ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)



Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile

June 2020, Volume 29, Number 2 [DOI: 10.13164/re.2020-2]

Show all Hide all

V. Stopjakova, M. Kovac, M. Potocny [references] [full-text] [DOI: 10.13164/re.2020.0269] [Download Citations]
On-chip Energy Harvesting for Implantable Medical Devices

The paper brings an overview of main challenges in implantable medical devices (IMD) research area, where the main objective of discussion covers wireless power transferring (WPT) systems as the hot topic dedicated to energy harvesting that is still gaining in popularity. The paper is focused on electromagnetic-transfer principle, where full integration of the WPT systems on a chip is taken as the primary goal covering passive transducer and rectifier implementations. The presented research reveals many issues raised from the state of the art solutions. These solutions can or should be detailed investigated in the future research. Therefore, this paper discusses about so far hidden potential of fully integrated WPT systems, where both near-field and far-field approaches are included. Additionally, the discussion is also extended to a principle of power transfer efficiency (PTE) maximization through approaches such as matching and finding the optimal source/load together with rectifying and regulating issues.

  1. WEI, X., LIU, J. Power sources and electrical recharging strategies for implantable medical devices. Frontiers of Energy and Power Engineering in China, 2008, vol. 2, no. 1, p. 1–13. DOI: 10.1007/s11708- 008-0016-3
  2. DETERRE, M. Toward an Energy Harvester for Leadless Pacemakers. Ph.D. Dissertation, Paris-Sud University, 2013.
  3. BASAERI, H., CHRISTENSEN, D. B., ROUNDY, S. A review of acoustic power transfer for bio-medical implants. Smart Materials and Structures, 2016, vol. 25, no. 12, p. 123001. DOI: 10.1088/0964- 1726/25/12/123001
  4. AMAR, A. B., KOUKI, A. B., CAO, H. Power approaches for implantable medical devices. Sensors, 2015, vol. 15, no. 11, p. 28889–28914. DOI: 10.3390/s151128889
  5. XU, H., HANDWERKER, J., ORTMANNS, M. Telemetry for implantable medical devices: Part 2 - power telemetry. IEEE Solid-State Circuits Magazine, 2014, vol. 6, no. 3, p. 60–63. DOI: 10.1109/MSSC.2014.2327714
  6. SHI, B., LI, Z., FAN, Y. Implantable energy-harvesting devices. Advanced Materials, 2018, vol. 30, no. 44, p. 1801511. DOI: 10.1002/adma.201801511
  7. TSUI, C.Y, LI, X., KI, W.H., et al. Energy harvesting and power delivery for implantable medical devices. Foundations and Trends in Electronic Design Automation, 2013, vol. 7, no. 3, p. 179–246. DOI: 10.1561/1000000029
  8. SHARMA, T., NAIK, S., GOPAL, A., ZHANG, J.X. Emerging trends in bioenergy harvesters for chronic powered implants. MRS Energy & Sustainability, 2015, vol. 2, p. E7. DOI: 10.1557/mre.2015.8
  9. SHI, B., LI, Z., FAN, Y. Implantable energy-harvesting devices. Advanced Materials, 2018, vol. 30, no. 44, p. 1801511. DOI: 10.1002/adma.201801511
  10. CHANDRAKASAN, A. P., VERMA, N., DALY, D. C. Ultralowpower electronics for biomedical applications. Annual Review of Biomedical Engineering, 2008, vol. 10, p. 247–274. DOI: 10.1146/annurev.bioeng.10.061807.160547
  11. RITTER, R., HANDWERKER, J., LIU, T., et al. Telemetry for implantable medical devices: Part 1-media properties and standards. IEEE Solid-State Circuits Magazine, 2014, vol. 6, no. 2, p. 47–51. DOI: 10.1109/MSSC.2014.2315052
  12. LU, F., ZHANG, H., MI, C. A review on the recent development of capacitive wireless power transfer technology. Energies, 2017, vol. 10, no. 11, p. 1752. DOI: 10.3390/en10111752
  13. AYAZIAN, S., HASSIBI, A. Delivering optical power to subcutaneous implanted devices. In IEEE International Conference of the Engineering in Medicine and Biology Society. Boston (USA), 2011, p. 2874–2877. DOI: 10.1109/IEMBS.2011.6090793
  14. AYAZIAN, S., AKHAVAN, V.A, SOENEN, E., et al. A photovoltaicdriven and energy-autonomous CMOS implantable sensor. IEEE Transactions on Biomedical Circuits and Systems, 2012, vol. 6, no. 4, p. 336–343. DOI: 10.1109/TBCAS.2011.2179030
  15. DENISOV, A., YEATMAN, E. Ultrasonic vs. inductive power delivery for miniature biomedical implants. In International Conference on Body Sensor Networks. Singapore, 2010, p. 84–89. DOI: 10.1109/BSN.2010.27
  16. SANNI, A., VILCHES, A., TOUMAZOU, C. Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical devices. IEEE Transactions on Biomedical Circuits and Systems, 2012, vol. 6, no. 4, p. 297–308. DOI: 10.1109/TBCAS.2011.2175390
  17. SHADID, R., NOGHANIAN, S. A literature survey on wireless power transfer for biomedical devices. International Journal of Antennas and Propagation, 2018, vol. 2018, p. 1–11 DOI: 10.1155/2018/4382841
  18. WANG, M.L., BALTSAVIAS, S., CHANG, T.C., et al. Wireless data links for next-generation networked micro-implantables. In IEEE Custom Integrated Circuits Conference (CICC). San Diego (USA), 2018, p. 1–9. DOI: 10.1109/CICC.2018.8357096
  19. ERFANI, R., MAREFAT, F., SODAGAR, A.M, et al. Transcutaneous capacitive wireless power transfer (c-wpt) for biomedical implants. 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 2017, p. 1–4, DOI: 10.1109/ISCAS.2017.8050940
  20. FERGUSON, J.E, REDISH, A.D. Wireless communication with implanted medical devices using the conductive properties of the body. Expert Review of Medical Devices, 2011, vol. 8, no. 4, p. 427–433. DOI: 10.1586/erd.11.16
  21. DOVE, I. Analysis of Radio Propagation Inside the Human Body for in-Body Localization Purposes. Master’s Thesis, University of Twente, 2014.
  22. ZARGHAM, M., GULAK, P. G. Fully integrated on-chip coil in 0.13µm CMOS for wireless power transfer through biological media. IEEE Transactions on Biomedical Circuits and Systems, 2015, vol. 9, no. 2, p. 259–271. DOI: 10.1109/TBCAS.2014.2328318
  23. RADIOM, S., MOHAMAADPOUR-AGHDAM, K., VANDENBOSCH, G.A.E., et al. A monolithically integrated on-chip antenna in 0.18µm standard CMOS technology for far-field short-range wireless powering. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 631–633. DOI: 10.1109/LAWP.2010.2052450
  24. RADIOM, S., BAGHAEI-NEJAD, M., MOHAMAADPOURAGHDAM, K., et al. Far-field on-chip antennas monolithically integrated in a wireless-powered 5.8-GHz downlink/uwb uplink rfid tag in 0.18-µm standard CMOS. IEEE Journal of Solid-State Circuits, 2010, vol. 45, no. 9, p. 1746–1758. DOI: 10.1109/JSSC.2010.2055630
  25. POPPLEWELL, P., KARAM, V., SHAMIM, A., et al. A 5.2-GHz BFSK transceiver using injection-locking and an on-chip antenna. IEEE Journal of Solid-State Circuits, 2008, vol. 43, no. 4, p. 981–990. DOI: 10.1109/JSSC.2008.917516
  26. BEHDAD, N., SHI, D., HONG, W., et al. A 0.3mm2 miniaturized x-band on-chip slot antenna in 0.13µm CMOS. In IEEE Radio Frequency Integrated Circuits Symposium (RFIC). Honolulu (USA), 2007, p. 441–444. DOI: 10.1109/RFIC.2007.380919
  27. KIKKAWA, T. Gaussian monocycle pulse CMOS transmitter with on-chip integrated antenna and high-k dielectric slab waveguide. In IEEE 11th International Conference on Solid-State and Integrated Circuit Technology. Xi’an (China), 2012, p. 1–4. DOI: 10.1109/ICSICT.2012.6467712
  28. KULKARNI, V. V., MUQSITH, M., NIITSU, K., et al. A 750 Mb/s, 12 pJ/b, 6-to-10 GHz CMOS IR-UWB transmitter with embedded on-chip antenna. IEEE Journal of Solid-State Circuits, 2009, vol. 44, no. 2, p. 394–403. DOI: 10.1109/JSSC.2008.2011034
  29. SUSLOV, M., TIMOSHENKO, A., LOMOVSKAYA, K. Survey and analysis of 0.18µm CMOS integrated antennas on 5.8 GHz for RFD. In IX International Symposium on Telecommunications (BIHTEL). Sarajevo (Bosnia & Herzegovina), 2012, p. 1–6. DOI: 10.1109/BIHTEL.2012.6412069
  30. LE, H., FONG, N., LUONG, H.C. RF energy harvesting circuit with on-chip antenna for biomedical applications. In International Conference on Communications and Electronics. Nha Trang (Vietnam), 2010, p. 115–117. DOI: 10.1109/ICCE.2010.5670693
  31. STOPJAKOVA, V., KOVAC, M., ARBET, D., et al. Towards energyautonomous integrated systems through ultra-low voltage analog IC design. In 26th International Conference Mixed Design of Integrated Circuits and Systems (MIXDES). Rzeszow (Poland), 2019, p. 38–45. DOI: 10.23919/MIXDES.2019.8787196
  32. MERLI, F.Implantable Antennas for Biomedical Applications. EPFL, Technical Report, 2011.
  33. CHEEMA, H. M., SHAMIM, A. The last barrier: On-chip antennas. IEEE Microwave Magazine, 2013, vol. 14, no. 1, p. 79–91. DOI: 10.1109/MMM.2012.2226542
  34. KARIM, R., IFTIKHAR, A., IJAZ, B., et al. The potentials, challenges, and future directions of on-chip-antennas for emerging wireless applications - A comprehensive survey. IEEE Access, 2019, vol. 7, p. 173897–173934. DOI: 10.1109/ACCESS.2019.2957073
  35. KHALEGHI, A., CHAVEZ-SANTIAGO, R., BALASINGHAM, I. An improved ultra wideband channel model including the frequencydependent attenuation for in-body communications. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego (USA), 2012, p. 1631–1634. DOI: 10.1109/EMBC.2012.6346258
  36. VOLAKIS, J. L., CHEN, C. C., FUJIMOTO K. Small Antennas: Miniaturization Techniques & Applications. McGraw-Hill, 2010. ISBN: 978-0071625531
  37. SONG, Y., WU, Y., SUN, M., et al. An on-chip antenna integrated with a transceiver in 0.18-µm CMOS technology. IEICE Electronics Express, 2017, vol. 14, no. 19, p. 20170836–20170836. DOI: 10.1587/elex.14.20170836
  38. HOU, D., HONG, W., GOH, W., et al. D-band on-chip higherorder-mode dielectric-resonator antennas fed by half-mode cavity in CMOS technology. IEEE Antennas and Propagation Magazine, 2014, vol. 56, no. 3, p. 80–89. DOI: 10.1109/MAP.2014.6867684
  39. LI C., CHIU, T. 340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications. IEEE Transactions on Terahertz Science and Technology, 2017, vol. 7, no. 3, p. 284–294. DOI: 10.1109/TTHZ.2017.2670234
  40. DENG, X., LI, Y., LIU, C., et al. 340 GHz on-chip 3-D antenna with 10 dBi gain and 80% radiation efficiency. IEEE Transactions on Terahertz Science and Technology, 2015, vol. 5, no. 4, p. 619–627. DOI: 10.1109/TTHZ.2015.2424682
  41. KHAN, W.T., CAGRI ULUSOY, A., DUFOUR, G., et al. A d-band micromachined end-fire antenna in 130-nm sige biCMOS technology. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 6, p. 2449–2459. DOI: 10.1109/TAP.2015.2416751
  42. BIJUMON, P.V., ANTAR, Y.M.M., FREUNDORFER, A.P., et al. Dielectric resonator antenna on silicon substrate for system on-chip applications. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 11, p. 3404–3410. DOI: 10.1109/TAP.2008.2005537
  43. BABAKHANI, A., GUAN, X., KOMIJANI, A., NATARAJAN, A., et al. A 77-GHz phased-array transceiver with on-chip antennas in silicon: Receiver and antennas. IEEE Journal of Solid-State Circuits, 2006, vol. 41, no. 12, p. 2795–2806. DOI: 10.1109/JSSC.2006.884811
  44. ALEXOPOULOS, N., JACKSON, D. Fundamental superstrate (cover) effects on printed circuit antennas. IEEE Transactions on Antennas and Propagation, 1984, vol. 32, no. 8, p. 807–816. DOI: 10.1109/TAP.1984.1143433
  45. DISSANAYAKE, T., ESSELLE, K. P., YUCE, M. R. Dielectric loaded impedance matching for wideband implanted antennas. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 10, p. 2480–2487. DOI: 10.1109/TMTT.2009.2029664
  46. DISSANAYAKE, T., ESSELLE, K. P., YUCE, M. R. UWB antenna impedance matching in biomedical implants. In 2009 3rd European Conference on Antennas and Propagation. Berlin (Germany), 2009, p. 3523–3526. ISSN: 2164-3342
  47. LIU Y. C. RF Energy Harvesting for Implantable ICS With on-Chip Antenna. Master’s Thesis, University of Central Florida, 2014. Available at:
  48. CHO, S., XUE, N., CAULLER, L., et al. A SU-8-based fully integrated biocompatible inductively powered wireless neurostimulator. Journal of Microelectromechanical Systems, 2013, vol. 22, no. 1, p. 170–176. DOI: 10.1109/JMEMS.2012.2221155
  49. FENG, P., CONSTANDINOU, T. G., YEON, P., et al. Millimeter-scale integrated and wirewound coils for powering implantable neural microsystems. In IEEE Biomedical Circuits and Systems Conference (BioCAS). Turin (Italy), 2017, p. 1–4. DOI: 10.1109/BIOCAS.2017.8325184
  50. YEON, P., MIRBOZORGI, S.A., ASH, B., et al. Fabrication and microassembly of a mm-sized floating probe for a distributed wireless neural interface. Micromachines, 2016, vol. 7, no. 9, p. 1–17. DOI: 10.3390/mi7090154
  51. BIEDERMAN, W., YEAGER, D.J., NAREVSKY, N., et al. A fullyintegrated, miniaturized (0.125 mm2 ) 10.5µw wireless neural sensor. IEEE Journal of Solid-State Circuits, 2013, vol. 48, no. 4, p. 960–970. DOI: 10.1109/JSSC.2013.2238994
  52. JOU, A. Y., PAJOUHI, H., AZADEGAN, R., et al. A CMOS integrated rectenna for implantable applications. In IEEE MTT-S International Microwave Symposium (IMS). San Francisco (USA), 2016, p. 1–3. DOI: 10.1109/MWSYM.2016.7540250
  53. RAHMANI, H., BABAKHANI, A. A dual-mode RF power harvesting system with an on-chip coil in 180-nm SOI CMOS for millimeter-sized biomedical implants. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 67, no. 1, p. 414–428. DOI: 10.1109/TMTT.2018.2876239
  54. OUDA, M. H. ARSALAN, M., MARNAT, L., et al. 5.2-GHz RF power harvester in 0.18µm CMOS for implantable intraocular pressure monitoring. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 5, p. 2177–2184. DOI: 10.1109/TMTT.2013.2255621
  55. ZARGHAM, M., GULAK, P.G. A 0.13µm CMOS integrated wireless power receiver for biomedical applications. In Proceedings of the ESSCIRC (ESSCIRC). Bucharest (Romania), 2013, p. 137–140. DOI: 10.1109/ESSCIRC.2013.6649091
  56. RAHMANI, H., BABAKHANI, A. A wireless power receiver with an on-chip antenna for millimeter-size biomedical implants in 180 nm SOI CMOS. IEEE MTT-S International Microwave Symposium (IMS). Honolulu (USA), 2017, p. 300–303. DOI: 10.1109/MWSYM.2017.8059103
  57. CABRRRA, F. L., DE SOUSA, F. R. Achieving optimal efficiency in energy transfer to a CMOS fully integrated wireless power receiver. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 11, p. 3703–3713. DOI: 10.1109/TMTT.2016.2601916
  58. LU, X., WANG, P., NIYATO, D., et al. Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys Tutorials, 2015, vol. 17, no. 2, p. 757–789. DOI: 10.1109/COMST.2014.2368999
  59. PARK, J., KIM, C., AKININ, A., et al. Wireless powering of mm-scale fully-on-chip neural interfaces. In IEEE Biomedical Circuits and Systems Conference (BioCAS). Turin (Italy), 2017, p. 1–4. DOI: 10.1109/BIOCAS.2017.8325186
  60. HA, S., AKININ, A., PARK, J., et al. A 16-channel wireless neural interfacing soc with RF-powered energy-replenishing adiabatic stimulation. In Symposium on VLSI Circuits (VLSI Circuits). Kyoto (Japan), 2015, p. C106–C107. DOI: 10.1109/VLSIC.2015.7231341
  61. KIM, C., HA, S., AKININ, A., et al. Design of miniaturized wireless power receivers for mm-sized implants. In IEEE Custom Integrated Circuits Conference (CICC). Austin (USA), 2017, p. 1–8. DOI: 10.1109/CICC.2017.7993703
  62. ZARGHAM, M., GULAK, P. G. Maximum achievable efficiency in near-field coupled power-transfer systems. IEEE Transactions on Biomedical Circuits and Systems, 2012, vol. 6, no. 3, p. 228–245. DOI: 10.1109/TBCAS.2011.2174794
  63. PACHLER, W., BOSCH, W., HOLWEG, G., et al. A novel booster antenna design coupled to a one square millimeter coil-on-chip RFID tag enabling new medical applications. In European Microwave Conference. Nuremberg (Germany), 2013, p. 1003–1006. DOI: 10.23919/EuMC.2013.6686829
  64. WANG, C., LIAO, H., XIONG, Y., et al. A physics-based equivalent-circuit model for on-chip symmetric transformers with accurate substrate modeling. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 4, p. 980–990. DOI: 10.1109/TMTT.2009.2014479
  65. YUE, C. P. WONG, S. S. Physical modeling of spiral inductors on silicon. IEEE Transactions on Electron Devices, 2000, vol. 47, no. 3, p. 560–568. DOI: 10.1109/16.824729
  66. ZOU, W., ZENG, Y. An analytical series resistance model for on-chip stacked inductors with inclusion of proximity effect between stacked layers. In IEEE 11th International Conference on ASIC (ASICON). Chengdu (China), 2015, p. 1–4. DOI: 10.1109/ASICON.2015.7517081
  67. DANESH, M., LONG, J. R. Differentially driven symmetric microstrip inductors. IEEE Transactions on Microwave Theory and Techniques, 2002, vol. 50, no. 1, p. 332–341. DOI: 10.1109/22.981285
  68. MURPHY, O. H., MCCARTHY, K. G., DELABIE, C. J. P., et al. Design of multiple-metal stacked inductors incorporating an extended physical model. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 6, p. 2063–2072. DOI: 10.1109/TMTT.2005.848813
  69. KOVAC, M., STOPJAKOVA, V., ARBET, D., et al. Investigation of on-chip coil in 130 nm standard CMOS for WPT and bio-applications. In International Conference on Emerging eLearning Technologies and Applications (ICETA). Vysoke Tatry (Slovakia), 2016, p. 177– 182. DOI: 10.1109/ICETA.2016.7802071
  70. STOPJAKOVA, V., RAKUS, M., KOVAC, M., et al. Ultralow voltage analog IC design: Challenges, methods and examples. Radioengineering, 2018, vol. 27, no. 1, p. 171–185. DOI: 10.13164/re.2018.0171
  71. ZHANG, Y., MA, D. B. Simo power converters with adaptive PCCM operation. Power Management Integrated Circuits. CRC Press, 2017, p. 71–97. DOI: 10.1201/9781315373362-3
  72. LEE, M., CHOI, Y., KIM, J. A 500-MHz, 0.76-w/mm2 power density and 76.2% power efficiency, fully integrated digital buck converter in 65-nm CMOS. IEEE Transactions on Industry Applications, 2016, vol. 52, no. 4, p. 3315–3323. DOI: 10.1109/TIA.2016.2541079
  73. WIBBEN, J., HARJANI, R. A high-efficiency DC–DC converter using 2 nH integrated inductors. IEEE Journal of Solid-State Circuits, 2008, vol. 43, no. 4, p. 844–854. DOI: 10.1109/JSSC.2008.917321
  74. WENS, M., STEYAERT, M. Design and Implementation of FullyIntegrated Inductive DC-DC Converters in Standard CMOS. Springer Science & Business Media, 2011. ISBN: 940071436X
  75. KUO, N., ZHAO, B., NIKNEJAD, A. M. Novel inductive wireless power transfer uplink utilizing rectifier third-order nonlinearity. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 1, p. 319–331. DOI: 10.1109/TMTT.2017.2700274
  76. LEE, H., GHOVANLOO, M. An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively powered applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, vol. 58, no. 8, p. 1749–1760. DOI: 10.1109/TCSI.2010.2103172
  77. LAM, Y., KI, W., TSUI, C. Integrated low-loss CMOS active rectifier for wirelessly powered devices. IEEE Transactions on Circuits and Systems II: Express Briefs, 2006, vol. 53, no. 12, p. 1378–1382. DOI: 10.1109/TCSII.2006.885400
  78. GUO, S., LEE, H. An efficiency-enhanced CMOS rectifier with unbalanced-biased comparators for transcutaneous-powered highcurrent implants. IEEE Journal of Solid-State Circuits, 2009, vol. 44, no. 6, p. 1796–1804. DOI: 10.1109/JSSC.2009.2020195
  79. ZHAO, J., GAO, Y. A 6.78-200 MHz offset-compensated active rectifier with dynamic logic comparator for mm-size wirelessly powered implants. In IEEE Asian Solid-State Circuits Conference (A-SSCC). Tainan (Taiwan), 2018, p. 111–114. DOI: 10.1109/ASSCC.2018.8579325
  80. HASHEMI AGHCHEH BODY, S.S. High-Efficiency Low-Voltage Rectifiers for Power Scavenging Systems. Ph.D. Dissertation, Ecole Polytechnique de Montreal, 2011. Available at:
  81. MAHMOUD, M., ABDEL-RAHMAN, A. B., FAHMY, G. A., et al. Dynamic threshold compensated, low voltage CMOS energy harvesting rectifier for UHF applications. In IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS). Abu Dhabi (United Arab Emirates), 2016, p. 1–4. DOI: 10.1109/MWSCAS.2016.7870052
  82. KAMALINEJAD, P., KEIKHOSRAVY, K., MIRABBASS, S., et al. An efficiency enhancement technique for CMOS rectifiers with low start-up voltage for UHF RFID. In International Green Computing Conference Proceedings. Arlington (USA), 2013, p. 1–6. DOI: 10.1109/IGCC.2013.6604483
  83. BAKHHTIAR, A. S., JALALI, M. S. MIRABBASS, S. A highefficiency CMOS rectifier for low-power RFID tags. In IEEE International Conference on RFID. Orlando (USA), 2010, p. 83–88. DOI: 10.1109/RFID.2010.5467271
  84. PAN, D., ZHANG, F., HUANG, L., et al. A common-gate bootstrapped CMOS rectifier for VHF isolated DC–DC converter. Journal of Semiconductors, 2017, vol. 38, no. 5, p. 055002. DOI: 10.1088/1674-4926/38/5/055002
  85. HASHEMI, S. S., SAWAN, M., SAVARIA, Y. A high-efficiency lowvoltage CMOS rectifier for harvesting energy in implantable devices. IEEE Transactions on Biomedical Circuits and Systems, 2012, vol. 6, no. 4, p. 326–335. DOI: 10.1109/TBCAS.2011.2177267
  86. PETERS, C., HANDWERKER, J., HENRICI, F., et al. Experimental results on power efficient single-poly floating gate rectifiers. In IEEE International Symposium on Circuits and Systems. Taipei (Taiwan), 2009, p. 1097–1100. DOI: 10.1109/ISCAS.2009.5117951
  87. MANDAL, S., SARPESHKAR, R. Low-power CMOS rectifier design for RFID applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2007, vol. 54, no. 6, p. 1177–1188. DOI: 10.1109/TCSI.2007.895229
  88. KAMALINEJAD, P., KEIKJOSRAVY, K., MIRABBASI, S., et al. A CMOS rectifier with an extended high-efficiency region of operation. In IEEE International Conference on RFID-Technologies and Applications (RFID-TA). Johor Bahru (Malaysia), 2013, p. 1–6. DOI: 10.1109/RFID-TA.2013.6694527
  89. MOGHADDAM, A. K., CHUAH, J. H., RAMIAH, H., et al. A 73.9%-Efficiency CMOS rectifier using a lower DC feeding (LDCF) self-body-biasing technique for far-field RF energyharvesting systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, vol. 64, no. 4, p. 992–1002. DOI: 10.1109/TCSI.2016.2623821
  90. TSAI, J., KUO, C., LIN, S., et al. A wirelessly powered CMOS electrochemical sensing interface with power-aware RFDC power management. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, vol. 65, no. 9, p. 2810–2820. DOI: 10.1109/TCSI.2018.2797238
  91. JENDERNALIK, W., JAKUSZ, J., BLAKIEWICZ, G., et al. A high-efficient low-voltage rectifier for CMOS technology. Metrology and Measurement Systems, 2016, vol. 23, no. 2, p. 261–268. DOI: 10.1515/mms-2016-0017
  92. MA, Q., HAIDER, M. R., MASSOUD, Y. Low-loss rectifier for RF powering of implantable biosensing devices. In IEEE Wireless Microwave Technology Conference (WAMICON). Cocoa Beach (USA), 2012, p. 1–4. DOI: 10.1109/WAMICON.2012.6208452
  93. KKELIS, G., YATES, D. C., MITCHESON, P. D. Class-E halfwave zero dv/dt rectifiers for inductive power transfer. IEEE Transactions on Power Electronics, 2017, vol. 32, no. 11, p. 8322–8337. DOI: 10.1109/TPEL.2016.2641260
  94. KIM, C., PARK, J., AKININ, A., et al. A fully integrated 144 MHz wireless-power-receiver-on-chip with an adaptive buck-boost regulating rectifier and low-loss h-tree signal distribution. In IEEE Symposium on VLSI Circuits (VLSI-Circuits). Honolulu (USA), 2016, p. 1–2. DOI: 10.1109/VLSIC.2016.7573492
  95. KIM, C., HA, S., PARK, J., et al. A 144-MHz fully integrated resonant regulating rectifier with hybrid pulse modulation for mm-sized implants. IEEE Journal of Solid-State Circuits, 2017, vol. 52, no. 11, p. 3043–3055. DOI: 10.1109/JSSC.2017.2734901
  96. SADEGHI GOUGHERI, H., KIANI, M. An inductive voltage- /current-mode integrated power management with seamless mode transition and energy recycling. IEEE Journal of Solid-State Circuits, 2019, vol. 54, no. 3, p. 874–884. DOI: 10.1109/JSSC.2018.2884322
  97. HALPERN, M. E., NG, D. C. Optimal tuning of inductive wireless power links: Limits of performance. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, vol. 62, no. 3, p. 725–732. DOI: 10.1109/TCSI.2014.2386771
  98. GUO, Y., ZHU, D., JEGADEESAN, R. Inductive wireless power transmission for implantable devices. In International Workshop on Antenna Technology (iWAT). Hong Kong (China), 2011, p. 445–448. DOI: 10.1109/IWAT.2011.5752354
  99. KIANI, M., GHOVANLOO, M. A figure-of-merit for design of high performance inductive power transmission links for implantable microelectronic devices. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego (USA), 2012, p. 847–850. DOI: 10.1109/TIE.2012.2227914
  100. KIANI, M. GHOVANLOO, M. A figure-of-merit for designing highperformance inductive power transmission links. IEEE Transactions on Industrial Electronics, 2013, vol. 60, no. 11, p. 5292–5305. DOI: 10.1109/TIE.2012.2227914
  101. SEO, D. W., LEE, J. H., LEE, H. S. Study on two-coil and four-coil wireless power transfer systems using z-parameter approach. ETRI Journal, 2016, vol. 38, no. 3, p. 568–578. DOI: 10.4218/etrij.16.0115.0692
  102. KIM, J., KIM, D., PARK, Y. Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices. IEEE Transactions on Industrial Electronics, 2015, vol. 62, no. 5, p. 2807–2813. DOI: 10.1109/TIE.2014.2365751
  103. KIANI, M., LEE, B., YEON, P., et al. A q-modulation technique for efficient inductive power transmission. IEEE Journal of Solid-State Circuits, 2015, vol. 50, no. 12, p. 2839–2848. DOI: 10.1109/JSSC.2015.2453201
  104. VISSER, H. J., KEYROUZ, S., SMOLDERS, A. B. Optimized rectenna design. Wireless Power Transfer, 2015, vol. 2, no. 1, p. 44–50. DOI: 10.1017/wpt.2014.14
  105. SUN, J., KARIMI, K. J. Small-signal input impedance modeling of line-frequency rectifiers. IEEE Transactions on Aerospace and Electronic Systems, 2008, vol. 44, no. 4, p. 1489–1497. DOI: 10.1109/TAES.2008.4667724
  106. HAMEED, Z., MOEZ, K. Design of impedance matching circuits for rf energy harvesting systems. Microelectronics Journal, 2017, vol. 62, p. 49–56. DOI: 10.1016/j.mejo.2017.02.004
  107. KOTANI, K., ITO, T. High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs. In IEEE Asian Solid-State Circuits Conference. Jeju (South Korea), 2007, p. 119–122. DOI: 10.1109/ASSCC.2007.4425746
  108. DAI, H., LU, Y., LAW, M. K., et al. A review and design of the on-chip rectifiers for RF energy harvesting. In IEEE International Wireless Symposium (IWS). Shenzhen (China), 2015, p. 1–4. DOI: 10.1109/IEEE-IWS.2015.7164642
  109. YEO, K. H., ALI, S. H. M., MENON, P.S., et al. Comparison of CMOS rectifiers for micropower energy harvesters. 2015 IEEE Conference on Energy Conversion (CENCON). Johor Bahru (Malaysia), 2015, p. 419–423. DOI: 10.1109/CENCON.2015.7409581
  110. KAROLAK, D., TARIS, T., DEVAL, Y., et al. Design comparison of low-power rectifiers dedicated to RF energy harvesting. In 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). Seville (Spain), 2012, p. 524–527. DOI: 10.1109/ICECS.2012.6463693
  111. POTOCNY, M., STOPJAKOVA, V., KOVAC, M. Self Vth– compensating CMOS on–chip rectifier for inductively powered implantable medical devices. In IEEE 21st International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS). Budapest (Hungary), 2018, p. 158–161. DOI: 10.1109/DDECS.2018.00035
  112. POTOCNY, M., KOVAC, M., ARBET, D., et al. A 200 MHz RF wireless power transfer receiver for implantable medical devices fully integrated in 130 nm CMOS. In 16th Biennial Baltic Electronics Conference (BEC). Tallinn (Estonia), 2018, p. 1–5. DOI: 10.1109/BEC.2018.8600988
  113. FINKENZELLER, K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication. 3rd ed. Hoboken, NJ: Wiley, 2010. ISBN: 9780471988519
  114. POTOCNY, M., STOPJAKOVA, V., KOVAC, M. Measurement of a wireless power transfer system with a fully integrated receiver. In 17th International Conference on Emerging eLearning Technologies and Applications (ICETA). Stary Smokovec (Slovakia), 2019, p. 655–660. DOI: 10.1109/ICETA48886.2019.9039985

Keywords: Wireless power transferring systems, energy harvesting, on-chip WPT implementation, electromagnetic-transfer principle, on-chip antennas

N. M. Albadri, D. V. Thiel, H. G. Espinosa [references] [full-text] [DOI: 10.13164/re.2020.0285] [Download Citations]
Wearable Slot Antenna for Biomedical Applications: Mutual Coupling and External Interference

A small slot antenna has desirable characteristics for radio communications and location of an internal transceiver in-vivo medical applications. The effect of coupling between two identical antennas on the human torso was measured between 2.1 GHz antennas on the skin surface. The effect of an external field was measured as a function of the angle in the horizontal plane to quantify noise isolation. The perimeter separation loss was approximately 0.25 dB/mm. The external radio source induces currents in the soft conducting tissue resulting in a sinc radiation pattern for the antenna/body combination with a front-to-back ratio of approximately 12 dB. As the UHF band is commonly used in many non-medical applications, there is concern that external radio sources can result in a reduced signal to noise ratio and perturbed field strength measurements on the skin.

  1. FERNANDEZ, M, THIEL, D. V., ARRINDA, A., et al. An inward directed antenna for gastro-intestinal radio pill tracking at 2.45 GHz. Microwave and Optical Technology Letters, 2018, vol. 60, no. 7, p 1644–1649. DOI: 10.1002/MOP/31217
  2. KING, R. W. P., OWENS, M., WU, T. T. Lateral Electromagnetic Waves. New York, (USA): Springer, 1992. ISBN: 9781461391760
  3. KANESAN, M., THIEL, D. V., O’KEEFE, S. G. A robust method of calculating the effective length of a conductive strip on an ungrounded dielectric substrate. Progress In Electromagnetics Research M, 2014, vol. 35, p. 57–66. DOI: 10.2528/PIERM13122404
  4. EMELYANENKO, A., O’KEEFE, S. G., ESPINOSA, H. G., et al. Surface field measurements from a buried UHF transmitter: Theory, modelling and experimental results. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 8, p. 4389–4393. DOI: 10.1109/TAP.2017.2710225
  5. STEPHANSEN, E. T. Clear-air propagation on line-of-sight radio paths: A review. Radio Science, 1981, vol. 16, no. 5, p. 609–629. DOI: 10.1029/RS016i005p00609
  6. CHAVEZ-SANTIAGO, R., GARCIA-PARDO, C., FORNESLEAL, A., et al. Experimental path loss models for in-body communications within 2.36–2.5 GHz. IEEE Journal of Biomedical and Health Informatics, 2015, vol. 19, no. 3, p. 930–937. DOI: 10.1109/JBHI.2015.2418757
  7. SALCHAK, Y. A., ESPINOSA, H. G., THIEL, D. V. Modelling the surface field from an ingested radio transmitter with an approximate attenuation model for gastroenterology investigations. IEEE Transactions on Biomedical Engineering, 2020, vol. 67, no. 2, p. 504–511. DOI: 10.1109/TBME.2019.2916632
  8. ULABY, F. T., MICHIELSSEN, E., RAVAIOLI, U. Fundamentals of Applied Electromagnetics. 6th ed. Boston (Massachusetts, USA): Prentice Hall, 2010. ISBN: 978- 0132139311
  9. GABRIEL, S., LAU, R., GABRIEL, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine & Biology, 1996, vol. 41, no. 11, p. 2251–2269. DOI: 10.1088/0031-9155/41/11/002
  10. ARIF, A., ZUBAIR, M., ALI, M., et al. A compact, low-profile fractal antenna for wearable on-body WBAN applications, IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 5, p. 981–985. DOI: 10.1109/LAWP.2019.2906829
  11. LIU, Y., LEVITT, A., KARA, C., et al. An improved design of wearable strain sensor based on knitted RFID technology. In IEEE Conference on Antenna Measurements & Applications (CAMA). Syracuse (NY, USA), 2016, p. 1–4. DOI: 10.1109/CAMA.2016.7815769
  12. AGNEESSENS, S., LEMEY, S., VERVUST, T., et al. Wearable, small, and robust: The circular quarter-mode textile antenna. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1482–1485. DOI: 10.1109/LAWP.2015.2389630
  13. KUMPUNIEMI, T., MAKELA, J. P., HAMALAINEN, M., Human body effect on static UWB WBAN off-body radio channels. In 13th EAI International Conference on Body Area Networks (BODYNET). Oulu (Finland), 2018, vol. 2, p. 1–10. DOI: 10.1007/978-3-030-29897-5_2
  14. SALONEN, P., RAHMAT-SAMII, Y., KIVIKOSKI, M. Wearable antennas in the vicinity of human body. In IEEE Antennas and Propagation Society Symposium. Monterey (CA, USA), 2004, vol. 1, p. 467–470. DOI: 10.1109/APS.2004.1329675
  15. ABBAS, S. M., ZAHRA, H., HASHMI, R., et al. Compact onbody antennas for wearable communication systems. In International Workshop on Antenna Technology (iWAT). Miami (FL, USA), 2019, p. 65–66. DOI: 10.1109/IWAT.2019.8730638
  16. KIOURTI, A., NIKITA, K. S. A review of in-body biotelemetry devices: Implantables, ingestibles, and injectables. IEEE Transactions on Biomedical Engineering, 2017, vol. 64, no. 7, p. 1422–1430. DOI: 10.1109/TBME.2017.2668612
  17. FERNANDEZ, M., ESPINOSA, H. G., THIEL, D. V., et al. Wearable slot antenna at 2.45 GHz for off-body radiation: Analysis of efficiency, frequency shift, and body absorption. Bioelectromagnetics, 2018, vol. 39, no. 1, p. 25–34. DOI: 10.1002/BEM.22081
  18. FERNANDEZ, M., ESPINOSA, H. G., GUERRA, D., et al. RF energy absorption in human bodies due to wearable antennas in the 2.4 GHz frequency band. Bioelectromagnetics, 2020, vol. 41, no. 1, p. 73–79. DOI: 10.1002/bem.22229
  19. ALBADRI, N., SALCHAK, Y. A., ESPINOSA, H. G., et al. E-field distribution in ex-vivo porcine skin layer from a subsurface UHF transmitter. In Proceedings of the 14th European Conference on Antennas and Propagation (EuCAP), 2020.
  20. WANG, L., HU, C., TIAN, L., et al. A novel radio propagation radiation model for location of the capsule in GI tract. In 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). Guilin (China), 2009, p. 2332–2337. DOI: 10.1109/ROBIO.2009.5420456

Keywords: Wearable slot antenna, electromagnetic interference, noise, mutual coupling, surface fields

A. A. Kucharski [references] [full-text] [DOI: 10.13164/re.2020.0291] [Download Citations]
Resonances in Dielectric Bodies of Revolution -- FIT-MoM Analysis

In this paper the Finite Integration Technique (FIT) hybridized with the Method-of-Moments (MoM) is used to find resonance frequencies and quality factors of open cylindrical dielectric resonators (CDRs). The technique is based on the previously developed formulation for scattering problems, with the application of root searching algorithm to find zeros of the final matrix determinant in the complex frequency plane. The method is validated by comparison of obtained results with the results of simulations done using other methods, and with measurement data found in the literature.

  1. COHN, S. B. Microwave bandpass filters containing high-Q dielectric resonators. IEEE Transactions on Microwave Theory and Techniques, 1968, vol. 16, no. 4, p. 218–227. DOI: 10.1109/tmtt.1968.1126654
  2. LONG, S. A., MCALLISTER, M. W., SHEN, L. C. The resonant cylindrical cavity antenna. IEEE Transactions on Antennas and Propagation, 1983, vol. 31, no. 3, p. 406–412. DOI: 10.1109/tap.1983.1143080
  3. KISHK, A. A., ZUNOUBI, M. R., KAJFEZ, D. A numerical study of a dielectric disk antenna above grounded dielectric substrate. IEEE Transactions on Antennas and Propagation, 1993, vol. 41, no. 6, p. 813–821. DOI: 10.1109/8.250458
  4. KISHK A. A., AHN, B., KAJFEZ, D. Broadband stacked dielectric resonator. Electronic Letteres, 1989, vol. 25, no. 18, p. 1232–1233. DOI: 10.1049/el:19890826
  5. WONG, K. L., CHEN, N. C. Analysis of a broadband hemispherical antenna with a dielectric coating. Microwave and Optical Technology Letters, 1994, vol. 7, no. 2, p. 73–76. DOI: 10.1002/mop.4650070213
  6. KAJFEZ, D., GUILLON, P., (Eds.) Dielectric Resonators. Artech House, Dedham, MA, 1986. ISBN: 1884932053
  7. GLISSON, A. W., KAJFEZ, D., JAMES, J. Evaluation of modes in dielectric resonators using surface integral equation formulation. IEEE Transactions on Microwave Theory and Techniques, 1983, vol. 31, no. 12, p. 1023–1029. DOI: 10.1109/tmtt.1983.1131656
  8. ZHENG,W. Computation of complex resonant frequencies of isolated composite objects. IEEE Transactions on Microwave Theory and Techniques, 1989, vol. 37, no. 6, p. 953–961. DOI: 10.1109/22.25396
  9. KAJFEZ, D., GLISSON, A. W., JAMES, J. Computed modal field distributions for isolated dielectric resonators. IEEE Transactions on Microwave Theory and Techniques, 1984, vol. 32, no. 12, p. 1609–1616. DOI: 10.1109/tmtt.1984.1132900
  10. KUCHARSKI, A.A. Resonances in heterogeneous dielectric bodies with rotational symmetry - volume integral-equation formulation. IEEE Transactions on Microwave Theory and Techniques, 2000, vol. 48, no. 5, p. 766–770. DOI: 10.1109/22.841869
  11. KUCHARSKI, A.A. Resonances in partially inhomogeneous bodies of revolution: VIE/SIE analysis. Microwave and Optical Technology Letters, 2005, vol. 44, no. 1, p. 73–77. DOI: 10.1002/mop.20551
  12. LEBARIC, J. E., KAJFEZ, D. Analysis of dielectric resonator cavities using the finite integration technique. IEEE Transactions on Microwave Theory and Techniques, 1989, vol. 37, no. 11, p. 1740–1748. DOI: 10.1109/22.41039
  13. KUCHARSKI, A.A. The FIT-MoM hybrid method for analysis of electromagnetic scattering by dielectric bodies of revolution. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 3, p. 1384–1391. DOI: 10.1109/tap.2018.2796721
  14. SKARLATOS, A., SCHUHMANN, R., WEILAND, T. Solution of radiation and scattering problems in complex environments using a hybrid finite integration technique - uniform theory of diffraction approach. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 10, p. 3347–3357. DOI: 10.1109/tap.2005.856358
  15. NELDER, J., MEAD, R. A simplex method for function minimization. The Computer Journal, 1965, vol. 7, no. 4, p. 308–313. DOI: 10.1093/comjnl/7.4.308
  16. O’NEILL, R. Algorithm AS 47: Function minimization using a simplex procedure. Applied Statistics, 1971, vol. 20, no. 3, p. 338–345. DOI: 10.2307/2346772
  17. BURKARDT, J. Subroutine Nelmin. [Online, distributed under the GNU LGPL license], Cited 2020-03-03. Available at:∼jburkardt/f_src/asa047/asa047.f90
  18. KUCHARSKI, A. A. Resonances in inhomogeneous dielectric bodies of revolution placed in the multilayered media – HEM modes. Microwave and Optical Technology Letters, 1999, vol. 23, no. 2, p. 87–92. DOI: 10.1002/(sici)1098-2760(19991020)23:2<87::aidmop8>;2-8

Keywords: dielectric resonators, moment methods, finite difference methods

A. Kartci, N. Herencsar, J. T. Machado, L. Brancik [references] [full-text] [DOI: 10.13164/re.2020.0296] [Download Citations]
History and Progress of Fractional-Order Element Passive Emulators: A Review

This paper presents a state-of-the-art survey in the area of fractional-order element passive emulators adopted in circuits and systems. An overview of the different approximations used to estimate the passive element values by means of rational functions is also discussed. A short comparison table highlights the significance of recent methodologies and their potential for further research. Moreover, the pros and cons in emulation of FOEs are analyzed.

  1. LE MEHAUTE, A., CREPY, G. Introduction to transfer and motion in fractal media: The geometry of kinetics. Solid State Ionics, 1983, vol. 9–10, p. 17–30. DOI: 10.1016/0167-2738(83)90207-2
  2. WESTERLUND, S., EKSTAM, L. Capacitor theory. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, vol. 1, no. 5, p. 826–839. DOI: 10.1109/94.326654
  3. MACHADO, J. A. T. Analysis and design of fractional-order digital control systems. Systems Analysis Modelling Simulation, 1997, vol. 27, no. 2–3, p. 107–122. ISSN: 0232-9298
  4. KARTCI, A., AGAMBAYEV, A., FARHAT, M., et al. Synthesis and optimization of fractional-order elements using a genetic algorithm. IEEE Access, 2019, vol. 7, p. 80233–80246. DOI: 10.1109/ACCESS.2019.2923166
  5. ORTIGUEIRA, M. D. An introduction to the fractional continuoustime linear systems: The 21st century systems. IEEE Circuits and Systems Magazine, 2008, vol. 8, no. 3, p. 19–26. DOI: 10.1109/MCAS.2008.928419
  6. GIL0MUTDINOV, A. K., USHAKOV, P. A., EL-KHAZALI, R. Fractal Elements and Their Applications. Springer, 2017. ISBN: 978-3-319-45248-7. DOI: 10.1007/978-3-319-45249-4
  7. BISWAS, K., BOHANNAN, G., CAPONETTO, R., et al. FractionalOrder Devices. Springer, 2017. ISBN: 978-3-319-54459-5. DOI: 10.1007/978-3-319-54460-1
  8. VALERIO, D., MACHADO, J. T., KIRYAKOVA, V. Some pioneers of the applications of fractional calculus. Fractional Calculus and Applied Analysis, 2014, vol. 17, no. 2, p. 552–578. DOI: 10.2478/s13540-014-0185-1
  9. PUPIN, M. I. Wave transmission over non-uniform cables and long-distance air-lines. Transactions of the American Institute of Electrical Engineers, 1900, vol. XVII, p. 445–512. DOI: 10.1109/T-AIEE.1900.4764144
  10. CAMPBELL, G. A. On loaded lines in telephonic transmission. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1903, vol. 5, no. 27, p. 313–330. DOI: 10.1080/14786440309462928
  11. WAGNER, K. W. Spulen- und Kondensatorleitungen. Electrical Engineering (Archiv fur Elektrotechnik), (in German), 1919, vol. 8, no. 2, p. 61–92. DOI: 10.1007/BF01597052
  12. CAMPBELL, G. A. Electric Wave-Filter. May 1917, US Patent 1,227,113.
  13. CAUER, W. Siebschaltungen. V.D.I-Verlag, G.m.b.H., Berlin, (in German), 1931.
  14. DARLINGTON, S. Synthesis of reactance 4-poles which produce prescribed insertion loss characteristics: Including special applications to filter design. Journal of Mathematics and Physics, 1939, vol. 18, no. 1–4, p. 257–353. DOI: 10.1002/sapm1939181257
  15. SALLEN, R. P., KEY, E. L. A practical method of designing RC active filters. IRE Transactions on Circuit Theory, 1955, vol. 2, no. 1, p. 74–85. DOI: 10.1109/TCT.1955.6500159
  16. DARLINGTON, S. Realization of a constant phase difference. The Bell System Technical Journal, 1950, vol. 29, no. 1, p. 94–104. DOI: 10.1002/j.1538-7305.1950.tb00934.x
  17. MORRISON, R. RC constant-argument driving-point admittances. IRE Transactions on Circuit Theory, 1959, vol. 6, no. 3, p. 310–317. DOI: 10.1109/TCT.1959.1086554
  18. DOUGLAS, D. C. A Method of Designing Constant-Phase Networks. Doctoral Thesis, Georgia Institute of Technology, 1961.
  19. LERNER, R. The design of a constant-angle or power-law magnitude impedance. IEEE Transactions on Circuit Theory, 1963, vol. 10, no. 1, p. 98–107. DOI: 10.1109/TCT.1963.1082094
  20. CARLSON, G. E., HALIJAK, C. A. Simulation of the Fractional Derivative Operator and the Fractional Integral Operator. Doctoral Thesis, Kansas State University, 1960.
  21. STEIGLITZ, K. An RC impedance approximant to s −1/2 . IEEE Transactions on Circuit Theory, 1964, vol. 11, no. 1, p. 160–161. DOI: 10.1109/TCT.1964.1082252
  22. HESSELBERTH, C. A. Synthesis of Some Distributed RC Networks. Technical report, Coordinated Science Laboratory, University of Illinois at Urbana, 1963.
  23. ROY, S. D. On the realization of a constant-argument immittance or fractional operator. IEEE Transactions on Circuit Theory, 1967, vol. 14, no. 3, p. 264–274. DOI: 10.1109/TCT.1967.1082706
  24. ROY, S. C. D., SHENOI, B. A. Distributed and lumped RC realization of a constant argument impedance. Journal of the Franklin Institute, 1966, vol. 282, no. 5, p. 318–329. DOI: 10.1016/0016-0032(66)90260-2
  25. OLDHAM, K. B. Semiintegral electroanalysis. Analog implementation. Analytical Chemistry, 1973, vol. 45, no. 1, p. 39–47. DOI: 10.1021/ac60323a005
  26. OUSTALOUP, A. Etude et Rèalisation d0un Système d 0Asservissement d0Ordre 3/2 de la Frèquence d0un Laser à Colorant Continu. Doctoral Thesis, Universite Bordeaux I, France, (in French), 1975.
  27. RAMACHANDRAN, V., GARGOUR, C. S., AHMADI, M. Cascade realisation of the irrational immittance s1/2 . IEE Proceedings G - Electronic Circuits and Systems, 1985, vol. 132, no. 2, p. 64–67. DOI: 10.1049/ip-g-1.1985.0012
  28. WANG, J. C. Realizations of generalized Warburg impedance with RC ladder networks and transmission lines. Journal of the Electrochemical Society, 1987, vol. 134, no. 8, p. 1915–1920. DOI: 10.1149/1.2100789
  29. SCHRAMA, J. On the Phenomenological Theory of Linear Relaxation Processes. Doctoral Thesis, University of Leiden, Leiden, The Netherlands, 1957.
  30. CHAREF, A., SUN, H. H., TSAO, Y. Y., et al. Fractal system as represented by singularity function. IEEE Transactions on automatic Control, 1992, vol. 37, no. 9, p. 1465–1470. DOI: 10.1109/9.159595
  31. SUN, H., CHAREF, A., TSAO, Y. Y., et al. Analysis of polarization dynamics by singularity decomposition method. Annals of Biomedical Engineering, 1992, vol. 20, no. 3, p. 321–335. DOI: 10.1007/BF02368534
  32. NAKAGAWA, M., SORIMACHI, K. Basic characteristics of a fractance device. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 1992, vol. 75, no. 12, p. 1814–1819. ISSN: 0916-8508
  33. MATSUDA, K., FUJII, H. H∞ optimized wave-absorbing control -Analytical and experimental results. Journal of Guidance, Control, and Dynamics, 1993, vol. 16, no. 6, p. 1146–1153. DOI: 10.2514/3.21139
  34. OUSTALOUP, A. La Derivation non Entière: Theeorie, Synthèse et Applications. Hermes, (in French), 1995. ISBN: 978-2866014568
  35. OUSTALOUP, A., MOREAU, X., NOUILLANT, M. The CRONE suspension. Control Engineering Practice, 1996, vol. 4, no. 8, p. 1101–1108. DOI: 10.1016/0967-0661(96)00109-8
  36. XUE, D., ZHAO, C., CHEN, Y. A modified approximation method of fractional order system. In IEEE International Conference on Mechatronics and Automation. Luoyang, Henan (China), 2006, p. 1043–1048. DOI: 10.1109/ICMA.2006.257769
  37. SUGI, M., HIRANO, Y., MIURA, Y. F., et al. Frequency behavior of self-similar ladder circuits. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, vol. 198, p. 683–688. DOI: 10.1016/S0927-7757(01)00988-8
  38. MACHADO, J., JESUS, I. Suggestion from the past? Fractional Calculus and Applied Analysis, 2004, vol. 7, no. 4, p. 403–407. ISSN: 1311-0454
  39. PU, Y.-F., YUAN, X., LIAO, K., et al. Structuring analog fractance circuit for 1/2 order fractional calculus. In IEEE 6th International Conference on ASIC. Shanghai, 2005, p. 1136–1139. DOI: 10.1109/ICASIC.2005.1611507
  40. ARBUZOV, A. A., NIGMATULLIN, R. R. Three-dimensional fractal models of electrochemical processes. Russian Journal of Electrochemistry, 2009, vol. 45, no. 11, p. 1276–1286. DOI: 10.1134/S1023193509110081
  41. JESUS, I. S., MACHADO, J. A. T. Development of fractional order capacitors based on electrolyte processes. Nonlinear Dynamics, 2009, vol. 56, no. 1–2, p. 45–55. DOI: 10.1007/s11071-008-9377-8
  42. VALSA, J., DVORAK, P., FRIEDL, M. Network model of the CPE. Radioengineering, 2011, vol. 20, no. 3, p. 619–626. ISSN: 1210-2512
  43. SIEROCIUK, D., DZIELINSKI, A. New method of fractional order integrator analog modeling for orders 0.5 and 0.25. In IEEE 16th International Conference on Methods & Models in Automation & Robotics (MMAR). Miedzyzdroje (Poland), 2011, p. 137–141. DOI: 10.1109/MMAR.2011.6031332
  44. SIEROCIUK, D., PODLUBNY, I., PETRAS, I. Experimental evidence of variable-order behavior of ladders and nested ladders. IEEE Transactions on Control Systems Technology, 2012, vol. 21, no. 2, p. 459–466. ISSN: 2374-0159. DOI: 10.1109/TCST.2012.2185932
  45. MACHADO, J. A. T., GALHANO, A. M. S. F. Fractional order inductive phenomena based on the skin effect. Nonlinear Dynamics, 2012, vol. 68, no. 1–2, p. 107–115. DOI: 10.1007/s11071-011-0207-z
  46. EL-KHAZALI, R. Discretization of fractional-order differentiators and integrators. IFAC Proceedings Volumes, 2014, vol. 47, no. 3, p. 2016–2021. DOI: 10.3182/20140824-6-ZA-1003.01318
  47. EL-KHAZALI, R. On the biquadratic approximation of fractionalorder Laplacian operators. Analog Integrated Circuits and Signal Processing, 2015, vol. 82, no. 3, p. 503–517. DOI: 10.1007/s10470-014-0432-8
  48. ADHIKARY, A., SHIL, A., BISWAS, K. Realization of Foster structure-based ladder fractor with phase band specification. Circuits, Systems, and Signal Processing, 2020, vol. 39, no. 5, p. 2272–2292. DOI: 10.1007/s00034-019-01269-w
  49. SARAFRAZ, M. S., TAVAZOEI, M. S. Realizability of fractionalorder impedances by passive electrical networks composed of a fractional capacitor and RLC components. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, vol. 62, no. 12, p. 2829–2835. DOI: 10.1109/TCSI.2015.2482340
  50. TSIRIMOKOU, G., PSYCHALINOS, C., ELWAKIL, A. S., et al. Experimental verification of on-chip CMOS fractional-order capacitor emulators. Electronics Letters, 2016, vol. 52, no. 15, p. 1298–1300. DOI: 10.1049/el.2016.1457
  51. TSIRIMOKOU, G., KARTCI, A., KOTON, J., et al. Comparative study of discrete component realizations of fractionalorder capacitor and inductor active emulators. Journal of Circuits, Systems and Computers, 2018, vol. 27, no. 11, p. 1850170. DOI: 10.1142/S0218126618501700
  52. SOTNER, R., JERABEK, J., PETRZELA, J., et al. Synthesis and design of constant phase elements based on the multiplication of electronically controllable bilinear immittances in practice. AEUInternational Journal of Electronics and Communications, 2017, vol. 78, p. 98–113. DOI: 10.1016/j.aeue.2017.05.013
  53. CAPONETTO, R., PORTO, D. Analog implementation of non integer order integrator via field programmable analog array. IFAC Proceedings Volumes, 2006, vol. 39, no. 11, p. 107–111. DOI: 10.3182/20060719-3-PT-4902.00018
  54. IONESCU, C. M., MACHADO, J. A. T., DE KEYSER, R. Modeling of the lung impedance using a fractional-order ladder network with constant phase elements. IEEE Transactions on Biomedical Circuits and Systems, 2010, vol. 5, no. 1, p. 83–89. DOI: 10.1109/TBCAS.2010.2077636
  55. MA, Y., ZHOU, X., LI, B., et al. Fractional modeling and SOC estimation of lithium-ion battery. IEEE/CAA Journal of Automatica Sinica, 2016, vol. 3, no. 3, p. 281–287. DOI: 10.1109/JAS.2016.7508803
  56. PETRZELA, J. Accurate constant phase elements dedicated for audio signal processing. Applied Sciences, 2019, vol. 9, no. 22, p. 1–38. DOI: 10.3390/app9224888
  57. SEMARY, M. S., FOUDA, M. E., HASSAN, H. N., et al. Realization of fractional-order capacitor based on passive symmetric network. Journal of Advanced Research, 2019, vol. 18, p. 147–159. DOI: 10.1016/j.jare.2019.02.004
  58. LIANG, G., HAO, J. Analysis and passive synthesis of immittance for fractional-order two-element-kind circuit. Circuits, Systems, and Signal Processing, 2019, vol. 38, no. 8, p. 3661–3681. DOI: 10.1007/s00034-019-01035-y
  59. SOLTEIRO PIRES, E. J., MACHADO, J. A. T., DE MOURA OLIVEIRA, P. B., et al. Particle swarm optimization with fractional-order velocity. Nonlinear Dynamics, 2010, vol. 61, no. 1, p. 295–301. DOI: 10.1007/s11071-009-9649-y
  60. MACHADO, J. A. T. Optimal tuning of fractional controllers using genetic algorithms. Nonlinear Dynamics, 2010, vol. 62, no. 1–2, p. 447–452. DOI: 10.1007/s11071-010-9731-5
  61. DU, W., TONG, L., TANG, Y. Metaheuristic optimization-based identification of fractional-order systems under stable distribution noises. Physics Letters A, 2018, vol. 382, no. 34, p. 2313–2320. DOI: 10.1016/j.physleta.2018.05.043
  62. YOUSRI, D., ABDELATY, A. M., RADWAN, A. G., et al. Comprehensive comparison based on meta-heuristic algorithms for approximation of the fractional-order Laplacian s α as a weighted sum of first-order high-pass filters. Microelectronics Journal, 2019, vol. 87, p. 110–120. DOI: 10.1016/j.mejo.2019.03.012
  63. CHU, P. C., BEASLEY, J. E. A genetic algorithm for the generalised assignment problem.Computers & Operations Research, 1997, vol. 24, no. 1, p. 17–23. DOI: 10.1016/S0305-0548(96)00032-9
  64. SHI, Y., EBERHART, R. A modified particle swarm optimizer. In Proceedings of the IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360). Anchorage (USA), 1998, p. 69–73. DOI: 10.1109/ICEC.1998.699146
  65. MACHADO, J. A. T., GALHANO, A. M., OLIVEIRA, A. M., et al. Optimal approximation of fractional derivatives through discrete-time fractions using genetic algorithms.Communications in Nonlinear Science and Numerical Simulation, 2010, vol. 15, no. 3, p. 482–490. DOI: 10.1016/j.cnsns.2009.04.030
  66. KARTCI, A. Analog Implementation of Fractional-Order Elements and Their Applications. Doctoral Thesis, Brno University of Technology, Czechia, June 2019.

Keywords: Circuit synthesis, constant phase element, fractional-order capacitor, fractional-order element, fractional-order emulator, RC network, RL network

A. Banerjee, K. Patra, S. Chatterjee, B. Gupta, A. K. Bandyopadhyay [references] [full-text] [DOI: 10.13164/re.2020.0305] [Download Citations]
Theoretical Investigations on CPW-Fed Single and Dual-Polarized Slot Radiators Using Schelkunoff’s Biconical Antenna Analysis

This article presents a closed-form analysis of CPW-fed slot dipole structures with the help of Schelkunoff’s biconical antenna analysis technique and Babinet’s principle. Input characteristics of CPW-fed slot dipole antennas are investigated, and closed-form expressions are derived for the purpose. The feed-gap inherently generated in CPW-fed antenna configurations is accounted for in the expressions, and the analysis of Schelkunoff is modified to address the same. Single-polarized structures can be orthogonally placed to generate dual-polarized characteristics – this notion is utilized to extend the proposed structure of a single CPW-fed slot dipole radiator towards a dual-polarized configuration. The proposed theoretical expressions are further validated for the dual-polarized geometry, and good agreement is observed in concerned theoretical and measured results. The simplicity of the proposed expressions is evident as they entirely consist of Sine and Cosine integrals and facilitate faster computation. Schelkunoff’s Biconical Antenna method is rarely used for solving a planar slot radiator problem which justifies the novelty of this article. The present work also, for the first time – modifies the method of Schelkunoff to further account for the inherently generated feed-gap in CPW-fed planar monopole or dipole configurations.

  1. LEE, W. C. Y., YEH, Y. S. Polarization diversity system for mobile radio. IEEE Transactions on Communication, 1972, vol. 20, no. 5, p. 912–923. DOI: 10.1109/TCOM.1972.1091263
  2. TU, W. H., CHANG, K. Miniaturized CPW-fed slot antenna using stepped impedance resonator. In Proceedings of IEEE Antennas Propagation Society International Symposium. Washington DC (USA), 2005, p. 351–354. DOI: 10.1109/APS.2005.1552663
  3. TU, W. H. Compact harmonic-suppressed coplanar waveguide-fed inductively coupled slot antenna. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 543–545. DOI: 10.1109/LAWP.2008.2002905
  4. CHEN, Y. C., CHEN, S. Y., HSU, P. A modified CPW-fed slot loop antenna with reduced cross polarization and size. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1124–1126. DOI: 10.1109/LAWP.2011.2171471
  5. WU, C. M. Dual-band CPW-fed cross-slot monopole antenna for WLAN operation. IET Microwaves, Antennas and Propagation, 2007, vol. 1, no. 2, p. 542–546. DOI: 10.1049/iet-map:20050116
  6. CHEN, S. Y., HSU, P. Broad-band radial slot antenna fed by coplanar waveguide for dual-frequency operation. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 11, p. 3448–3452. DOI: 10.1109/TAP.2005.858574
  7. DING, X., JACOB, A. F. CPW-fed slot antenna with wide radiating apertures. IEE Proceedings - Microwaves, Antennas and Propagation, 1998, vol. 145, no. 1, p. 104–108. DOI: 10.1049/ipmap:19981629
  8. CHIU, C. Y., YAN, J. B., MURCH, R. D., et al. Design and implementation of a compact 6-port antenna. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 767–770. DOI: 10.1109/LAWP.2009.2026663
  9. LI, W., ZENG, Z., YOU, B., et al. Compact dual polarized printed slot antenna. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2816–2819. DOI: 10.1109/LAWP.2017.2748542
  10. HETTAK, K., DELISLE, G. Y., STUBBS, M. G. A novel variant of dual polarized CPW fed patch antenna for broadband wireless communications. In Proceedings of IEEE Antennas Propagation Society International Symposium. Salt Lake City (USA), 2000, p. 286–289. DOI: 10.1109/APS.2000.873765
  11. KOLUNDZIJA, B. M., OGNJANOVIC, J. S., SARKAR, T. K. WIPLD: Electromagnetic Modeling of Composite Metallic and Dielectric Structures. Norwood (MA): Artech House, 2000. ISBN: 978-0890063583
  12. TAFLOVE, A., UMASHANKAR, K. R. The finite-difference time-domain method for numerical modeling of electromagnetic wave interactions. Electromagnetics, 1990, vol. 10, no. 1, p. 105–126. DOI: 10.1080/02726349008908231
  13. JONES, D. S. Methods in Electromagnetic Wave Propagation. Oxford (UK): Clarendon Press, 1979
  14. BOOKER, H. G. Slot aerials and their relation to complementary wire aerials. Journal of the IEE, Part IIIA: Radiolocation, 1946, vol. 93, no. 4, p. 620–626. DOI: 10.1049/ji-3a-1.1946.0150
  15. KOMINAMI, M., POZAR, D. M., SCHAUBERT, D. H. Dipole and slot elements and array on semi-infinite substrate. IEEE Transactions on Antennas and Propagation, 1985, vol. 33, no. 6, p. 600–607. DOI: 10.1109/TAP.1985.1143638
  16. TEKIN, I., NEWMAN, E. H. Space-domain method of moments solution for a strip on a dielectric slab. IEEE Transactions on Antennas and Propagation, 1998, vol. 46, no. 9, p. 1346–1348. DOI: 10.1109/8.719978
  17. POPOVIC, B. D., NESIC, A. Generalisation of the concept of equivalent radius of thin cylindrical antennas. IEE Proceedings H, Microwaves, Optics and Antennas, 1984, vol. 131, no. 3, p. 153–158. DOI: 10.1049/ip-h-1.1984.0033
  18. MOORE, J., WEST, M. A. Simplified analysis of coated wire antennas and scatterers. IEE Proceedings on Microwaves, Antennas and Propagation, 1995, vol. 142, no. 1, p. 14–18. DOI: 10.1049/ip-map:19951651
  19. LAOHAPENSAENG, C., FREE, C. Simplified integral equation for analyzing the printed strip dipole antenna. IEE Proceedings on Microwaves, Antennas and Propagation, 2006, vol. 153, no. 3, p. 301–306. DOI: 10.1049/ip-map:20050022
  20. NESIC, A., POPOVIC, B. D. Analysis of slot antenna on dielectric substrate. IEE Proceedings H, Microwaves, Optics and Antennas, 1985, vol. 132, no. 7, p. 474–476. DOI: 10.1049/ip-h-2.1985.0085
  21. HALLEN, E. Theoretical investigations into the transmitting and receiving qualities of antennae. Nova Acta Regiae Societatis Scientiarum Upsaliensis, ser. IV, vol. 11, no. 4, 1938, p. 1–44.
  22. KING, R., MIDDLETON, D. The cylindrical antenna; Current and impedance. Quarterly of Applied Mathematics, 1946, vol. 3, no. 4. DOI: 10.1090/qam/15323
  23. MIDDLETON, D., KING, R. The thin cylindrical antenna: A comparison of theories. Journal of Applied Physics, 1946, vol. 17, no. 4, p. 273–284. DOI: 10.1063/1.1707714
  24. KING, R. W. P. The Theory of Linear Antennas. Harvard University Press, Cambridge Massachusetts, 1956
  25. BOUWKAMP, C. J. Note on an Integral Occurring in Antenna Theory. Natuurkundig Laboratorium de N. V. Philips' Gloeilampenfabrieken, Eindhoven, Netherlands. Unpublished
  26. GRAY, M. C. A Modification of Hallen's solution of the antenna problem. Journal of Applied Physics, 1944, vol. 15, no. 1, p. 61–65. DOI: 10.1063/1.1707368
  27. SCHELKUNOFF, S. A. The electromagnetic theory of coaxial transmission lines and cylindrical shields. The Bell System Technical Journal, 1934, vol. 13, no. 4, p. 532–579. DOI: 10.1002/j.1538-7305.1934.tb00679.x
  28. JORDAN, E. C., BALMAIN, K. G. Electromagnetic Waves and Radiating Systems. Ch. 14. Prentice-Hall of India (Pvt.), 1964
  29. BANERJEE, A., BANDYOPADHYAY, A. K. Theoretical investigation on the input impedance of a CPW-fed strip monopole antenna. Microwave and Optical Technology Letters, 2017, vol. 59, no. 2, p. 346–348. DOI: 10.1002/mop.30287
  30. ESTARKI, M. D., VAUGHAN, R. G. Theoretical methods for the impedance and bandwidth of the thin dipole. IEEE Antennas and Propagation Magazine, 2013, vol. 55, no. 1, p. 62–81. DOI: 10.1109/MAP.2013.6474485
  31. BANDYOPADHYAY, A. K., CHOWDHURY, S. K. Some investigations on the feed points displaced dipole. IETE Journal of Research (India), 1973, vol. 19, no. 12, p. 686–688. DOI: 10.1080/03772063.1973.11487298
  32. BANERJEE, A., CHATTERJEE, S., GUPTA, B., et al. Theoretical investigation on input characteristics of CPW-fed wide rectangular monopole structures. In IEEE International Conference on Antenna Innovations &Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM). Bangalore (India), 2017, p. 1–5. DOI: 10.1109/IAIM.2017.8402614
  33. KRAUSS, J. D. Antennas. 2nd ed. Tata McGraw-Hill, 1997 (Ch. 8)
  34. JEANS, J. H. Electricity and Magnetism. London (UK): Cambridge Press, 1946. P. 249.
  35. NESIC, A. Slotted antenna array excited by a coplanar waveguide. Electronics Letters, 1982, vol. 18, no. 6, p. 275–276. DOI: 10.1049/el:19820188
  36. Ansoft Corp HFSS v.13
  37. COLLIN, R. E., ZUCKER, F. J. Antenna Theory. N.Y.: McGrawHill, 1969. Part 1, p. 346. ISBN: 0070117993

Keywords: CPW-fed slot radiator, dual-polarized slot radiator, input impedance investigation, Schelkunoff’s Biconical Antenna analysis

M. M. Fakharian, P. Rezaei, A. A. Orouji [references] [full-text] [DOI: 10.13164/re.2020.0313] [Download Citations]
A Multi-Reconfigurable CLL-Loaded Planar Monopole Antenna

In this paper, multi-reconfiguration capabilities of a planar monopole antenna with two switchable capacitively loaded loops (CLLs), as near field resonant parasitic elements, are introduced. The idea is to apply the CLLs not only to minimize the dimensions of the antenna, but also to present multiple resonances, which can be satisfactorily chosen by applying switches placed across six gaps of the CLLs. By changing the switched states, it is feasible to obtain different reconfigurations such as frequency agility (from 1.5 to 2.9 GHz), polarization diversity (with circular polarization bandwidth from 1.59 to 1.72 GHz), and various shapes of the radiation patterns and beam directions (change in the ±30° y-direction) of the antenna. The transmutation of polarization designs from their linear counterparts to left hand and right hand circular polarizations by introducing an asymmetry in the configuration of the two-CLLs is also represented. The prototypes of the proposed antenna are fabricated and tested. The measured reflection coefficient, radiation pattern, gain and axial ratio results are presented and compared to the corresponding simulated values.

  1. OJAROUDI, N., BASHERLOU, H. J., et al. Recent developments of reconfigurable antennas for current and future wireless communication systems. Electronics, 2019, vol. 8, p. 1–17. DOI: 10.3390/electronics8020128
  2. FAKHARIAN, M. M., REZAEI, P., OROUJI, A. A. A novel slot antenna with reconfigurable meander-slot DGS for cognitive radio applications. Applied Computational Electromagnetics Society (ACES) Journal, 2015, vol. 30, no. 7, p. 748–753.
  3. GE, L., LI, M., LI, Y., et al. Linearly polarized and circularly polarized wideband dipole antennas with reconfigurable beam direction. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 4, p. 1747–1755. DOI: 10.1109/TAP.2018.2797520
  4. QIN, P.-Y., GUO, Y., WEILY, A. R., et al. A pattern reconfigurable U-slot antenna and its applications in MIMO systems. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 2, p. 516–528. DOI: 10.1109/TAP.2011.2173439
  5. FAKHARIAN, M. M., REZAEI, P., OROUJI, A. A., et al. A wideband and reconfigurable filtering slot antenna. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1610–1613. DOI: 10.1109/LAWP.2016.2518859
  6. FAN, Y., LI, R. L., CUI, Y. Development of polarisation reconfigurable omnidirectional antennas using crossed dipoles. IET Microwaves, Antennas and Propagation, 2019. vol. 13, no. 4, p. 485–491. DOI: 10.1049/iet-map.2018.5490
  7. FAKHARIAN, M. M., REZAEI, P., OROUJI, A. A. Polarization and radiation pattern reconfigurability of a planar monopole-fed loop antenna for GPS application. Radioengineering, 2016, vol. 25, no. 4, p. 680–686. DOI: 10.13164/re.2016.0680
  8. TAWK, Y., EL-AMINE, A., SAAB. S., et al. A software-defined frequency-reconfigurable meandered printed monopole. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 2, p. 327–330. DOI: 10.1109/LAWP.2017.2788461
  9. SBOUI, F., MACHAC, J., GHARSALLAH, A. Low-profile slotted SIW cavity backed antenna for frequency agility. Radioengineering, 2019, vol. 28, no. 2, p. 386–390. DOI: 10.13164/re.2019.0386
  10. GRAU BESOLI, A., DE FLAVIIS, F. Multifunctional reconfigurable pixeled antenna using MEMS technology on printed circuit board. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 12, p. 4413–4424. DOI: 10.1109/TAP.2011.2165470
  11. FAKHARIAN, M. M., REZAEI, P., OROUJI, A. A. Reconfigurable multiband extended U-slot antenna with switchable polarization for wireless applications. IEEE Antennas and Propagation Magazine, 2015, vol. 57, no. 2, p. 194–202. DOI: 10.1109/MAP.2015.2414665
  12. RODRIGO, D., CETINER, B. A., JOFRE, L. Frequency, radiation pattern and polarization reconfigurable antenna using a parasitic pixel layer. IEEE Transaction on Antennas and Propagation, 2014, vol. 62, no. 6, p. 3422–3427. DOI: 10.1109/TAP.2014.2314464
  13. SULAKSHANA, C., ANJANEYULU, L. A compact reconfigurable antenna with frequency, polarization and pattern diversity. Journal of Electromagnetic Waves and Applications, 2015, vol. 29, no. 15, p. 1953–1964. DOI: 10.1080/09205071.2015.1068229
  14. GE, L., LI, Y., WANG, J., et al. A low-profile reconfigurable cavity-backed slot antenna with frequency, polarization, and radiation pattern agility. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 5, p. 2182–2189. DOI: 10.1109/TAP.2017.2681432
  15. ZIOLKOWSKI, R. W., JIN, P., LIN, C.-C. Metamaterial-inspired engineering of antennas. Proceedings of the IEEE, 2011, vol. 99, no. 10, p. 1720–1731. DOI: 10.1109/JPROC.2010.2091610
  16. DONG, Y., ITOH, T. Metamaterial-based antennas. Proceedings of the IEEE, 2012, vol. 100, no. 7, p. 2271–2285. DOI: 10.1109/JPROC.2012.2187631
  17. JIN, P., ZIOLKOWSKI, R. W. Multi-frequency, linear and circular polarized, metamaterial-inspired, near-field resonant parasitic antennas. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 5, p. 1446–1459. DOI: 10.1109/TAP.2011.2123053
  18. DAKHLI, S., RMILI, H., FLOC’H, J.-M., et al. Capacitively loaded loop-based antennas with reconfigurable radiation patterns. International Journal of Antennas and Propagation, 2015, p. 1–10. DOI: 10.1155/2015/523198
  19. BARBUTO, M., BILOTTI, F., TOSCANO, A. Design of a multifunctional SRR-loaded printed monopole antenna. International Journal of RF and Microwave Computer-Aided Engineering, 2012, vol. 22, no. 4, p. 552–557. DOI: 10.1002/mmce.20645
  20. TANG, M.-C., ZIOLKOWSKI, R. W. Frequency-agile, efficient, circularly polarized, near-field resonant antenna: designs and measurements. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 11, p. 5203–5209. DOI: 10.1109/TAP.2015.2477563
  21. INFINEON TECHNOLOGIES, BAR50 Silicon PIN Diode, (datasheet). 16 pages. [Online] Cited 2011-07-18. Available at: AR5002.html.
  22. PRIYA, A., KAJA MOHIDEEN, S., SARAVANAN, M. Multistate reconfigurable antenna for wireless communications. Journal of Electrical Engineering and Technology, 2020, vol. 15, p. 251–258. DOI: 10.1007/s42835-019-00321-8

Keywords: Multi-reconfigurable antenna, resonant parasitic element, monopole

N. O. Ali, M. R. Hamid, M. K. A. Rahim, N. A. Murad, S. Thomas [references] [full-text] [DOI: 10.13164/re.2020.0321] [Download Citations]
A Compact Second-order Chebyshev Bandpass Filter Using U-shaped Resonator and Defected Ground Structure

A compact bandpass filter using U-shaped resonators and Defected Ground Structures is proposed and designed at 5.8 GHz. The U-shaped resonators are placed around an indirectly coupled feed line while the Defected Ground Structures are positioned beneath them. The U-shaped resonator and U-shaped Defected Ground Structure are responsible for the high and low band rejection respectively. The proposed bandpass filter obeys the second order Chebyshev response which has low insertion loss of – 1.87 dB, high rejection level and a sharp roll-off performance. The design is carried out using CST Microwave studio. The design is verified by fabricating and measuring the prototype in the laboratory. A good agreement is observed between the simulated and measured results.

  1. HONG, J.-S. G., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. John Wiley & Sons, 2004. DOI: 10.1002/0471221619
  2. MAKIMOTO, M., YAMASHITA, S. Bandpass filters using parallel coupled stripline stepped impedance resonators. IEEE Transactions on Microwave Theory and Techniques, 1980, vol. 28, no. 12, p. 1413–1417. DOI: 10.1109/TMTT.1980.1130258
  3. KUO, J.-T., CHEN, S.-P., JIANG, M. Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses. IEEE Microwave and Wireless Components Letters, 2003, vol. 13, no. 10, p. 440–442. DOI: 10.1109/LMWC.2003.818531
  4. CHEONG, P., FOK, S.-W., TAM, K.-W. Miniaturized parallel coupled-line bandpass filter with spurious-response suppression. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 5, p. 1810–1816. DOI: 10.1109/TMTT.2005.847075
  5. LEE, J.-R., CHO, J.-H., YUN, S.-W. New compact bandpass filter using microstrip/spl lambda//4 resonators with open stub inverter. IEEE Microwave and Guided Wave Letters, 2000, vol. 10, no. 12, p. 526–527. DOI: 10.1109/75.895091
  6. ZHU, L., MENZEL, W. Compact microstrip bandpass filter with two transmission zeros using a stub-tapped half-wavelength line resonator. IEEE Microwave and Wireless Components Letters, 2003, vol. 13, no. 1, p. 16–18. DOI: 10.1109/LMWC.2002.807705
  7. OBADIAH, A. N., HAMID, M. R., RAHIM, M. K. A., et al. A compact bandpass filter using a T-shaped loaded open-ended stub resonator. Indonesian Journal of Electrical Engineering and Computer Science, 2018, vol. 10, no. 3, p. 867–874. DOI: 10.11591/ijeecs.v10.i3.pp867-874
  8. LI, Z., W. SHI, W., YUAN, Y. A novel compacted microstrip bandpass filter using stepped impedance resonator (SIR) and defected ground structure (DGS). In 2014 15th International Conference on Electronic Packaging Technology. Chengdu (China), 2014, p. 1338–1340. DOI: 10.1109/ICEPT.2014.6922895
  9. BOUTEJDAR, A., BATMANOV, A., AWIDA, M. H., et al. Design of a new bandpass filter with sharp transition band using multilayer-technique and U-defected ground structure. IET Microwaves, Antennas & Propagation, 2010, vol. 4, no. 9, p. 1415–1420. DOI: 10.1049/iet-map.2009.0357
  10. NWAJANA, A. O., DAINKEH, A., YEO, K. S. K. Substrate integrated waveguide (SIW) bandpass filter with novel microstripCPW-SIW input coupling. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2017, vol. 16, no. 2, p. 393–402. DOI: 10.1590/2179-10742017v16i2793
  11. MOHOTTIGE, N., GLUBOKOV, O., JANKOVIC, U., et al. Ultra compact inline E-plane waveguide bandpass filters using cross coupling. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 8, p. 2561–2571. DOI: 10.1109/TMTT.2016.2578329
  12. RABAHALLAH, D., CHALLAL, M., TALAHARIS, N. Tri-band microstrip bandpass filters for GSM and WiMAX applications. In 2015 4th International Conference on Electrical Engineering (ICEE). Boumerdes (Algeria), 2015, p. 1–4. DOI: 10.1109/INTEE.2015.7416830
  13. KHANDELWAL, M. K., KANAUJIA, B. K., KUMAR, S. Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends. International Journal of Antennas and Propagation, 2017, p. 1–22. DOI: 10.1155/2017/2018527
  14. BOUTEJDAR, A., ELHANI, S., BENNANI, S. D. Design of a novel slotted bandpass-bandstop filters using U-resonator and suspended multilayer-technique for L/X-band and Wlan/WiMax applications. In International Conference on Electrical and Information Technologies (ICEIT). Rabat (Morocco), 2017, p. 1–7. DOI: 10.1109/EITech.2017.8255272
  15. BOUTEJDAR, A., BATMANOV, A., AWIDA, M. H., et al. Design of a new bandpass filter with sharp transition band using multilayer-technique and U-defected ground structure. IET Microwaves, Antennas & Propagation, 2010, vol. 4, no. 9, p. 1415–1420. DOI: 10.1049/iet-map.2009.0357

Keywords: Bandpass filter, Chebyshev response, filter synthesis, high selectivity, U-shaped resonator, Defected Ground Structure (DFS)

M. Maleki, J. Nourinia, Ch. Ghobadi, R. Naderali [references] [full-text] [DOI: 10.13164/re.2020.0328] [Download Citations]
Implementation of a New and Modified Scheme of Butler Matrix for C-Band Applications with Enhanced Characteristics

In this paper, the structure of a miniaturized broadband 4 × 4 Butler matrix is presented. All components of the proposed feeding network are designed in a way that they have the smallest electrical size and acceptable performance in the C band. Despite conventional Butler matrix consists of phase shifters, the proposed network benefits from dummy crossover, which leads to improving the phase difference bandwidth. Since in beam switching networks, 90° coupler has a vital role, the main focus is concentrated on the aforementioned component as mentioned above. The compactness of the proposed coupler is associated with embedding the S-shaped arms instead of ordinary elements. Due to overcoming the problem of a mismatch phase difference between phase shifter and crossover, the modified dummy crossover is used. In order to improve the overall performance of the depicted feeding network, S-shaped electromagnetic bandgap structures are used between elements. They reduce destructive mutual coupling effect hence leads to enhance total network efficiency. The extracted results determine that the bandwidth of the presented network is from 3.5 ~ 8.2 GHz that covers the C band totally.

  1. CHEN, C., WU, H., WU, W. Design and implementation of a compact planar 4x4 microstrip Butler matrix for wideband application. Progress in Electromagnetics Research C, 2011, vol. 24, p. 43–55. DOI: 10.2528/PIERC11072614
  2. NEDIL, M., DENIDNI, T. A., TALBI, L. Novel Butler matrix using CPW multilayer technology. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 1, p. 499–507. DOI: 10.1109/TMTT.2005.860490
  3. ZHENG, S., CHAN, W. S., LEUANG, S. H., et al. Broadband Butler matrix with flat coupling. Electronics Letters, 2007, vol. 43, no. 10, p. 576–577. DOI: 10.1049/el:20070274
  4. HE, J., WANG, B. Z., HE, Q. Q., et al. Wideband X-band microstrip Butler matrix. Progress in Electromagnetics Research, 2007, vol. 74, p. 131–140. DOI: 10.2528/PIER07042302
  5. GRUSZCZYNSKI, S., WINCZA, K. Broadband 4 x 4 Butler matrices as a connection of symmetrical multisection coupled-line 3-dB directional couplers and phase correction networks. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 1, p. 1–9. DOI: 10.1109/TMTT.2008.2009081
  6. TRINH-VAN, S., LEE, J. M., YANG, Y., et al. A sidelobereduced, four-beam array antenna fed by a modified 4x4 Butler matrix for 5G applications. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 7, p. 4528–4536. DOI: 10.1109/tap.2019.2905783
  7. DING, K., KISHK, A. Wideband hybrid coupler with electrically switchable phase-difference performance. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 11, p. 992–994. DOI: 10.1109/lmwc.2017.2750028
  8. BARIK, R. K., PHANI KUMAR, K. V., KARTHIKEYAN, S. S. A compact wideband harmonic suppressed 10 dB branch line coupler using cascaded symmetric PI sections. Microwave and Optical Technology Letters, 2016, vol. 58, no. 7, p. 1610–1613. DOI: 10.1002/mop.29870
  9. KIM, T., LEE, J., CHOI, J. Analysis and design of miniaturized multisection crossover with open stubs. Microwave and Optical Technology Letters, 2015, vol. 57, no. 11, p. 2673–2677. DOI: 10.1002/mop.29417
  10. ARIBI, T., NASER-MOGHADASI, M., SADEGHZADEH, R. A. Circularly polarized beam-steering antenna array with enhanced characteristics using UCEBG structure. International Journal of Microwave and Wireless Technologies, 2015, vol. 8, no. 6, p. 955–962. DOI: 10.1017/s1759078715000318
  11. DE MAAGT, P., GONZALO, R., VARDAXOGLOU, Y. C., et al. Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 10, p. 2667–2677. DOI: 10.1109/TAP.2003.817566
  12. CHANG, C., QIAN, Y., ITOH, T. Analysis and applications of uniplanar compact photonic bandgap structures. Progress in Electromagnetics Research, 2003, vol. 41, p. 211–235. DOI: 10.2528/PIER02010890
  13. REN, H., SHAO, J., ZHOU, R., et al. Compact phased array antenna system based on dual-band operations. Microwave and Optical Technology Letters, 2014, vol. 56, no. 6, p. 1391–1396. DOI: 10.1002/mop.28343
  14. KHAJEH MOHAMMAD LOU, R., NASER-MOGHADASI, M., SADEGHZADEH, R. A. Broadband planar aperture-coupled antenna array for WLAN and ITS beam-steering applications. Radio Science, 2018, vol. 53, no. 2, p. 200–209. DOI: 10.1002/2016RS006155

Keywords: Butler matrix, coupler, broadband, electromagnetic band gap

M. Kumar, G. Sen, Sk N. Islam, S. K. Parui, S. Das [references] [full-text] [DOI: 10.13164/re.2020.0336] [Download Citations]
Miniaturization and Harmonic Suppression of Power Divider using Coupled Line Section for High Power Applications

This paper presents a compact transmission line based on the coupled line section to reduce the circuit size of Gysel power divider (GPD). The line composed of one direct line and one coupled line section. The coupled line section consists of two series lines and one coupled line. The proposed line not only reduces circuit size but also improve the out-off band performance. To validate the properties of the line, a GPD) is designed at 1 GHz. The physical size of the GPD occupies only 38% (0.32λg×0.16λg, λg¬ is the guided wavelength) circuit area compared to reference GPD. Furthermore, the proposed design includes 2nd order harmonic suppression with attenuation level better than -20 dB. The GPD is designed with a substrate of dielectric constant of 2.2, thickness of 0.787 mm, and loss tangent 0.0009.

  1. HONG, J. S., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. New York (NY, USA): Wiley, 2001. DOI: 10.1002/0471221619
  2. WILKINSON, E. J. An N-way hybrid power divider. IRE Transactions on Microwave Theory and Techniques, 1960, vol. 8, no. 1, p. 116–118. DOI: 10.1109/TMTT.1960.1124668
  3. ZHANG, F., LI, C. F. Power divider with microstrip electromagnetic bandgap element for miniaturization and harmonic rejection. Electronics Letters, 2008, vol. 44, no. 6, p. 422–423. DOI: 10.1049/EL:20083693
  4. WOO D. J., LEE, T. K., Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 6, p. 2139–2144. DOI: 10.1109/TMTT.2005.848772
  5. YANG, J., GU, C., WU, W. Design of novel compact coupled microstrip power divider with harmonic suppression. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 9, p. 572–574. DOI: 10.1109/LMWC.2008.2002444
  6. LIU, H., LI, Z., SUN, X. Compact defected ground structure in microstrip technology. Electronics Letters, 2005, vol. 41, no. 3, p. 132–134. DOI: 10.1049/EL:20057331
  7. PHANI KUMAR, K. V., KARTHIKEYAN, S. S. A compact 1:4 lossless T-junction power divider using open complementary split ring resonator. Radioengineering, 2015, vol. 24, no. 3, p. 717–721. DOI: 10.13164/RE.2015.0717
  8. GYSEL, U. H. A new N-way power divider/combiner suitable for high power applications. In IEEE-MTT-S International Microwave Symposium. Palo Alton (CA, USA), 1975, p. 116–118. DOI: 10.1109/MWSYM.1975.1123301
  9. ZHANG, H. L., HU, B. J. ZHANG, X. Y. Compact equal and unequal dual-frequency power dividers based on composite right- /left handed transmission lines. IEEE Transactions on Industrial Electronics, 2012, vol. 59, no. 9, p. 3464–3472. DOI: 10.1109/TIE.2011.2171178
  10. KARIMI, G., SIAHKAMARI, H., KHAMIN-HAMEDANI, F. A novel miniaturized Gysel power divider using low-pass filter with harmonic suppression. International Journal of Electronics and Communication (AEU), 2015, vol. 69, no. 5, p. 856–860. DOI: 10.1016/J.AEUE.2015.02.004
  11. SHAHI, H, SHAMSI, H. Compact wideband Gysel power dividers with harmonic suppression and arbitrary power division ratios. International Journal of Electronics and Communication (AEU), 2017, vol. 79, p.16–25. DOI: 10.1016/J.AEUE.2017.05.024
  12. ZAKER, R., ABDIPOUR, A., MIRZAVAND, R. Closed-form design of Gysel power divider with only one isolation resistor. IEEE Microwave and Wireless Components Letter, 2014, vol. 24, no. 8, p. 527–529. DOI: 10.1109/LMWC.2014.2323554
  13. GUAN, J., ZHANG, L. J., SUN, Z. Y., et al. Designing power divider by combining Wilkinson and Gysel structure. Electronics Letters, 2012, vol. 48, no. 13, p. 769–770. DOI: 10.1049/EL.2012.0753
  14. LIN, F., CHU, X. Q., GONG, Z., et al. Compact broadband Gysel power divider with arbitrary power-dividing ratio using microstrip/slotline phase inverter. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 5, p. 1226–1234. DOI: 10.1109/TMTT.2012.2187067
  15. RYO, U., HITOSHI, H. Miniaturized Gysel power dividers using lumped-element components. Progress in Electromagnetics Research Letters, 2017, vol. 71, p. 37–43. DOI:10.2528/PIERL17081803
  16. DU, M., PENG, H., LUO, Y., et al. A miniaturized Gysel power divider/combiner using planar artificial transmission line. Progress in Electromagnetics Research C, 2014, vol. 51, p. 79–86. DOI: 10.2528/PIERC14041903
  17. GUAN, J., ZHANG, L., SUN, Z., et al. Modified Gysel power divider with harmonic suppression performance. Progress in Electromagnetics Research C, 2012, vol. 31, p. 255–269. DOI: 10.2528/PIERC12062004

Keywords: Coupled line, transmission zero, Gysel power divider, miniaturization, harmonic suppression.

S. Yildiz, A. Aksen, S. Kilinc, S. B. Yarman [references] [full-text] [DOI: 10.13164/re.2020.0343] [Download Citations]
Multiband Filter Design Using Generalized Mapping Functions and Synthesis with Lumped Resonators

In this paper, a new multiband frequency mapping function is proposed to design multiband filter. The presented mapping function is a generalized form of the sequential low pass to band pass (LPtoBP) transformation. The multiband filter design is based on the application of the frequency mapping function on a LP prototype. The synthesis of the resulting multiband filter is obtained by lumped element resonators. Several examples are presented to validate the proposed design approach. A triple band filter implementation and measurement results are presented.

  1. CRNOJEVIC-BENGIN, V. (Ed.) Advances in Multi-Band Microstrip Filters. Cambridge (UK): Cambridge University Press, 2015. ISBN: 9781139976763
  2. ABDELNOUR, A., LAZARO, A., VILLARINO, R., et al. Passive harmonic RFID system for buried assets localization. Sensors, 2018, vol. 18, no. 11, p. 1–21. DOI: 10.3390/s18113635
  3. KUMAR, G. J. R., SHAJI, K. S. Design and analysis of multiband OFDM system over ultra wide band channels. Indian Journal of Computer Science and Engineering, 2013, vol. 4, no. 1, p. 69–73. ISSN : 0976-5166
  4. KOIKE, Y. Difference between Wide-band and Narrow-band Radio Module. Technical information. Circuit Design, Inc., 15 Dec. 2015, p. 1–4.
  5. YILDIZ, S., AKSEN, A., YARMAN, B. S. Multiband and concurrent matching network design via Brune sections. In The 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS). Batumi (Georgia), 2017, p. 90–93. DOI: 10.1109/ICECS.2017.8292058
  6. YILDIZ, S., AKSEN, A., YARMAN, B. S. A numerical approach for the design of matching networks consisting of Brune sections based on Fujisawa constraints. In The 18th Mediterranean Microwave Symposium (MMS2018). Istanbul (Turkey), 2018, p. 171–174. DOI: 10.1109/MMS.2018.8611905
  7. YILDIZ, S., AKSEN, A., YARMAN, B. S. Real frequency design of multiband matching networks with mixed lumped-distributed elements and Foster resonance sections. In The 18th Mediterranean Microwave Symposium (MMS2018). Istanbul (Turkey), 2018, p. 187–190. DOI: 10.1109/MMS.2018.8611994
  8. FUJIMOTO, H., MURAKAMI, K., KITAZAWA, S. Equivalent circuits and transmission zeros of the coupled square-loop resonator. IEICE Electronics Express, 2007, vol. 4, no. 18, p. 575–581. DOI: 10.1587/elex.4.575
  9. ATILLA, D. C., YARMAN, B. S., AKSEN, A., et al. Computer aided Darlington synthesis of an all-purpose immittance function. Istanbul University - Journal of Electrical and Electronics Engineering, 2016, vol. 16, no. 1, p. 2027–2037.
  10. YOULA, D. C. Theory and Synthesis of Linear Passive TimeInvariant Networks. 1st ed. Cambridge University Press; 2015. (p. 271–350). ISBN: 9781316403105
  11. MACCHIARELLA, G., TAMIAZZO, S. Design techniques for dual-passband filters. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 11, p. 3265–327. DOI: 10.1109/TMTT.2005.855749
  12. DUTTA ROY, S. C. Network design for multiple frequency impedance matching by the frequency transformation technique. IETE Journal of Research, 2014, vol. 59, no. 6, p. 698–703. DOI: 10.4103/0377-2063.126966
  13. BRAND, T. G., MEYER, P., GESCHKE, R. H. Designing multiband coupled-resonator filters using reactance transformations, International Journal of RF and Microwave Computer-Aided Engineering, 2015, vol. 25, no. 1, p. 81–92. DOI: 10.1002/mmce.20826
  14. GARCIA-LAMPEREZ, A., SALAZAR-PALMA, M. Single-band to multiband frequency transformation for multiband filters. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 12, p. 3048–3058. DOI: 10.1109/TMTT.2011.2170579
  15. YILDIZ, S., AKSEN, A., YARMAN, B. S. Dual band filter design using real frequency technique and frequency transformation. Istanbul University - Journal of Electrical and Electronics Engineering, 2017, vol. 17, no. 2, p. 3343–3350.
  16. AKSEN, A., YILDIZ, S., YARMAN, S. B. A frequency transformation based real frequency design approach for dual-band matching. In 2017 International Symposium on Signals, Circuits and Systems (ISSCS). Iasi (Romania), 2017, p. 1–4. DOI: 10.1109/ISSCS.2017.8034909
  17. YILDIZ, S., AKSEN, A., YARMAN, B. S. Quad-band matching network design with real frequency technique employing frequency transformation. In The IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON-2017). Kiev (Ukraine), 2017, p. 143–147. DOI: 10.1109/UKRCON.2017.8100462
  18. YILDIZ, S., AKSEN, A., KILINÇ, S., YARMAN, B. S. Dual band filter design for GSM bands using frequency mapping and real frequency technique. In The 18th Mediterranean Microwave Symposium (MMS2018). Istanbul (Turkey), 2018, p. 164–167. DOI: 10.1109/MMS.2018.8612080
  19. RHEA, R. W. HF Filter Design and Computer Simulation. Scitech Publishing, 1994. ISBN: 1884932258

Keywords: Multiband filter, multiband mapping, frequency transformation, dual band, triple band

S. R. Bandela, T. K. Kumar [references] [full-text] [DOI: 10.13164/re.2020.0353] [Download Citations]
Speech Emotion Recognition using Unsupervised Feature Selection Algorithms

The use of the combination of different speech features is a common practice to improve the accuracy of Speech Emotion Recognition (SER). Sometimes, this leads to an abrupt increase in the processing time and some of these features contribute less to emotion recognition often resulting in an incorrect prediction of emotion with which the accuracy of the SER system decreases substantially. Hence, there is a need to select the appropriate feature set that can contribute significantly to emotion recognition. This paper presents the use of Feature Selection with Adaptive Structure Learning (FSASL) and Unsupervised Feature Selection with Ordinal Locality (UFSOL) algorithms for feature dimension reduction. A novel Subset Feature Selection (SuFS) algorithm is proposed to further reduce the feature dimension and achieve a comparable better accuracy when used along with the FSASL and UFSOL algorithms. 1582 INTERSPEECH 2010 Paralinguistic, 20 Gammatone Cepstral Coefficients and Support Vector Machine classifier with 10-Fold Cross-Validation and Hold-Out Validation are considered in this work. The EMO-DB and IEMOCAP databases are used to evaluate the performance of the proposed SER system in terms of Classification accuracy and Computational Time. From the result analysis, it is evident that the proposed SER system outperforms the existing ones.

  1. EL AYADI, M., KAMEL, M. S., KARRAY, F. Survey on speech emotion recognition: Features, classification schemes, and databases. Pattern Recognition, 2011, vol. 44, no. 3, p. 572–587. DOI: 10.1016/j.patcog.2010.09.020
  2. VERVERIDIS, D., KOTROPOULOS, C. Emotional speech recognition: Resources, features, and methods. Speech Communication, 2006, vol. 48, no. 9, p. 1162–1181. DOI: 10.1016/j.specom.2006.04.003
  3. ANG, J. C., MIRZAL, A., HARON, H., et al. Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, vol. 13, no. 5, p. 971–989. DOI: 10.1109/TCBB.2015.2478454
  4. ARRUTI, A., CEARRETA, I., ALVAREZ, A., et al. Feature selection for speech emotion recognition in Spanish and Basque: On the use of machine learning to improve human-computer interaction. PloS ONE, 2014, vol. 9, no. 10, p. 1–23. DOI: 10.1371/journal.pone.0108975
  5. OZSEVEN, T. A novel feature selection method for speech emotion recognition. Applied Acoustics, 2019, vol. 146, p. 320–326. DOI: 10.1016/j.apacoust.2018.11.028
  6. SUN, L., FU, S., WANG, F. Decision tree SVM model with Fisher feature selection for speech emotion recognition. EURASIP Journal on Audio, Speech, and Music Processing, 2019, no. 2, p. 1–14. DOI: 10.1186/s13636-018-0145-5
  7. KUCHIBHOTLA, S., VANKAYALAPATI, H. D., ANNE, K. R. An optimal two stage feature selection for speech emotion recognition using acoustic features. International Journal of Speech Technology, 2016, vol. 19, no. 4, p. 657–667. DOI: 10.1007/s10772-016-9358-0
  8. JIN, Y., SONG, P., ZHENG, W., et al. A feature selection and feature fusion combination method for speaker-independent speech emotion recognition. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence (Italy), 2014, p. 4808–4812. ISBN: 978-1-4799-2893-4. DOI: 10.1109/ICASSP.2014.6854515
  9. YAN, J., WANG, X., GU, W., et al. Speech emotion recognition based on sparse representation. Archives of Acoustics, 2013, vol. 38, no. 4, p. 465–470. DOI: 10.2478/aoa-2013-0055
  10. CHEN, S. H., WANG, J. C., HSIEH, W. C., et al. Speech emotion classification using multiple kernel Gaussian process. In 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). Jeju (South Korea), 2016, p. 1–4. ISBN: 978-1-5090-2401-8. DOI: 10.1109/APSIPA.2016.7820708
  11. ZHANG, S., ZHAO, X. Dimensionality reduction-based spoken emotion recognition. Multimedia Tools and Applications, 2013, vol. 63, no. 3, p. 615–646. DOI: 10.1007/S11042-011-0887-X
  12. ZHANG, S., ZHAO, X., LEI, B. Speech emotion recognition using an enhanced kernel isomap for human-robot interaction. International Journal of Advanced Robotic Systems, 2013, vol. 10, no. 2, p. 1–7. DOI: 10.5772/55403
  13. GUDMALWAR, A. P., RAMA RAO, C. V., DUTTA, A. Improving the performance of the speaker emotion recognition based on low dimension prosody features vector. International Journal of Speech Technology, 2019, vol. 22, no. 3, p. 521–531. DOI: 10.1007/S10772-018-09576-4
  14. HUANG, Z. W., XUE, W. T., MAO, Q. R. Speech emotion recognition with unsupervised feature learning. Frontiers of Information Technology & Electronic Engineering, 2015, vol. 16, no. 5, p. 358–366. DOI: 10.1631/FITEE.1400323
  15. SAHU, S., GUPTA, R., SIVARAMAN, G., et al. Adversarial auto-encoders for speech based emotion recognition. In INTERSPEECH. Stockholm (Sweden), 2017, p. 1243–1247. DOI: 10.21437/Interspeech.2017-1421
  16. LATIF, S., RANA, R., QADIR, J., EPPS, J. Variational autoencoders for learning latent representations of speech emotion: A preliminary study. In INTERSPEECH. Hyderabad (India), 2018, p. 3107–3111. DOI: 10.21437/Interspeech.2018-1568
  17. JIANG, W., WANG, Z., JIN, J. S., et al. Speech emotion recognition with heterogeneous feature unification of deep neural network. Sensors, 2019, vol. 19, no. 12, p. 1–15. DOI: 10.3390/s19122730
  18. BURKHARDT, F., PAESCHKE, A., ROLFES, M., et al. A database of German emotional speech. In INTERSPEECH 2005. Lisbon (Portugal), 2005, p. 1517–1520.
  19. BUSSO, C., BULUT, M., LEE, C. C., et al. IEMOCAP: Interactive emotional dyadic motion capture database. Language Resources and Evaluation, 2008, vol. 42, no. 4, p. 335–359. DOI: 10.1007/s10579-008-9076-6
  20. KOOLAGUDI, S. G., RAO, K. S. Emotion recognition from speech using source, system, and prosodic features. International Journal of Speech Technology, 2012, vol. 15, no. 2, p. 265–289. DOI: 10.1007/s10772-012-9139-3
  21. SCHULLER, B., STEIDL, S., BATLINER, A., et al. The INTERSPEECH 2010 paralinguistic challenge. In INTERSPEECH 2010. Makuhari, Chiba (Japan), 2010, p. 2794–2797.
  22. EYBEN, F., WOLLMER, M., SCHULLER, B. Opensmile: the munich versatile and fast open-source audio feature extractor. In Proceedings of the 18th ACM International Conference on Multimedia. Firenze (Italy), 2010, p. 1459–1462. ISBN: 978-1- 60558-933-6. DOI: 10.1145/1873951.1874246
  23. VALERO, X., ALIAS, F. Gammatone cepstral coefficients: Biologically inspired features for non-speech audio classification. IEEE Transactions on Multimedia, 2012, vol. 14, no. 6, p. 1684–1689. DOI: 10.1109/TMM.2012.2199972
  24. GUO, J., QUO, Y., KONG, X., et al. Unsupervised feature selection with ordinal locality. In 2017 IEEE International Conference on Multimedia and Expo (ICME). Hong Kong (China), 2017, p. 1213–1218. ISBN: 978-1-5090-6068-9. DOI: 10.1109/ICME.2017.8019357
  25. DU, L., SHEN, YD. Unsupervised feature selection with adaptive structure learning. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Sydney (Australia), 2015, p. 209–218. ISBN: 978-1-4503- 3664-2. DOI: 10.1145/2783258.2783345

Keywords: Speech Emotion Recognition, INTERSPEECH Paralinguistic Feature Set, GTCC, feature selection, feature optimization, FSASL, UFSOL, SuFS

A. Kraker, B. Csuka, Zs. Kollar [references] [full-text] [DOI: 10.13164/re.2020.0365] [Download Citations]
Sliding Window Evaluation of the Wiener-Hopf Equation

This paper presents an efficient method for solving the Wiener-Hopf equation in a sliding window by calculating the correlation matrices recursively. Furthermore, a novel algorithm is introduced for evaluating the inverse of the auto-correlation matrix - the Recursion with Splitting the Correlation matrix into 4 Blocks for Inversion - which can significantly reduce the computational requirements. The presented procedure is optimized for special cases to achieve an efficient implementation which allows faster rel-time signal processing or to reduce the response time - e.g. the latency -- by distributing the computations over the time. The proposed method is also validated through numerical simulations and hardware implementation.

  1. WIENER, N. The linear filter for a single time series. Chapter in Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications. M.I.T. Press, 1949, p. 81–103. ISBN: 978-0-2622-3002-5
  2. WIDROW, B., STEARNS, S. D. The adaptive linear combiner. Chapter in Adaptive Signal Processing. Prentice-Hall, 1985, p. 15–30. ISBN: 978-0-1300-4029-9
  3. HUDEC, R., MARCHEVSKY, S. Adaptive order-statistic LMS filters. Radioengineering, 2001, vol. 10, no. 1, p. 20–24. ISSN: 1210-2512
  4. KIZILKAYA, A., UKTE, A., ELBI, M. D. Statistical multirate highresolution signal reconstruction using the EMD-IT based denoising approach. Radioengineering, 2015, vol. 24, no. 1, p. 226–232. DOI: 10.13164/re.2015.02
  5. HU, Y., SONG, M., DANG, X. D., et al. Interference mitigation for the GPS receiver utilizing the cyclic spectral analysis and RR-MSWF algorithm. Radioengineering, 2017, vol. 26, no. 3, p. 798–807. DOI: 10.13164/re.2017.0798
  6. FAN, X., TAN, Z., SONG, P., et al. A variable step-size CLMS algorithm and its analysis. Radioengineering, 2020, vol. 29, no. 1. p. 182–188. DOI: 10.13164/re.2020.0182
  7. PHAM, D. T. Quick solution of least square equations and inversion of block matrices of low displacement rank. IEEE Transactions on Signal Processing, 1991, vol. 39, no. 9, p. 2122–2124. DOI: 10.1109/78.134452
  8. ASIF, A., MOURA, J. M. F. Block matrices with L-block-banded inverse: Inversion algorithms. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 2, p. 630–642. DOI: 10.1109/TSP.2004.840709
  9. DADIĆ, M., MOSTARAC, P., MALARIĆ, R. Wiener filtering for real-time DSP compensation of current transformers over a wide frequency range. IEEE Transactions on Instrumentation and Measurement, 2017, vol. 66, no. 11, p. 3023–3031. DOI: 10.1109/TIM.2017.2717238
  10. CHEN, Y., RUAN, S., QI, T. An automotive application of real-time adaptive Wiener filter for non-stationary noise cancellation in a car environment. In IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2012). Hong Kong (China), 2012, p. 597–602. DOI: 10.1109/ICSPCC.2012.6335628
  11. ZHANG, B., GAO, W., QI, Z., et al. Inversion algorithm to calculate charge density on solid dielectric surface based on surface potential measurement. IEEE Transactions on Instrumentation and Measurement, 2017, vol. 66, no. 12, p. 3316–3326. DOI: 10.1109/TIM.2017.2730981
  12. MORETTIN, P. A. The Levinson algorithm and its applications in time series analysis. International Statistical Review, 1984, vol. 52, no. 1, p. 83–92. DOI: 10.2307/1403247
  13. DELSARTE, P., GENIN, Y. The split Levinson algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, vol. 34, no. 3, p. 470–478. DOI: 10.1109/TASSP.1986.1164830
  14. KRISHNA, H., WANG, Y. The split Levinson algorithm is weakly stable. SIAM Journal on Numerical Analysis, 1993, vol. 30, no. 5, p. 1498–1508. DOI: 10.1137/0730078
  15. BENESTY, J., GANSLER, T. Computation of the condition number of a nonsingular symmetric Toeplitz matrix with the Levinson-Durbin algorithm. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 6, p. 2362–2364. DOI: 10.1109/TSP.2006.873494
  16. LI, J., ZAKHAROV, Y. V. Sliding window adaptive filter with diagonal loading for estimation of sparse UWA channels. In OCEANS 2016 - Shanghai. Shanghai (China), 2016, p. 1–5. DOI: 10.1109/OCEANSAP.2016.7485346
  17. ZAKHAROV, Y. V., NASCIMENTO, V. H. DCD-RLS adaptive filters with penalties for sparse identification. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 12, p. 3198–3213. DOI: 10.1109/TSP.2013.2258340
  18. AYRES, F. The inverse of a matrix. Chapter in Theory and Problems of Matrices. McGraw-Hill, 1974, p. 55–63. ISBN: 9780070026568

Keywords: adaptive filtering, sliding window Wiener filter, Wiener-Hopf equation, recursive matrix inversion, RSC4BI, SWF

L. Shhab, A. Rizaner, A. H. Ulusoy, H. Amca [references] [full-text] [DOI: 10.13164/re.2020.0376] [Download Citations]
Suppressing the Effect of Impulsive Noise on Millimeter-Wave Communications Systems

The Fifth Generation (5G) wireless communication systems are expected to satisfy higher data rates, network scalability, increasing number of connections and higher traffic densities in a cost-effective manner. The key essence of 5G technology resides in exploring the frequency bands at millimeter-Wave (mmWave) frequencies. As is well known, the presence of Impulsive Noise (IN) corrupts signals and leads to increased Bit Error Rate (BER) and decreased spectral efficiency. In this paper, the performance of mmWave systems in multi-path fading channel and IN is studied and a new thresholding mechanism for the clipping and blanking filters to suppress the impulsive components of noise is suggested. The paper also presents the mathematical expressions to determine the optimum threshold selection for the filters. Simulation results show that use of clipping and blanking filters with the optimal threshold values reduces the adverse effect of IN and improves system performance significantly.

  1. YUAN, Y., ZHAO, X. 5G vision, scenarios and enabling technologies. ZTE Communications, 2015, vol. 13, no. 1, p. 3–10. DOI: 10.3969/j.issn.1673-5188.2015.01.001
  2. ROH, W., SEOL, J.Y., PARK, J. et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 2014, vol. 52, no. 2, p. 106–113. DOI: 10.1109/MCOM.2014.6736750
  3. ALSHARIF, M.H., NORDIN, R. Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommunication Systems, 2017, vol. 64, no. 4, p. 617–637. DOI: 10.1007/s11235-016-0195-x
  4. SHAFI, M., ZHANG, J., THATRIA, H. et al. Microwave vs. millimeter-wave propagation channels: Key differences and impact on 5G cellular systems. IEEE Communications Magazine, 2018, vol. 56, no. 12, p. 14–20. DOI: 10.1109/MCOM.2018.1800255
  5. ALNOMAN, A., ANPALAGAN, A. Towards the fulfillment of 5G network requirements: Technologies and challenges. Telecommunication Systems, 2017, vol. 65, no. 1, p. 101–116. DOI: 10.1007/s11235-016-0216-9
  6. ROUFARSHBAF, H., MADHOW, U., RAJAGOPAL, S. OFDMbased analog multiband: A scalable design for indoor mmwave wireless communication. In IEEE Global Communications Conference (GLOBECOM). Austin (USA), 2014, p. 3267–3272. DOI: 10.1109/GLOCOM.2014.7037310
  7. NIU, Y., LI, Y., JIN, D., et al. A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks, 2015, vol. 21, no. 8, p. 2657–2676. DOI: 10.1007/s11276-015-0942-z
  8. RAPPAPORT, T. S., MACCARTNEY, G. R., SAMIMI, M. K., et al. Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 2015, vol. 63, no. 9, p. 3029–3056. DOI: 10.1109/TCOMM.2015.2434384
  9. MACCARTNEY, G. R., RAPPAPORT, T. S., SUN, S., et al. Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks. IEEE Access, 2015, vol. 3, p. 2388–2424. DOI: 10.1109/ACCESS.2015.2486778
  10. PATZOLD, M. 5G developments are in full swing. IEEE Vehicular Technology Magazine, 2017, vol. 12, no. 2, p. 4–12. DOI: 10.1109/MVT.2017.2681978
  11. AKDENIZ, M. R., LIU, Y., SAMIMI,M. K., et al. Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 2014, vol. 32, no. 6, p. 1164–1179. DOI: 10.1109/JSAC.2014.2328154
  12. PESHWE, P., KOTHARI, A. Performance enhancement of millimeter wave antenna with integrated inter-digital capacitor structure. Radioengineering, 2018, vol. 27, no. 3, p. 654–661. DOI: 10.13164/re.2019.0439
  13. HUANG, K.C., WANG. Z., Millimeter Wave Communication Systems. Piscataway, (USA): John Wiley & Sons, 2011. ISBN: 978-0470404621
  14. MIDDLETON, D. An Introduction to Statistical Communication Theory. Piscataway, (USA): Wiley-IEEE Press, 1996. ISBN: 978-0780311787
  15. SHAN, Q., GLOVER, I. A., ATKINSON, R. J., et al. Estimation of impulsive noise in an electricity substation. IEEE Transactions on Electromagnetic Compatibility, 2011, vol. 53, no. 3, p. 653–663. DOI: 10.1109/TEMC.2010.2092782
  16. LIU, L., AMIN, M. G., Performance analysis of GPS receivers in non-Gaussian noise incorporating precorrelation filter and sampling rate. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 3, p. 990–1004. DOI: 10.1109/TSP.2006.890827
  17. PHAM, K., CONRADI, J., CORMACK, G., et al. Impact of noise and nonlinear distortion due to clipping on the BER performance of a 64-QAM signal in hybrid AM-VSB/QAM optical fiber transmission system. Journal of Lightwave Technology, 1995, vol. 13, no. 11, p. 2197–2201. DOI: 10.1109/50.482039
  18. MAEDA, K., NAKATA, H., FUJITO, K. Analysis of BER of 16QAM signal in AM/16QAM hybrid optical transmission system.Electronics Letters, 1993, vol. 29, no. 7, p. 640–642. DOI: 10.1049/el:19930428
  19. BOERNER, C., SCHUBERT, C., SCHMIDT, C., et al. 160 Gbit/s clock recovery with electro-optical PLL using bidirectionally operated electroabsorption modulator as phase comparator. Electronics Letters, 2003, vol. 39, no. 14, p. 1071–1073. DOI: 10.1049/el:20030674
  20. ITU-R. Telecommunications Union ITU-R Recommendation, Radio noise, P.372-8 (04/03), 2003, 75 pages. [Online] Cited 2019-11-01. Available at:
  21. KATKOVNIK, V. A new concept of adaptive beamforming for moving sources and impulse noise environment. Signal Processing, 2000, vol. 80, no. 9, p. 1863–1882. DOI: 10.1016/S0165-1684(00)00094-3
  22. LEE, M. S., KATKOVNIK, V., KIM, Y. H. Robust approximate median beamforming for phased array radar with antenna switching. Signal Processing, 2004, vol. 84, no. 9, p. 1667–1675. DOI: 10.1016/j.sigpro.2004.05.007
  23. JUWONO, F.H., GUO, Q., HUANG, D., et al. Deep clipping for impulsive noise mitigation in OFDM-based power-line communications. IEEE Transactions on Power Delivery, 2014, vol. 29, no. 3, p. 1335–1343. DOI: 10.1109/TPWRD.2013.2294858
  24. ROZIC, N., BANELLI, P., BEGUSIC, D., et al. Multiple-threshold estimators for impulsive noise suppression in multicarrier communications. IEEE Transactions on Signal Processing, 2018, vol. 66, no. 6, p. 1619–1633. DOI: 10.1109/TSP.2018.2793895
  25. DUTTA, T., SATIJA, U., RAMKUMAR, B., et al. Blind impulse estimation and removal using sparse signal decomposition framework for OFDM systems. Circuits Systems and Signal Processing, 2018, vol. 37, no. 2, p. 847–861. DOI: 10.1007/s00034-017-0573-y
  26. RİZANER, A., ULUSOY, A. H., AMCA, H. Adaptive fuzzy assisted detector under impulsive noise for DVB-T systems. Optik - International Journal for Light and Electron Optics, 2016, vol. 127, no. 13, p. 5196–5199. DOI: 10.1016/j.ijleo.2016.02.079
  27. JUWONO, F. H., REINE, R., LIU, L., et al. Performance of impulsive noise blanking in precoded OFDM-based PLC systems. In IEEE International Conference on Communication Systems (ICCS). Shenzhen (China), 2016, p. 1–6. DOI: 10.1109/ICCS.2016.7833562
  28. RABIE, K. M., ALSUSA, E. Improved DPTE technique for impulsive noise mitigation over power-line communication channels. AEUInternational Journal of Electronics and Communications, 2015, vol. 69, no. 12, p. 1847–1853. DOI: 10.1016/j.aeue.2015.09.012
  29. RABIE, K. M., ALSUSA, E. Performance analysis of adaptive hybrid nonlinear preprocessors for impulsive noise mitigation over power-line channels. In IEEE International Conference on Communications (ICC). London (UK), 2015, p. 728–733. DOI: 10.1109/ICC.2015.7248408
  30. RABIE, K., ALSUSA, E., FAMILUA, A., et al. Constant envelope OFDM transmission over impulsive noise power-line communication channels. In IEEE International Symposium on Power Line Communications and its Applications (ISPLC). Austin (USA), 2015, p. 13–18. DOI: 10.1109/ISPLC.2015.7147582
  31. SARABCHI, F., NERGUIZIAN, C. Impulsive noise mitigation for OFDM-based systems using enhanced blanking nonlinearity. In IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC). Washington (USA), 2014, p. 841–845. DOI: 10.1109/PIMRC.2014.7136282
  32. HAKAM, A., KHALID, M., ALY, N. A., et al. MIMO-OFDM system with impulsive noise reduction technique based on auto level selection mechanism. In IEEE 15th International Conference on Communication Technology (ICCT). Guilin (China), 2013, p. 229–233. DOI: 10.1109/ICCT.2013.6820377
  33. EPPLE, U., SCHNELL, M. Advanced blanking nonlinearity for mitigating impulsive interference in OFDM systems. IEEE Transactions on Vehicular Technology, 2017, vol. 66, no. 1, p. 146–158. DOI: 10.1109/TVT.2016.2535374
  34. OH, H., NAM, H. Design and performance analysis of nonlinearity preprocessors in an impulsive noise environment. IEEE Transactions on Vehicular Technology, 2017, vol. 66, no. 1, p. 364–376. DOI: 10.1109/TVT.2016.2547889
  35. ALI, Z. Hybrid median-nulling scheme for impulsive noise mitigation in OFDM transmission. In IEEE Fourth International Conference on Aerospace Science and Engineering (ICASE). Islamabad (Pakistan), 2015, p. 1–5. DOI: 10.1109/ICASE.2015.7489518
  36. CHEN, C., MOW, W.H. Optimized metric clipping decoder design for impulsive noise channels at high signal-to-noise ratios. In IEEE 36th Sarnoff Symposium. Newark (USA), 2015, p. 46–49. DOI: 10.1109/SARNOF.2015.7324641
  37. MÂAD, H. B., GOUPIL, A., CLAVIER, L., et al. Robust clipping demapper for LDPC decoding in impulsive channel. In IEEE 6th International Symposium on IEEE Turbo Codes and Iterative Information Processing (ISTC). Brest (France), 2010, p. 231–235. DOI: 10.1109/ISTC.2010.5613845
  38. ALKHATEEB, A., LEUS, G., HEATH, R. W. Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Transactions on Wireless Communications, 2015, vol. 14, no. 11, p. 6481–6494. DOI: 10.1109/TWC.2015.2455980
  39. YU, X., SHEN, Y. J, ZHANG, J., et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 2016, vol. 10, no. 3, p. 485–500. DOI: 10.1109/JSTSP.2016.2523903
  40. XIE, Y., BO, L., ZHONGJIANG, Y, A general hybrid precoding method for mmWave massive MIMO systems. Radioengineering, 2019, vol. 28, no. 2, p. 439–446. DOI: 10.13164/re.2019.0439
  41. SHHAB, L. M. H., RİZANER, A., ULUSOY, A. H., et al. Impact of impulsive noise on millimeter wave cellular systems performance. In IEEE 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT). Liverpool (UK), 2017, p. 1–4. DOI: 10.1109/UCMMT.2017.8068495
  42. ALKHATEEB, A., AYACH, O. E., LEUS, G., et al. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 2014, vol. 8, no. 5, p. 831–846. DOI: 10.1109/JSTSP.2014.2334278
  43. EL AYACH, O., RAJAGOPAL, S., ABU-SURRA, S., et al. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 3, p. 1499–1513. DOI: 10.1109/TWC.2014.011714.130846
  44. RAPPAPORT, T. S., HEATH JR., R. W., DANIELS, R. C., et al. Millimeter Wave Wireless Communications. London (UK): Pearson Education, 2014. ISBN: 978-0132172288
  45. WANG, X., POOR, H. V. Robust multiuser detection in non-Gaussian channels. IEEE Transactions on Signal Processing, 1999, vol. 47, no. 2, p. 289–305. DOI: 10.1109/78.740103

Keywords: Millimeter-wave, impulsive noise, clipping, blanking

Y. Yunida, R. Muharar, Y. Away, N. Nasaruddin [references] [full-text] [DOI: 10.13164/re.2020.0386] [Download Citations]
Efficient Relay Selection Algorithm for Non-Orthogonal Amplify-and-Forward Cooperative Systems over Block-Fading Channels

In this paper, an efficient relay selection (RS) algorithm for non-orthogonal amplify-and-forward (NAF) cooperative systems over block-fading channels, also known as block-fading NAF (BFNAF) protocol, is developed. The best relay is selected from a subset of available relay nodes based on the maximum criterion of their capacity bounds in half-duplex (HD) mode, together with the power allocation, to obtain the energy efficiency (EE) for the proposed RS scheme. We derived an exact closed-form expression of the outage probability and throughput for evaluating the system performance. The energy consumption was also numerically evaluated to determine the optimized EE of the proposed RS scheme for each transmission protocol with two modulation schemes. The numerical results indicated that the proposed RS scheme with the BFNAF protocol outperforms the previous RS scheme with orthogonal AF (OAF) protocol in terms of both the outage probability and the throughput as the number of relays is increased and the average transmit power is optimally allocated for each transmission phase. Moreover, in the case of the optimized EE, it is found that by using quadrature amplitude modulation (QAM), the EE of the proposed RS scheme is 48.9% higher than that of binary phase-shift keying (BPSK) modulation.

  1. SENDONARIS, A., ERKIP, E., AAZHANG, B. User cooperation diversity. Part II: Implementation aspects and performance analysis. IEEE Transactions on Communication, 2003, vol. 51, no. 11, p. 1939–1948. DOI: 10.1109/TCOMM.2003.819238
  2. LANEMAN, J. N., TSE, D. N. C., WORNELL, G. Cooperative diversity in wireless networks: Efficient protocols and outage behaviour. IEEE Transactions on Information Theory, 2004, vol. 50, no. 12, p. 3062–3080. DOI: 10.1109/TIT.2004.838089
  3. LI, E., WANG, X., WU, Z., et al. Outage analysis of decode-andforward two-way relay selection with different coding and decoding schemes. IEEE Systems Journal, 2019, vol. 13, no. 1, p. 125–136. DOI: 10.1109/JSYST.2018.2810019
  4. ZHAO, D., ZHAO, H., JIA, M., et al. Smart relaying for selection combining based decode-and-forward cooperative networks. IEEE Communications Letters, 2014, vol. 18, no. 1, p. 74–77. DOI: 10.1109/LCOMM.2013.112513.132216
  5. LEE, I. H. Outage performance of efficient partial relay selection in amplify-and-forward relaying systems over Rayleigh fading channels. IEEE Communications Letters, 2012, vol. 16, no. 10, p. 1644–1647. DOI: 10.1109/LCOMM.2012.090312.121523
  6. LEE, J., RIM, M., KIM, K. On the outage performance of selection amplify-and-forward relaying scheme. IEEE Communications Letters, 2014, vol. 18, no. 3, p. 423–426. DOI: 10.1109/LCOMM.2014.011214.132477
  7. NGUYEN, K. T., DO, D. T., VOZNAK, M. An optimal analysis in wireless powered full-duplex relaying network. Radioengineering, 2017, vol. 26, no. 1, p. 369–375. DOI: 10.13164/re.2017.0369
  8. NABAR, R. U., BOLCSKEI, H., KNEUBUHLER, F. W. Fading relay channel: Performance limits and space-time signal design. IEEE Journal on Selected Areas in Communication, 2004, vol. 22, no. 6, p. 1099–1109. DOI: 10.1109/JSAC.2004.830922
  9. ELSAADANY, M., HAMOUDA, W. Performance analysis of non-orthogonal AF relaying in cognitive radio networks. IEEE Wireless Communications Letters, 2015, vol. 4, no. 4, p. 373–376. DOI: 10.1109/LWC.2015.2421910
  10. KRIKIDIS, I., THOMPSON, J., MCLAUGHLIN, S., et al. Optimization issues for cooperative amplify-and-forward systems over block-fading channels. IEEE Transaction on Vehicle Technology, 2008, vol. 57, no. 5, p. 2868–2884. DOI: 10.1109/TVT.2008.917235
  11. YUNIDA, Y., NASARUDDIN, N., MUHARAR, R., et al. Linear precoder design for non-orthogonal AF MIMO relaying systems based MMSE criterion. EURASIP Journal on Wireless Communication and Networking, 2018, vol. 2018, p. 1–8. DOI: 10.1186/s13638-018-1295-y
  12. YUNIDA, Y., NASARUDDIN, N., MUHARAR, R., et al. Implementation of the Alamouti STBC for multi-pair two-way wireless networks with amplify-and-forward MIMO relaying. In Proceedings of IEEE International Conference on Information Technology Systems and Innovation (ICITSI). Bandung-Padang (Indonesia), 2018, p. 515–519. DOI: 10.1109/ICITSI.2018.8695941
  13. BLETSAS, A., KHISTI, A., REED, D., et al. A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communication, 2006, vol. 24, no. 3, p. 659–672. DOI: 10.1109/JSAC.2005.862417
  14. LI, D. Opportunistic DF–AF selection for cognitive relay networks. IEEE Transactions on Vehicular Technology, 2016, vol. 65, no. 4. p. 2790–2796. DOI: 10.1109/TVT.2015.2418535
  15. KRIKIDIS, I., SURAWEERA, H. A., SMITH, P. J., et al. Fullduplex relay selection for amplify-and-forward cooperative networks. IEEE Transactions on Wireless Communication, 2012, vol. 11, no. 12, p. 4381–4393, DOI: 10.1109/TWC.2012.101912.111944
  16. YIN, C., DOAN, T. X., NGUYEN, N. P., et al. Outage probability of full-duplex cognitive relay networks with partial relay selection. In Proceedings of IEEE International Conference on Recent Advance in Signal Processing, Telecommunication & Computing. Da Nang (Vietnam), 2017, p. 115–118. DOI: 10.1109/SIGTELCOM.2017.7849806
  17. ELSAADANY, M., HAMOUDA, W. Energy-efficient design for non-orthogonal AF relaying in underlay spectrum sharing networks. In Proceedings of IEEE International Conference on Communication. Kuala Lumpur (Malaysia), 2016, p. 1–6. DOI: 10.1109/ICC.2016.7510859
  18. KHALIL, M. I., BERBER, S. M., SOWERBY, K. W. Energy efficiency design for combined relay selection and power allocation AF-relay network. In Proceedings of The 20th IEEE Asia-Pacific Conference on Communication (APCC). Pattaya (Thailand), 2014, p. 417–422. DOI: 10.1109/APCC.2014.7092848
  19. HWANG, K. S., KO, Y. C. An efficient relay selection algorithm for cooperative networks. In Proceedings of the IEEE 66th Vehicle Technology Conference. Baltimore (USA), 2007, p. 81–85. DOI: 10.1109/VETECF.2007.33
  20. DO, D. T., LE, A. T. NOMA based cognitive relaying: Transceiver hardware impairments, relay selection policies and outage performance comparison. Journal of Computer Communication, 2019, vol. 146, p. 144–154. DOI: 10.1016/j.comcom.2019.07.023
  21. DAVID, H. A. Order Statistic. 1st ed. New York, NY (USA): Wiley, 1970.
  22. SHANNON, C. E. Communication in the presence of noise. Proceedings of IEEE, 1984, vol. 72, no. 9, p. 1192–1201. DOI: 10.1109/PROC.1984.12998

Keywords: Block-fading, capacity bound, efficient relay selection, energy efficiency, non-orthogonal amplify-and-forward, power allocation

I. M. Salim, M. Barbary, M. H. Abd El-azeem [references] [full-text] [DOI: 10.13164/re.2020.0397] [Download Citations]
Novel Bayesian Track-Before-Detection for Drones Based VB-Multi-Bernoulli Filter and a GIGM Implementation

Joint detection and tracking of drones is a challenging radar technology; especially estimating their states with unknown measurement variances. The Bayesian track-before-detect (TBD) approach is an efficient way to detect low observable targets. In this paper, we proposed a new variational Bayesian (VB)-TBD technique for drones based on Multi-Bernoulli filter, which implemented with unknown measurement variances. Current implementation includes an analytical Gaussian inverse Gamma mixtures solution, which applied to estimate augmented kinematic drones state under the same circumstance. The results demonstrate that the proposed filter is more accurate than other Multi-Bernoulli filters in cardinality estimation. The proposed algorithm estimates the fluctuated parameters for each drone and it has no difficulty in handling the crossing of multiple drones. The Optimal Subpattern Assignment (OSPA) distances of proposed algorithm under different SNR is less than the other filters. It can be seen that at SNR (-5dB), the proposed algorithm and the other filters settle to errors 51m, 125m and 200m, respectively.

  1. OUYANG, C., JI, H., LI, C. Improved multi-target multi-Bernoulli filter. IET Radar Sonar Navigation, 2012, vol. 6, no. 6, p. 458–464. DOI: 10.1049/iet-rsn.2011.0377
  2. VO, B.-N, VO, B.-T, PHAM, N., et al. Joint detection and estimation of multiple objects from image observations. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 10, p. 5129–5141. DOI: 10.1109/TSP.2010.2050482
  3. RISTIC, B., VO, B.-T., VO, B.-N., et al. A tutorial on Bernoulli filters: Theory, implementation and applications. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 13, p. 3406–3430. DOI: 10.1109/TSP.2013.2257765
  4. VO, B.-T., SEE, C. M., MA, N., et al. Multi-sensor joint detection and tracking with Bernoulli filter. IEEE Transactions on Aerospace and Electronic System, 2012, vol. 48, no. 2, p. 1385–1402. DOI: 10.1109/TAES.2012.6178069
  5. VO, B.-N, VO, B.-T, HOSEINNEZHAD, R., et al. Robust multiBernoulli filtering. IEEE Journal of Selected Topics in Signal Processing, 2013, vol. 7, no. 3, p. 399–409. DOI: 10.1109/JSTSP.2013.2252325
  6. RAHMAN, S., ROBERTSON, D. A. In-flight RCS measurements of drones and birds at K-band and W-band. IET Radar Sonar Navigation, 2019, vol. 13, no. 2, p. 300–309. DOI: 10.1049/ietrsn.2018.5122
  7. PATEL, J. S., FIORANELLI, F., ANDERSON, D. Review of radar classification and RCS characterisation techniques for small UAVs or drones. IET Radar, Sonar, and Navigation, 2018, vol. 12, no. 9, p. 911–919. DOI: 10.1049/iet-rsn.2018.0020
  8. ZONG, P., BARBARY, M. Improved multi-Bernoulli filter for extended stealth targets tracking based on sub-random matrices. IEEE Sensors Journal, 2016, vol. 16, no. 5, p. 1428–1447. DOI: 10.1109/JSEN.2015.2499268
  9. BARBARY, M., ZONG, P. A novel stealthy target detection based on stratospheric balloon-borne positional instability due to random wind. Radioengineering, 2014, vol. 23, no. 4, p. 1192–1202.
  10. DUQUE DE QUEVEDO, A., IBANEZ URZAIZ, F., GISMERO MENOYO, J., et al. Drone detection and radar-cross-section measurements by RAD-DAR. IET Radar, Sonar, and Navigation, 2019, vol. 13, no. 9, p. 1437–1447. DOI: 10.1049/ietrsn.2018.5646
  11. YANG, J., GE, H. Adaptive probability hypothesis density filter based on variational Bayesian approximation for multi-target tracking. IET Radar, Sonar, and Navigation, 2013, vol. 7, no. 9, p. 959–967. DOI: 10.1049/iet-rsn.2012.0357
  12. WU, X., HUANG, G., GAO, J. Adaptive noise variance identification for probability hypothesis density-based multi-target filter by variational Bayesian approximations. IET Radar, Sonar, and Navigation, 2013, vol. 7, no. 8, p. 895–903. DOI: 10.1049/ietrsn.2012.0291
  13. SARKKA, S., NUMMENMAA, A. Recursive noise adaptive Kalman filtering by variational Bayesian approximations. IEEE Transactions on Automatic Control, 2009, vol. 54, no. 3, p. 596–600. DOI: 10.1109/TAC.2008.2008348
  14. XINBO GAO, DACHENG TAO, XUELONG LI, et al. Multisensor centralized fusion without measurement noise covariance by variational Bayesian approximation. IEEE Transactions on Aerospace and Electronic System, 2011, vol. 47, no. 1, p. 718–727. DOI: 10.1109/TAES.2011.5705702
  15. SCHUHMACHER, D., VO, B.-N, VO, B.-T. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 8, p. 3447–3457. DOI: 10.1109/TSP.2008.920469
  16. YANG, J., GE, H. An improved multi-target tracking algorithm based on CBMeMBer filter and variational Bayesian approximation. Signal Processing, 2013, vol. 93, p. 2510–2515. DOI: 10.1016/j.sigpro.2013.03.027
  17. QIU, H., HUANG, G., GAO, J. Variational Bayesian labeled multi-Bernoulli filter with unknown sensor noise statistics. Chinese Journal of Aeronautics, 2016, vol. 29, no. 5, p. 1378–1384. DOI: 10.1016/j.cja.2016.05.002

Keywords: Drones tracking, Track-Before-Detect (TBD), Multi-Bernoulli filter, Variational Bayesian (VB) approximation.

Y. Pan, M. Yao, G. Q. Luo, B. C. Pan, X. Gao [references] [full-text] [DOI: 10.13164/re.2020.0405] [Download Citations]
Underdetermined Direction-of-Arrival Estimation with Coprime Array via Atomic Norm Minimization

The coprime array provides the possibility of resolving more signals than the sensors for the direction-of-arrival (DOA) estimation application. However, the non-consecution of its virtual array raises challenges for making full use of the degree of freedom (DOF). In this paper, we propose a new underdetermined DOA estimation method with coprime array where the non-consecutive virtual array can be converted into a virtual uniform linear array (ULA) with the same aperture. Firstly, all elements in the vectorized signal covariance matrix corresponding to the same virtual array positions are averaged to construct the output signals of the virtual array. Then, an atomic norm minimization (ANM) based optimization problem is formed for denoising the output signals of the virtual array and for interpolating the missing signals at the virtual array holes. At last, the ANM problem is solved by the semidefinite programming (SDP) and the DOAs are obtained by applying the subspace method on the reconstructed signal covariance matrix of the interpolated virtual ULA. The proposed algorithm is gridless and makes full use of the DOF and the information provided by the coprime array. The simulation results compared with the other representative methods are given to demonstrate the superiority of the proposed method with respect to the resolution and estimation accuracy.

  1. VAN TREES, H. L. Detection, Estimation, and Modulation Theory (Part IV: Optimum Array Processing). New York, USA: Wiley, 2004. ISBN: 0-471-09390-4
  2. PAN, Y., LUO, G. Q., JIN, H., et al. Direction-of-arrival estimation with ULA: A spatial annihilating filter reconstruction perspective. IEEE Access, 2018, vol. 6, p. 23172-23179. DOI: 10.1109/ACCESS.2018.2828799
  3. MOFFET, A. Minimum-redundancy linear arrays. IEEE Transactions on Antennas and Propagation, 1968, vol. 16, no. 2, p. 172-175. DOI: 10.1109/TAP.1968.1139138
  4. BLOOM, G. S., GOLOMB, S. W. Applications of numbered undirected graphs. Proceedings of the IEEE, 1977, vol. 65, no. 4, p. 562-570. DOI: 10.1109/PROC.1977.10517
  5. VAIDYANATHAN, P. P., PAL, P. Sparse sensing with co-prime samplers and arrays. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 2, p. 573-586. DOI: 10.1109/TSP.2010.2089682
  6. PAL, P., VAIDYANATHAN, P. P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 8, p. 4167-4181. DOI: 10.1109/TSP.2010.2049264
  7. ABRAMOVICH, Y. I., SPENCER, N. K., GOROKHOV, A. Y. Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays. IEEE Transactions on Signal Processing, 1999, vol. 47, no. 9, p. 1502-1521. DOI: 10.1109/78.765119
  8. PAL, P., VAIDYANATHAN, P. P. Coprime sampling and the MUSIC algorithm. In Proceedings of 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE). Sedona (AZ, USA), 2011, p. 289-294. DOI: 10.1109/DSPSPE.2011.5739227
  9. PAL, P., VAIDYANATHAN, P. P. A grid-less approach to underdetermined direction of arrival estimation via low rank matrix denoising. IEEE Signal Processing Letters, 2014, vol. 21, no. 6, p. 737-741. DOI: 10.1109/LSP.2014.2314175
  10. DONOHO, D. L. Compressed sensing. IEEE Transactions on Information Theory, 2006, vol. 52, no. 4, p. 12891306. DOI: 10.1109/TIT.2006.871582
  11. CANDES, E. J., ROMBERG, J., TAO, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, vol. 52, no. 2, p. 489-509. DOI: 10.1109/TIT.2005.862083
  12. ZHANG, Y. D., AMIN, M. G., HIMED, B. Sparsity-based DOA estimation using co-prime arrays. In Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Vancouver (BC, Canada), 2013, p. 3967-3971. DOI: 10.1109/ICASSP.2013.6638403
  13. PAN, Y., LUO, G. Q., JIN, H., et al. DOA estimation with planar array via spatial finite rate of innovation reconstruction. Signal Processing, 2018, vol. 153, p. 47-57. DOI: 10.1016/j.sigpro.2018.07.001
  14. TAN, Z., NEHORAI, A. Sparse direction of arrival estimation using co-prime arrays with off-grid targets. IEEE Signal Processing Letters, 2014, vol. 21, no. 1, p. 26-29. DOI: 10.1109/LSP.2013.2289740
  15. YANG, Z., LI, J., STOICA, P., et al. Sparse Methods for Direction-of Arrival Estimation. 65. [Online] Cited 2016103. Available at: arXiv: 1609.09596 [cs.IT]
  16. YANG, Z., XIE, L. Exact joint sparse frequency recovery via optimization methods. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 19, p. 5145-5157. DOI: 10.1109/TSP.2016.2576422
  17. YANG, Z., XIE, L. Enhancing sparsity and resolution via reweighted atomic norm minimization. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 4, p. 995-1006. DOI: 10.1109/TSP.2015.2493987
  18. YANG, Z., XIE, L. On gridless sparse methods for line spectral estimation from complete and incomplete data. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 12, p. 3139-3153. DOI: 10.1109/TSP.2015.2420541
  19. YANG, Z., XIE, L. Continuous compressed sensing with a single or multiple measurement vectors. In Proceedings of 2014 IEEE Workshop on Statistical Signal Processing (SSP). Gold Coast (Australia), 2014, p. 288–291. DOI: 10.1109/SSP.2014.6884632
  20. GUO, M., CHEN, T., WANG, B. An improved DOA estimation approach using coarray interpolation and matrix denoising. Sensors, 2017, vol. 17, no. 5, p. 1–12. DOI: 10.3390/s17051140
  21. LIU, C., VAIDYANATHAN, P. P., PAL, P. Coprime coarray interpolation for DOA estimation via nuclear norm minimization. In Proceedings of 2016 IEEE International Symposium on Circuits and Systems (ISCAS). Montreal (QC, Canada), 2016, p. 2639–2642. DOI: 10.1109/ISCAS.2016.7539135
  22. ZHOU, C., GU, Y., FAN, X., et al. Direction-of-arrival estimation for coprime array via virtual array interpolation. IEEE Transactions on Signal Processing, 2018, vol. 66, no. 22, p. 5956-5971. DOI: 10.1109/TSP.2018.2872012
  23. LI, Y., CHI, Y. Off-the-grid line spectrum denoising and estimation with multiple measurement vectors. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 5, p. 1257-1269. DOI: 10.1109/TSP.2015.2496294
  24. QIN, S., ZHANG, Y. D., AMIN, M. G. Generalized coprime array configurations for direction-of-arrival estimation. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 6, p. 13771390. DOI: 10.1109/TSP.2015.2393838
  25. CHANDRASEKARAN, V., RECHT, B., PARRILO, P. A., et al. The convex geometry of linear inverse problems. Foundations of Computational Mathematics, 2012, vol. 12, no. 6, p. 805–849. DOI: 10.1007/s10208-012-9135-7
  26. TANG, G., BHASKAR, B. N., SHAH, P., et al. Compressed sensing off the grid. IEEE Transactions on Information Theory, 2013, vol. 59, no. 11, p. 7465-7490. DOI: 10.1109/TIT.2013.2277451
  27. BOYD, S. P., VANDENBERGHE, L. Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004. ISBN: 978-0- 521-83378-3
  28. TOH, K.-C., TODD, M. J., TUTUNCU, R. H. SDPT3-a MATLAB software package for semidefinite programming version 1.3. Optimization Methods Software, 1999, vol. 11, no. 1-4, p. 545-581. DOI: 10.1080/10556789908805762
  29. LIU, C., VAIDYANATHAN, P. P. Remarks on the spatial smoothing step in coarray MUSIC. IEEE Signal Processing Letters, 2015, vol. 22, no. 9, p. 1438-1442. DOI: 10.1109/LSP.2015.2409153
  30. SCHMIDT, R. O. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 3, p. 276-280. DOI: 10.1109/TAP.1986.1143830
  31. ZHOU, C. ZHOU, J. Direction-of-arrival estimation with coarray ESPRIT for coprime array. Sensors, 2017, vol. 17, no. 8, p. 1–17. DOI: 10.3390/s17081779
  32. ROY, R., KAILATH, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, vol. 37, no. 7, p. 984-995. DOI: 10.1109/29.32276
  33. CHEN, H., HOU, C., ZHU, W. P., et al. ESPRIT-like twodimensional direction finding for mixed circular and strictly noncircular sources based on joint diagonalization. Signal Processing, 2017, vol. 141, p. 48-56. DOI: 10.1016/j.sigpro.2017.05.024
  34. RAO, B. D., HARI, K. V. S. Performance analysis of root-MUSIC. In The Twenty-Second Asilomar Conference on Signals, Systems and Computers. Pacific Grove (CA, USA), 1988, p. 578-582. DOI: 10.1109/ACSSC.1988.754608
  35. LIU CONGFENG, LIAO GUISHENG. Fast algorithm for RootMUSIC with real-valued egendecomposition. In Proceedings of 2006 CIE International Conference on Radar. Shanghai (China), 2006, p. 1-4. DOI: 10.1109/ICR.2006.343159
  36. GRANT, M., BOYD, S. CVX: Matlab Software for Disciplined Convex Programming. [Online] Cited 2014-3. Available at:
  37. LIU, C. L., VAIDYANATHAN, P. P. Cramer-Rao bounds for coprime and other sparse arrays, which find more sources than sensors. Digital Signal Processing, 2016, vol. 61, p. 43-61. DOI: 10.1016/j.dsp.2016.04.011

Keywords: Atomic norm minimization (ANM), coprime array, denoising and interpolating, gridless method, underdetermined direction-of-arrival (DOA) estimation