September 2025, Volume 34, Number 3 [DOI: 10.13164/re.2025-3]
T. C. Jermin Jeaunita, T. Ramesh, C. V. S. R. Manjushree, P. T. Shantala
[references] [full-text]
[DOI: 10.13164/re.2025.0381]
[Download Citations]
A Decentralized and Efficient Crowdfunding Framework for Secure Transactions and User Engagement
Crowdfunding has become essential for financing entrepreneurial projects, innovative projects, and social initiatives. However, existing platforms face critical challenges, including a lack of transparency, low user engagement, data privacy concerns, and ineffective personalization of user experiences. To address these limitations, this study introduces a novel decentralized crowdfunding framework that integrates Federated Learning (FL), blockchain technology, and Q-learning to enhance security, transparency, and user engagement. The framework leverages FL to collaboratively train models across distributed datasets while ensuring privacy preservation by eliminating the need to share raw user data. Blockchain technology is utilized to ensure tamper-proof transaction records and automate trustless interactions through smart contracts, effectively preventing fraud while increasing transparency. Additionally, a Q-learning-based incentive mechanism is incorporated to predict and stimulate user engagement, ensuring dynamic long-term engagement. The experimental evaluation illustrates that the designed framework attains state-of-the-art performance with an accuracy rate of 99.39%, surpassing existing methodologies. The results demonstrate the effectiveness of the framework in providing a secure, decentralized, and highly personalized crowdfunding system, raising trust and engagement among stakeholders and resolving long-standing issues in crowdfunding platforms.
- KAMARUDIN, M. K., MOHAMAD NORZILAN, N. I., MUSTAFFA, F. N. A., et al. Why do donors donate? A study on donation-based crowdfunding in Malaysia. Sustainability, 2023, vol. 15, no. 5, p. 1–16. DOI: 10.3390/su15054301
- GUPTA, S., RAJ, S., GUPTA, S., et al. Prioritizing crowdfunding benefits: A fuzzy-AHP approach. Quality & Quantity, 2023, vol. 57, no. 1, p. 379–403. DOI: 10.1007/s11135-022-01359-z
- ABDUL HALIM, M. Does crowdfunding contribute to digital financial inclusion? Research in Globalization, 2024, vol. 9, no. 1, p. 1–13. DOI: 10.1016/j.resglo.2024.100238
- TALUKDER, S. C., LAKNER, Z. Exploring the landscape of social entrepreneurship and crowdfunding: A bibliometric analysis. Sustainability, 2023, vol. 15, no. 12, p. 1–22. DOI: 10.3390/su15129411
- DINH, J. M., ISAAK, A. J., WEHNER, M. C. Sustainability oriented crowdfunding: An integrative literature review. Journal of Cleaner Production, 2024, vol. 448, no. 3, p. 1–38. DOI: 10.1016/j.jclepro.2024.141579
- LIVINGSTONE, A., SERVAIS, L., WILKINSON, D. J. C. The ethics of crowdfunding in paediatric neurology. Developmental Medicine & Child Neurology. 2023, vol. 65, no. 4, p. 450–455. DOI: 10.1111/dmcn.15442
- HUO, H., WANG, C., HAN, C., et al. Risk disclosure and entrepreneurial resource acquisition in crowdfunding digital platforms: Evidence from digital technology ventures. Information Processing & Management, 2024, vol. 61, no. 3, p. 1–15. DOI: 10.1016/j.ipm.2024.103655
- JIANG, Z. Y., ZHANG, J. W., YANG, H. J., et al. Secure power data sharing with fine-grained control: A multi-strategy access tree approach. Radioengineering, 2024, vol. 33, no. 4, p. 704–712. DOI: 10.13164/re.2024.0704
- KAVITHA, P., KAVITHA, K. Hybrid NOMA for latency minimization in wireless federated learning for 6G networks. Radioengineering, 2023, vol. 32, no. 4, p. 594–602. DOI: 10.13164/re.2023.0594
- CARDONA, L. F., GUZMAN-LUNA, J. A., RESTREPO CARMONA, J. A. Bibliometric analysis of the machine learning applications in fraud detection on crowdfunding platforms. Journal of Risk and Financial Management, 2024, vol. 17, no. 8, p. 1–23. DOI: 10.3390/jrfm17080352
- LU, B., XU, T., FAN, W. How do emotions affect giving? Examining the effects of textual and facial emotions in charitable crowdfunding. Financial Innovations, 2024, vol. 10, no. 1, p. 1–44. DOI: 10.1186/s40854-024-00630-6
- FENG, Y., LUO, Y., PENG, N., et al. Crowdfunding performance prediction using feature‐selection‐based machine learning models. Expert Systems, 2024, vol. 41, no. 10, p. 1–15. DOI: 10.1111/exsy.13646
- TIGANOAIA, B, ALEXANDRU, G-M. Building a blockchain based decentralized crowdfunding platform for social and educational causes in the context of sustainable development. Sustainability. 2023, vol. 15, no. 23, p. 1–19. DOI: 10.3390/su152316205
- PARK, J., NA, H. J., KIM, H. Development of a success prediction model for crowdfunding based on machine learning reflecting ESG information. IEEE Access, 2024, vol. 12, no. 3, p. 197275–197289. DOI: 10.1109/ACCESS.2024.3519219
- LEE, S., PARK, H., KIM, H. C. Fraud detection on crowdfunding platforms using multiple feature selection methods. IEEE Access, 2025, vol. 13, no. 3,
- p. 40133–40148. DOI: 10.1109/ACCESS.2025.3547396
- USMAN, S. M., BUKHARI, F. A. S., YOU, H., et al. The effect and impact of signals on investing decisions in reward-based crowdfunding: A comparative study of China and the United Kingdom. Journal of Risk and Financial Management, 2020, vol. 13, no. 12, p. 1–20. DOI:10.3390/jrfm13120325
- KHURANA, I. Legitimacy and reciprocal altruism in donation based crowdfunding: Evidence from India. Journal of Risk and Financial Management, 2021, vol. 14, no. 5, p. 1–16. DOI: 10.3390/jrfm14050194
- FANEA-IVANOVICI, M., BABER, H. Crowdfunding model for financing movies and web series. International Journal of Innovation Studies, 2021, vol. 5, no. 2, p. 99–105. DOI: 10.1016/j.ijis.2021.06.001
- PENG, N., ZHOU, X., NIU, B., et al. Predicting fundraising performance in medical crowdfunding campaigns using machine learning. Electronics, 2021, vol. 10, no. 2, p. 1–16. DOI: 10.3390/electronics10020143
- LEOŃSKI, W. Crowdfunding as an innovative source of financing business initiatives in Poland. Procedia Computer Science, 2022, vol. 207, no 4, p. 2921–2929. DOI: 10.1016/j.procs.2022.09.350
- RAJWA, P., HOPEN, P., WOJNAROWICZ, J., et al. Online crowdfunding for urologic cancer care. Cancers, 2022, vol. 14, no. 17, p. 1–11. DOI: 10.3390/cancers14174104
- NAN, L., TANG, C., WANG, X., et al. The real effects of transparency in crowdfunding. Contemporary Accounting Research, 2024, vol. 41, no. 1, p. 39–68. DOI: 10.1111/1911-3846.12903
- YEH, J. Y., WANG, Z. L. Mining ESG semantic features for success prediction in green-oriented crowdfunding campaigns. In International Conference on Consumer Electronics-Taiwan (ICCE Taiwan). Ping Tung (Taiwan), 2023, p. 819–820. DOI: 10.1109/ICCE-Taiwan58799.2023.10226784
- CORSINI, F., FREY, M. Crowdfunding sustainable products with the product search matrix: niche markets vs. mass markets. Electronic Commerce Research, 2023, vol. 24, no. 4, p. 2327–2352. DOI: 10.1007/s10660-023-09674-9
- PETCHHAN, J., PHANICHRAKSAPHONG, V., DOUNGTAP, S., et al. Toward project success forecasting in reward-based crowdfunding through wide-and-deep computational learning. In 15th IEEE International Conference on Industry Applications (INDUSCON). São Bernardo do Campo (Brazil), 2023, p. 1489 to
- 1493. DOI: 10.1109/INDUSCON58041.2023.10374665
- LI, Z., LIU, J., HAO, J., et al. CrowdSFL: A secure crowd computing framework based on blockchain and federated learning. Electronics, 2020, vol. 9,
- no. 5, p. 1–21. DOI: 10.3390/electronics9050773
- YADAV, N., SARASVATHI, V. Venturing crowdfunding using smart contracts in blockchain. In Proceedings of the Third International Conference on Smart Systems and Inventive Technology (ICSSIT). Tirunelveli (India), 2020, p. 192–197. DOI: 10.1109/ICSSIT48917.2020.9214295
- LEE, S., SHAFQAT, W., KIM, H. C. Backers beware: Characteristics and detection of fraudulent crowdfunding campaigns. Sensors, 2022, vol. 22, no. 19, p. 1–16. DOI: 10.3390/s22197677
- SAMBARE, S. S., KHANDAIT, K., KOLAMBE, K., et al. Crowdfunding using blockchain for startup ventures. In 2023 7th International Conference on Computing, Communication, Control and Automation (ICCUBEA). Pune (India), 2022, p. 1–6. DOI: 10.1109/ICCUBEA58933.2023.10392107
- VENSLAVIENĖ, S., STANKEVICIENĖ, J., LESCAUSKIENĖ, I. Evaluation of blockchain-based crowdfunding campaign success factors based on VASMA-L criteria weighting method. Administrative Sciences, 2023, vol. 13, no. 6, p. 1–16. DOI: 10.3390/admsci13060144
- WAN, X., TENG, Z., LI, Q., et al. Blockchain technology empowers the crowdfunding decision-making of marine ranching. Expert Systems with Applications, 2023, vol. 221, p. 1–23. DOI: 10.1016/j.eswa.2023.119685
- GUGGENBERGER, T., SCHELLINGER, B., VON WACHTER, V., et al. Kickstarting blockchain: Designing blockchain-based tokens for equity crowdfunding. Electronic Commerce Research, 2024, vol. 24, p. 239–273. DOI: 10.1007/s10660-022-09634-9
- MUKHERJEE, K., RANA, A., RANI, S. Crowdfunding platform using blockchain. In 2024 IEEE 9th International Conference for Convergence in Technology (I2CT). Pune (India), 2024, p. 1–6. DOI: 10.1109/I2CT61223.2024.10544161
- CPNCF120 Campaign Dataset. [Online] Cited 2025-03-05. Available at: https://data.world/manjushree012/cpncf120
- ORG_CF165 Organization Dataset. [Online] Cited 2025-03-05. Available at: https://data.world/manjushree012/orgcf165
- KYC_CF133 Individual Dataset. [Online] Cited 2025-03-05. Available at: https://data.world/manjushree012/kyccf133
- ALAGHBARI, K. A., LIM, H. S., SAAD, M. H. M., et al. Deep autoencoder-based integrated model for anomaly detection and efficient feature extraction in IoT networks. IoT, 2023, vol. 4, no. 3, p. 345–365. DOI: 10.3390/iot4030016
- TAN, Y., TIAN, J. A method for processing static analysis alarms based on deep learning. Applied Sciences, 2024, vol. 14, no. 13, p. 1–23. DOI: 10.3390/app14135542
- SHANMUGAM, D., ARUMUGAM, C. Effective communication compression framework using federated learning privacy model for smart grid. Procedia Computer Science, 2025, vol. 254, p. 164–170. DOI: 10.1016/j.procs.2025.02.075
- GHOLIZADEH, N., KAZEMI, N., MUSILEK, P. A comparative study of reinforcement learning algorithms for distribution network reconfiguration with deep Q-learning-based action sampling. IEEE Access, 2023, vol. 11, DOI: 10.1109/ACCESS.2023.3243549
Keywords: Bidirectional recurrent neural network, blockchain, crowdfunding, Federated Learning (FL), MetaMask wallet, Q-learning, smart contract