ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)



Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile

December 2019, Volume 28, Number 4 [DOI: 10.13164/re.2019-4]

Show all Hide all

J. Acharjee, R. L. Kumar, K. Mandal, S. K. Mandal [references] [full-text] [DOI: 10.13164/re.2019.0663] [Download Citations]
A Compact Multiband Multimode Antenna Employing Defected Ground Structure

An analysis of shorting pin loaded compact triple-band antenna with triple-mode characteristics is carried out in this paper. The antenna structure is designed with a rectangular patch loaded with open edge slots to excite the fundamental TM10 mode at 2.51GHz and two modified inverted F-shaped defected ground structures (DGS) for the TM20 and TM30 modes at 5.26GHz and 8.18GHz, respectively. A design formula for the fundamental resonant frequency of the basic structure is presented using multiple linear regression technique. The experimental results show good agreement with the simulated results.

  1. KUMAR. G., RAY, K. P. Broadband Microstrip Antennas. Artech House, 2003. ISBN: 978-1580532440
  2. SALONEN, P., KESKILAMMI, M., KIVIKOSKI, M. Single-feed dual-band planar inverted-F antenna with U-shaped slot. IEEE Transactions on Antennas and Propagation, 2000, vol. 48, no. 8, p. 1262–1264. DOI: 10.1109/8.884498
  3. ROW, J. S. Experimental studies of the dual-band planar invertedF antenna with a U-shaped slot. Microwave and Optical Technology Letters, 2003, vol. 37, p. 359–361. DOI: 10.1002/mop.10917
  4. KUNWAR, A., GAUTAM, A. K., RAMBABU, K. Design of a compact U-shaped slot triple band antenna for WLAN/WiMAX applications. AEU - International Journal of Electronics and Communications, 2017, vol. 71, p. 82–88. DOI: 10.1016/j.aeue.2016.10.013
  5. NASHAAT, D. M., ELSADEK, H. A., GHALI, H. Single feed compact quad-band PIFA antenna for wireless communication applications. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 8, p. 2631–2335. DOI: 10.1109/TAP.2005.851872
  6. OJAROUDI, N., OJAROUDI, H., GHADIMI, N. Quad-band planar inverted-F antenna (PIFA) for wireless communication systems. Progress In Electromagnetics Research, 2014, vol. 45, p. 51–56. DOI: 10.2528/PIERL14012403
  7. GUNDUMALLA, A., AGRAWAL, S., PARIHAR, M. S. Miniaturized active stepped impedance planar inverted-F antenna using common ground. AEU - International Journal of Electronics and Communications, 2017, vol. 83, p. 233–239. DOI: 10.1016/j.aeue.2017.08.041
  8. GARG, R., BHARTIA, P., BAHL, I., ITTIPIBOON, A. Microstrip Antenna Design Handbook. Norwood (MA, USA): Artech House, 2001. ISBN: 978-0890065136
  9. GUHA, D., KUMAR, C., PAL, S. Improved cross-polarization characteristics of circular microstrip antenna employing arcshaped defected ground structure (DGS). IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 1367–1369. DOI: 10.1109/LAWP.2009.2039462
  10. KUMAR, C., GUHA, D. Asymmetric geometry of defected ground structure for rectangular microstrip: A new approach to reduce its cross-polarized fields. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 6, p. 2503–2506. DOI: 10.1109/TAP.2016.2537360
  11. GUHA, D., BISWAS, M., ANTAR, Y. M. M. Microstrip patch antenna with defected ground structure for cross polarization suppression. IEEE Antennas and Wireless Propagation Letters, 2005, vol. 4, no. 1, p. 455–458. DOI: 10.1109/LAWP.2005.860211
  12. KUMAR, J., BASU, B., TALUKDAR, F. A., et al. Multimodeinspired low cross-polarization multiband antenna fabricated using graphene-based conductive ink. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 10, p. 1861–1865. DOI: 10.1109/LAWP.2018.2868477
  13. LIU, N. W., ZHU, L., FU, G., et al. A low profile shorted-patch antenna with enhanced bandwidth and reduced H-plane crosspolarization. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 10, p. 5602–5607. DOI: 10.1109/TAP.2018.2855730
  14. CHATTERJEE, S., HADI, A. S. Regression Analysis by Example. 4th ed. New Jersey: John Wiley & Sons, 2006. DOI: 10.1002/0470055464
  15. CHATTOPADHYAY, S., BISWAS, M., SIDDIQUI, J. Y., et al. On the resonance of rectangular microstrip patches with variable air gap and varying aspect ratio: Improved formulations and experiments. Microwave and Optical Technology Letters, 2009, vol. 51, no. 1, p. 169–173. DOI: 10.1002/mop.24025
  16. GHOSH, A., GHOSH, D., CHATTOPADHYAY, S., et al. Rectangular microstrip antenna on slot-type defected ground for reduced cross-polarized radiation. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 14, p. 321–324. DOI: 10.1109/LAWP.2014.2363563
  17. BALANIS, C. A. Antenna Theory: Analysis and Design. 3rd ed. New York: John Wiley & Sons, 2005. ISBN: 978-0471667827
  18. WHEELER, H. A. The radiation sphere around a small antenna. Proceedings of IRE, 1975, vol. 47, no. 8, p. 1325–1331. DOI: 10.1109/JRPROC.1959.287198

Keywords: Multiband, multimode, PIFA, DGS, cross polarization, ISM, WLAN, ITU

S. Niyamanon, P. Janpangngern, C. Phongcharoenpanich [references] [full-text] [DOI: 10.13164/re.2019.0671] [Download Citations]
Wideband Dual-Arm Capacitively Coupled Patch Antenna for Tablet/Laptop Applications

The capacitively coupled microstrip antenna for 4G and Wi-Fi applications is presented. The antenna has a compact size which can easily be installed into many types of wireless communication device. The antenna is designed on FR4 substrate with a total dimension of 70 mm × 9 mm ×0.8 mm. The structure of the antenna consists of two main parts. The T-shape feeding patch located between two radiating strips with the ground strip being placed behind them. The surface current distribution and parametric study was analyzed to determine the suitable parameters. Furthermore, the antenna prototype was fabricated and tested. The operating frequency range of the proposed antenna is between 1.7 GHz and 2.5 GHz for the |S11| of less than -10 dB. The antenna provides a linear polarization in a single beam direction covering approximately one quadrant of the free space with a maximum gain of higher than 1.47 dBi on the entire frequency band.

  1. JAN, J. Y., HSIANG, C. Y. Wideband CPW-fed slot antenna for DCS, PCS, 3G and Bluetooth bands. Electronics Letters, 2006, vol. 42, no. 24, p. 1377–1378. DOI: 10.1049/el:20062750
  2. ZHOU, S., GUO, J., HUANG, Y., et al. Broadband dual frequency sleeve monopole antenna for DTV/GSM applications. Electronics Letters, 2009, vol. 45, no. 15, p. 766–768. DOI: 10.1049/el.2009.1040
  3. LEE, C. T., WONG, K. L. Broadband planar dipole antenna for DTV/GSM operation. Microwave and Optical Technology Letters, 2008, vol. 50, no. 7, p. 1900–1905. DOI: 10.1002/mop.23500
  4. CHEN, H. D. Compact broadband microstrip-line-fed sleeve monopole antenna for DTV application and ground plane effect. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 497–500. DOI: 10.1109/LAWP.2008.2004213
  5. YEUM, I., PARK, J., KIM, J., et al. Compact and contact quadband (DVB-H UHF/L, WLAN 11a/b) antenna for PMP applications. Electronics Letters, 2010, vol. 46, no. 1, p. 11–13. DOI: 10.1049/el.2010.2134
  6. LEE, C. H., CHANG, Y. H., CHIOU, C. E. Design of multi-band CPW-fed antenna for triple-frequency operation. Electronics Letters, 2012, vol. 48, no. 10, p. 543–545. DOI: 10.1049/el.2012.0786
  7. CHANG, T. H., KIANG, J. F. Compact multi-band H-shaped slot antenna. IEEE Transactions on Antennas and Propagation, 2013. vol. 61, no. 8, p. 4345–4349. DOI: 10.1109/TAP.2013.2262666
  8. BEHDAD, N., SARABANDI, K. A multiresonant single-element wideband slot antenna. IEEE Antennas and Wireless Propagation Letters, 2004, vol. 3, p. 5–8. DOI: 10.1109/LAWP.2004.825093
  9. ZHAO, A. P., RAHOLA, J. Quarter-wavelength wideband slot antenna for 3-5 GHz mobile applications. IEEE Antennas and Wireless Propagation Letters, 2005, vol. 4, p. 421–424. DOI: 10.1109/LAWP.2005.859382
  10. LUI, W. J., CHENG, C. H., ZHU, H. B. Compact frequency notched ultra-wideband fractal printed slot antenna. IEEE Microwave and Wireless Components Letters, 2006, vol. 16, no. 4, p. 224–226. DOI: 10.1109/LMWC.2006.872102
  11. SONG, Y., MODRO, J. C., WU, Z., et al. Miniature multiband and wideband 3-D slot loop antenna for mobile terminals. IEEE Antennas and Wireless Propagation Letters, 2006, vol. 5, p. 148–151. DOI: 10.1109/LAWP.2006.874294
  12. DING, X., JACOB, A. F. CPW-fed slot antenna with wide radiating apertures. IEE Proceedings Microwaves, Antennas and Propagation, 1998, vol. 145, no. 1, p. 104–108. DOI: 10.1049/ipmap:19981629
  13. BHOBE, A. U., HOLLOWAY, C. L., PICKET-MAY, M., et al. Coplanar waveguide fed wideband slot antenna. Electronics Letters, 2000, vol. 36, no. 16, p. 1340–1342. DOI: 10.1049/el:20000984
  14. YANG J., KISHK, A. A novel low-profile compact directional ultra-wideband antenna: The self-grounded bow-tie antenna. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 3, p. 1214–1220. DOI: 10.1109/TAP.2011.2180317
  15. LODGE, O. Electric Telegraphy. U. S. Patent 609 154, 15 Aug., 1898.
  16. BROWN, G. H., WOODWARD, O. M. Experimentally determined radiation characteristics of conical and triangular antennas. RCA Review, 1952, vol. 13, p. 425–452.
  17. CARREL, R. The characteristic impedance of two infinite cones of arbitrary cross section. IRE Transactions on Antennas and Propagation, 1958, vol. 6, no. 2, p. 197–201. DOI: 10.1109/TAP.1958.1144578
  18. LESTARI, A. A., BHARATA, E., SUKSMONO, A. B., et al. A modified bow-tie antenna for improved pulse radiation. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 7, p. 2184–2192. DOI: 10.1109/TAP.2010.2048853
  19. ISBELL, D. Log periodic dipole array. IRE Transactions on Antennas and Propagation, 1960, vol. 8, no. 3, p. 260–267. DOI: 10.1109/TAP.1960.1144848
  20. CHEN, S. Y., WANG, P. H., HSU, P. Uniplanar log-periodic slot antenna fed by a CPW for UWB applications. IEEE Antennas and Wireless Propagation Letters, 2006, vol. 5, p. 256–259. DOI: 10.1109/LAWP.2006.873956
  21. CHEN, S.-C., HUANG, C.-C., CAI, W.-S. Integration of a lowprofile, long-term evolution/wireless wide area network monopole antenna into the metal frame of tablet computers. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 7, p. 3726–3731. DOI: 10.1109/TAP.2017.2700844
  22. WONG, K.-L., TSAI, C. Y. Half-loop frame antenna for the LTE metal-casing tablet device. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 1, p. 71–81. DOI: 10.1109/TAP.2016.2630716
  23. ZHANG, L.-W., BAN, Y.-L., SIM, C.-Y.-D., et al. Parallel dualloop antenna for WWAN/LTE metal-rimmed smartphone. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 3, p. 1217–1226. DOI: 10.1109/TAP.2018.2796724
  24. XU, Z.-Q., ZHOU, Q.-Q., BAN, Y.-L., et al. Hepta-band coupledfed loop antenna for LTE/WWAN unbroken metal-rimmed smartphone applications. IEEE Antennas and Wireless Propagation. Letters, 2018, vol. 17, no. 2, p. 311–314. DOI: 10.1109/LAWP.2017.2787863
  25. YANG, Y., ZHAO, Z., YANG, W., et al. Compact multimode monopole antenna for metal-rimmed mobile phones. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 5, p. 2297–2304. DOI: 10.1109/TAP.2017.2679059
  26. JA’AFREH, S. A., HUANG, Y., XING, L. Low profile and wideband planar inverted-F antenna with polarisation and pattern diversities. IET Microwave, Antenna and Propagation, 2016, vol. 10, no. 2, p. 152–161. DOI: 10.1049/iet-map.2015.0337
  27. SINGLA, N., RAJPUT, A. Compact dual-band metamaterialinspired antenna using SCSRR structures for mobile applications. In IEEE International Conference on Industrial and Information Systems. Roorkee (India), 2016, vol. 11, p. 614–617. DOI: 10.1109/ICIINFS.2016.8263012

Keywords: Capacitively coupled, tablet/laptop, wideband, 4G and Wi-Fi applications

E. K. I. Hamad, A. Abdelaziz [references] [full-text] [DOI: 10.13164/re.2019.0680] [Download Citations]
Performance of a Metamaterial-based 1×2 Microstrip Patch Antenna Array for Wireless Communications Examined by Characteristic Mode Analysis

The theory of characteristic modes (TCM) is used to examine the behavior of hexagonal split ring resonator (HSRR) unit cells employed in the ground plane of a 2-element microstrip antenna array. Suppression of higher harmonics and reduction in mutual coupling between the elements as a result of metamaterial loading was investigated using TCM. The novelty of this paper is the use the TCM to investigate the behavior of the HSRR, to reduce this mutual coupling, to significantly enhance the antenna’s performance. The TCM is employed to precisely determine where the HSRR unit cells should be allocated to efficiently block the coupling modes and not to affect the non-coupling modes. The simulation results showed that gains of 5.36 dB and 8.2 dB as well as bandwidths of 628 MHz and 610 MHz are achieved for the single and 2-element array antennas, respectively. The bandwidth of the array antenna was enlarged to 906 MHz by loading the ground plane with five HSRR cells. Prototypes for the proposed antennas were fabricated and the experimental outcomes showed good agreement between the measurements and simulation results. The gain and radiation efficiencies were measured using the SATIMO Starlab anechoic chamber.

  1. CHEN, S., ZHAO, J. The requirements, challenges, and technologies for 5G of terrestrial telecommunication. IEEE Communication Magazine, 2014, vol. 52, no. 5, p. 36–43. DOI: 10.1109/MCOM.2014.6815891
  2. HAMAD, E. K. I., ABDELAZIZ, A. Metamaterial superstrate microstrip patch antenna for 5G wireless communication based on the theory of characteristic modes. Journal of Electrical Engineering, 2019, vol. 70, no. 3, p. 187–197. DOI: 10.2478/jee2019–0027
  3. FANG, D., QIAN, Y., HU, R. Q. Security for 5G mobile wireless networks. IEEE Access, 2018, vol. 6, p. 4850–4874. DOI: 10.1109/ACCESS.2017.2779146
  4. ABDELAZIZ, A., HAMAD, E. K. I. Design of a compact high gain microstrip patch antenna for tri-band 5G wireless communication. Frequenz, 2019, vol. 73, no. 1-2, p. 45–52. DOI: 10.1515/freq-2018-0058
  5. KUMAR, A., GUPTA, N., GAUTAM, P. C. Gain and bandwidth enhancement techniques in microstrip patch antennas – a review. International Journal of Computer Applications, 2016, vol. 148, no. 7, p. 9–14. DOI: 10.5120/ijca2016911207
  6. ISLAM, M. A., KARMAKAR, N. C. A 4×4 dual polarized mmwave ACMPA array for a universal mm-wave chipless RFID tag reader. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 4, p. 1633–1640. DOI: 10.1109/TAP.2015.2398355
  7. KOVITZ, J. M., SAMII, Y. R. Using thick substrates and capacitive probe compensation to enhance the bandwidth of traditional CP patch antennas. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 10, p. 4970–4979. DOI: 10.1109/TAP.2014.2343239
  8. ROW, J. S. A simple impedance-matching technique for patch antennas fed by coplanar microstrip line. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 10, p. 3389–3391. DOI: 10.1109/TAP.2005.856375
  9. FUKUSAKO, T., NAKANO, T. A compact patch antenna using artificial ground structure with high permittivity substrate. In IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). Turin (Italy), 7–11 Sept. 2015, p. 1548–1549. DOI: 10.1109/APWC.2015.7300219
  10. MAHDI HONARI, M., ABDIPOUR, A., MORADI, G. Bandwidth and gain enhancement of an aperture antenna with modified ring patch. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1413–1416. DOI: 10.1109/LAWP.2011.2178998
  11. ZHANG, C., CAO, X, GAO, J., et al. Wideband high-gain and low scattering antenna using shared-aperture metamaterial superstrate. Radioengineering, 2018, vol. 27, no. 2, p. 379–385. DOI: 10.13164/re.2018.0379
  12. ALIBAKHSHIKENARI, M., VIRDEE, B. S., ALI, A., et al. Miniaturised planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems. IET Microwaves, Antennas and Propagation, 2018, vol. 12, no. 7, p. 1080–1086. DOI: 10.1049/iet-map.2016.1141
  13. VESELAGO, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 1968, vol. 10, no. 4, p. 509–514. DOI: 10.1070/PU1968v010n04ABEH003699
  14. SMITH, D. R., PADILLA, W. J., VIER, D. C., et al. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, vol. 84, no. 18, p. 4184–4187. DOI: 10.1103/PhysRevLett.84.4184
  15. HAMAD, E. K. I., HAMDALLA, M. Z. M. Design of a compact dual-band microstrip antenna enabled by complementary split ring resonators for x-band applications. Advanced Electromagnetics, 2018, vol. 7, no. 3, p. 82–86. DOI: 10.7716/aem.v7i3.766
  16. SARAVANAN, M., GEO, V. B., UMARANI, S. M. Gain enhancement of patch antenna integrated with metamaterial inspired superstrate. Journal of Electrical Systems and Information Technology, 2018, vol. 5, no. 3, p. 263–270. DOI: 10.1016/j.jesit.2018.04.002
  17. KHANDELWAL, M. K., ARORA, A., KUMAR, S. Dual band double negative (DNG) metamaterial with small frequency ratio. Journal of Electromagnetic Waves and Applications, 2018, vol. 32, no. 17, p. 2167–2181. DOI: 10.1080/09205071.2018.1498026
  18. ALI, W. A., HAMAD, E. K. I., BASSIUNY, M. A., HAMDALLAH, M. Z. Complementary split ring resonator based triple band microstrip antenna for WLAN/WIMAX applications. Radioengineering, 2017, vol. 26, no. 1, p. 78–84. DOI: 10.13164/re.2017.0078
  19. ELSHEAKH, D., ABDALLAH, E. Ultra-wide-bandwidth (UWB) microstrip monopole antenna using split ring resonator (SRR) structure. International Journal of Microwave and Wireless Technologies, 2018, vol. 10, no. 1, p. 123–132. DOI: 10.1017/S1759078717001131
  20. IBRAHIM, M. I., SAFWAT, A. M. E., EL-HENNAWY, H. Single/dual-band CSRR-loaded differential-fed square patch antenna with monopolar radiation pattern. In The 33rd National Radio Science Conference (NRSC’16). Aswan (Egypt), 2016, p. 81–86. DOI: 10.1109/NRSC.2016.7450827
  21. BALANIS, C. A. Antenna Theory: Analysis and Design. 4th ed. Hoboken (New Jersey): John Wiley & Sons, Inc., 2016. ISBN: 978-1-118-64206-1
  22. DIALLO, A., LUXEY, C., LE THUC, P., et al. Enhanced twoantenna structures for universal mobile telecommunications system diversity terminals. IET Microwaves, Antennas and Propagation, 2008, vol. 2, no. 1, p. 93–101. DOI: 10.1049/ietmap:20060220
  23. ILUZ, Z., SHAVIT, R., BAUER, R. Microstrip antenna phased array with electromagnetic band gap substrate. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 6, p. 1446–1453. DOI: 10.1109/TAP.2004.830252
  24. HAMAD, E. K. I., HAMDALLA, M, Z. M. Design of miniaturized and high isolation metamaterial-based MIMO antenna for mobile terminals. Journal of Engineering Sciences, Assiut University, 2017, vol. 45, no. 6, p. 764–773.
  25. GARBACZ, J. R., TURPIN, R. H. A generalized expansion for radiated and scattered fields. IEEE Transactions on Antennas and Propagation, 1971, vol. 19, no. 3, p. 348–358. DOI: 10.1109/TAP.1971.1139935
  26. HARRINGTON, R. F., MAUTZ, J. R. Theory of characteristic modes for conducting bodies. IEEE Transactions on Antennas and Propagation, 1971, vol. 19, no. 5, p. 622–628. DOI: 10.1109/TAP.1971.1139999
  27. CABEDO-FABRES, M., ANTONINO-DAVIU, E., VALERONOGUEIRA, A., et al. The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications. IEEE Antennas and Propagation Magazine, 2007, vol. 49, no. 5, p. 52–68. DOI: 10.1109/MAP.2007.4395295
  28. GARG, R., BHARTIA, P., BHAL, I., ITTIPIBOON, A. Microstrip Antenna Design Handbook. Boston-London (UK): Artech House, 2001. ISBN: 978-0890065136
  29. POZAR, D. M. Microwave Engineering. New York (USA): John Wiley & Sons, 2011. ISBN: 978-0470631553
  30. ZIOLKOWSKI, R. W. Design, fabrication, and testing of double negative metamaterials. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 7, p. 1516–1529. DOI: 10.1109/TAP.2003.813622
  31. BOSE, S., RAMRAJ, M., RAGHAVAN, S. Design, analysis and verification of hexagon split ring resonator based negative index metamaterial. In Annual IEEE India Conference (INDICON). Kochi (India), 2012. DOI: 10.1109/INDCON.2012.6420764
  32. KUN WEI, JIAN-YING LI, LING WANG, et al. Mutual coupling reduction of microstrip antenna array by periodic defected ground structures. In IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP 2016). Kaohsiung (Taiwan), 2016, p. 389–390. DOI: 10.1109/APCAP.2016.7843257
  33. KHARCHE, S., REDDY, G. S., MUKHERJEE, J., et al. Mutual coupling reduction by using tilted variable length SRR like structure in UWB MIMO antennas. In IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. San Diego (CA, USA), 2017, p. 2285–2286. DOI: 10.1109/APUSNCURSINRSM.2017.8073185
  34. BOUKARKAR, A., LIN, X. Q., JIANG, Y., et al. A miniaturized extremely close-spaced four-element dual-band MIMO antenna system with polarization and pattern diversity. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 1, p. 134–137. DOI: 10.1109/LAWP.2017.2777839
  35. ZHAI, G., CHEN, Z. N., QING, X. Mutual coupling reduction of a closely spaced four-element MIMO antenna system using discrete mushrooms. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 10, p. 3060–3067. DOI: 10.1109/TMTT.2016.2604314
  36. MUKHERJEE, B., PARUI, S. K. DAS, S. Mutual coupling reduction of microstrip antenna arrays using rectangular split ringshaped defected ground structure. In International Conference on Communications, Devices and Intelligent Systems (CODIS 2012). Kolkata (India), 2012, p. 202–204. DOI: 10.1109/CODIS.2012.6422172

Keywords: Array antennas, characteristic mode analysis, metamaterial, microstrip patch antenna, theory of characteristic mode, wireless communications

R. Mark, N. Rajak, K. Mandal, S. Das [references] [full-text] [DOI: 10.13164/re.2019.0689] [Download Citations]
Isolation and Gain Enhancement Using Metamaterial Based Superstrate for MIMO Applications

In this paper, a metamaterial superstrate in¬spired multiple-input-multiple-output (MIMO) for gain and isolation enhanced antenna system is investigated for WLAN applications. The superstrate layer generates a resonant cavity effect which results in gain enhancement of the antenna system by 3.73 dBi (65%). The superstrate consists of a novel hexagonal nested ring structure, placed at a height of 0.175λ_0 above antenna and confines the near field coupling between the antenna elements, thereby reducing the mutual coupling. The isolation between each antenna elements is better than 20 dB over the entire band of operation with reduced edge-to-edge spacing of 0.057 λ_0 which makes it suitable for the larger MIMO configurations. The prototype of the proposed design is fabricated and validated through proper measurement that shows the measured impedance bandwidth of 7.0% (5.65–6.06 GHz). The measured gain and simulated efficiency remains above 8.6 dBi and 84% along with envelope correlation coefficient ˂0.003 over the operating band making the design suitable for high gain MIMO WLAN applications.

  1. SHARAWI, M. S. Printed multi-band MIMO antenna systems and their performance metrics. IEEE Antennas and Propagation Magazine, 2013, vol. 55, no. 5, p. 218–232. DOI: 10.1109/MAP.2013.6735522
  2. IQBAL, A., SARAEREH, O. A., AHMAD, A. W., et al. Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna. IEEE Access, 2017, vol. 6, p. 2755–2759. DOI: 10.1109/ACCESS.2017.2785232
  3. SU, S. W., LEE, C. T., CHANG, F. S. Printed MIMO-antenna system using neutralization-line technique for wireless USBdongle applications. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 2, p. 456–463. DOI: 10.1109/TAP.2011.2173450
  4. HABASHI, A., NOURINIA, J., GHOBADI, C. Mutual coupling reduction between very closely spaced patch antennas using lowprofile folded split-ring resonators (FSRRs). IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 862–865. DOI: 10.1109/LAWP.2011.2165931
  5. RAMACHANDRAN, A., PUSHPAKARAN, S. V., PEZHOLIL, M., et al. A four-port MIMO antenna using concentric square-ring patches loaded with CSRR for high isolation. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 1196–1199. DOI: 10.1109/LAWP.2015.2499322
  6. WEI, K., LI, J. Y., WANG, L., et al. Microstrip antenna array mutual coupling suppression using coupled polarization transformer. IET Microwaves, Antennas and Propagation, 2017, vol. 11, no. 13, p. 1836–1840. DOI: 10.1049/iet-map.2016.1154
  7. CHENG, Y. F., DING, X., SHAO, W., et al. Reduction of mutual coupling between patch antennas using a polarization conversion isolator. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 16, p. 1257–1260. DOI: 10.1109/LAWP.2016.2631621
  8. ARUN, H., SARMA, A. K., KANAGASABAI, M., et al. Deployment of modified serpentine structure for mutual coupling reduction in MIMO antennas. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 277–280. DOI: 10.1109/LAWP.2014.2304541
  9. VISHVAKSENAN, K. S., MITHRA, K., KALAIARASAN, R., et al. Mutual coupling reduction in microstrip patch antenna arrays using parallel coupled-line resonators. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2146–2149. DOI: 10.1109/LAWP.2017.2700521
  10. HASSAN, T., KHAN, M. U., ATTIA, H., et al. An FSS based correlation reduction technique for MIMO antennas. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 9, p. 4900–4905. DOI: 10.1109/TAP.2018.2842256
  11. DADGARPOUR, A., ZARGHOONI, B., VIRDEE, B. S., et al. Mutual coupling reduction in dielectric resonator antennas using metasurface shield for 60-GHz MIMO systems. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 16, p. 477–480. DOI: 10.1109/LAWP.2016.2585127
  12. THUMMALURU, S. R., KUMAR, R., CHAUDHARY, R. K. Isolation enhancement and radar cross section reduction of MIMO antenna with frequency selective surface. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 3, p. 1595–1600. DOI: 10.1109/TAP.2018.2794417
  13. PANDA, P. K., GHOSH, D. Isolation and gain enhancement of patch antennas using EMNZ superstrate. AEU-International Journal of Electronics and Communications, 2018, vol. 86, p.164–170. DOI: 10.1016/j.aeue.2018.01.037
  14. LIU, F., GUO, J., ZHAO, L., et al. A meta-surface decoupling method for two linear polarized antenna array in sub-6 GHz base station applications. IEEE Access, 2018, vol. 7, p. 2759–2768. DOI: 10.1109/ACCESS.2018.2886641
  15. JAFARGHOLI, A., JAFARGHOLI, A., CHOI, J. H. Mutual coupling reduction in an array of patch antennas using CLL metamaterial superstrate for MIMO applications. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 1, p. 179–189. DOI: 10.1109/TAP.2018.2874747
  16. ASHRAF, F. B., ALAM, T., ISLAM, M. T. A uniplanar lefthanded metamaterial for terrestrial microwave links. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 2, p. 108–110. DOI: 10.1109/LMWC.2017.2784680
  17. SZABO, Z., PARK, G. H., HEDGE, R., et al. A unique extraction of metamaterial parameters based on Kramers-Kronig relationship. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 10, p. 2646–2653. DOI: 10.1109/TMTT.2010.2065310
  18. ASAADI, M., AFIFI, I., SEBAK, A. R. High gain and wideband high dense dielectric patch antenna using FSS superstrate for millimeter-wave applications. IEEE Access, 2018, vol. 6, p. 38243–38250. DOI: 10.1109/ACCESS.2018.2854225

Keywords: Envelope Correlation Coefficient (ECC), isolation enhancement, metamaterial, Multiple-Input-Multiple-Output (MIMO)

Z. Guo, X. Cao, J. Gao, H. Yu, J. Han, H. Yang, J. Tian [references] [full-text] [DOI: 10.13164/re.2019.0696] [Download Citations]
A Novel Reconfigurable Metasurface with Coincident and Ultra-Wideband LTL and LTC Polarization Conversion Functions

In this paper, a novel reconfigurable metasurface (NRM) with coincident and ultra-wideband linear-to-linear (LTL) and linear-to-circular (LTC) polarization conversion functions is proposed. The unit of the proposed NRM consists of superstrate, air layer, metal patch, substrate and metal ground successively. By loading micro-electro-mechanical system (MEMS) between two adjacent metallic via, the proposed NRM can realize LTL and LTC polarization conversion efficiently. Numerical simulation results reveal that the bandwidth of LTL and LTC polarization conversion are coincident from 5.7 GHz to 23.5 GHz (fractional bandwidth of 122%). It is worth mentioning that few metasurface in existing literature can achieve highly coincident and ultra-wideband LTL and LTC polarization conversion functions. Finally, measurement results are in accordance with simulation results.

  1. ZHU, X. W., GAO, J., CAO, X. Y., et al. A novel low-RCS and wideband circularly polarized patch array based on metasurface. Radioengineering, 2019, vol. 28, no. 1, p. 99–107. DOI: 10.13164/re.2019.0099
  2. SCHURIG, D., MOCK, J. J., JUSTICE, B. J., et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2009, vol. 314, no. 5801, p. 977–980. DOI: 10.1126/science.1133628
  3. NARIMANOV, E. E., KILDISHEV, A. V. Optical black hole: broadband omnidirectional light absorber. Applied Physics Letters, 2009, vol. 95, no. 4, p. 1–3. DOI: 10.1063/1.3184594
  4. LI, S., GAO, J., CAO, X., et al. Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial. Optics Express, 2015, vol. 23, no. 3, p. 3523–3533. DOI: 10.1364/oe.23.003523
  5. SONG, X., HUANG, L., SUN, L., et al. Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface. Applied Physics Letters, 2018, vol. 112, no. 7, p. 1–5. DOI: 10.1063/1.5013327
  6. ZHANG, C., CAO, X. Y., GAO, J., et al. Shared aperture metasurface for bi-functions: radiation and low backward scattering performance. IEEE Access, 2019, vol. 7, no. 1, p. 56547–56555. DOI: 10.1109/ACCESS.2019.2913726
  7. ZHANG, L., MEI, S., HUANG, K., et al. Advances in full control of electromagnetic waves with metasurfaces. Advanced Optical Materials, 2016, vol. 4, no. 6, p. 818–833. DOI: 10.1002/adom.201500690
  8. CAI, T., WANG, G. M., TANG, S. W., et al. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces. Physical Review Applied, 2017, vol. 8, no. 3, p. 1–11. DOI: 10.1103/PhysRevApplied.8.034033
  9. ZHANG, L., ZHOU, P., LU, H. H., et al. Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1157–1160. DOI: 10.1109/lawp.2015.2393376
  10. PU, M., CHEN, P., WANG, Y., et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Applied Physics Letters, 2013, vol. 102, p. 1–4. DOI: 10.1063/1.4799162
  11. ZHOU, G., TAO, X., SHEN, Z., et al. Designing perfect linear polarization converters using perfect electric and magnetic conducting surfaces. Scientific Reports, 2016, vol. 6, no. 1, p. 1–10. DOI: 10.1038/srep38925
  12. LAWRENCE, M., XU, N. N., ZHANG, X. Q., et al. Manifestation of symmetry breaking in polarization space with terahertz metasurfaces. Physical Review Letters, 2012, vol. 113, p. 1–5. DOI: 10.1103/PhysRevLett.113.093901
  13. AKGOL, O., UNAL, E., ALTINTAS, O., et al. Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal. Optik, 2018, vol. 161, p. 12–19. DOI: 10.1016/j.ijleo.2018.02.028
  14. JIANG, Y., WANG, L., WANG, J., et al. Ultra-wideband highefficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies. Optics Express, 2017, vol. 25, no. 22, p. 1–8. DOI: 10.1364/OE.25.027616
  15. JIA, Y. T., LIU, Y., ZHANG, W. B., et al. Ultra-wideband metasurface with linear-to-circular polarization conversion of an electromagnetic wave. Optical Materials Express, 2018, vol. 8, no. 3, p. 597–604. DOI: 10.1364/ome.8.000597
  16. DOUMANIS, E., GOUSSETIS, G., DICKIE, R., et al. Electronically reconfigurable liquid crystal based mm-wave polarization converter. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 4, p. 2302–2307. DOI: 10.1109/TAP.2014.2302844
  17. CHENG, H., CHEN, S., YU, P., et al. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial. Applied Physics Letters, 2013, vol. 103, no. 22, p. 1–4. DOI: 10.1063/1.4833757
  18. OWITI, E. O., YANG, H., LIU, P., et al. Polarization converter with controllable birefringence based on hybrid all-dielectricgraphene metasurface. Nanoscale Research Letters, 2018, vol. 13, p. 1–9. DOI: 10.1186/s11671-017-2413-1
  19. MA, R., LI, X., DONG, X., et al. Magnetic field modulating inline fiber polarization modulator based on microfiber and magnetic fluid. Applied Physics Letters, 2017, vol. 111, no. 9, p. 1–4. DOI: 10.1063/1.4985114
  20. RUFF, A., LI, Z., LOIDL, A., et al. Frequency dependent polarisation switching in h-ErMnO3. Applied Physics Letters, 2018, vol. 112, no. 18, p. 1–5. DOI: 10.1063/1.5026732
  21. WANG, H., MELLAN, T. A., GRAU-CRESPO, R., et al. Spin polarization, orbital occupation and band gap opening in vanadium dioxide: The effect of screened Hartree–Fock exchange. Chemical Physics Letters, 2014, vol. 608, p. 126–129. DOI: 10.1016/j.cplett.2014.05.070
  22. LI, W., GAO, S., CAI, Y., et al. Polarization-reconfigurable circularly polarized planar antenna using switchable polarizer. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 9, p. 4470–4477. DOI: 10.1109/TAP.2017.2730240
  23. ZHANG, M. T., GAO, S., JIAO, Y. C., et al. Design of novel reconfigurable reflect arrays with single-bit phase resolution for ku-band satellite antenna applications. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 5, p. 1634–1641. DOI: 10.1109/TAP.2016.2535166
  24. TAO, Z., WAN, X., PAN, B. C., et al. Reconfigurable conversions of reflection, transmission, and polarization states using active metasurface. Applied Physics Letters, 2017, vol. 110, no. 12, p. 1–5. DOI: 10.1063/1.4979033
  25. CUI, J., HUANG, C., PAN, W., et al. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror. Scientific Reports, 2016, vol. 6, p. 1–9. DOI: 10.1038/srep30771
  26. GAO, X., HAN, X., CAO, W. P., et al. Ultra-wideband and highefficiency linear polarization converter based on double v-shaped metasurface. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 8, p. 3522–3530. DOI: 10.1109/TAP.2015.2434392
  27. FARZAMI, F., KHALEDIAN, S., SMIDA, B., et al. Reconfigurable linear/circular polarization rectangular waveguide filtenna. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 1, p. 9–15. DOI: 10.1109/TAP.2017.2767634
  28. ZHU, H. L., CHEUNG, S. W., CHUNG, K. L., et al. Linear-tocircular polarization conversion using metasurface. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 9, p. 4615–4623. DOI: 10.1109/TAP.2013.2267712
  29. TIAN, J. H., CAO, X. Y., GAO, J., et al. A reconfigurable ultrawideband polarization converter based on metasurface incorporated with PIN diodes. Journal of Applied Physics, 2019, vol. 125, no. 13, p. 1–9. DOI: 10.1063/1.5067383
  30. YU, H. C., CAO, X. Y., GAO, J., et al. Design of wideband and reconfigurable polarization converter using manipulable metasurface. Optical Materials Express, 2018, vol. 8, no. 11, p. 3373–3381. DOI: 10.1364/OME.8.003373
  31. MA, X., PU, M., LI, X., et al. A planar chiral meta-surface for optical vortex generation and focusing. Scientific Reports, 2015, vol. 5, p. 1–7. DOI: 10.1038/srep10365
  32. LI, T., YANG, H., LI, Q., et al. Dual-polarised and ultra-thin broadband for both P and L bands applications. IET Microwaves Antennas and Propagation, 2019, vol. 13, no. 2, p. 185–189. DOI: 10.1049/iet-map.2018.5151
  33. ZHANG, M., ZHANG, W., LIU, A. Q., et al. Tunable polarization conversion and rotation based on a reconfigurable metasurface. Scientific Reports, 2017, vol. 7, p. 1–7. DOI: 10.1038/s41598-017- 11953-z
  34. CHEN, W., GAO, J., ZHANG, G., et al. A wideband coding reflective metasurface with multiple functionalities. Acta Physica Sinica, 2017, vol. 66, no. 6, p. 1–8. DOI: 10.7498/aps.66.064203 (in Chinese)
  35. ZHANG, W., LI, J. Y., XIE, J. A broadband circular polarizer based on cross-shaped composite frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 10, p. 5623–5627. DOI: 10.1109/TAP.2017.2735459
  36. YANG, H., CAO, X., YANG, F., et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Scientific Reports, 2016, vol. 6, p. 1–11. DOI: 10.1038/srep35692

Keywords: Reconfigurable, ultra-wideband, polarization conversion

S. Kotchapradit, C. Thongsopa, T. Thosdeekoraphat [references] [full-text] [DOI: 10.13164/re.2019.0703] [Download Citations]
Analysis and Design of Microwave Dielectric Heating with Curved Plate Applicator for Deep Hyperthermia in Breast Cancer Treatment

This paper presents microwave hyperthermia treatment using dielectric heating techniques with the curved plate applicator. The 3D breast phantom model simulation was used to investigate heat distribution. The microwave heating equation was employed to focus the power loss density in the deep breast phantom tissues that consists of skin, fat, and tumor, 2D maximum (W cm-3) are 5.67, 11.92, and 8.42 for tumor size as 10 mm, 16 mm, and 30 mm, respectively. The dielectric constant and loss factor of tumor tissue provides 55.25 and 19.8, respectively. The power loss density was analyzed was excited by microwave power signal generator 2450 MHz inside of the breast phantom. This heating technique was implemented based on the electric field generated by the curved plate applicator, which is designed by a series resonance circuit with an LC matching element. Simulations revealed that the heating focused area could be targeted into the internal tumor. The measurement of dielectric properties at 24°C was performing by open-ended coaxial dielectric probe kit (N1501A, Keysight Technology) connected to a vector network analyzer (E5071C, Keysight Technology) that can be operated in the range of 1 – 10 GHz. The heat distribution was measured in agar phantom as a surrogate tumor tissue using IR cameras (U5857A True IR, Keysight Technology). The parameters of microwave DC input power 120 W, efficiency about 20 % and get microwave power at 24 W to generate a stabilized temperature between 39 – 42°C.

  1. ELKAYAL, H. A. ISMAIL, N. E., LOTFY, M. Microwaves for breast cancer treatments. Alexandria Engineering Journal, 2015, vol. 54, no. 4, p. 1105–1113. DOI: 10.1016/j.aej.2015.06.012
  2. LANG, J. ERDMANN, B., SEEBASS, M. Impact of nonlinear heat transfer on temperature control in regional hyperthermia. IEEE Transactions on Biomedical Engineering, 1999, vol. 46, no. 9, p. 1129–1138. DOI: 10.1109/10.784145
  3. WU, L. CHENG, J., LIU, W., et al. Numerical analysis of electromagnetically induced heating and bioheat transfer for magnetic fluid hyperthermia. IEEE Transactions on Magnetics, 2015, vol. 51, no. 2, p. 1–4. DOI: 10.1109/TMAG.2014.2358268
  4. DRIZDAL, T., TOGNI, P., VISEK, L., et al. Comparison of constant and temperature dependent blood perfusion in temperature prediction for superficial hyperthermia. Radioengineering, 2010, vol. 19, no. 2, p. 281–289. ISSN: 1210-2512
  5. CONVERSE, M., BOND, E. J., VEEN, B. D., et al. A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 5, p. 2169–2180. DOI: 10.1109/TMTT.2006.872790
  6. FISER, O., MERUNKA, I., VRBA, J. Optimization of microwave hyperthermia applicator system for deep placed tumors treatment in head and neck area. In Progress In Electromagnetics Research Symposium - Spring (PIERS). St. Peterburg (Russia), 2017, p. 1733–1738. DOI: 10.1109/PIERS.2017.8262029
  7. ASILI, M., CHEN, P., HOOD, A. Z., et al. Flexible microwave antenna applicator for chemo–thermotherapy of the breast. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1778–1781. DOI: 10.1109/LAWP.2015.2423655
  8. IERO, D. A. M., CROCCO, L., ISERNIA, T. Thermal and microwave constrained focusing for patient-specific breast cancer hyperthermia: A robustness assessment. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 2, p. 814–821. DOI: 10.1109/TAP.2013.2293336
  9. STANG, J., HAYNES, M., CARSON, P., et al. A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Transactions on Biomedical Engineering, 2012, vol. 59, no. 9, p. 2431–2438. DOI: 10.1109/TBME.2012.2199492
  10. CORREIA, D., PETRA KOK, H., DE GREEF, M., et al. Body conformal antennas for superficial hyperthermia: The impact of bending contact flexible microstrip applicators on their electromagnetic behavior. IEEE Transactions on Biomedical Engineering, 2009, vol. 56, no. 12, p. 2917–2926. DOI: 10.1109/TBME.2009.2029081
  11. GUPTA, R. C., SINGH, S. P. Elliptically bent slotted waveguide conformal focused array for hyperthermia treatment of tumors in curved region of human body. Progress In Electromagnetics Research, 2006, vol. 62, p. 107–125. DOI: 10.2528/PIER06012801
  12. NGUYEN, P. T., ABBOSH, A., CROZIER, S. Three-dimensional microwave hyperthermia for breast cancer treatment in a realistic environment using particle swarm optimization. IEEE Transactions on Biomedical Engineering, 2017, vol. 64, no. 6, p. 1335–1344. DOI: 10.1109/TBME.2016.2602233
  13. NGUYEN, P. T., ABBOSH, A., CROZIER, S. Microwave hyperthermia for breast cancer treatment using electromagnetic and thermal focusing tested on realistic breast models and antenna arrays. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 10, p. 4426–4434. DOI: 10.1109/TAP.2015.2463681
  14. BELLIZZI, G., BUCCI, O. M. Magnetic nanoparticle-guided blind focusing of the electric field for microwave hyperthermia. IEEE Access, 2017, vol. 5, p. 17246–17257. DOI: 10.1109/ACCESS.2017.2740967
  15. CONVERSE, M., BOND, E. J., Hagness, S. C., et al. Ultrawideband microwave space-time beamforming for hyperthermia treatment of breast cancer: A computational feasibility study. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 8, p. 1876–1889. DOI: 10.1109/TMTT.2004.832012
  16. PETRA KOK, H., DE GREEF, M., VAN WIERINGEN, N., et al. Comparison of two different 70 MHz applicators for large extremity lesions: Simulation and application. International Journal of Hyperthermia, 2010, vol. 26, no. 4, p. 376–388. DOI: 10.3109/02656730903521383
  17. VAN STAM, G., PETRA KOK, H., HULSHOF, M. C. C. M., et al. A flexible 70 MHz phase-controlled double waveguide system for hyperthermia treatment of superficial tumors with deep infiltration. International Journal of Hyperthermia, 2017, vol. 33, no. 7, p. 796–809. DOI: 10.1080/02656736.2017.1313460
  18. PETRA KOK, H., CREZEE, J. A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. International Journal of Hyperthermia, 2017, vol. 33, no. 4, p. 378–386. DOI: 10.1080/02656736.2016.1268726
  19. VAN WIERINGEN, N., WIERSMA, J., ZUM VORDE SIVE VORDING, P., et al. Characteristics and performance evaluation of the capacitive contact flexible microstrip applicator operating at 70 MHz for external hyperthermia. International Journal of Hyperthermia, 2009, vol. 25, no. 7, p. 542–553. DOI: 10.3109/02656730903061591
  20. VAN DE KAMER, J. B., VAN WIERINGEN, N., DE LEEUW, A. A. C., et al. The significance of accurate dielectric tissue data for hyperthermia treatment planning. International Journal of Hyperthermia, 2001, vol. 17, no. 2, p. 123–142. DOI: 10.1080/02656730150502297
  21. VRBA, D., VRBA, J. Novel applicators for local microwave hyperthermia based on zeroth-order mode resonator metamaterial. International Journal of Antennas and Propagation, 2014, vol. 2014, p. 1–7. DOI: 10.1155/2014/631398
  22. VRBA, D., VRBA, J., RODRIGUES, D. B., et al. Numerical investigation of novel microwave applicators based on zero-order mode resonance for hyperthermia treatment of cancer. Journal of the Franklin Institute, 2017, vol. 354, no. 18, p. 8734–8746. DOI: 10.1016/j.jfranklin.2016.10.044
  23. VRBA, D., RODRIGUES, D., VRBA, J. (JR.), et al. Metamaterial antenna arrays for improved uniformity of microwave hyperthermia treatments. Progress In Electromagnetics Research, 2016, vol. 156, p. 1–12. DOI: 10.2528/PIER16012702
  24. MARTELLOSIO, A., PASIAN, M., BOZZI, M., et al. Dielectric properties characterization from 0.5 to 50 GHz of breast cancer tissues. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 3, p. 998–1011. DOI: 10.1109/TMTT.2016.2631162
  25. SUGITANI, T., KUBOTA, S.–I., KUROKI, S.–I., et al. Complex permittivities of breast tumor tissues obtained from cancer surgeries. Applied Physics Letters, 2014, vol. 104, no. 25, p. 1–5. DOI: 10.1063/1.4885087
  26. JIAO, S., JOHNSON, J. A., TANG, J., et al. Dielectric properties of cowpea weevil, black-eyed peas and mung beans with respect to the development of radio frequency heat treatments. Biosystems Engineering, 2011, vol. 108, no. 3, p. 280–291. DOI: 10.1016/j.biosystemseng.2010.12.010
  27. WANG, S., TANG, J., CAVALIERI, R. P., et al. Differential heating of insects in dried nuts and fruits associated with radio frequency and microwave treatments. Transactions of the American Society of Agricultural and Biological Engineers, 2003, vol. 46, no. 4, p. 1175–1182. DOI: 10.13031/2013.13941
  28. NELSON, S. O., CHARITY, L. F. Frequency dependence of energy absorption by insects and grain in electric fields. Transactions of the American Society of Agricultural and Biological Engineers, 1972, vol. 15, no. 6, p. 1099–1102. DOI: 10.13031/2013.38079
  29. NGUYEN, P. T., ABBOSH, A., CROZIER, S. Thermo-dielectric breast phantom for experimental studies of microwave hyperthermia. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 476–479. DOI: 10.1109/LAWP.2015.2453432
  30. ZASTROW, E., DAVIS, S. K., LAZEBNIK, M., et al. Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast. IEEE Transactions on Biomedical Engineering, 2008, vol. 55, no. 12, p. 2792–2800. DOI: 10.1109/TBME.2008.2002130
  31. ARUNACHALAM, K., UDPA, S. S., UDPA, L. Microwave breast cancer hyperthermia using deformable mirror. In IEEE Antennas and Propagation Society International Symposium. Albuquerque (USA), 2006, p. 2191–2194. DOI: 10.1109/APS.2006.1711022
  32. NGUYEN, P. T., ABBOSH, A., CROZIER, S. 3-D focused microwave hyperthermia for breast cancer treatment with experimental validation. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 7, p. 3489–3500. DOI: 10.1109/TAP.2017.2700164
  33. KANAI, Y., TSUKAMOTO, T., SAITOH, Y., et al. Analysis of a hyperthermic treatment using a reentrant resonant cavity applicator for a heterogeneous model with blood flow. IEEE Transactions on Magnetics, 1997, vol. 33, no. 2, p. 2175–2178. DOI: 10.1109/20.582763
  34. POOMPAVAI, S., GOWRI SREE, V. Dielectric property measurement of breast-tumor phantom model under pulsed electric field treatment. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, vol. 2, no. 6, p. 608–617. DOI: 10.1109/TRPMS.2018.2868818

Keywords: Dielectric applicator, microwave treatment, deep hyperthermia

D. Sergeyev, N. Zhanturina [references] [full-text] [DOI: 10.13164/re.2019.0714] [Download Citations]
Simulation of Electrical Characteristics of Switching Nanostructures "Pt – TiO – Pt" and "Pt – NiO – Pt" with Memory

The nanostructures “Pt – TiO – Pt” and “Pt – NiO – Pt” with weak switching properties and memory were studied within the framework of semi-empirical Huckel method. The calculation was implemented in the program Atomistix ToolKit with Virtual NanoLab. The transmission spectra, current-voltage characteristics and differential conductivity of nanostructures are calculated. It was revealed that in the range of voltages -1.3 V÷1.3 V, a hysteresis appears in the form of eight shaped figure on the current-voltage characteristic of Pt – TiO – Pt nano-structure, and in Pt – NiO – Pt nanostructure, the hysteresis appears in the voltage intervals -1.8 V÷0.8 V and 0.9 V÷1.8 V in the form of two oval-shaped figures connected to a segment. The manifestation of the hysteresis characteristic of these nanocontacts shows that they have memory. It was found that a negative differential resistance is observed in the voltage range, where the hysteresis of the current-voltage characteristic is appeared. It is shown that the investigating nanostructures have weak switching properties. The results of the paper can be useful for the calculation of memristic elements of nanoelectronics.

  1. CHUA, L. If it’s pinched it’s a memristor. Semiconductor Science and Technology, 2014, vol. 29, no. 10, p. 1–42. DOI: 10.1088/0268-1242/29/10/104001
  2. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., et al. The missing memristor found. Nature, 2008, vol. 453, р. 80–83. DOI: 10.1038/nature06932
  3. CHUA, L. Memristor – the missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. 18, no. 5, p. 507–519. DOI: 10.1109/TCT.1971.1083337
  4. BESSONOV, A. A., KIRIKOVA, M. N., PETUKHOV, D. I., et al. Layered memristive and memcapacitive switches for printable electronics. Nature Materials, 2015, vol. 14, no. 2, p. 199–204. DOI: 10.1038/NMAT4135
  5. PREZIOSO, M., MERRIKH BAYAT, F., HOSKINS, B., et al. Self-adaptive spike-time-dependent plasticity of metal-oxide memristors. Scientific Reports, 2016, vol. 6, p. 1–6. DOI: 10.1038/srep21331
  6. EBONG, I. E., MAZUMDER, P. Self-controlled writing and erasing in a memristor crossbar memory. IEEE Transactions on Nanotechnology, 2011, vol. 10, p. 1454–1463. DOI: 10.1109/TNANO.2011.2166805
  7. MOSAD, A. G., FOUDA, M. E., KHATIB, M. A., et al. Improved memristor-based relaxation oscillator. Microelectronics Journal, 2013, vol. 44, no. 9, p. 814–820. DOI: 10.1016/j.mejo.2013.04.005
  8. INDIVERI, G., LINARES-BARRANCO, B., LEGENSTEIN, R., et al. Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology, 2013, vol. 24, no. 38, p. 1–13. DOI: 10.1088/0957-4484/24/38/384010
  9. ADAMATZKY, A., CHUA, L. (Eds.) Memristor Networks. ChamHeidelberg-New York-Dordrecht-London: Springer, 2014, p. 720. DOI: 10.1007/978-3-319-02630-5
  10. ASCOLI, A., TETZLAFF, R., CHUA, L. Robust simulation of a TaO memristor model. Radioengineering, 2015, vol. 24, no. 2, p. 384–392. DOI: 10.13164/re.2015.0384
  11. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, vol. 18, no. 2, p. 210–214. ISSN: 1210-2512
  12. YANG, CH., CHOI, H., PARK, S., SAH, M. P., KIM, H., CHUA, L. O. A memristor emulator as a replacement of a real memristor. Semiconductor Science and Technology, 2015, vol. 30, no. 1, p. 1–9. DOI: 10.1088/0268-1242/30/1/015007
  13. SINGH, J., RAJ, B. Comparative analysis of memristor models and memories design. Journal of Semiconductors, 2018, vol. 39, no. 7, p. 1–12. DOI: 10.1088/1674-4926/39/7/074006
  14. RZIGA, F. O., MBAREK, K., GHEDIRA, S., et al. The basic I–V characteristics of memristor model: simulation and analysis. Applied Physics A, 2017, vol. 123, p. 1–8. DOI: 10.1007/s00339- 017-0902-9
  15. POTREBIC, M., TOSIC, D. Application of memristors in microwave passive circuits. Radioengineering, 2015, vol. 24, no. 2, p. 408–419. DOI: 10.13164/re.2015.0408
  16. STOKBRO, K., PETERSEN, D. E., SMIDSTRUP, S., et al. Semiempirical model for nanoscale device simulations. Physical Review B, 2010, vol. 82, no. 7, p. 1–7. DOI: 10.1103/PhysRevB.82.075420
  17. VAN DUIN, A. C. T., DASGUPTA, S., LORANT, F., et al. ReaxFF: A reactive force field for hydrocarbons. Journal of Physical Chemistry A, 2001, vol. 105, no. 41, p. 9396–9409. DOI: 10.1021/jp004368u
  18. NASERIFAR, S., LIU, L., GODDARD, W. A., et al. Toward a process-based molecular model of SiC membranes. 1. Development of a reactive force field. Journal of Physical Chemistry C, 2013, vol. 117, no. 7, p. 3308−3319. DOI: 10.1021/jp3078002
  19. MUELLER, J. E., VAN DUIN, A. C. T., GODDARD, W. A. Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel. Journal of Physical Chemistry C, 2010, vol. 114, no. 11, p. 4939–4949. DOI: 10.1021/jp9035056
  20. MOMMA, K., IZUMI, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 2011, vol. 44, no. 6, p. 1272–1276. DOI: 10.1107/S0021889811038970
  21. SERGEYEV, D., TUMYSHEV, N. About coherent electron transport in nanocontacts “Nb – DNA – Nb”. Journal of Nanoand Electronic Physics, 2018, vol. 10, no. 5, p. 1–5. DOI: 10.21272/jnep.10(5).05027 (in Russian)
  22. SERGEYEV, D., SHUNKEYEV, K. Investigation of transport parameters of graphene-based nanostructures. Russian Physics Journal, 2018, vol. 60, no. 11, p. 1938–1945. DOI: 10.1007/s11182-018-1306-9
  23. SERGEYEV, D. Computer simulation of electrical characteristics of a graphene cluster with stone-wales defects. Journal of Nanoand Electronic Physics, 2018, vol. 10, no. 3, p. 1–5. DOI: 10.21272/jnep.10(3).03018 (in Russian)
  24. DATTA, S. Quantum Transport: Atom to Transistor. Cambridge University Press, 2005, p. 404. ISBN-13: 978-0521631457. DOI: 10.1017/CBO9781139164313

Keywords: Memristor, nanostructure, electron transport, current-voltage characteristic, differential conductivity, transmission function (spectrum)

V. Ya. Noskov, K. A. Ignatkov, K. D. Shaidurov [references] [full-text] [DOI: 10.13164/re.2019.0721] [Download Citations]
Frequency Deviation of Injection-Locked Microwave Autodynes

This article presents the results of the autodyne (AD) frequency deviation research, which is simultaneously affected by its own reflected radiation and the external synchronisation signal. The basic correlations are obtained for the injection-locked AD (ILAD) analysis in the case of a moving radar object. The amplitude-frequency characteristics are calculated for the transfer coefficient of the autodyne phase variations and the ILAD frequency deviation. The advantages of ILAD are shown compared to AD without synchronisation. The theoretical research investigations are confirmed by experimental data obtained by the example of an oscillator made on the basis of the 8-mm Gunn diode.

  1. HINMAN, W. S., BRUNETTI, C. Radio proximity fuze design. Part of Journal of Research of the National Bureau of Standards, 1946, vol. 37, RP1723, p. 1–13. jres/37/jresv37n1p1_A1b.pdf
  2. PANTOJA, F. R., CALAZANS, E. T. Theoretical and experimental studies of gain compression of millimeter-wave selfoscillating mixers. IEEE Transactions on Microwave Theory and Techniques, 1985, vol. 33, no. 3, p. 181–186. DOI: 10.1109/TMTT.1985.1132979
  3. CLAASSEN, M. Self-mixing oscillators. In: Luy, J. F., Russer, P. (eds.) Silicon-Based Millimeter-Wave Devices. Springer Series in Electronics and Photonics, vol. 32. Berlin, Heidelberg (Germany): Springer, 1994. p. 215–239. DOI: 10.1007/978-3-642-79031-7_6
  4. NYGREN, T., SJOLUND, A. Sensitivity of Doppler radar with self-detecting diode oscillators. IEEE Transactions on Microwave Theory and Techniques, 1974, vol. 22, no. 5, p. 494–498. DOI: 10.1109/TMTT.1974.1128268
  5. NAGANO, S., AKAIWA, Y. Behavior of a Gunn diode oscillator with a moving reflector as a self-excited mixer and a load variation detector. IEEE Transactions on Microwave Theory and Techniques, 1971, vol. 19, no. 2, p. 906–910. DOI: 10.1109/TMTT.1971.6373339
  6. TAKAYAMA, Y. Doppler signal detection with negative resistance diode oscillators, IEEE Transactions on Microwave Theory and Techniques, 1973, vol. 21, no. 2, p. 89–94. DOI: 10.1109/ TMTT.1973.1127929
  7. KITTIPUTE, K., SARATAYON, P., SRISOOK, S., et al. Homodyne detection of short-range Doppler radar using a forced oscillator model. Scientific Reports, 2017, vol. 7, p. 1–13. DOI: 10.1038/srep43680
  8. KOMAROV, I. V., SMOLSKIY, S. M. Fundamentals of ShortRange FM Radar. Norwood (MA, USA): Artech House, 2003. ISBN: 978-1580531108
  9. VOTOROPIN, S. D., ZAKARLYUK, N. M., NOSKOV, V. YA., et al. On principal impossibility of auto-synchronization of an autodyne by radiation reflected from a moving target. Russian Physics Journal, 2007, vol. 50, no. 9, p. 195–206. DOI: 10.1007/s11182-007-0132-2
  10. USANOV, D. A., SKRIPAL, AL. V., SKRIPAL, AN. V., et al. A microwave autodyne meter of vibration parameters. Instruments and Experimental Techniques, 2004, vol. 47, no. 5, p. 689–693. DOI: 10.1023/B:INET.0000043882.16801.3a
  11. ALIDOOST, S. A., SADEGHZADE, R., FATEMI, R. Autodyne system with a single antenna. In 11th International Radar Symposium (IRS-2010). Vilnius (Lithuania), 2010, vol. 2, p. 406–409. ISBN: 978-9955-690-18-4
  12. USANOV, D. A., POSTELGA, A. E. Reconstruction of complicated movement of part of the human body using radio wave autodyne signal. Biomedical Engineering, 2011, vol. 45, no. 1, p. 6–8. DOI: 10.1007/s10527-011-9198-9
  13. ERMAK, G. P., POPOV, I. V., VASILIEV, A. S., et al. Radar sensors for hump yard and rail crossing applications. Telecommunication and Radio Engineering, 2012, vol. 71, no. 6, p. 567–580. DOI: 10.1615/TelecomRadEng.v71.i6.80
  14. KIM, S., KIM, B.-H., YOOK, J.-G., et al. Proximity vital sign sensor using self-oscillating mixer. In URSI Asia-Pacific Radio Science Conference (URSI AP-RASC). Seoul (South Korea), 2016, p. 1446–1448. DOI: 10.1109/URSIAP-RASC.2016.7601402
  15. USANOV, D. A., SKRIPAL, A. V., KASHCHAVTSEV, E. O., et al. Acceleration measurements upon micro- and nanodisplacements of an object using the autodyne signal of a semiconductor laser with allowance for the external optical feedback. Technical Physics, 2013, vol. 58, no. 7, p. 1083–1085. DOI: 10.1134/S1063784213070244
  16. NOSKOV, V. YA., ERMAK, G. P. Measurement errors and dynamic range of autodyne vibration meters. Telecommunication and Radio Engineering, 2014, vol. 73, no. 20, p. 1843–1861. DOI: 10.1615/TelecomRadEng.v73.i20.50
  17. NOSKOV, V. YA., IGNATKOV, K. A., CHUPAHIN, A. P. Application of two-diode autodynes in devices for radiowave control of product dimensions. Measurement Techniques, 2016, vol. 59, no. 7, p. 715–721. DOI: 10.1007/s11018-016-1035-9
  18. NOSKOV, V. YA., IGNATKOV, K. A. Peculiarities of noise characteristics of autodynes under strong external feedback. Russian Physics Journal, 2013, vol. 56, no. 12, p. 1445–1460. DOI: 10.1007/s11182-014-0198-6
  19. VOTOROPIN, S. D., NOSKOV, V. YA., SMOLSKIY, S. M. An analysis of the autodyne effect of a radio-pulse oscillator with frequency modulation. Russian Physics Journal, 2008, vol. 51, no. 7, p. 750–759. DOI: 10.1007/s11182-008-9105-3
  20. NOSKOV, V. YA., IGNATKOV, K. A., CHUPAHIN, A. P., et al. Signals of autodyne sensors with sinusoidal frequency modulation. Radioengineering, 2017, vol. 26, nо. 4, p. 1182–1190. DOI: 10.13164/re.2017.1182
  21. NOSKOV, V. YA. Peculiarities of self-oscillations of a biharmonic autodyne receiver under effect of reflected radiation. Izvestiya VUZ: Radioelektronika, 1991, vol. 34, no. 11, p. 44–50. (in Russian)
  22. NOSKOV, V. YA. Autodyne effect in multifrequency oscillators. Radiophysics and Quantum Electronics, 1992, vol. 35, no. 9-10, p. 503–508. DOI: 10.1007/BF01044970
  23. MOROSANOV, S. A., SMOLSKIY, S. M., FILITSINA, YU. A. Push-pull transistor oscillators and autodyne. Radiotekhnika i elektronika [Radio Engineering and Electronics], 1982, vol. 27, no. 4, p. 764–769. (in Russian)
  24. NOSKOV, V. YA. A double-diode autodyne transceiver. Instruments and Experimental Techniques, 2015, vol. 58, no. 3, p. 505–509. DOI: 10.1134/S0020441215030240
  25. NOSKOV, V. YA., IGNATKOV, K. A., SMOLSKIY, S. M. Analysis of signals of stabilized autodynes. Telecommunication Sciences, 2011, vol. 2, no. 1, p. 5–16. ISSN: 2219-9454
  26. NOSKOV, V. YA., IGNATKOV, K. A. Noise characteristics of autodynes with frequency stabilization by means of an external high-Q cavity. Journal of Communications Technology and Electronics, 2016, vol. 61, no. 9, p. 1052–1063. DOI: 10.1134/S1064226916090102
  27. TERESCHENKO, A. F. Impact of the reflected signal on a synchronized klystron oscillator. Elektronnaya tehnika. Seriya 1. SVCh-tehnika [Electronic Technique. Series 1. UHF Technique], 1966, no. 2, p. 67–78. (in Russian)
  28. ARTEMENKOV, S. L., SMOLSKIY, S. M. Autodyne properties of synchronized transistor oscillators. Metody i ustroistva formirovaniya i obrabotki radiosignalov [Methods and Devices for the Formation and Processing of Radio Signals], Moscow, Trudy MEI, 1982, no. 579, p. 81–86. (in Russian)
  29. ARTEMENKOV, S. L., SMOLSKIY, S. M. Stabilization of the transistor autodyne frequency by additional clock signal. Sovremennie problemi stabilizacii chastoti [Current Problems of Frequency Stabilization], Moscow, Trudy MEI, 1983, no. 8, p. 30–35. (in Russian)
  30. KUROKAVA, K. Injection locking of microwave solid-state oscillators. Proceedings of the IEEE, 1973, vol. 61, no. 10, p. 1386–1410. DOI: 10.1109/PROC.1973.9293
  31. NOSKOV, V. YA., IGNATKOV, K. A. Dynamic autodyne and modulation characteristics of microwave oscillators. Telecommunication and Radio Engineering, 2013, vol. 72, no. 10, p. 919–934. DOI: 10.1615/TelecomRadEng.v72.i10.70
  32. VOTOROPIN, S. D. Self-oscillating mixer EHF of the mezaplanar Gunn diodes. In 16th International Crimean Conference on Microwave and Telecommunication Technology. Sevastopol (Crimea, Ukraine), 2006, vol. 1, p. 148–149. DOI: 10.1109/CRMICO.2006.256336

Keywords: Autodyne, injection-locked autodyne, autodyne signals, frequency deviation, Gunn-diode oscillator

Z. Peric, J. Nikolic, B. Denic, V. Despotovic [references] [full-text] [DOI: 10.13164/re.2019.0729] [Download Citations]
Forward Adaptive Dual-Mode Quantizer Based on the First-Degree Spline Approximation and Embedded G.711 Codec

In this paper, we propose a novel model of dual-mode quantizer that combines the restricted and unrestricted forward adaptive piecewise linear scalar quantizers based on the first degree-spline functions, one of them being forward adaptive G.711 quantizer used as the unrestricted one. The analysis presented in the paper can be considered as our further research in the field of dual-mode quantization. In particular, in our novel model we utilize G.711 codec due to the compatibility reasons and we develop one completely novel model of restricted quantizer based on the first-degree spline approximation, which is optimized for the assumed Laplacian source so that to provide a minimal mean-squared error distortion. Moreover, unlike previous dual-model quantizer models that processed signals in frame-by-frame manner, our novel model utilizes frame/subframe processing of the signal in order to decrease the total bit rate. The theoretical analysis in a wide dynamic range of input signal variances reveals that the proposed model of quantizer is superior versus the unrestricted G.711 quantizer as well as other similar baselines having the same number of quantization levels. In addition, the results of the experimental analysis performed on the real speech signal show a good agreement with the theoretical ones.

  1. JAYANT, N., NOLL, P. Digital Coding of Waveforms: Principles and Applications to Speech and Video. New Jersey: Prentice Hall, 1984. ISBN: 978-0132119139
  2. CHU, C. Speech Coding Algorithms. New Jersey: John Wiley & Sons, 2005. ISBN: 9780471668879
  3. NA, S., NEUHOFF, D. L. Monotonicity of step sizes of MSEoptimal symmetric uniform scalar quantizers. IEEE Transactions on Information Theory, 2019, vol. 65, no. 3, p. 1782–1792. DOI: 10.1109/TIT.2018.2867182
  4. NA, S., NEUHOFF, D. L. On the convexity of the MSE distortion of symmetric uniform scalar quantization. IEEE Transactions on Information Theory, 2018, vol. 64, no. 4, p. 2626–2638. DOI: 10.1109/TIT.2017.2775615
  5. PERIC, Z., MOSIC, A., PANIC, S. Coding algorithm based on loss compression using scalar quantization switching technique and logarithmic companding. Journal of Information Science and Engineering, 2010, vol. 26, no. 3, p. 967–976.
  6. PERIC, Z., NIKOLIC, J. High-quality Laplacian source quantisation using a combination of restricted and unrestricted logarithmic quantisers. IET Signal Processing, 2012, vol. 6, no. 7, p. 633–640. DOI: 10.1049/iet-spr.2011.0213
  7. NIKOLIC, J., PERIC, Z. An adaptive waveform coding algorithm and its application in speech coding. Digital Signal Processing, 2012, vol. 22, no. 1, p. 199–209. DOI: 10.1016/j.dsp.2011.09.001
  8. NIKOLIC, J., PERIC, Z., JOVANOVIC, A. Two forward adaptive dual-mode companding scalar quantizers for Gaussian source. Signal Processing, 2016, vol. 120, p. 129–140. DOI: 10.1016/j.sigpro.2015.08.016
  9. NA, S. On the support of fixed-rate minimum mean-squared error scalar quantizers for a Laplacian source. IEEE Transactions on Information Theory, 2004, vol. 50, no. 5, p. 937–944. DOI: 10.1109/TIT.2004.826686
  10. NA. S., NEUHOFF, D. L. On the support of MSE-optimal, fixedrate scalar quantizers. IEEE Transactions on Information Theory, 2001, vol. 47, no. 7, p. 2972–2982. DOI: 10.1109/18.959274
  11. INTERNATIONAL TELECOMMUNICATION UNION. ITU-T G.711: Pulse Code Modulation of Voice Frequencies, 1972.
  12. DENIC, B., PERIC, Z., DESPOTOVIC, V., et al. Dual-mode quasi-logarithmic quantizer with G.711 codec. Journal of Electrical Engineering, 2018, vol. 69, no. 1, p. 46–51. DOI: 10.1515/jee-2018-0006
  13. ORTEGA, A., VETTERLY, M. Adaptive scalar quantization without side information. IEEE Transactions on Image Processing, 1997, vol. 6, no. 5, p. 665–676. DOI: 10.1109/83.568924
  14. DINCIC, M., PERIC, Z. Log-polar quantizer with the embedded ITU-T G.711 codec. Radioengineering, 2010, vol. 19, no. 4, p. 712–717. ISSN: 1210-2512
  15. ZHAO, Z., LIU, H., FINGSCHEIDT, T. Enhancement of G.711- coded speech providing quality higher than uncoded. In Proceedings of the 13th ITG-Fb. 282: Speech Communication. Oldenburg (Deutschland), 2018.
  16. VAN DER OORD, A., DIELEMAN, S., ZEN, H., et al. WaveNet: A generative model for raw audio. ArXiv preprint, arXiv: 1609.03499v2 [cs.SD], 2016, p. 1–15.
  17. WANG, N., CHOI, J., BRAND, D., et al. Training deep neural networks with 8-bit floating point numbers. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018). Montreal (Canada), 2018, p. 1–10.
  18. BANNER, R., HUBARA, I., HOFFER, E., et al. Scalable methods for 8-bit training of neural networks. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018). Montreal (Canada), 2018, p. 1–9.
  19. SCHUMAKER, L. Spline Functions: Basic Theory. New York, USA: Cambridge University Press, 2007. ISBN: 978-0521705127
  20. GAROFOLO, S., et al. TIMIT Acoustic-phonetic Continuous Speech Corpus. Philadelphia, USA: Linguistic Data Consortium, 1993.
  21. ALEKSIC, D., PERIC, Z., NIKOLIC, J. Support region determination of the quasi-logarithmic quantizer for Laplacian source. Przeglad Elektrotechniczny, 2012, vol. 88, no. 7, p. 130–132. ISSN: 0033-2097
  22. VELIMIROVIC, L., MARIC, S. New adaptive compandor for LTE signal compression based on spline approximations. ETRI Journal, 2016, vol. 38, no. 3, p. 463–468. DOI: 10.4218/etrij.16.0115.0506
  23. NIKOLIC, J., PERIC, Z., VELIMIROVIC, L. Simple solution for designing the piecewise linear scalar companding quantizer for Gaussian source. Radioengineering, 2013, vol. 22, no. 1, p. 194–199. ISSN: 1210-2512
  24. HAMMAD, H., KHAN, M. N., GILANI, S. O., et al. H.264 encoder parameter optimization for encoded wireless multimedia transmissions. IEEE Access, 2018, vol. 6, p. 22046–22053. DOI: 10.1109/ACCESS.2018.2824835
  25. INTERNATIONAL TELECOMMUNICATION UNION. ITU-T G.712: Transmission Performance Characteristics of Pulse Code Modulation (PCM), 1992.
  26. GAZOR, S., ZHANG, W. Speech probability distribution. IEEE Signal Processing Letters, 2003, vol. 10, no. 7, p. 204–207. DOI: 10.1109/LSP.2003.813679

Keywords: Scalar quantization, restricted quantization, dual-mode quantization, Laplacian source, SQNR

T. K. Vu, M. K. Hoang, H. L. Le [references] [full-text] [DOI: 10.13164/re.2019.0740] [Download Citations]
Performance Enhancement of Wi-Fi Fingerprinting-Based IPS by Accurate Parameter Estimation of Censored and Dropped Data

In complex indoor environments, the censoring, dropping, and multi-component problems may present in the observable data. This is due to the attenuation of signals, the unexpected operation of equipments, and the changing surrounding environment. Censoring refers to the fact that sensors on portable devices are unable to measure Received Signal Strength Index (RSSI) values below a certain threshold, for example, −100 dBm with typical smart phones. Dropping means that, occasionally, RSSI measurements of Wifi access points are not available, although their value is clearly above the censoring threshold. The multi-component problem occurs when the measured data varies due to obstacles as well as user directions; doors closed or open; and so forth. Taking these problems into consideration, this paper proposes a novel approach to enhance the performance of the Wifi Fingerprinting based Indoor Positioning System (WF-IPS). The proposed method is verified through simulated data and real field data. The experimental results show that our proposal outperforms the other state-of-the-art WF-IPS approach both in positioning accuracy and computational cost.

  1. BRENA, R. F., GARCIA-VAZQUEZ, J. P., GALVAN TEJADA, C. E., et al. Evolution of indoor positioning technologies: A survey. Journal of Sensors, 2017, vol. 2017, p. 1–21. DOI: 10.1155/2017/2630413
  2. STELLA, M., RUSSO, M., BEGUSIĆ, D. RF localization in indoor environment. Radioengineering, 2012, vol. 21, no. 2, p. 557–567. ISSN: 1210-2512
  3. HE, S., GARRY CHAN, S.-H. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Communications Surveys and Tutorials, 2016, vol. 18, no. 1, p. 466–490. DOI: 10.1109/COMST.2015.2464084
  4. BAHL, P., PADMANABHAN, V. N. RADAR: An in-building RF-based user location and tracking system. In Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Tel Aviv (Israel), 2000, p. 775–784. DOI: 10.1109/INFCOM.2000.832252
  5. DING, X., WANG, B., WANG, Z. Dynamic threshold location algorithm based on fingerprinting method. Wiley ETRI Journal, 2018, vol. 40, no. 4, p. 531–536. DOI: 10.4218/etrij.2017-0155
  6. HOANG, M. K., HAEB-UMBACH, R. Parameter estimation and classification of censored Gaussian data with application to Wi-Fi indoor positioning. In IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver (BC, Canada), 2013, p. 3721–3725. DOI: 10.1109/ICASSP.2013.6638353
  7. DORTZ, N. L., GAIN, F., ZETTERBERG, P. Wi-Fi fingerprint indoor positioning system using probability distribution comparison. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Kyoto (Japan), 2012, p. 2301–2304. DOI: 10.1109/ICASSP.2012.6288374
  8. TSENG, C. H., YEN, J. Enhanced Gaussian mixture model for indoor positioning accuracy. In International Computer Symposium (ICS). Chiayi (Taiwan), December 2016, p. 462–466. DOI: 10.1109/ICS.2016.0099
  9. HOANG, M. K., SCHMALENSTROEER, J., HAEB-UMBACH, R. Aligning training models with smartphone properties in Wi-Fi fingerprinting based indoor localization. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brisbane (QLD, Australia), April 2015, p. 1981–1985. DOI: 10.1109/ICASSP.2015.7178317
  10. YOUSSEF, M., AGRAWALA, A. The Horus WLAN location determination system. In International Conference on Mobile Systems, Applications, and Services (MobiSys). Washington (USA), June 2005, p. 201–218. DOI: 10.1145/1067170.1067193
  11. LUO, J., ZHAN, X. Characterization of smart phone received signal strength indication for WLAN indoor positioning accuracy improvement. Journal of Networks, 2014, vol. 9, no. 3. DOI: 10.4304/jnw.9.3.739-746
  12. KAEMARUNGSI, K., KRISHNAMURTHY, P. Properties of indoor received signal strength for WLAN location fingerprinting. In The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services. Boston (USA), August 2004, p. 14–23. DOI: 10.1109/MOBIQ.2004.1331706
  13. ALFAKIH, M., KECHE, M., BENOUDNINE, H. Gaussian mixture modeling for indoor positioning WI-FI systems. In 3rd International Conference on Control, Engineering & Information Technology (CEIT). Tlemcen (Algeria), May 2015, p. 1–5. DOI: 10.1109/CEIT.2015.7233072
  14. BELLER, S. Model adaptation to improve fingerprinting based indoor navigation. (in German: Modelladaption zur Verbesserung von Fingerprinting basierter Indoornavigation.) Master Thesis. University of Paderborn, 2014.
  15. VU, T. K., HOANG, M. K., LE, H. L. An EM algorithm for GMM parameter estimation in the presence of censored and dropped data with potential application for indoor positioning. ICT Express, 2019, vol. 5, no. 2, p. 120–123. DOI: 10.1016/j.icte.2018.08.001
  16. DEMPSTER, A. P., LAIRD, N. M., RUBIN, D. B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1977, vol. 39, no. 1, p. 1–38.
  17. LEE, G., SCOTT, C. EM algorithms for multivariate Gaussian mixture models with truncated and censored data. Computational Statistics and Data Analysis, 2012, vol. 56, no. 9, p. 2816–2829. DOI: 10.1016/j.csda.2012.03.003
  18. HUANG, T., PENG, H., ZHANG, K. Model selection for Gaussian mixture models. Statistica Sinica, 2013, vol. 27, p. 147–169. DOI: 10.5705/ss.2014.105
  19. XIE, C. H., CHANG, J. Y., LIU, Y. J. Estimating the number of components in Gaussian mixture models adaptively for medical image. Optik, 2013, vol. 124, no. 23, p. 6216–6221. DOI: 10.1016/j.ijleo.2013.05.028
  20. HUSSIEN, H. M., SHIFERAW, Y. N., TESHALE, N. B. Survey on indoor positioning techniques and systems. In International Conference on Information and Communication Technology for Develoment for Africa. Bahir Dar (Ethiopia), September 2017, p. 46–55. DOI: 10.1007/978-3-319-95153-9_5
  21. XIA, S., LIU, Y., YUAN, G., et al. Indoor fingerprint positioning based on Wi-Fi: An overview. International Journal of GeoInformation, 2017, vol. 6, no. 5, p. 135–149. DOI: 10.3390/ijgi6050135

Keywords: IPS, EM algorithm, censored and dropped data, Gaussian Mixture Model (GMM), Bayesian Information Criterion (BIC).

W. A. Mahyiddin, A. L. A. Mazuki, K. Dimyati, M. Othman, N. Mokhtar, H. Arof [references] [full-text] [DOI: 10.13164/re.2019.0749] [Download Citations]
Localization Using Joint AOD and RSS Method in Massive MIMO System

In this research, we propose to estimate location of mobile users by using joint angle of departure (AOD) from base station (BS) and received signal strength (RSS) at user equipment (UE) method. The location estimation (LE) is performed at each UE by using massive multiple-input multiple-output (MIMO) system at the BS, which transmits specially design MIMO-orthogonal frequency division multiplexing (MIMO-OFDM) beamforming signals. Since the estimation is done independently at each UE, the number of UEs in the area does not affect the performance and calculation complexity of the LE. To improve the practicality of the proposed method, we also design the beamforming signals with reduced peak to average power ratio (PAPR) by using random subcarrier-beamforming angle allocation method. The results show that the proposed method generally has lower estimation error than that of the AOD-only and the RSS-only LE methods across various UEs’ locations. The proposed beamforming signal method can also significantly reduce PAPR of the transmitted signal.

  1. HOFMANN-WELLENHOF, B., LICHTENEGGER, H., COLLINS, J. Global Positioning System: Theory and Practice. New York (NY, USA): Springer, 2001. ISBN 978-3-7091-6199-9
  2. LIU, H., DARABI, H., BANERJEE, P., et al. Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2007, vol. 37, no. 6, p. 1067–1080. DOI: 10.1109/TSMCC.2007.905750
  3. DARDARI, D., CLOSAS, P., DJURIĆ, P. M. Indoor tracking: Theory, methods, and technologies. IEEE Transactions on Vehicular Technology, 2015, vol. 64, no. 4, p. 1263–1278. DOI: 10.1109/TVT.2015.2403868
  4. GARCIA, N., WYMEERSCH, H., LARSSON, E. G., et al. Direct localization for massive MIMO. IEEE Transactions on Signal Processing, 2017, vol. 65, no. 10, p. 2475–2487. DOI: 10.1109/TSP.2017.2666779
  5. GUERRA, A., GUIDI, F., DARDARI, D. Single-anchor localization and orientation performance limits using massive arrays: MIMO vs. beamforming. IEEE Transactions on Wireless Communications, 2018, vol. 17, no. 8, p. 5241–5255. DOI: 10.1109/TWC.2018.2840136
  6. SHAHMANSOORI, A., GARCIA, G. E., DESTINO, G., et al. Position and orientation estimation through millimeter-wave MIMO in 5G systems. IEEE Transactions on Wireless Communications, 2018, vol. 17, no. 3, p. 1822–1835. DOI: 10.1109/TWC.2017.2785788
  7. SAVIC, V., LARSSON, E. G. Fingerprinting-based positioning in distributed massive MIMO systems. In 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall). Boston (MA, USA), 2015, p. 1–5. DOI: 10.1109/VTCFall.2015.7390953
  8. VIEIRA, J., LEITINGER, E., SARAJLIC, M., et al. Deep convolutional neural networks for massive MIMO fingerprintbased positioning. In Proceedings of the 28th IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications. Montreal (QB, Canada), 2017, p. 1–6. DOI: 10.1109/PIMRC.2017.8292280
  9. HWANG, I., SONG, B., SOLIMAN, S. S. A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine, 2013, vol. 51, no. 6, p. 20–27. DOI: 10.1109/MCOM.2013.6525591
  10. HEATH JR., R. W., WU, T., KWON, Y. H., et al. Multiuser MIMO in distributed antenna systems with out-of-cell interference. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 10, p. 4885–4899. DOI: 10.1109/TSP.2011.2161985
  11. KRAMER, G., GASTPAR, M., GUPTA, P. Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 2005, vol. 51, no. 9, p. 3037–3063. DOI: 10.1109/TIT.2005.853304
  12. CASTRO-ARVIZU, J. M., CLOSAS, P., FERNANDEZ-RUBIO, J. A. Cramer-Rao lower bound for breakpoint distance estimation in a path-loss model. In 2014 IEEE International Conference on Communications Workshops (ICC). Sydney (NSW, Australia), 2014, p. 176–180. DOI: 10.1109/ICCW.2014.6881192
  13. MORAGREGA, A., CLOSAS, P., IBARS, C. Potential game for energy-efficient RSS-based positioning in wireless sensor networks. IEEE Journal on Selected Areas in Communications, 2015, vol. 33, no. 7, p. 1394–1406. DOI: 10.1109/JSAC.2015.2430172
  14. RUSEK, F., PERSSON, D., LAU, B., et al. Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 2013, vol. 30, no. 1, p. 40–60. DOI: 10.1109/MSP.2011.2178495
  15. MOLISCH, A. F. Wireless Communications. 2nd ed. West Sussex (UK): JohnWiley & Sons Ltd., 2011. ISBN: 978-0-470-74187-0
  16. SPENCER, Q. H., JEFFS, B. D., JENSEN, M. A., et al. Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel. IEEE Journal on Selected Areas in Communications, 2000, vol. 18, no. 3, p. 347–360. DOI: 10.1109/49.840194
  17. ITU-R. Propagation Data and Prediction Methods for the Planning of Indoor Radio Communication Systems and the Radio Local Area Networks in the Frequency Range 900 MHz to 100 GHz. Recommendation ITU-R P.1238-8, 2015. Available at:
  18. NGO, H. Q., ASHIKHMIN, A., YANG, H., et al. Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 2017, vol. 16, no. 3, p. 1834–1850. DOI: 10.1109/TWC.2017.2655515

Keywords: Localization, massive MIMO, mobile positioning, OFDM

H. L. Wang, W. Li, H. Wang, J. Y. Xu, J. L. Zhao [references] [full-text] [DOI: 10.13164/re.2019.0757] [Download Citations]
Radar Waveform Strategy Based on Game Theory

In this paper, we proposed two waveform design methods based on game theory to address the problem of radar detection performance degradation in electronic warfare. Since radar and jammer are completely hostile, their interaction is modeled as two-person zero-sum game. Signal-to-Interference-plus-Noise Ratio (SINR) criterion is used in formulating the utility functions. The existence of Nash equilibrium in games is verified by mathematical derivation. Different game waveform strategies are designed for different information levels of radar and jammer. Iterative water-filling method and two-step water-filling method are designed to achieve Cournot equilibrium and Stackelberg equilibrium, respectively. Simulation results reveal that game strategies can bring higher radar detection performance than No game signal, especially when jammer power is lower than radar power. Radar detection probability based on game theory can be increased by up to 10% without changing the power. This demonstrates game strategies have great potentials for radar waveform design in electronic warfare.

  1. BELL, M. R. Information theory and radar waveform design. IEEE Transactions on Information Theory, 1993, vol. 39, no. 5, p. 1578–1597. DOI:10.1109/18.259642
  2. PILLAI, S. U., OH, H. S., YOULA, D. C., et al. Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise. IEEE Transactions on Information Theory, 2002, vol. 46, no. 5, p. 577–584. DOI: 10.1109/18.825822
  3. KAY, S. Optimal signal design for detection of Gaussian point targets in stationary Gaussian clutter/reverberation. IEEE Journal of Selected Topics in Signal Processing, 2007, vol. 1, no. 1, p. 31–41. DOI: 10.1109/jstsp.2007.897046
  4. ROMERO, R. A., BAE, J., GOODMAN, N. A. Theory and application of SNR and mutual information matched illumination waveforms. IEEE Transactions on Aerospace and Electronic Systems, 2011, vol. 47, no. 2, p. 912–927. DOI: 10.1109/TAES.2011.5751234
  5. AUBRY, A., DEMAI, A., FARINA, A., et al. Knowledge-aided (potentially cognitive) transmit signal and receive filter design in signal-dependent clutter. IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, no. 1, p. 93–117. DOI: 10.1109/TAES.2013.6404093
  6. AHMED, S., ALOUINI, M. S. MIMO-radar waveform covariance matrix for high SINR and low side-lobe levels. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 8, p. 2056–2065. DOI: 10.1109/TSP.2014.2307282
  7. WANG, Y., LI, W., HUANG, G., et al. Time-invariant range-angle dependent beampattern synthesis for FDA radar targets tracking. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, no. 1, p. 2375–2379. DOI: 10.1109/LAWP.2017.2718580
  8. IMANI, S., NAYEBI, M. M., GHORASHI, S. A. Colocated MIMO radar SINR maximization under ISL and PSL constraints. IEEE Signal Processing Letters, 2018, vol. 25, no. 3, p. 422–426. DOI: 10.1109/LSP.2018.2796603
  9. WU, L., BABU, P., PALOMAR, D. P. Transmit waveform/receive filter design for MIMO radar with multiple waveform constraints. IEEE Transactions on Signal Processing, 2018, vol. 66, no. 6, p. 1526–1540. DOI: 10.1109/TSP.2017.2787115
  10. HAYKIN, S. Cognitive radar: A way of the future. IEEE Signal Processing Magazine, 2006, vol. 23, no. 1, p. 30–40. DOI: 10.1109/MSP.2006.1593335
  11. WANG, L., WANG, H., WONG, K. K., et al. Minimax robust jamming techniques based on signal-to-interference-plus-noise ratio and mutual information criteria. IET Communications, 2014, vol. 8, no. 10, p. 1859–1867. DOI: 10.1049/iet-com.2013.1054
  12. GOGINENI, S., NEHORAI, A. Game theoretic design for polarimetric MIMO radar target detection. Signal Processing, 2012, vol. 92, no. 5, p. 1281–1289. DOI: 10.1016/j.sigpro.2011.11.024
  13. PANOUI, A., LAMBOTHARAN, S., CHAMBERS, J. A. Game theoretic distributed waveform design for multistatic radar networks. IEEE Transactions on Aerospace and Electronic Systems, 2016, vol. 52, no. 4, p. 1855–1865. DOI: 10.1109/TAES.2016.150378
  14. DELIGIANNIS, A., LAMBOTHARAN, S., CHAMBERS, J. A. Game theoretic analysis for MIMO radars with multiple targets. IEEE Transactions on Aerospace and Electronic Systems, 2016, vol. 52, no. 6, p. 2760–2774. DOI: 10.1109/TAES.2016.150699
  15. DELIGIANNIS, A., PANOUI, A., LAMBOTHARAN, S., et al. Game-theoretic power allocation and the Nash equilibrium analysis for a multistatic MIMO radar network. IEEE Transactions on Signal Processing, 2017, vol. 65, no. 24, p. 6397–6408. DOI: 10.1109/TSP.2017.2755591
  16. HAN, K., NEHORAI, A. Jointly optimal design for MIMO radar frequency-hopping waveforms using game theory. IEEE Transactions on Aerospace and Electronic Systems, 2016, vol. 52, no. 2, p. 809–820. DOI: 10.1109/TAES.2015.140408
  17. SHI, C., SALOUS, S., WANG, F. et al. Power allocation for target detection in radar networks based on low probability of intercept: A cooperative game theoretical strategy. Radio Science, 2017, vol. 52, no. 8, p. 1030–1045. DOI: 10.1002/2017RS006332
  18. SHI, C., WANG, F., SELLATHURAI, M., et al. Non-cooperative game theoretic power allocation strategy for distributed multipleradar architecture in a spectrum sharing environment. IEEE Access, 2018, vol. 6, no. 1, p. 17787–17800. DOI: 10.1109/ACCESS.2018.2817625
  19. SONG, X., WILLETT, P., ZHOU, S., et al. The MIMO radar and jammer games. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 2, p. 687–699. DOI: 10.1109/TSP.2011.2169251
  20. GAO, H., WANG, J., JIANG, C., et al. Equilibrium between a statistical MIMO radar and a jammer. In IEEE Radar Conference. Johannesburg (RSA), 2015. p. 461–466. DOI: 10.1109/RADAR.2015.7131043
  21. LAN, X., LI, W., WANG, X., et al. MIMO radar and target Stackelberg game in the presence of clutter. IEEE Sensors Journal, 2015, vol. 15, no. 12, p. 6912–6920. DOI: 10.1109/JSEN.2015.2466812
  22. BASAR, T., OLSDER, G. J. Dynamic Noncooperative Game Theory. (Vol. 160, Mathematics in Science and Engineering). New York-London (USA): Academic Press, 1982. ISBN: 0-12-080220-1
  23. CARABALLO, M. A., MARMOL, A. M., MONROY, L., et al. Cournot competition under uncertainty: Conservative and optimistic equilibria. Review of Economic Design, 2015, vol. 19, no. 2, p. 145–165. DOI: 10.1007/s10058-015-0171-z

Keywords: Game theory, waveform strategy, Cournot game, Stackelberg game, Nash equilibrium, Signal-to-Interference-plus-Noise Ratio (SINR)

U. K. Singh, V. Bhatia, A. K. Mishra [references] [full-text] [DOI: 10.13164/re.2019.0765] [Download Citations]
Small Boat Detection Using OFDM Radar

Orthogonal frequency division multiplexing (OFDM) based radar systems have recently attracted a lot of research interest. However, demonstration of OFDM radar's capability for target detection using real data is not reported in the open literature. In this work, we demonstrate a method to employ OFDM radar for small boat detection. For this objective, we propose a technique to generate radar return for OFDM waveform using collected radar return data when stepped frequency waveform is transmitted. We, then, derive system model for the estimated radar return data specific to OFDM waveform. Further, a detection test is proposed for the derived signal model and surveillance environment. Close match between the derived analytical expressions and simulation results validates the proposed detector's performance.

  1. HERSELMAN, P. L., BAKER, C. J., DE WIND, H. J. An analysis of X-band calibrated sea clutter and small boat reflectivity at mediumto-low grazing angles. International Journal of Navigation and Observation, 2008, vol. 2008, p. 1–14. DOI: 10.1155/2008/347518
  2. HERSELMAN, P. L., DE WIND, H. J. Improved covariance matrix estimation in spectrally inhomogeneous sea clutter with application to adaptive small boat detection. In Proceedings of the IET International Conference on Radar Systems. Adelaide (Australia), 2008, p. 94–99. DOI: 10.1109/RADAR.2008.4653898
  3. HERSELMAN, P. L., BAKER, C. J. Analysis of calibrated sea clutter and boat reflectivity data at C-and X-band in South African coastal waters. In Proceedings of the IET International Conference on Radar Systems. Edinburgh (UK), 2007, p. 1–5. DOI: 10.1049/cp:20070616
  4. WATTS, S. Radar detection prediction in K-distributed sea clutter and thermal noise. IEEE Transactions on Aerospace and Electronic Systems, 1987, vol. 23, no. 1, p. 40–45. DOI: 10.1109/TAES.1987.313334
  5. GINI, F., GRECO, M.V., SANGSTON, K.J., FARINA, A. Coherent adaptive radar detection in non-Gaussian clutter. In Proceedings of the Conference on Signals, Systems and Computers. Pacific Grove (USA), 1997, p. 255–259. DOI: 10.1109/ACSSC.1997.680181
  6. PANAGOPOULOS, S., SORAGHAN, J. J. Small-target detection in sea clutter. IEEE Transactions on Geoscience and Remote Sensing, 2004, vol. 42, no. 7, p. 1355–1361. DOI: 10.1109/TGRS.2004.827259
  7. HU, J., GAO, J., POSNER, F.L., et al. Target detection within sea clutter: A comparative study by fractal scaling analyses. Fractals, 2006, vol. 14, no. 3, p. 187–204. DOI: 10.1142/s0218348x06003210
  8. THAYAPARAN, T., KENNEDY, S. Detection of a manoeuvring air target in sea-clutter using joint time-frequency analysis techniques. IEE Proceedings-Radar, Sonar and Navigation, 2004, vol. 151, no. 1, p. 19–30. DOI: 10.1049/ip-rsn:20040158
  9. DAVIDSON, G., GRIFFITHS, H.D. Wavelet detection scheme for small targets in sea clutter. Electronics Letters, 2002, vol. 38, no. 19, p. 1128–1130. DOI: 10.1049/el:20020790
  10. SEN, S., NEHORAI, A. Target detection in clutter using adaptive OFDM radar. IEEE Signal Processing Letters, 2009, vol. 16, no. 7, p. 592–595. DOI: 10.1109/LSP.2009.2020470
  11. PRASAD, N. N. S. S. R. K., SHAMEEM, V., DESAI, U. B., et al. Improvement in target detection performance of pulse coded Doppler radar based on multicarrier modulation with fast Fourier transform (FFT). IEE Proceedings-Radar, Sonar and Navigation, 2004, vol. 151, no. 1, p. 11–17. DOI: 10.1049/ip-rsn:20040119
  12. SINGH, U. K., MITRA, R., BHATIA, V., et al. Target range estimation in OFDM radar system via kernel least mean square technique. In Proceedings of the IET International Conference on Radar Systems (RADAR). Belfast (UK), 2017, p. 1–5. DOI: 10.1049/cp.2017.0409
  13. SINGH, U. K., MITRA, R., BHATIA, V., et al. Delay and Doppler shift estimation for non-constant envelope modulation in OFDM radar system. In Proceedings of the IET International Conference on Radar Systems (RADAR). Belfast (UK), 2017, p. 1–5. DOI: 10.1049/cp.2017.0410
  14. ANDRIC, M., BUJAKOVIC, D., BONDZULIC, B., et al. Analysis of radar Doppler signature from human data. Radioengineering, 2014, vol. 23, no. 1, p. 11–19. ISSN: 1805-9600
  15. RAIDA, Z., KOLKA, Z., MARSALEK, R., et al. Communication subsystems for emerging wireless technologies. Radioengineering, 2012, vol. 21, no. 4, p. 1036–1049. ISSN: 1805-9600
  16. SHI, C., WANG, F., SELLATHURAI, M., et al. Power minimizationbased robust OFDM radar waveform design for radar and communication systems in coexistence. IEEE Transactions on Signal Processing, 2017, vol. 66, no. 5, p. 1316–1330. DOI: 10.1109/TSP.2017.2770086
  17. GARMATYUK, D., GIZA, P., CONDICT, N., et al. Randomized OFDM waveforms for simultaneous radar operation and asynchronous covert communications. In Proceedings of the IEEE Radar Conference (RadarConf18). Oklahoma City (USA), 2018, p. 975–980. DOI: 10.1109/RADAR.2018.8378693
  18. DOKHANCHI, S. H., SHANKAR, M. B., STIFTER, T., et al. OFDM-based automotive joint radar-communication system. In Proceedings of the IEEE Radar Conference (RadarConf18). Oklahoma City (USA), 2018, p. 902–907. DOI: 10.1109/RADAR.2018.8378680
  19. CHRONOPOULOS, S. K., VOTIS, C., RAPTIS, V., et al. In depth analysis of noise effects in orthogonal frequency division multiplexing systems, utilising a large number of subcarriers. AIP Conference Proceedings, 2010, vol. 1203, no. 1, p. 967–972. DOI: 10.1063/1.3322592
  20. KOLIOPANOS, C., CHRONOPOULOS, S. K., TZECHILIDOU, A. M., et al. Simulation, modeling, and performance analysis of IEEE 802.16e OFDMA systems for urban and rural environments. In Proceedings of the 2nd International Conference on Signals, Circuits and Systems (SCS). Monastir (Tunisia), 2008, p. 1–4. DOI: 10.1109/ICSCS.2008.4746930
  21. CHRONOPOULOS, S. K., CHRISTOFILAKIS, V., TATSIS, G., et al. Preliminary BER study of a TC-OFDM system operating under noisy conditions. Journal of Engineering Science and Technology Review, 2016, vol. 9, no. 4, p. 13–16. DOI: 10.25103/jestr.094.03
  22. TIGREK, R. F., DE HEIJ, W. J., VAN GENDEREN, P. OFDM signals as the radar waveform to solve Doppler ambiguity. IEEE Transactions on Aerospace and Electronic Systems, 2012, vol. 48, no. 1, p. 130–143. DOI:10.1109/taes.2012.6129625
  23. LELLOUCH, G., MISHRA, A., INGGS, M. Impact of the Doppler modulation on the range and Doppler processing in OFDM radar. In Proceedings of the IEEE Radar Conference. Cincinnati (USA), 2014, p. 803–808. DOI: 10.1109/RADAR.2014.6875700
  24. BRAUN, M., STURM, C., Jondral, F. K. Maximum likelihood speed and distance estimation for OFDM radar. In Proceedings of the IEEE Radar Conference. Washington (USA), 2010, p. 256–261. DOI: 10.1109/RADAR.2010.5494616
  25. ILVEDSON, C. R. Transfer Function Estimation using Time-Frequency Analysis. Master’s thesis, Massachusetts Institute of Technology, 1998. Available at:
  26. PETROV, N., LE CHEVALIER, F., YAROVOY, A. G. Detection of range migrating targets in compound-Gaussian clutter. IEEE Transactions on Aerospace and Electronic Systems, 2018, vol. 54, no. 1, p. 37–50. DOI: 10.1109/TAES.2017.2731558
  27. KAY, S. M. Fundamentals of Statistical Signal Processing. Upper Saddle River (USA): Prentice Hall PTR, 1993. ISBN: 0133457117
  28. LELLOUCH, G., MISHRA, A. K., INGGS, M. Orthogonal frequency division multiplexing phenomenology: Radar technique combining genetic algorithm-based pulse design and energy detector for target recognition. IET Radar, Sonar and Navigation, 2016, vol. 10, no. 5, p. 912–922. DOI: 10.1049/iet-rsn.2014.0470
  29. WARD, K. D., TOUGH, R. J., WATTS, S. Sea Clutter: Scattering, the K Distribution and Radar Performance. Toronto (Canada): IET, 2006. ISBN: 0863415032
  30. SHI, Y., XIE, X., LI, D. Range distributed floating target detection in sea clutter via feature-based detector. IEEE Geoscience and Remote Sensing Letters, 2016, vol. 13, no. 12, p. 1847–1850. DOI: 10.1109/LGRS.2016.2614750
  31. GINI, F., GRECO, M. V. Suboptimum approach to adaptive coherent radar detection in compound-Gaussian clutter. IEEE Transactions on Aerospace and Electronic Systems, 1999, vol. 35, no. 3, p. 1095–1104. DOI: 10.1109/7.784077
  32. CAO, P., XIA, W., LI, Y. Classification of ground targets based on radar micro-Doppler signatures using deep learning and conventional supervised learning methods. Radioengineering, 2018, vol. 27, no. 3, p. 835–845. DOI: 10.13164/re.2018.0835
  33. SHBAT, M. S., TUZLUKOV, V. Evaluation of detection performance under employment of the generalized detector in radar sensor systems. Radioengineering, 2014, vol. 23, no. 1, p. 50–65. ISSN: 1805-9600
  34. GINI, F. Sub-optimum coherent radar detection in a mixture of K-distributed and Gaussian clutter. IEE Proceedings-Radar, Sonar and Navigation, 1997, vol. 144, no. 1, p. 39–48. DOI: 10.1049/ip-rsn:19970967
  35. GINI, F., GRECO, M. Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter. Signal Processing, 2002, vol. 82, no. 12, p. 1847–1859. DOI: 10.1016/S0165-1684(02)00315-8
  36. ABRAMOWITZ, M., STEGUN, I. A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. North Chelmsford (USA): Courier Corporation, 1964. ISBN: 0486612724

Keywords: OFDM, stepped frequency, radar return, small boat, sea clutter

W. Wang, Z. Hu, P. Huang [references] [full-text] [DOI: 10.13164/re.2019.0776] [Download Citations]
3-D MIMO Radar Imaging of Ship Target with Rotational Motions

The problem of image defocusing and distortion occurs in synthetic aperture radar (SAR) imaging of ship target with rotations. Although many literatures have analyzed this problem, it cannot efficiently be solved due to the coherent accumulation time for SAR target imaging, which results from their working principle and mechanism. In this paper, three-dimensional MIMO radar imaging of ship target with rotations is proposed. The real-time advantage of MIMO radar imaging is utilized to achieve high-precision imaging of ship target with rotations. Firstly, the ship rotations characteristics and imaging distortion effects are analyzed in detail. Then, the three-dimensional real-time MIMO radar echo model is built to correct the scattering positions in time, geometrical analysis is carried out to analyze and optimize the target scattering coefficient variation process. Finally, a sparse imaging algorithm based on maximum a posterior (MAP) method is proposed to obtain accurate imaging result. Theoretical analysis and simulation results show that the three-dimensional imaging of ship target based on MIMO radar has better imaging accuracy and real-time performance compared with SAR, and can effectively solve the problem of image defocusing and distortion.

  1. WARD, K. D. Radar imaging of ships at sea. In Proceedings of the IEE Colloquium on Synthetic Aperture Radar. London (UK), 1989, p. 7/1–7/5.
  2. FINGAS, M. F., BROWN, C. E. Review of ship detection from airborne platforms. Canadian Journal of Remote Sensing, 2001, vol. 27, no. 4, p. 379–385. DOI: 10.1080/07038992.2001.10854880
  3. REED, A. M., MILGRAM, J. H. Ship wakes and their radar images. Annual Review of Fluid Mechanics, 2002, vol. 34, p. 469–502. DOI: 10.1146/annurev.fluid.34.090101.190252
  4. CRISP, D. J. The state-of-the-art in ship detection in Synthetic Aperture Radar imagery. Defence Science and Technology Organisation Salisbury (Australia) Info Sciences Lab, No. DSTO-RR-0272, 2004, p. 3–22.
  5. CHEN, C.-C., ANDREWS, H. C. Target-motion-induced radar imaging. IEEE Transactions on Aerospace and Electronic Systems, 1980, vol. AES-16, no. 1, p. 2–14. DOI: 10.1109/TAES.1980.308873
  6. OUCHI, K., IEHARA, M., MORIMURA, K., et al. Nonuniform azimuth image shift observed in the Radarsat images of ships in motion. IEEE Transactions on Geoscience and Remote Sensing, 2002, vol. 40, no. 10, p. 2188–2195. DOI: 10.1109/TGRS.2002.802478
  7. MATGERIT, G., MALLORQUI, J. J., RIUS, J. M., et al. On the usage of GRECOSAR, an orbital polarimetric SAR simulator of complex targets, to vessel classification studies. IEEE Transactions on Geoscience and Remote Sensing, 2006, vol. 44, no. 12, p. 3517–3526. DOI: 10.1109/tgrs.2006.881120
  8. COCHIN, C., LOUVIGNE, J. C., FABBRI, R., et al. Radar simulation of ship at sea using MOCEM V4 and comparison to acquisitions. In Proceedings of the International Radar Conference. Lille (France), 2014, p. 1–6. DOI: 10.1109/RADAR.2014.7060241
  9. LAZAROV, A. D., MINCHEV, C. N. SAR ship target imaging by induced complementary movement. In Proceedings of the 4th International Conference on Recent Advances in Space Technologies. Istanbul (Turkey), 2009, p. 441–446. DOI: 10.1109/RAST.2009.5158242
  10. CAI, Y., CHONG, J. The study of SAR-ISAR ship imaging based on time-frequency analysis. In Proceedings of the IEEE Youth Conference on Information, Computing and Telecommunication. Beijing (China), 2009, p. 158–161. DOI: 10.1109/YCICT.2009.5382402
  11. LIU, P., JIN, Y. Q. Simulation of synthetic aperture radar imaging of dynamic wakes of submerged body.IET Radar, Sonar and Navigation, 2016, vol. 11, no. 3, p. 481–489. DOI: 10.1049/iet-rsn.2016.0297
  12. BACKSTORM, V., SKARBRATT, A. Maritime ISAR Imaging with Airborne Radar. Master of Science Thesis, Chalmmers University of Technology, Goteborg (Sweden), 2010. [Online] Available at:
  13. LIU, P., JIN, Y. Q. A study of ship rotation effects on SAR image. IEEE Transactions on Geoscience and Remote Sensing, 2017, vol. 55, no. 6, p. 3132–3144. DOI: 10.1109/TGRS.2017.2662038
  14. FISHLER, E., HAIMOVICH, A. M., BLUM, R. S. MIMO radar: An idea whose time has come. In Proceedings of the IEET International Radar Conference. Philadelphia (USA), 2004, p. 71–78. DOI: 10.1109/NRC.2004.1316398
  15. HAIMOVICH, A. M., BLUM, R. S., CIMINI, L. J. MIMO radar with widely separated antennas. Signal Processing Magazine, 2008, vol. 25, no. 1, p. 116–129. DOI: 10.1109/MSP.2008.4408448
  16. SHARMA, G. V. K., RAJA RAJESWARI, K. Fast implementation of transmit beamforming for colocated MIMO radar. Radioengineering, 2015, vol. 24, no. 1, p. 171–177. DOI: 10.13164/re.2015.0171
  17. HUANG, P., LI, X., WANG, H. Tensor-based match pursuit algorithm for MIMO radar imaging. Radioengineering, 2018, vol. 27, no. 2, p. 580–586. DOI: 10.13164/re.2018.0580
  18. ZHU, Y. T., SU, Y. A type of M2-transmitter N2-recevier MIMO radar array and 3D imaging theory. Science China, 2011, vol. 54, no. 10, p. 2147–2157. DOI: 10.1007/s11432-011-4400-y
  19. MA, C. Z., YEO, T., TAN, C. Three-dimensional imaging of targets using collocated MIMO radar. IEEE Transactions on Geoscience and Remote Sensing, 2011, vol. 49, no. 8, p. 3009–3021. DOI: 10.1109/TGRS.2011.2119321
  20. DING, S. S., TONG, N. N., ZHANG, Y. S., et al. Super-resolution 3D imaging in MIMO radar using spectrum estimation theory. IET Radar Sonar and Navigation, 2017, vol. 11, no. 2, p. 304–312. DOI: 10.1049/iet-rsn.2016.0233
  21. HU, X. W., TONG, N. N., ZHANG, Y. S., et al. Multipleinput-multiple-output radar superresolution three-dimensional imaging based on a dimension-reduction compressive sensing. IET Radar Sonar and Navigation, 2016, vol. 10, no. 4, p. 757–764. DOI: 10.1049/iet-rsn.2015.0345
  22. HU, X. W., TONG, N. N., GUO, Y. D., et al. MIMO radar 3D imaging based on multi-dimensional sparse recovery and signal support prior information. IEEE Sensors Journal, 2018, vol. 18, no. 8, p. 3152–3162. DOI: 10.1109/JSEN.2018.2810705
  23. HAN, L., TIAN, B., FENG, C., et al. Extraction micro-Doppler feature of precession targets in orthogonal frequence division multiplexing-linear frequence modulation multiple input multiple output radar. In Proceedings of the International Conference on Systems and Informatics. Nanjing (China), 2018, p. 883–888. DOI: 10.1109/ICSAI.2018.8599377
  24. PASTINA, D., SANTI, F., BUCCIARELLI, M. MIMO distributed imaging of rotating targets for improved 2-D resolution. IEEE Geoscience and Remote Sensing Letters, 2015, vol. 12, no. 1, p. 190–194. DOI: 10.1109/LGRS.2014.2331754
  25. MARTINEZ, J., THURN, K., VOSSIEK, M. MIMO radar for supporting automated rendezvous maneuvers with non-cooperative satellites. In Proceedings of the IEEE Radar Conference. Seattle (USA), 2017, p. 497–501. DOI: 10.1109/RADAR.2017.7944254

Keywords: Ship rotations, MIMO radar imaging, geometrical analysis, real-time performance

Z. Wei, X. Li, B. Wang, W. Wang, Q. Liu [references] [full-text] [DOI: 10.13164/re.2019.0785] [Download Citations]
An Efficient Super-Resolution DOA Estimator Based on Grid Learning

Direction-of-arrival (DOA) estimation based on sparse signal reconstruction (SSR) is always vulnerable to off-grid error. To address this issue, an efficient super-resolution DOA estimation algorithm is proposed in this work. Utilizing the Taylor series expansion, the sparse dictionary matrix is constructed under the off-grid model. Then, a polynomial optimization function is established based on the orthogonality principle. By minimizing the given objective function, we derive an efficient closed-form solution of the off-grid errors. Using the estimated off-grid errors, the discretized grid can be iteratively learned and approaches the true DOAs. With the newly learned grid, accurate DOA estimations can be achieved through the SSR scheme. The proposed algorithm converges fast and achieves precise DOA estimations even the step size of the discretized grid is large. The superior performance of the proposed algorithm is demonstrated by the simulation results.

  1. VAN TREES, H. L. Detection, Estimation and Modulation Theory: Optimal Array Processing. 1st ed., Hoboken (USA): John Wiley & Sons, 2004. ISBN: 0471093904
  2. CAPON, J. High-solution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 1969, vol. 57, no. 8, p. 1408–1418. DOI: 10.1109/PROC.1969.7278
  3. SCHMIDT, R. O. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 3, p. 276–280. DOI: 10.1109/TAP.1986.1143830
  4. ROY, R., PAULRAJ A., KAILATH, T. ESPRIT–A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, vol. 34, no. 5, p. 1340–1342. DOI: 10.1109/TASSP.1986.1164935
  5. DONOHO, D. L. Compressive sensing. IEEE Transactions on Information Theory, 2006, vol. 52, no. 4, p. 1289–1306. DOI: 10.1109/TIT.2006.871582
  6. ZHOU, C., GU, Y., ZHANG, D., et al. Compressive sensing-based coprime array direction-of-arrival estimation. IET Communications, 2017, vol. 11, no. 11, p. 1719–1724. DOI: 10.1049/iet-com.2016.1048
  7. CARLIN, M., ROCCA, P., OLIVERI, G., et al. Directions-of-arrival estimation through Bayesian compressive sensing strategies. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 7, p. 3828–3838. DOI: 10.1109/TAP.2013.2256093
  8. WANG, B., ZHANG, Y. D., WANG,W. Robust DOA estimation in the presence of miscalibrated sensors. IEEE Signal Processing Letters, 2017, vol. 24, no. 7, p. 1073–1077. DOI: 10.1109/LSP.2017.2708659
  9. HUANG, Z., WANG, W. Robust measurement matrix design based on compressed sensing for DOA estimation. Radioengineering, 2019, vol. 28, no. 1, p. 276–282. DOI: 10.13164/re.2019.0276
  10. QI, B., WANG, W., WANG, B. Off grid compressive channel estimation for mm-wave massive MIMO with hybrid precoding. IEEE Communications Letters, 2019, vol. 23, no. 1, p. 108–111. DOI: 10.1109/LCOMM.2018.2878557
  11. SHI, Z., ZHOU, C., GU, Y., GOODMAN, N. A., QU, F. Source estimation using coprime array: A sparse reconstruction perspective. IEEE Sensors Journal, 2017, vol. 17, no. 3, p. 755–765. DOI: 10.1109/JSEN.2016.2637059
  12. LIU, Q., SO, H. C., GU, Y. Off-grid estimation with nonconvex regularization via joint sparse representation. Signal Processing, 2017, vol. 140, p. 171–176. DOI: 10.1016/j.sigpro.2017.05.020
  13. MALIOUTOV, D., CETIN, M., WHILLSKY, A. S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 8, p. 3010–3022. DOI: 10.1109/TSP.2005.850882
  14. CHI, Y., SCHARF, L. L., PEZESHKI, A., et al. Sensitivity to basis mismatch in compressed sensing. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 5, p. 2182–2195. DOI: 10.1109/TSP.2011.2112650
  15. CANDES, E., ROMBERG, J., TAO, T. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 2006, vol. 59, no. 8, p. 1207–1223. DOI: 10.1002/cpa.20124
  16. ZHU, H., LEUS, G., GIANNAKIS, G. Sparsity-cognizant total least-squares for perturbed compressive sampling. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 5, p. 2002–2016. DOI: 10.1109/TSP.2011.2109956
  17. YANG, Z., XIE, L., ZHANG, C. Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 1, p. 38–43. DOI: 10.1109/TSP.2012.2222378
  18. WU, X., ZHU, W.P., YAN, J., ZHANG, Z. Two sparse-based methods for off-grid direction-of-arrival estimation. Signal Processing, 2018, vol. 142, p. 87–95. DOI: 10.1016/j.sigpro.2017.07.004
  19. DAI, J., BAO, X., XU, W., CHANG, C. Root sparse Bayesian learning for off-grid DOA estimation. IEEE Signal Processing Letters, 2017, vol. 24, no. 1, p. 46–50. DOI: 10.1109/LSP.2016.2636319
  20. FANG, J., WANG, F., SHEN, Y., et al. Super-resolution compressed sensing for line spectral estimation: An iterative reweighted approach. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 18, p. 4649–4662. DOI: 10.1109/TSP.2016.2572041
  21. TANG, G., BHASKAR, B. N., SHAH, P., RECHT, B. Compressed sensing off the grid. IEEE Transactions on Information Theory, 2013, vol. 59, no. 11, p. 7465–7490. DOI: 10.1109/TIT.2013.2277451
  22. WU, X., ZHU, W., YAN, J. A fast gridless covariance matrix reconstruction method for one- and two-dimensional direction-ofarrival estimation. IEEE Sensors Journal, 2017, vol. 17, no. 15, p. 4916–4927. DOI: 10.1109/JSEN.2017.2709329
  23. PANAHI, A., VIBERG, M., HASSIBI, B. A numerical implementation of gridless compressed sensing. In Proceedings of the 40th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brisbane (Australia), 2015, p. 3342–3346. DOI: 10.1109/ICASSP.2015.7178590
  24. STOICA, P., NEHORAI, A. MUSIC, Maximum Likelihood, and Cramer-Rao bound. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, vol. 37, no. 5, p. 720–741. DOI: 10.1109/29.17564
  25. TROPP, J. A., GILBERT, A. C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, vol. 53, no. 12, p. 4655–4666. DOI: 10.1109/TIT.2007.909108
  26. TIBSHIRANI, R. Regression shrinkage and selection via the Lasso. Journal of Royal Statistical Society: Series B (Methodological), 1996, vol. 58, no. 1, p. 267–288. DOI: 10.1111/j.2517-6161.1996.tb02080.x

Keywords: Direction of arrival (DOA) estimation, grid learning, sparse signal reconstruction (SSR), off-grid model

M. B. Ucar, D. Yilmaz [references] [full-text] [DOI: 10.13164/re.2019.0793] [Download Citations]
A New Motion Model Selection Approach for Multi-Model Particle Filters

One of the important factors in real-time tracking of the moving radar targets is the speed of the algorithm. In the multi-model particle filters (MMPFs) which is frequently preferred tracking of such targets, the numbers of particles and motion models are important parameters determining the speed of the filter. Reducing the number of particles and/or the model transitions processes as much as possible will facilitate real-time tracking of moving targets by accelerating the algorithm. In this study, for reducing the time cost of the MMPF, a new approach called weighted statistical model selection (WSMS) which reduces the number of model estimation calculations is proposed. A new basic MMPF algorithm that allows the use of the WSMS approach is also constituted. In order to evaluate the success of the WSMS; the MMPFs integrated with the WSMS, are simulated for different noise variances, particle numbers, and scenarios. The simulation results are compared based on processing time and prediction error criterions. The results demonstrate that the WSMS approach increases the speed of the algorithm by reducing the processing time at high rates without any change in the prediction error and, thus it can be used in real-time tracking of the moving targets.

  1. ZHANG, J., JIN, T., HE, Z., ZHOU, Z. M. A centralized processing framework for foliage penetration human tracking in multistatic radar. Radioengineering, 2016, vol. 25, no. 1, p. 98–105. DOI: 10.13164/re.2016.0098
  2. TUYSUZ, B. A new target radar cross section based passive radar surveillance receiver positioning algorithm on real terrain maps. Radioengineering, 2018, vol. 27, no. 3, p. 891–898. DOI: 10.13164/re.2018.0891
  3. CHEN, N. Q., JI, H. B., GAO, Y. C., YANG, D. New box particle filter with improved resampling method and extended inclusion volume criteria for multi-target tracking. Radioengineering, 2018, vol. 27, no. 3, p. 846–855. DOI: 10.13164/re.2018.0846
  4. KALMAN, R. E. A new approach to linear filtering and prediction problems. Transactions of the ASME Journal of Basic Engineering, 1960, vol. 82 (Series D), p. 35–45. DOI: 10.1115/1.3662552
  5. KALANE, P. Target tracking using Kalman filter. International Journal of Science and Technology, 2012, vol. 2, no. 2, p. 16–24. ISSN (online): 2250-141X
  6. TOLOEI, A., NIAZI, S. State estimation for tracking problems with nonlinear Kalman filter algorithms. International Journal of Computer Applications, 2014, vol. 98, no. 17, p. 30–36. DOI: 10.5120/17277-7708
  7. GORDON, N. J., SALMOND, D. J., SMITH, A. F. M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE-Proceedings-F, 1993, vol. 140, no. 2, p. 107–113. DOI: 10.1049/ip-f-2.1993.0015
  8. DOUCET, A., GODSILL, S., ANDIEU, C. On sequential Monte Carlo sampling methods for Bayesian filtering. Journal of Statistics and Computing, 2000, vol. 10, no. 3, p. 197–208. DOI: 10.1023/A:1008935410038
  9. RISTIC, B., ARULAMPALAM, M. S., GORDON, N. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House Publishers, February 2004. ISBN: 9781580536318
  10. SOTO, A. Self adaptive particle filter. In Proceedings of 19th International Joint Conferences on Artificial Intelligence (IJCAI05). Edinburgh (Scotland), 2005, p. 1398–1403.
  11. BAR-SHALOM, Y., FORTMANN, T. E. Tracking and Data Association. Academic Press, 1988. ISBN-10: 0120797607
  12. McGINNITY, S., IRWIN, G. W. Multiple model bootstrap filter for maneuvering target tracking. IEEE Transactions on Aerospace and Electronic Systems, 2000, vol. 36, no. 3, p. 1006−1012. DOI: 10.1109/7.869522
  13. BOERS, Y., DRIESSEN, J. N. Interacting multiple model particle filter. IEE Proceedings Radar, Sonar and Navigation, 2003, vol. 150, no. 5, p. 344−349. DOI: 10.1049/ip-rsn:20030741
  14. YILDIRIM, B., DEMİREKLER, M. Comparison of multiple model particle filter and interacting multiple model EKF in maneuvering target tracking. In Proceedings of IEEE 16th Signal Processing and Communications Applications Conference. Aydim (Turkey), 2008, p. 1–4. DOI: 10.1109/SIU.2008.4632647
  15. YANG, Z., ZHAO, X. Mixed particle filter for maneuvering target tracking in clutter. In Proceedings of International Conferences on Computational Intelligent for Modelling, Control and Automation (CIMCA2008), Intelligent Agents, Web Technologies and Internet Commerce (IAWTIC 2008), Innovation in Software Engineering (ISE 2008). Vienna (Austria), 2008, p. 557–562. DOI: 10.1109/CIMCA.2008.219
  16. CHEN, J. F., SHI, Z. G., HONG, S. H., CHEN, K. S. Grey prediction based particle filter for maneuvering target tracking. Progress In Electromagnetics Research, 2009, vol. 93, p. 237–254. DOI: 10.2528/PIER09042204
  17. HONG, S., SHI, Z., CHEN, K. Easy-hardware-implementation MMPF for maneuvering target tracking: Algorithm and architecture. Journal of Signal Processing Systems, 2010, vol. 61, no. 3, p. 259–269. DOI: 10.1007/s11265-010-0450-4
  18. WANG, X., HAN, C. Z. A multiple model particle filter for maneuvering target tracking based on composite sampling. Acta Automatica Sinica, 2013, vol. 39, no. 7, p. 1152–1156. DOI: 10.1016/S1874-1029(13)60069-5
  19. BOLIC, M. Architectures for Efficient Implementation of Particle Filters. State University of New York at Stony Brook, NY, USA, 2004. ISBN: 0-496-08666-9
  20. RONG, L. X., JILKOV, V. P. A survey of maneuvering target tracking: Dynamic models. In Proceedings of SPIE Conference on Signal and Data Processing of Small Targets. Orlando (USA), 2000, p. 4048–4022. DOI: 10.1117/12.391979
  21. YANG, X., XING, K. Joint state and parameter estimation in particle filtering and stochastic optimization. In Dritsas, I. (ed.) Stochastic Optimization–Seeing the Optimal for the Uncertain. IntechOpen, 2011, p. 213–224. DOI: 10.5772/14658
  22. SAEIDI, G., MONIRI, M. R. Bearings-only tracking of manoeuvring targets using multiple model variable rate particle filter with differential evolution. Asia Pacific Journal of Energy and Environment, 2014, vol. 1, no. 3, p. 200–214. DOI: 10.15590/apjee/2014/v1i3/54891
  23. TURNER, L. A., SHERLOCK, C. H. An Introduction to Particle Filtering. [Online] Cited 2014-12-10. Available at:

Keywords: Multiple maneuvering targets tracking, time cost, target tracking algorithm, model selection.

D. Mitic, A. Lebl, Z. Markov, V. Kosjer [references] [full-text] [DOI: 10.13164/re.2019.0801] [Download Citations]
Determination of the Traffic Properties of Cells with Mobile Users Using a Mixed Traffic

This paper presents a two-dimensional Markov traffic model of the mobile users' network where there exist handover calls from the surrounding cells to the considered cell and where, also, primary calls are generated. The two emphasized types of calls form together mixed traffic. The new, two-dimensional model allows us to calculate some characteristic variables for the systems, which may not be determined based on the analysis of one-dimensional model. The developed simulation program is verified comparing the obtained system state probabilities as also primary and handover calls loss rate to the corresponding values from the calculation process. We analyzed cells with a number of channels reserved only for handover calls. This system performances are compared to the performances of some other systems from literature and it is proved that their characteristics are comparable whereby our system improves handover calls dropping rate. It is also proved that users’ speed increase and cell radius decrease cause both primary and, especially, handover calls loss rate increase. The results of calculation and simulation are obtained after a number of iterations (calculation or simulation cycles), where the new loss probability values from one iteration become the input values for the next iteration. In the case that call loss values do not converge during simulation, we implemented the original algorithm for input call loss probability estimation for the next iteration.

  1. LEBL, A., MITIĆ, D., TRENKIĆ, B., et al. Determination of base station emission power change in a mobile network cell with movable users. Radioengineering, 2018, vol. 27, no. 4, p. 1174–1182. DOI: 10.13164/re.2018.1174
  2. IVERSEN, V. B. Teletraffic Engineering and Network Planning. Denmark: Technical University of Denmark, 2015.
  3. POLLINI, G. P. Trends in handover design. IEEE Communications Magazine, 1996, vol. 34, no. 3, p. 82–90. DOI: 10.1109/35.486807
  4. JABBARI, B. Teletraffic aspects of evolving and next-generation wireless communication networks. IEEE Personal Communications, 1996, vol. 3, no. 6, p. 4–9. DOI: 10.1109/98.556473
  5. SCHWARTZ, M. Mobile Wireless Communications. Cambridge University Press, 2005. ISBN: 978-0521843478
  6. AGUSTINA, J. V., ZHANG, P., KANTOLA, R. Performance evaluation of GSM handover traffic in a GPRS/GSM network. In Proceedings of the Eighth International Symposium on Computers and Communications (ISCC 2003). Kemer-Antalya (Turkey), 2003, p. 137–142. DOI: 10.1109/ISCC.2003.1214113
  7. ADEWALE, A. A., JOHN, S. N., ADAGUNODO, E. R. Performance comparison of dynamic guard channel assignment with buffered prioritized scheme for mobile WiMAX network. In Proceedings of the World Congress on Engineering 2016. London (UK), 2016, vol. I, p. 1–5. ISBN 978-988-19253-0-5, ISSN: 2078- 0958
  8. BASHARIN, G. P., MERKULOV, V. E. Blocking probability analysis of new and handover calls in cellular mobile networks with repeated attempts. In Proceedings of the 7th International Conference on Telecommunications (ConTEL 2003). Zagreb (Croatia), 2003, p. 273–278. DOI: 10.1109/CONTEL.2003.176920
  9. XHAFA, A. E., TONGUZ, O. K. Dynamic priority queueing of handover calls in wireless networks: An analytical framework. IEEE Journal on Selected Areas in Communications, 2004, vol. 22, no. 5, p. 904–916. DOI: 10.1109/JSAC.2004.826927
  10. BERALDI, R., MARANO, S., PALUMBO, E. Analysis of new priority queueing strategies for handoff and originating calls in mobile cellular radio systems. In IEEE Wireless Communications System Symposium. Long Island (NY, USA), 1995, p. 63–69. DOI: 10.1109/WCSS.1995.588484
  11. MARTINEZ-BAUSET, J., PLA, V., GARCIA-ROGER, D., et al. Admission control policies to minimize blocking/forcedtermination in multimedia cellular networks. Chapter 13 in: Ming, G., Pan, Y., Fan, P. (eds.) Advances in Wireless Networks: Performance Modelling, Analysis and Enhancement. Nova Science Publishers, Inc., 2008. ISBN: 1-60021-713-3
  12. KAWSER, M. T., ISLAM, M. R., RAHIM, M. R., et al. Versatile controllability over cell switching for speedy users in LTE HetNets. Radioengineering, 2017, vol. 26, no. 1, p. 179–190. DOI: 10.13164/re.2017.0179
  13. KIRSAL, Y. Analytical modelling of a new handover algorithm for improve allocation of resources in highly mobile environments. International Journal of Computers Communications & Control, 2016, vol. 11, no. 6, p. 789–803. DOI: 10.15837/ijccc.2016.6.2564
  14. THUMTHAWATWORN, T., PERVEZ, A., SANTIPRABHOB, P. Enhanced adaptive traffic dependent handover decision system for wireless mobile networks. International Journal on Advances in Networks and Services, 2014, vol. 7, no 1-2, p. 118–129. ISSN: 1942-2644
  15. JOVANOVIĆ, P., SUH, T., LEBL, A., et al. Influence of intra-cell connections on the traffic calculation of radio resources in mobile network. Frequenz, 2013, vol. 67, no. 9-10, p. 315–320. DOI: 10.1515/freq-2012-0124
  16. TOLSTRUP, M. Indoor Radio Planning – A Practical Guide for GSM, DCS, UMTS and HSPA. John Wiley and Sons, 2008. DOI: 10.1002/9781119973225
  17. MARKOV, Z. Calculation of the group of trunks containing faulty trunks by the theory of mixed telephone traffic. Archiv fur Elektronik und Ubertragungstechnik (AEU), October 1988, vol. 42, no. 5, p. 285–287.
  18. BENES, V. E. Mathematical Theory of Connecting Networks and Telephone Traffic. Vol. 17, ch. 3: Rearrangeable networks, p. 82–135. New York: Academic Press, 1965. ISBN: 978- 0120875504
  19. SUH, T., MITIĆ, D., LEBL-ANTONIĆ, D., et al. Determination of the necessary number of technicians on the faculty. Acta Polytechnica Hungarica, 2014, vol. 11, no. 1, p. 21–36. DOI: 10.12700/aph.11.01.2014.01.2
  20. KOSTEN, K. M. Simulation in traffic theory. In Proceedings of the Sixth International Teletraffic Congress ITC. Munich (Germany), 1970, p. 411/1–411/8.
  21. MILEUSNIĆ, M., SUH, T., LEBL, A., et al. Use of computer simulation in estimation of GSM base station output power. Acta Polytechnica Hungarica, 2014, vol. 11, no. 6, p. 129–142. DOI: 10.12700/aph.11.06.2014.06.8
  22. LEBL, A., MITIĆ, D., PERISIĆ, Đ., et al. A simulation model of assistants’ and technicians’ engagement in processing generated requests at a university. Ingenieria e investigacion, 2016, vol. 36, no. 2, p. 35–42. DOI: 10.15446/ing.investig.v36n2.54210
  23. MITIĆ, D., LEBL, A., MILEUSNIĆ, M., et al. Traffic simulation of GSM cells with half-rate connection realization possibility. Journal of Electrical Engineering, 2016, vol. 67, no. 2, p. 95–102. DOI: 10.1515/jee-2016-0014
  24. MITIĆ, D., MARKOV, Z., KOSJER, V., LEBL, A. Programs for mobile systems simulation, [Online] Available at:
  25. GARAH, M., BENATIA, D. Handover prioritizing scheme for reducing call failure probability in cellular wireless network. Wireless Communications and Mobile Computing, 2009, vol. 9, p. 1660–1667, DOI: 10.1002/wcm.755

Keywords: Network of mobile users, handover traffic, channel reservation, traffic loss, two-dimensional model