular Networks

This paper investigates consumed power minimization and robust beamforming designs in the base station (BTS) in Device to Device (D2D) communications underlying the 5G cellular network. It is supposed that BTS is not aware of the channel state information (CSI), and only an approximation of their covariance is available. Therefore, based on the estimation error of CSI covariance matrices two optimization models are presented to minimize the power consumption and robust beamforming designs. The first model assumes that the upper bound of the estimation errors is limited to their Frobenius norms. So, the main objective of the first model is to calculate the beamforming at the BTS in such a way that the power consumption of the base station is minimized under the constraint that the SINR (signal-to-interference plus noise ratio) of all cellular users is guaranteed to be above a specified predetermined threshold. The second model considers the statistical distribution of the estimation error is known, and a probabilistic model is considered for the uncertainty of CSI covariance matrices. In this sense, the power consumption of the BTS is minimized in such a way that the non-outage probabilities of users are guaranteed to be above a certain predefined threshold. Although these optimization problems are non-convex, it is shown that they can be reformulated to a convex form using a semi-definite relaxation technique to obtain their lower bounds. The simulation results verify that the proposed methods perform much better than the Hybrid MRT-ZF, ZFBF and MRT beamforming methods.

  1. ZHANG, C., PATRAS, P., HADDADI, H. Deep learning in mobile and wireless networking: A survey. IEEE Communications Surveys & Tutorials, 2019, vol. 21, no. 3, p. 2224–2287. DOI: 10.1109/COMST.2019.2904897
  2. CAPPONI, A., FIANDRINO, C., KANTARCI, B., et al. A survey on mobile crowdsensing systems: Challenges, solutions, and opportunities. IEEE Communications Surveys & Tutorials, 2019, vol. 21, no. 3, p. 2419–2465. DOI: 10.1109/COMST.2019.2914030
  3. TEHRANI, M. N., UYSAL, M., YANIKOMEROGLU, H. Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 2014, vol. 52, no. 4, p. 86–92. DOI: 10.1109/MCOM.2014.6815897
  4. LIN, X., ANDREWS, J., GHOSH, A., et al. An overview of 3GPP device-to-device proximity services. IEEE Communications Magazine, 2014, vol. 52, no. 4, p. 40–48. DOI: 10.1109/MCOM.2014.6807945
  5. MALANDRINO, F., LIMANI, Z., CASETTI, C., et al. Interference-aware downlink and uplink resource allocation in HetNets with D2D support. IEEE Transactions on Wireless Communications, 2015, vol. 14, no. 5, p. 2729–2741. DOI: 10.1109/TWC.2015.2391126
  6. LEE, N., LIN, X., ANDREWS, J. G., et al. Power control for D2D underlaid cellular networks: Modelling, algorithms, and analysis. IEEE Journal on Selected Areas in Communications, 2015, vol. 33, no. 1, p. 1–13. DOI: 10.1109/JSAC.2014.2369612
  7. GU, J., BAE, S. J., CHOI, B. G., et al. Dynamic power control mechanism for interference coordination of device-to device communication in cellular networks. In The Third International Conference on Ubiquitous and Future Networks (ICUFN). Dalian (China), 2011, p. 71–75. DOI: 10.1109/ICUFN.2011.5949138
  8. BELLESCHI, M., FODOR, G., ABRARDO, A. Performance analysis of a distributed resource allocation scheme for D2D communications. In Proceedings of IEEE Global Communications Conference (GLOBECOM). Houston (TX, USA), 2011, p. 358–362. DOI: 10.1109/GLOCOMW.2011.6162471
  9. LIN, M., OUYANG, J., ZHU, W.P. Joint beamforming and power control for device-to-device communications underlying cellular networks. IEEE Journal on Selected Areas in Communications, 2016, vol. 34, no. 1, p. 138–150. DOI: 10.1109/JSAC.2015.2452491
  10. MAGHSUDI, S., STANCZAK, S. Hybrid centralized distributed resource allocation for device-to-device communication underlying cellular networks. IEEE Transactions on Vehicular Technology, 2016, vol. 65, no. 4, p. 2481–2495. DOI: 10.1109/TVT.2015.2423691
  11. MIRZA, J., ZHENG, G., WONG, K. K., et al. Joint beamforming and power optimization for D2D underlying cellular networks. IEEE Transactions on Vehicular Technology, 2018, vol. 67, no. 9, p. 8324–8335. DOI: 10.1109/TVT.2018.2845748
  12. VAN CHIEN, T., BJORNSON, E., LARSSON, E. G. Downlink power control for massive MIMO cellular systems with optimal user association. In Proceeding IEEE International Conference on Communications (ICC). Kuala Lumpur (Malaysia), 2016, p. 1–6. DOI: 10.1109/ICC.2016.7510950
  13. NIU, H., ZHANG, B., HUANG, Y., et al. Robust secrecy beamforming and power-splitting design for multiuser MISO downlink with SWIPT. IEEE Systems Journal, 2018, vol. 13, no. 2, p. 1367–1375. DOI: 10.1109/JSYST.2018.2819993
  14. LIU, Y. F., DAI, Y. H., LUO, Z. Q. Coordinated beamforming for MISO interference channel: Complexity analysis and efficient algorithms. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 3, p. 1142–1157. DOI: 10.1109/TSP.2010.2092772
  15. MIN, H., LEE, J., PARK, S., et al. Capacity enhancement using an interference limited area for device-to-device uplink underlying cellular networks. IEEE Transactions on Wireless Communications, 2011, vol. 10, no. 12, p. 3995–4000. DOI: 10.1109/TWC.2011.100611.101684
  16. MIN, H., SEO, W., LEE, J., et al. Reliability improvement using receive mode selection in the device-to-device uplink period underlying cellular networks. IEEE Transactions on Wireless Communications, 2011, vol. 10, no. 2, p. 413–418. DOI: 10.1109/TWC.2011.122010.100963
  17. NASLECHERAGHI, M., MARANDI, L., GHORASHI, S. A. A novel device-to-device discovery scheme for underlay cellular networks. In Iranian Conference on Electrical Engineering (ICEE). Tehran (Iran), 2017, p. 2106–2110. DOI: 10.1109/IranianCEE.2017.7985409
  18. FENG, D., LU, L., YI, Y. W., et al. QoS-aware resource allocation for device-to-device communications with channel uncertainty. IEEE Transactions on Vehicular Technology, 2016, vol. 65, no. 8, p. 6051–6062. DOI: 10.1109/TVT.2015.2479258
  19. LE, T. A., NAKHAI, M. R., NAVAIE, K. A robust transmission strategy for multi-cell interference networks. In IEEE Global Communications Conference (GLOBECOM). San Diego (CA, USA), 2015, p. 1–6. DOI: 10.1109/GLOCOM.2015.7417142
  20. SHAKER, R., KHAKZAD, H., TAHERPOUR, A., et al. Hybrid underlay/overlay cognitive radio system with hierarchical modulation in the presence of channel estimation error. In IEEE Global Communications Conference (GLOBECOM). Austin (TX, USA), 2014, p. 967–972. DOI: 10.1109/GLOCOM.2014.7036934
  21. GRANT, M., BOYD, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.0 beta. [Online] September 2013. Available at:
  22. JAHANSHAHI, J. A., DANYALI, H., HELFROUSH, M. S. A modified compressed sensing-based recovery algorithm for wireless sensor networks. Radioengineering, 2019, vol. 28, no. 3, p. 610–617. DOI: 10.13164/re.2019.0610
  23. CHU, Z., ZHU, Z., XIANG, W., et al. Robust beamforming and power splitting design in MISO SWIPT downlink system. IET Communications, 2016, vol. 10, no. 6, p. 691–698. DOI: 10.1049/iet-com.2015.0475
  24. COUILLET, R., DEBBAH, M. Random Matrix Methods for Wireless Communications. Cambridge University Press, 2011. ISBN: 9780511994746
  25. BENGTSSON, M., OTTERSTEN, B. Optimal downlink beamforming using semidefinite optimization. In Proceedings of the 37th Annual Allerton Conference on Communication, Control and Computing. 1999, p. 987–996.
  26. ITU. Guidelines for Evaluation of Radio Interface Technologies for IMT-Advanced. Report ITU-R M.2135-1, 12/2009. [Online] Available at: 2135-1-2009-PDF-E.pdf
  27. TIMOTHEOU, S., KRIKIDIS, I., ZHENG, G., et al. Beamforming for MISO interference channels with QoS and RF energy transfer. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 5, p. 2646–2658. DOI: 10.1109/TWC.2014.032514.131199
  28. BIGUESH, M., GAZOR, S., SHARIAT, M. H. Optimal training sequence for MIMO wireless systems in colored environments. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 8, p. 3144–3153. DOI: 10.1109/TSP.2009.2018614

Keywords: 5G cellular networks, Device to Device communications, power optimization

Y. Pan, X. Gao, X. Xu [references] [full-text] [DOI: 10.13164/re.2022.0104] [Download Citations]
Joint Estimation of Direction and Polarization for Partially Polarized Signals Using Tri-polarized Nested Array

Using the dual-polarized array for underdetermined estimation of partially polarized (PP) signal parameters can lead to limited signal-to-ratio (SNR) and biased reconstruction of the coherency matrix. In this paper, a new non-iterative method is proposed with the tri-polarized nested array. With the sub-covariance addition, the power of different polarized components of a signal can be completely accumulated, which improves the SNR. Besides, it is proven that with the optimized tri-polarized nested array, noise variance estimation without iterations becomes possible in the underdetermined case, which is critical for unbiased coherency matrix reconstruction. The subspace-based method is adopted to estimate the direction-of-arrival (DOA), and the polarization parameters can be obtained based on the reconstructed coherency matrices. The proposed method is validated by numerical experiments and compared with other representative methods. It has relatively high accuracy and is about one order of magnitude faster than its competitor.

  1. KRIM, H., VIBERG, M. Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine, 1996, vol. 13, no. 4, p. 67–94. DOI: 10.1109/79.526899
  2. LAN, X., LIU, W., NGAN, H. Y. Joint DOA and polarization estimation with crossed-dipole and tripole sensor arrays. IEEE Transactions on Aerospace and Electronic Systems, 2020, vol. 56, no. 6, p. 4965–4973. DOI: 10.1109/TAES.2020.2990571
  3. WONG, K. T., ZOLTOWSKI, M. D., RAIDA, Z. Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations. IEEE Transactions on Antennas and Propagation, 2000, vol. 48, no. 5, p. 671–681. DOI: 10.1109/8.855485
  4. LI, L., ZOLTOWSKI, M. D. Root-MUSIC-based direction-finding and polarization estimation using diversely polarized possibly collocated antennas. IEEE Antennas and Wireless Propagation Letters, 2004, vol. 3, p. 129–132. DOI: 0.1109/LAWP.2004.831083
  5. CHEN, H., WANG, W., LIU, W. Joint DOA, range, and polarization estimation for rectilinear sources with a cold array. IEEE Wireless Communications Letters, 2019, vol. 8, no. 5, p. 1398–1401. DOI: 10.1109/LWC.2019.2919542
  6. YUAN X. Coherent sources direction finding and polarization estimation with various compositions of spatially spread polarized antenna arrays. Signal Processing, 2014, vol. 102, no. 9, p. 265–281. DOI: 10.1016/J.SIGPRO.2014.03.041
  7. LAN, X., LIU, W. Direction of arrival estimation based on a mixed signal transmission model employing a linear tripole array. IEEE Access, 2021, vol. 9, p. 47828–47841. DOI: 10.1109/ACCESS.2021.3068621
  8. DING, J., YANG, M., CHEN, B., et al. A single triangular SS-EMVS aided high-accuracy DOA estimation using a multi-scale L-shaped sparse array. EURASIP Journal on Advances in Signal Processing, 2019, vol. 2019, no. 1, p. 1–15. DOI: 10.1186/s13634-019-0642-4
  9. LI, J., STOICA, P. Efficient parameter estimation of partially polarized electromagneticwaves. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 11, p. 3114–3125. DOI: 10.1109/78.330371
  10. SKOLNIK, M. I. Radar Handbook. New York: McGraw-Hill, 2008. ISBN: 0-07-057913-X
  11. WU, M., MENG, T., HUANG J., et al. DOA estimation of partially polarized signals using conjugate MUSIC. In 13th IEEE International Conference on Electronic Measurement Instruments (ICEMI). Yangzhou (China), 2017, p. 410–414. DOI: 10.1109/ICEMI.2017.8265977
  12. HO, K. C., TAN, K. C., TAN, B. T. G. Efficient method for estimating directions-of-arrival of partially polarized signals with electromagnetic vector sensors. IEEE Transactions on Signal Processing, 1997, vol. 45, no. 10, p. 2485–2498. DOI: 10.1109/78.640714
  13. HE, J., AHMAD, M. O., SWAMY, M. N. S. Near-field localization of partially polarized sources with a cross-dipole array. IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, no. 2, p. 857–870. DOI: 10.1109/TAES.2013.6494385
  14. MOFFET, A. Minimum-redundancy linear arrays. IEEE Transactions on Antennas and Propagation, 1968, vol. 16, p. 172–175. DOI: 10.1109/TAP.1968.1139138
  15. PAL, P., VAIDYANATHAN, P. P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 8, p. 4167–4181. DOI: 10.1109/TSP.2010.2049264
  16. VAIDYANATHAN, P., PAL, P. Sparse sensing with co-prime samplers and arrays. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 2, p. 573–586. DOI: 10.1109/TSP.2010.2089682
  17. ZHOU, C., GU, Y., FAN, X., et al. Direction-of-arrival estimation for coprime array via virtual array interpolation. IEEE Transactions on Signal Processing, 2018, vol. 66, no. 22, p. 5956–5971. DOI: 10.1109/TSP.2018.2872012
  18. HE, J., ZHANG, Z., SHU, T., et al. Direction finding of multiple partially polarized signals with a nested cross-diople array. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 1679–1682. DOI: 10.1109/LAWP.2017.2665591
  19. SHU, T., HE, J.,HAN, X., et al. JointDOAand degree-of-polarization estimation of partially-polarized signals using nested arrays. IEEE Communications Letters, 2020, vol. 24, no. 10, p. 2182–2186. DOI: 10.1109/LCOMM.2020.3004369
  20. PAN, Y., GAO, X., XU, X. Underdetermined estimation of multiple parameters for partially polarized signals with dual-polarized coprime array. IEEE Communications Letters, 2021, vol. 25, no. 9, p. 2923–2927. DOI: 10.1109/LCOMM.2021.3096077
  21. NEHORAI, A., PALDI, E. Vector-sensor array processing for electromagnetic source localization. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 2, p. 376–398. DOI: 10.1109/78.275610
  22. LIU, C., VAIDYANATHAN, P. P. Remarks on the spatial smoothing step in coarray MUSIC. IEEE Signal Processing Letters, 2015, vol. 22, no. 9, p. 1438–1442. DOI: 10.1109/LSP.2015.2409153
  23. RAO, B. D., HARI, K. S. Performance analysis of root-music. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, vol. 37, no. 12, p. 1939–1949. DOI: 10.1109/29.45540

Keywords: Direction-of-arrival estimation, nested array, polarization estimation, partially polarized signal, tri-polarized sensor

B. Z. Xu, Y. Q. Chen, H. Gu, W. M. Su [references] [full-text] [DOI: 10.13164/re.2022.0114] [Download Citations]
Research on a Novel Clutter Map Constant False Alarm Rate Detector Based on Power Transform

A power transform-based clutter map constant false alarm rate (CM/PT-CFAR) algorithm is proposed to improve the detection performance to the weak target in multiple persisting targets situations. In the CM/PT-CFAR detector, the radar dataset obtained at each scan is normalized and multiplied by a scale factor, and then fed to the power transform operation. The transformed dataset is divided into two parts with a numerical value of 1 as the boundary. The part exceeding 1 is fed to update the scale factor, while the other is used for updating the detection threshold. Because transcendental integrals are produced in the derivation process, an accurate analytical expression of detection probability for CM/PT-CFAR is non-existent. Hence a third-order Taylor expansion operation is introduced to approximate the result. The detection performance of CM/PT-CFAR under various conditions is evaluated and compared with those of other CM/-CFAR detectors. The advantage of CM/PT-CFAR is the detection for weak targets, especially in complex detection situations. The proposed algorithm remains a relatively stable computation load in different cases, which is beneficial for practical application.

  1. SKOLNIK, M. I. Introduction to Radar Systems. New York (US): McGraw-Hill, 1990. ISBN: 0-07-057909-1
  2. SHNIDMAN, D. A. Radar detection in clutter. IEEE Transactions on Aerospace and Electronic Systems, 2005, vol. 41, no. 3, p. 1056–1067. DOI: 10.1109/TAES.2005.1541450
  3. FINN, H. M., JOHNSON, R. S. Adaptive detection mode with threshold control as a function of spatially sampled clutter level estimates. RCA Review, 1968, p. 414–464.
  4. FINN, H. M. A CFAR design for a window spanning two clutter fields. IEEE Transactions on Aerospace and Electronic Systems, 1986, vol. AES-22, no. 2, p. 155–169. DOI: 10.1109/TAES.1986.310750
  5. WEISS, M. Analysis of some modified cell-averaging CFAR processors in multiple-target situations. IEEE Transactions on Aerospace and Electronic Systems, 1982, vol. AES-18, no. 1, p. 102–114. DOI: 10.1109/TAES.1982.309210
  6. HAMMOUDI, Z., SOLTANI, F. Distributed CA-CFAR and OSCFAR detection using fuzzy spaces and fuzzy fusion rules. IEE Proceedings - Radar Sonar and Navigation, 2004, vol. 151, no. 3, p. 135–142. DOI: 10.1049/ip-rsn:20040560
  7. BARKAT, M., FARROUKI, A. Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous environments. IEE Proceedings - Radar, Sonar and Navigation, 2005, vol. 152, no. 1, p. 43–51. DOI: 10.1049/ip-rsn:20045006
  8. CAO, T. V. Constant false-alarm rate algorithm based on test cell information. IET - Radar Sonar and Navigation, 2008, vol. 2, no. 3, p. 200–213. DOI: 10.1049/iet-rsn:20070133
  9. MENG, X. W. Performance analysis of ordered-statistic greatest of-constant false alarm rate with binary integration for M-sweeps. IET - Radar Sonar and Navigation, 2010, vol. 4, no, 1, p. 37–48. DOI: 10.1049/iet-rsn.2008.0119
  10. SHAN, T., TAO, R., WANG, Y., et al. Novel clutter map CFAR algorithm with amplitude limiter. Journal of Systems Engineering and Electronics, 2004, vol. 15, no. 3, p. 262–265.
  11. LOPS, M., ORSINI, M. Scan-by-scan averaging CFAR. IEE Proceedings F - Radar and Signal Processing, 1989, vol. 136, no. 6, p. 249–254. DOI: 10.1049/ip-f-2.1989.0038
  12. CONTE, E., LOPS, M. Clutter-map CFAR detection for rangespread targets in non-Gaussian clutter. I. System design. IEEE Transactions on Aerospace and Electronic Systems, 1997, vol. 33, no. 2, p. 432–443. DOI: 10.1109/7.575877
  13. CONTE, E., DI BISCEGLIE, M., LOPS, M. Clutter-map CFAR detection for range-spread targets in non-Gaussian clutter. II. Performance assessment. IEEE Transactions on Aerospace and Electronic Systems, 1997, vol. 33, no. 2, p. 444–455. DOI: 10.1109/7.575879
  14. NITZBERG, R. Clutter Map CFAR Analysis. IEEE Transactions on Aerospace and Electronic Systems, 1986, vol. AES-22, no. 4, p. 419–421. DOI: 10.1109/TAES.1986.310777
  15. MA, J., WU, L., XU, S. T., et al. A new type CFAR detector based on censored mean and cell average. In Sino-foreign-interchange Conference on Intelligent Science & Intelligent Data Engineering. Xi’an (China), 2011, p. 706–712. DOI: 10.1007/978-3-642-31919- 8_90
  16. SHAN, T., TAO, R., WANG, Y., et al. Performance of order statistic clutter map CFAR. In 6th International Conference on Signal Processing. Beijing (China), 2002, p. 1572–1575. DOI: 10.1109/ICOSP.2002.1180097
  17. LOPS, M. Hybrid clutter-map/L-CFAR procedure for clutter rejection in nonhomogeneous environment. IEE Proceedings - Radar Sonar and Navigation, 1996, vol. 143, no. 4, p. 239–245. DOI: 10.1049/ip-rsn:19960212
  18. GURAKAN, B., CANDAN, Ç., ÇILOĞLU, T. CFAR processing with switching exponential smoothers for nonhomogeneous environments. Digital Signal Processing, 2012, vol. 22, no. 3, p. 407–416. DOI: 10.1016/j.dsp.2012.01.007
  19. ZHANG, R. L., SHENG, W. X., MA, X. F., et al. Clutter map CFAR detector based on maximal resolution cell. Signal Image and Video Processing, 2013, vol. 9, no. 5, p. 1151–1162. DOI: 10.1007/s11760-013-0544-0
  20. MENG, X. W. Performance analysis of Nitzberg's clutter map for Weibull distribution. Digital Signal Processing, 2010, vol. 20, no. 3, p. 916–922. DOI: 10.1016/j.dsp.2009.10.001
  21. HAMADOUCHE, M., BARAKAT, M., KHODJA, M. Analysis of the clutter map CFAR in Weibull clutter. Signal Processing, 2000, vol. 80, no. 1, p. 117–123. DOI: 10.1016/S0165-1684(99)00115-2
  22. ANASTASSOPOULOS, V., LAMPROPOULOS, G. A. Optimal CFAR detection in Weibull clutter. IEEE Transactions on Aerospace and Electronic Systems, 1995, vol. 31, no. 1, p. 52–64, DOI: 10.1109/7.366292
  23. ALMEIDA GARCIA, F. D., FLORES RODRIGUEZ, A. C., FRAIDENRAICH, G., et al. CA-CFAR detection performance in homogeneous Weibull clutter. IEEE Geoscience and Remote Sensing Letters, 2018, vol. 16, no. 6, p. 887–891. DOI: 10.1109/LGRS.2018.2885451
  24. MENG, X. W. Performance of clutter map with binary integration against Weibull background. AEUE - International Journal of Electronics and Communications, 2013, vol. 67, no. 7, p. 611–615. DOI: 10.1016/j.aeue.2013.01.001
  25. RAGHAVAN, R. S. A CFAR detector for mismatched eigenvalues of training sample covariance matrix. IEEE Transactions on Signal Processing, 2019, vol. 67, no. 17, p. 4624–4635. DOI: 10.1109/TSP.2019.2929942
  26. AKÇAPINAR, K., BAYKUT, S. CM-CFAR parameter learning based square-law detector for foreign object debris radar. In 15th European Radar Conference (EuRAD). Madrid (Spain), 2018, p. 421–424. DOI: 10.23919/EuRAD.2018.8546514
  27. LIU, Y., ZHANG, S. F., SUO, J. D., et al. Research on a new comprehensive CFAR (Comp-CFAR) processing method. IEEE Access, 2019, vol. 7, p. 19401–19413. DOI: 10.1109/ACCESS.2019.2897358
  28. TAO, D., ANFINSEN, S. N., BREKKE, C. Robust CFAR detector based on truncated statistics in multiple-target situations. IEEE Transactions on Geoscience and Remote Sensing, 2016, vol. 54, no. 1, p. 117–134. DOI: 10.1109/TGRS.2015.2451311
  29. KRONAUGE, M., ROHLING, H. Fast two-dimensional CFAR procedure. IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, no. 3, p. 1817–1823. DOI: 10.1109/TAES.2013.6558022
  30. WEI, S. H., WANG, X. J. Research of CMLD-CFAR detecting algorithm in radar reconnaissance receiver. In International Conference on Measuring Technology and Mechatronics Automation. Zhangjiajie (China), 2009, p. 105–108. DOI: 10.1109/ICMTMA.2009.115

Keywords: Constant false alarm rate, clutter map, power transform, weak target detection, multiple persisting targets, detection probability

I. Kadoun, H. Khaleghi Bizaki [references] [full-text] [DOI: 10.13164/re.2022.0127] [Download Citations]
Advanced Features Generation Algorithm for MPSK and MQAM Classification in Flat Fading Channel

The Automatic Modulation Classification (AMC) performance depends on the selected features. Conventionally, Higher-Order Cumulants (HOCs) are the well-known features due to their discrimination ability under different channel conditions. HOCs have good performance under the Additive white Gaussian noise (AWGN) channel, but their performance degrades under fading channel. This paper proposes an Advanced Features Generation Algorithm (AFGA) that generates mathematical forms of new features based on the maximum discrimination between the digital modulation types to overcome this performance limitation. These features have similar complexity to HOCs but better performance accuracy. The simulation results show that the proposed AFGA improves the performance accuracy up to 4.5% for a Signal-to-noise ratio (SNR) value of 10 dB under fading channel conditions with respect to conventional methods.

  1. AL-NUAIMI, D. H., HASHIM, I. A., ZAINAL ABIDIN, I. S., et al. Performance of feature-based techniques for automatic digital modulation recognition and classification–A review. Electronics, 2019, vol. 8, no. 12, p. 1–25. DOI: 10.3390/electronics8121407
  2. HAZZA, A., SHOAIB, M., ALSHEBEILI, S. A., et al. An overview of feature-based methods for digital modulation classification. In 2013 1st International Conference on Communications, Signal Processing, and their Applications (ICCSPA). Sharjah (United Arab Emirates), 2013, p. 1–6. DOI: 10.1109/ICCSPA.2013.6487244
  3. SOBOLEWSKI, S., ADAMS, W. L., SANKAR, R. Universal nonhierarchical automatic modulation recognition techniques for distinguishing bandpass modulated waveforms based on signal statistics, cumulant, cyclostationary, multifractal and Fourierwavelet transforms features. In 2014 IEEE Military Communications Conference. Baltimore (MD, USA), 2014, p. 748–753. DOI: 10.1109/MILCOM.2014.130
  4. GHAURI, S. A. Automatic Modulation Classification Using Feature Based Approach. Ph.D dissertation. ISRA University Hyderabad, Islamabad Campus, 2015.
  5. SIMIC, M., STANKOVIC, M., ORLIC, V. D. Automatic modulation classification of real signals in AWGN channel based on sixth-order cumulants. Radioengineering, 2021, vol. 30, no. 1, p. 204–214. DOI: 10.13164/re.2021.0204
  6. GHAURI, S. A., QURESHI, I. M., AZIZ, A., et al. Classification of digital modulated signals using linear discriminant analysis on faded channel. World Applied Sciences Journal, 2014, vol. 29, no. 10, p. 1220–1227. DOI: 10.5829/idosi.wasj.2014.29.10.1540
  7. DOBRE, O. A., ABDI, A., BAR-NESS, Y., et al. Cyclostationarity-based modulation classification of linear digital modulations in flat fading channels. Wireless Personal Communications, 2010, vol. 54, no. 4, p. 699–717. DOI: 10.1007/s11277-009-9776-2
  8. EL-KHAMY, S. E., ELSAYED, H. A. Classification of multi-user chirp modulation signals using wavelet higher-order-statistics features and artificial intelligence techniques. International Journal of Communications, Network and System Sciences, 2012, vol. 5, no. 9, p. 520–533. DOI: 10.4236/ijcns.2012.59063
  9. GHAURI, S. A., QURESHI, I. M., MALIK, A. N., et al. Higher order cummulants based digital modulation recognition scheme. Research Journal of Applied Sciences Engineering & Technology, 2013, vol. 6, no. 20, p. 3910–3915. DOI: 10.19026/rjaset.6.3609
  10. LI, J., CHENG, K., WANG, S., et al. Feature selection: A data perspective. ACM Computing Surveys (CSUR), 2017, vol. 50, no. 6, p. 1–45. [Online] Available at:
  11. STAŃCZYK, U. Feature evaluation by filter, wrapper, and embedded approaches. In Feature Selection for Data and Pattern Recognition. Springer, 2015, p. 29–44. DOI: 10.1007/978-3-662- 45620-0_3
  12. PEREZ-ORTIZ, M., TORRES-JIMENEZ, M., GUTIERREZ, P. A., et al. Fisher score-based feature selection for ordinal classification: A social survey on subjective well-being. In International Conference on Hybrid Artificial Intelligence Systems. Seville (Spain), 2016, p. 597–608. DOI: 10.1007/978-3- 319-32034-2_50
  13. URBANOWICZ, R. J., MEEKER, M., LA CAVA, W., et al. Relief-based feature selection: Introduction and review. Journal of Biomedical Informatics, 2018, vol. 85, p. 189–203. DOI: 10.1016/j.jbi.2018.07.014
  14. EID, H. F., HASSANIEN, A. E., KIM, T.-H., et al. Linear correlation-based feature selection for network intrusion detection model. In International Conference on Security of Information and Communication Networks. Cairo (Egypt), 2013, p. 240–248. DOI: 10.1007/978-3-642-40597-6_21
  15. ZHU, L., MIAO, L., ZHANG, D. Iterative Laplacian score for feature selection. In Chinese Conference on Pattern Recognition. Beijing (China), 2012, p. 80–87. DOI: 10.1007/978-3-642-33506- 8_11
  16. SHAMSINEJADBABKI, P., SARAEE, M. A new unsupervised feature selection method for text clustering based on genetic algorithms. Journal of Intelligent Information Systems, 2012, vol. 38, no. 3, p. 669–684. DOI: 10.1007/s10844-011-0172-5
  17. GHOJOGH, B., KARRAY, F., CROWLEY, M. Fisher and Kernel Fisher Discriminant Analysis: Tutorial. arXiv Prepr. arXiv1906.09436, 2019, [Online] Available at:
  18. LAHAV, A., TALMON, R., KLUGER, Y. Mahalanobis distance informed by clustering. Information and Inference: A Journal of the IMA, 2019, vol. 8, no. 2, p. 377–406. DOI: 10.1093/imaiai/iay011

Keywords: Automatic modulation classification, Feature Selection Algorithms (FSA), higher-order cumulants, Mahalanobis distance (MD)

M. Simka, L. Polak [references] [full-text] [DOI: 10.13164/re.2022.0135] [Download Citations]
On the RSSI-Based Indoor Localization Employing LoRa in the 2.4 GHz ISM Band

Demand for systems and technologies ensuring indoor localization or tracking of an object with high and stable accuracy is continuously increasing. Nowadays, there are exist several wireless technologies, for instance Bluetooth or Wi-Fi, which can be employed for indoor positioning. In the future, Long Range (LoRa), originally developed for long range communication with high link budget, can extend the family of these technologies. This paper focuses on the LoRa technology and its employing in the licence free 2.4,GHz band for Received Signal Strength Indicator (RSSI) based indoor localization. To measure and collect the values of RSSI, a simple measurement setup is proposed. The RSSI values are used to calculate the position of an object according to the principle of trilateration. Measurements are conducted in three different indoor environments for different signal configurations of LoRa. The recorded dataset is available online for future research purposes. The results, analysed in terms of localization accuracy, revealed good performance of LoRa. However, this performance is highly depending on the signal configuration of LoRa and on the position of nodes.

  1. XIAO, J., ZHOU, Z., YI, Y., et al. A survey on wireless indoor localization from the device perspective. ACM Computing Surveys, 2016, vol. 49, no. 2, p. 1–31. DOI: 10.1145/2933232
  2. HAMEED, A., AHMED, H. A. Survey on indoor positioning applications based on different technologies. In Proceedings of the International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS). Karachi (Pakistan), 2018, p. 1–5. DOI: 10.1109/MACS.2018.8628462
  3. GHORPADE, S., ZENNARO, M., CHAUDHARI, B. Survey of localization for internet of things nodes: Approaches, challenges and open issues. Future Internet, 2021, vol. 13, no. 8, p. 1–26. DOI: 10.3390/fi13080210
  4. AUGUSTIN, A., CLAUSEN, T., TOWNSLEY, W. M., et al. A study of LoRa: Long range&low power networks for the internet of things. Sensors, 2016, vol. 16, no. 9, p. 1–18. DOI: 10.3390/s16091466
  5. RAZA, U., KULKARNI, P., SOORIYABANDARA, M. Low power wide area networks: An overview. IEEE Communication Surveys & Tutorials, 2017, vol. 19, no. 2, p. 855–873. DOI: 10.1109/COMST.2017.2652320
  6. CUOZZO, G., BURATTI, CH., VERDONE, R. A 2.4 GHz LoRabased protocol for communication and energy harvesting on industry machines. IEEE Internet of Things Journal, 2021, Early Access, p. 1–13. DOI: 10.1109/JIOT.2021.3115251
  7. SHI, J., CHEN, X., SHA, M. Enabling direct messaging from LoRa to ZigBee in the 2.4 GHz band for industrial wireless networks. In Proceedings of the International Conference Industrial Internet (ICII). Orlando (FL, USA), 2019, p. 180–189. DOI: 10.1109/ICII.2019.00043
  8. POLAK, L., MILOS, J. Performance analysis of LoRa in the 2.4 GHz ISM band: Coexistence issues with Wi-Fi. Telecommunication Systems, 2020, vol. 74, no. 3, p. 229–309. DOI: 10.1007/s11235-020-00658-w
  9. JANSSEN, T., BNILAM, N., AERNOUTS, M., et al. LoRa 2.4 GHz communication link and range. Sensors, 2020, vol. 20, no. 16, p. 3–12. DOI: 10.3390/s201643666
  10. ISLAM, B., ISLAM, M. T., KAUR, J., et al. LoRaIn: Making a case for LoRa in indoor localization. In IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). Kyoto (Japan), 2019, p. 423–426, DOI: 10.1109/PERCOMW.2019.8730767
  11. SADOWSKI, S., SPACHOS, P. RSSI-based indoor localization with the internet of things. IEEE Access, 2018, vol. 6, p. 30149–30161, DOI: 10.1109/ACCESS.2018.2843325
  12. KHAN, F. U., AWAIS, M., MASOOD, B., et al. A comparison of wireless standards in IoT for indoor localization using LoPy. IEEE Access, 2021, vol. 9, p. 65925–65933. DOI: 10.1109/ACCESS.2021.3076371
  13. LAM, K., CHEUNG, C., LEE,W. RSSI-based LoRa localization systems for large-scale indoor and outdoor environments. IEEE Transactions on Vehicular Technology, 2019, vol. 68, no. 12, p. 11778–11791. DOI: 10.1109/TVT.2019.2940272
  14. PODEVIJN, N., PLETS, D., TROGH, J., et al. Performance comparison of RSS algorithms for indoor localization in large open environments. In International Conference on Indoor Positioning and Indoor Navigation (IPIN). Nantes (France), 2018, p. 1–6. DOI: 10.1109/IPIN.2018.8533695
  15. GNAWALI, O., HEYDARIAAN, M., SMAOUI, N., et al. Feasibility of LoRa for smart home indoor localization. Applied Sciences, 2021, vol. 11, no. 1, p. 1–17. DOI: 10.3390/app11010415
  16. ANDERSEN, R. F., PETERSEN, N. M., RUEPP, S., et al. Ranging capabilities of LoRa 2.4 GHz. In IEEE 6th World Forum on Internet of Things (WF-IoT). New Orleans (LA, USA), 2020, p. 1–5. DOI: 10.1109/WF-IoT48130.2020.9221049.
  17. POLAK, L., ROZUM, S., SLANINA, M., et al. Received signal strength fingerprinting-based indoor location estimation employing machine learning. Sensors, 2021, vol. 21, no. 13, p. 1–25. DOI: 10.3390/s21134605
  18. LI, G., GENG, E., YE, Z., et al. Indoor positioning algorithm based on the improved RSSI distance model. Sensors, 2018, vol. 18, no. 9, p. 1–15. DOI: 10.3390/s18092820
  19. RAPPAPORT, T. S. Wireless Communications Principles and Practices. 2nd ed. Upper Saddle River, N.J.: Prentice Hal, 2002. ISBN: 0130422320
  20. SEMTECH. SX1280/SX1281 Long Range, Low Power, 2.4 GHz Transceiver with Ranging Capability (datasheet). 130 pages. [Online] Cited 2021-11-1. Available at:
  21. PATERNA, V. C., AUGE, A. C., ASPAS, J. P., et al. A bluetooth low energy indoor positioning system with channel diversity, weighted trilateration and Kalman filtering. Sensors, 2017, vol. 17, no. 12, p. 1–32. DOI: 10.3390/s17122927
  22. SIMKA, M. LoRa-Based Indoor Localization (in Czech). Brno, 2021. Available at: verejne.php?file_id=224431
  23. GIDLUND, M., QURESHI, H. K., MAHMOOD, A., et al. RSSI fingerprinting-based localization using machine learning in LoRa networks. IEEE Internet of Things Magazine, 2020, vol. 3, no. 4, p. 53–59. DOI: 10.1109/IOTM.0001.2000019
  24. MUIS, A., SARI, R. F., ALI, I. T. Performance evaluation of RSS fingerprinting for indoor location using LoRa. International Journal of Simulation–Systems, Science & Technology, 2019, vol. 20, no. 5, p. 1–7. DOI: 10.5013/IJSSST.a.20.05.08

Keywords: LoRa, 2.4 GHz ISM band, RSSI, indoor localization

B. Jovanovic, S. Milenkovic [references] [full-text] [DOI: 10.13164/re.2022.0144] [Download Citations]
Transmitter IQ Imbalance Mitigation and PA Linearization in Software Defined Radios

Radio frequency (RF) power amplifiers (PA) are efficiently linearized by adaptive digital predistortion (DPD). However, performance of DPD is severely degraded in presence of transmitter’s frequency-selective in-phase/quadrature (I/Q) imbalance. We propose DPD/IQ method that compensates the effects of transmitter I/Q imbalance and PA nonlinearity, which is dedicated for implementation in low-cost software radio defined (SDR) cellular base stations. The advantage of DPD/IQ is low complexity in terms of reduced number of DPD coefficients which provides significant savings of FPGA resources. The DPD/IQ has been evaluated after method has been implemented in SDR board. Measured results clearly demonstrate efficient compensation of PA and transceiver impairments enabling transmission of wide bandwidth waveforms and realization of sophisticated modulation schemes. Improvement in image rejection ratio of 10-15dB is achieved. Considering compensation of PA nonlinearities, the ACPR at PA output is decreased by 15dBc.

  1. EUN, C., POWERS, E. J. A new Volterra predistorter based on the indirect learning architecture. IEEE Transactions on Signal Processing, 1997, vol. 45, no. 1, p. 223–227. DOI: 10.1109/78.552219
  2. CAVERS, J. K. Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements. IEEE Transactions on Vehicular Technology, 1990, vol. 39, no. 4, p. 374–382. DOI: 10.1109/25.61359
  3. KANTANA, C., BAUDOIN, G., VENARD, O. Thresholds optimization of decomposed vector rotation model for digital predistortion of RF power amplifier. Radioengineering, 2021, vol. 30, no. 1, p. 250–258. DOI: 10.13164/re.2021.0250
  4. KESHAVARZ, R., MOHAMMADI, A., ABDIPOUR, A. Linearity improvement of a dual-band Doherty power amplifier using E-CRLH transmission line. AEU - International Journal of Electronics and Communications, 2021, vol. 131, p. 1–7. DOI: 10.1016/j.aeue.2020.153584
  5. JIANG, T., WU, Y. An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broadcasting, 2008, vol. 54, no. 2, p. 257–268. DOI: 10.1109/TBC.2008.915770
  6. FAULKNER, M., MATTSSON, T. Spectral sensitivity of power amplifiers to quadrature modulator misalignment. IEEE Transactions on Vehicular Technology, 1992, vol. 41, no. 4, p. 516–525. DOI: 10.1109/25.182604
  7. LIU, C. L. Impacts of I/Q imbalance on QPSK-OFDM-QAM detection. IEEE Transactions on Consumer Electronics, 1992, vol. 44, no. 3, p. 984–989. DOI: 10.1109/30.713223
  8. CAVERS, J. K. New methods for adaptation of quadrature modulators and demodulators in amplifier linearization circuits. IEEE Transactions on Vehicular Technology, 1997, vol. 46, no. 3, p. 707–716. DOI: 10.1109/25.618196
  9. MARSALEK, R., GOTTHANS, T., HARVANEK, M., et al. On the sensitivity of digital predistortion to impairments of time-interleaved A/D converters. In Proceedings of the 28th International Conference Radioelektronika. Prague (Czech Republic), 2018, p. 1–4. DOI: 10.1109/RADIOELEK.2018.8376377
  10. TARIGHAT, A., SAYED, A. H. MIMO OFDM receivers for systems with IQ imbalances. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 9, p. 3583–3596. DOI: 10.1109/TSP.2005.853148
  11. VALKAMA, M., RENFORS, M., KOIVUNEN, V. Compensation of frequency-selective I/Q imbalances in wideband receivers: Models and algorithms. In Proceedings of 2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications. Taiwan, 2001, p. 42–45. DOI: 10.1109/SPAWC.2001.923837
  12. DING, L., MA, Z., MORGAN, D. R., et al. Compensation of frequency-dependent gain/phase imbalance in predistortion linearization systems. IEEE Transactions on Circuits and Systems I, 2008, vol. 55, no. 1, p. 390–397. DOI: 10.1109/TCSI.2007.910545
  13. ANTTILA, L., HANDEL, P., MYLLARI, O., et al. Recursive learning based joint digital predistorter for power amplifier and I/Q modulator impairments. International Journal of Microwave and Wireless Technologies, 2010, vol. 2, no. 2, p. 173–182. DOI: 10.1017/S1759078710000280
  14. CAO, H., SOLTANI TEHRANI, A., FAGER, C., et al. I/Q imbalance compensation using a nonlinear modelling approach. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 3, p. 513–518. DOI: 10.1109/TMTT.2008.2012305
  15. ZHAN, P., QIN, K., CAI, S. Joint compensation model for memory power amplifier and frequency-dependent nonlinear IQ impairments. Electronics Letters, 2011, vol. 47, no. 25, p. 1382–1384. DOI: 10.1049/el.2011.2996
  16. KIM, M., MARUICHI, Y., TAKADA, J. I. Parametric method of frequency dependent I/Q imbalance compensation for wideband quadrature modulator. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 1, p. 270–280. DOI: 10.1109/TMTT.2012.2228215
  17. LI, W., ZHANG, Y., HUANG, L. K., et al. Self- IQ-demodulation based compensation scheme of frequency-dependent IQ imbalance for wideband direct-conversion transmitters. IEEE Transactions on Broadcasting, 2015, vol. 61, no. 4, p. 666–673. DOI: 10.1109/TBC.2015.2465138
  18. VOET, K., HANDEL, P., BJORSELL, N., et al. Mirrored parallel Hammerstein predistortion for multitone generation. In Proceedings of IEEE International Instrumentation and Measurement Technology Conference. Hangzhou (China), 2011, p. 1–4. DOI: 10.1109/IMTC.2011.5944045
  19. MKADEM, F., FARES, M. C., BOUMAIZA, S., et al. Complexity reduced Volterra series model for power amplifier digital predistortion. Analog Integrated Circuits and Signal Processing, 2014, vol. 79, no. 2, p. 331–343. DOI: 10.1007/s10470-014-0266-4
  20. AZIZ, M., RAWAT, M., GHANNOUCHI, F. M. Low complexity distributed model for the compensation of direct conversion transmitter’s imperfections. IEEE Transactions on Broadcasting, 2014, vol. 60, no. 3, p. 568–574. DOI: 10.1109/TBC.2014.2343071
  21. KHAN, Z. A., ZENTENO, E., HANDEL, P., et al. Digital predistortion for joint mitigation of I/Q imbalance and MIMO power amplifier distortion. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 1, p. 322–333. DOI: 10.1109/TMTT.2016.2614933
  22. LIMEMICROSYSTEMS, UK. Limesdr qpcie, 2019. [Online] Available at:
  23. JOVANOVIĆ, B., MILENKOVIĆ, S. PA linearization by digital predistortion and peak to average power ratio reduction in software defined radios. Journal of Circuits Systems and Computers, 2020, vol. 29, no. 9, p. 1–19. DOI: 10.1142/S0218126620501479
  24. MAXIM INTEGRATED, MAX2616 PA. [Online] Available at:
  25. MESSAOUDI, N., FARES, M., BOUMAIZA, S., WOOD, J. Complexity reduced odd-order memory polynomial predistorter for 400-watt multi-carrier Doherty amplifier linearization. In Proceedings of 2008 IEEE MTT-S International Microwave Symposium. Atlanta (GA, USA), 2008, p. 419–422. DOI: 10.1109/MWSYM.2008.4633192
  26. SKYWORKS. SKY66294 PA. [Online] Available at:
  27. AFSARDOOST, S., ERIKSSON, T., FAGER, C. Digital predistortion using a vector-switched model. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 4, p. 1166–1174. DOI: 10.1109/TMTT.2012.2184295
  28. YAO, Y., JIN, Y., LI, M., et al. An accurate three-input nonlinear model for joint compensation of frequency-dependent I/Q imbalance and power amplifier distortion. IEEE Access, 2019, vol. 7, p. 140651–140664. DOI: 10.1109/ACCESS.2019.2944025

Keywords: Frequency dependent I/Q imbalance, digital predistortion, memory polynomial, power amplifier, PA linearization

S. Sharma, W. Yoon [references] [full-text] [DOI: 10.13164/re.2022.0155] [Download Citations]
Multiobjective Reinforcement Learning Based Energy Consumption in C-RAN enabled Massive MIMO

Multiobjective optimization has become a suitable method to resolve conflicting objectives and enhance the performance evaluation of wireless networks. In this study, we consider a multiobjective reinforcement learning (MORL) approach for the resource allocation and energy consumption in C-RANs. We propose the MORL method with two conflicting objectives. Herein, we define the state and action spaces, and reward for the MORL agent. Furthermore, we develop a Q-learning algorithm that controls the ON-OFF action of remote radio heads (RRHs) depending on the position and nearby users with goal of selecting the best single policy that optimizes the trade-off between EE and QoS. We analyze the performance of our Q-learning algorithm by comparing it with simple ON-OFF scheme and heuristic algorithm. The simulation results demonstrated that normalized ECs of simple ON-OFF, heuristic and Q-learning algorithm were 0.99, 0.85, and 0.8 respectively. Our proposed MORL-based Q-learning algorithm achieves superior EE performance compared with simple ON-OFF scheme and heuristic algorithms.

  1. BJORNSON, E., HOYDIS, J., SANGUINETTI, L. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency, Foundations and Trends in Signal Processing, 2017, vol. 11, no. 3–4, p. 154–655. DOI: 10.1561/2000000093
  2. LUO, S., ZHANG, R., LIM, T. J. Downlink and uplink energy minimization through user association and beam forming in CRAN. IEEE Transactions on Wireless Communications, 2015, vol. 14, no. 1, p. 494–508. DOI: 10.1109/TWC.2014.2352619
  3. PARK, S., CHAE, C.-B., BAHK, S. Large-scale antenna operation in heterogeneous cloud radio access networks: A partial centralization approach. IEEE Wireless Communications, 2015, vol. 22, no. 3, p. 32–40. DOI: 10.1109/MWC.2015.7143324
  4. SHARMA, S., YOON, W. Multiobjective optimization for energy efficiency in cloud radio access. International Journal of Engineering Research and Technology, 2019, vol. 12, no. 5, p. 607–610. ISSN: 0974-3154
  5. PENG, M., ZHANG, K., JIANG, J., et al. Energy-efficient resource assignment and power allocation in heterogeneous cloud radio access networks. IEEE Transactions on Vehicular Technology, 2015, vol. 64, no. 11, p. 5275–5287. DOI: 10.1109/TVT.2014.2379922
  6. SUTTON, R. S., BARTO, A. G. Reinforcement Learning: An Introduction. 2nd ed. Cambridge (MA): MIT Press, 2018. ISBN: 978-0262039246
  7. EL-AMINE, A., ITURRALDE, M., HASSAN, H. A. H., et al. A distributed Q-Learning approach for adaptive sleep modes in 5G networks. In 2019 IEEE Wireless Communications and Networking Conference (WCNC). Marrakesh (Morocco), 2019, p. 1–6. DOI: 10.1109/WCNC.2019.8885818
  8. ORTIZ, A., AL-SHATRI, H., LI, X., et al. Reinforcement learning for energy harvesting point-to-point communications. In Proceedings of the IEEE International Conference on Communications. Kuala Lumpur (Malaysia), 2016, p. 1–6. DOI: 10.1109/ICC.2016.7511405
  9. VAN OTTERLO, M., WIERING, M. Reinforcement learning and Markov decision processes. In Wiering, M., van Otterlo, M. (eds) Reinforcement Learning. Adaptation, Learning, and Optimization. Berlin, Heidelberg (Germany): Springer, 2012, vol. 12. DOI: 10.1007/978-3-642-27645-3_1
  10. CHEN, X., LI, N., WANG, J., et al. A dynamic clustering algorithm design for C-RAN based on multi-objective optimization theory. In IEEE 79th Vehicular Technology Conference (VTC Spring). Seoul (South Korea), 2014, p. 1–5. DOI: 10.1109/VTCSpring.2014.7022775
  11. SALEM, F. E., ALTMAN, Z., GATI, A., et al. Reinforcement learning approach for advanced sleep modes management in 5G networks. In 2018 IEEE Vehicular Technology Conference (VTCFall). Chicago (IL, USA), July 2018, p. 1–5. DOI: 10.1109/VTCFall.2018.8690555
  12. LIU, C., XU, X., HU, D. Multiobjective reinforcement learning: A comprehensive overview. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, vol. 45, no. 3, p. 385–398. DOI: 10.1109/TSMC.2014.2358639
  13. SHI, Y., ZHANG, J., LETAIEF, K. B. Group sparse beamforming for green cloud radio access networks. In Proceedings of Global Communications Conference (Globecom). Atlanta (GA, USA), 2013, p. 4662–4667. DOI: 10.1109/GLOCOMW.2013.6855687
  14. SUN, G., ADDO, P. C., WANG, G., et al. Energy efficient cell management by flow scheduling in ultra-dense networks. KSII Transactions on Internet and Information Systems, 2016, vol. 10, no. 9, p. 4108–4122. DOI: 10.3837/tiis.2016.09.005
  15. ZHUANG, B., GUO, D., HONIG, M. L. Energy-efficient cell activation, user association, and spectrum allocation in heterogeneous networks, IEEE Journal of Selected Areas in Communication, 2016, vol. 34, no. 4, p. 823–831. DOI: 10.1109/JSAC.2016.2544478
  16. NATARAJAN, S., TADEPALLI, P. Dynamic preferences in multi-criteria reinforcement learning. In Proceedings of the 22nd International Conference on Machine Learning. Bonn (Germany), 2005, p. 601–608. DOI: 10.1145/1102351.1102427
  17. SHARMA, S., YOON, W. Multi-objective energy efficient resource allocation for WPCN. International Journal of Engineering Research and Technology, 2018, vol. 11, no. 12, p. 2035–2043. ISSN: 0974-3154
  18. ROIJERS, D. M, VAMPLEW, P., WHITESON, S., et al. A survey of multi-objective sequential decision-making. Journal of Artificial Intelligence Research, 2013, vol. 48, p. 67–113. DOI: 10.1613/jair.3987
  19. YANG, R., SUN, X., NARASIMHAN, K. A generalized algorithm for multi-objective reinforcement learning and policy adaptation. In Proceedings of 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Vancouver (Canada), 2019, p. 1–12.
  20. HAO, Y., NI, Q., LI, H., et al. Robust multi-objective optimization for EE-SE tradeoff in D2D communications underlaying heterogeneous networks. IEEE Transaction on Communication, 2018, vol. 66, no. 10, p. 4936–4949. DOI: 10.1109/TCOMM.2018.2834920
  21. SAKULKAR, P., KRISHNAMACHARI, B. Online learning schemes for power allocation in energy harvesting communications. IEEE Transactions on Information Theory, 2018, vol. 64, no. 6, 4610–4628. DOI: 10.1109/TIT.2017.2773526
  22. SHENG, M., XU, C., WANG, X., et al. Utility-based resource allocation for multi-channel decentralized networks. IEEE Transactions on Communications, 2014, vol. 62, no. 10, p. 3610–3620. DOI: 10.1109/TCOMM.2014.2357028
  23. SUN, G., ZHANG, T., OWUSU BOATENG, G., et al. Revised reinforcement learning based on anchor graph hashing for autonomous cell activation in cloud-RANs. Future Generation Computer Systems, 2020, vol. 104, p. 60–73. DOI: 10.1016/j.future.2019.09.044

Keywords: Convergence, energy consumption, reinforcement learning, reward, optimization.